
The Utility of Corpora Comparison
for Generating Delete Lists

Geoffrey P. Morgan
July 10, 2017

CMU-ISR-17-109

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Support for this work was provided by the Office of Naval Research (ONR) MURI N0014081186 as well
as ONR Minerva – Dynamic Statistical Network Informatics N000141512797. Additional support was
provided by the center for Computational Analysis of Social and Organizational Systems and the Institute
for Software Research at Carnegie Mellon University. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the Office of Naval Research, or the U.S. government.

 The Center for Computational Analysis of Social and Organizational Systems
CASOS Technical Report

Keywords: Text Analysis, Corpus Comparison, Delete Lists, TF-IDF

iii

Abstract

Delete Lists are lists of words that have been determined to have little useful meaning for
textual analysis. One subset of words that are frequently deleted are stop-words. Stop-
Words are textual tokens, such as “and”, “a”, or “the”, that provide structural or
grammatical impact to a sentence but do not themselves have significant inherent
meaning. Identifying stop-words is a routine process in most text-cleaning applications,
but frequently is done via user-maintained word lists. I suggest that the corpora
comparison technique I devised for word-score polarization can be used to identify low-
value words while preserving the bulk of the text tokens. I will use both known and
random draw corpora comparisons for this process. By “known” corpora, I mean corpora
drawn from explicit data-sources, the emails of one company and the emails of another,
for example. “Random-Draw” corpora are created by drawing document sets at random,
and therefore this technique could be applied to any sufficiently large text corpus of
interest. I use the ability to identify stop words as a proxy for performance in generating
useful delete lists. Random-Draw and Known Corpora Comparison techniques
outperform an iteration of TF-IDF (Term Frequency – Inverse Document Frequency),
which performs quite poorly on this email data.

iv

v

Table of Contents

1 Introduction ... 1

2 The Motivating Case: Comparing Two Corpora with Known Differences 1

2.1 Comparing Two Corpora ... 1

2.2 “Known” Case Performance .. 3

3 The General Case: Identifying Low-Value Words through stochastic draws 4

3.1 Algorithmic Extensions .. 5

3.2 Evaluating Performance across Parameters ... 5

3.3 Comparison to TF-IDF ... 7

4 Discussion and Conclusion .. 8

References ... 9

vi

1

1 Introduction

In textual analysis, word removal is a common cleaning process. Words are usually removed
because they have little value to the analyst’s goals. Stop words are one such set of low-value
words. These stop words, such as “a”, “and”, “the”, and “or”, have significant structural and
grammatical importance, but do not themselves have or convey intrinsic meaning. Often, words
which are generally considered to have low-value are all placed in a single document, called a
“delete-word list” or, more simply, a “delete list”.

Word removal through delete lists significantly reduces the size and complexity of resulting
analysis products, such as semantic networks and linguistic tree structures, making it easier to get
useful results from these later analyses.

Delete lists vary from group to group, and these lists are maintained with significant analyst
effort. The exact composition of a delete list may depend on the goals of the group, the text
medium, and the analysis goals. There may not be one delete list that every analysis group could
agree to.

Because it requires significant human effort to maintain delete lists, I offer an automated
algorithmic technique for inferring which words are of low-value and can thus be discarded
safely. I do this via corpora comparison – taking two sets of documents and identifying terms
that do not usefully distinguish the two corpora. This technique should be applicable across
various mediums, as long as the two corpora are comparable. I explore this approach with both
“known” corpora, where there is a reason to distinguish between the documents, and “random
draw” corpora, where document sets are drawn at random. I compare these approaches with a
well-regarded token identification approach, TF-IDF (Term Frequency – Inverse Document
Frequency) an approach that scores tokens as to their probable value within a set of documents
(Salton & Buckley, 1988).

I would expect that the “known” case, where I have two sets of documents of interest would
perhaps have better results than the random case. However, the random case is able to leverage
many draw iterations, and with enough iterations; performance at the task of identifying stop
words actually exceeds the “known” case. Both forms of corpora comparison out-perform TF-
IDF at identifying stop words in email.

In the remainder of this chapter, I identify the algorithm used to identify these low-value
words, explore the performance from the “known” case, and then identify the additions to the
algorithm used to address the random-draw case and report performance on various settings of
the variables used in random-draw corpora selection. Finally, I compare known corpora
comparison, random-draw corpora comparison, and TF-IDF performance.

2 The Motivating Case: Comparing Two Corpora with Known Differences

This algorithm relies on the odds-ratio of the two corpora in comparison. A token is highly
useful and/or interesting if the token is highly distinctive. Essentially, the quantity of interest
would answer the question: “if I saw this token, would I immediately know which corpus this
word is from?” I use the normalized odds ratio to compare the frequency of the word in each
corpus.

2.1 Comparing Two Corpora

I will use the following notation. For each corpora, C, there is a set of tokens, T. Each token,
t, appears a certain quantity of times and is noted as the quantity tC. The sum of these quantities
would be noted as TC. In this case, there are two known corpora, A and G.

2

 The equation, assuming tA and tG are both non-zero, ranges from -0.5 to 0.5. If the token
appears only in A, the score is .5, if the token appears only in G, then the score is -0.5.

Equation 1. The Transformed Normalized Odds Ratio

I can also “pre-treat” the corpus by removing words that occur less than a certain number of

times; this affects the ultimate distribution of the words. Removing words that occur less than 3
times is often recommended. Histograms of token scores across multiple thresholds are presented
in Figure 1 - a normal distribution with a spike at both tails is expected. The effect of cleaning is
evident and definitely valuable when moving from no filter to the “3 or more” words filter.

All Words > 3

> 7 > 11

Figure 1. Distributions of token scores across multiple cleaning thresholds

The results in Figure 1 indicate the tested corpus’ robustness to word removal. Without
special knowledge of the corpora involved, I would expect to see a normal distribution with

3

spikes at both ends. These spikes represent words that only one group or the other uses. Words
in each spike usually represent the identities of products, trademarks, or objects related to the
company’s work. Many words will be used interchangeably across corpora, and this is
represented by the bulge at 0.

2.2 “Known” Case Performance

In the “Known” case, I have two sets of emails at similar periods of time. The authors of
these emails are from two companies, which are undergoing a horizontal merger. I compare the
corpus of emails from Group A against the corpus of emails written by Group G from the same
time-period.

If I remove terms based on their odds score, Figure 2 displays the ROC curve from known
corpora comparison of Early 2013, other corpora results are similar. The X-Axis is the
percentage of all terms removed, while the Y-Axis is percentage of known stop words removed.
Random performance is the diagonal – if 30% of the terms are removed at random, 30% of the
stop words should be removed as well. The best performance is at the top left of the graph.

Figure 2. The Performance of the Known Case on Early 2013 data The area in blue indicates the
relative performance gains compared to a random classifier.

There are two common aggregates of performance on a ROC Curve – the area under the
curve, which indicates the overall fitness of the classifier, and the closest point to the ideal
optimum: 0,1, which indicates the best performance achieved by this classifier across the entire

Random Performance

4

curve. Another way to think of them is the area serves as a proxy for typical performance, while
the closest point gives a measure of best performance. These quantities are highly correlated, but
there may be trade-offs between them. For application purposes, there may be a sub-region of
the curve that can be considered (it may not be feasible to retain 50% of the words, even if that’s
the best found performance). Both measures can be calculated for a sub-region.

What tokens are identified? In Figure 3, I show tokens that are removed at various cleaning
levels in the known case for Early 2013.

Figure 3. Stop Words removed at various thresholds in the Early 2013 corpus.

3 The General Case: Identifying Low-Value Words through stochastic
draws

I don’t always have two corpora to work with, and I would like to identify low-value words
even when I only have a single set of documents (a corpus) to work with. I will do this by taking
the set of documents, creating random subsets as comparison corpora and identifying low-value
words based on those random draws.

I use multiple (even many) random corpora based on the original data because I expect words
without the ability to distinguish corpora to do so relatively consistently over time. There may
be the occasional outlier where “the” is not identified as a low-value word, but on draw after
draw, it will be. Evidence accretes over each draw. This gradual accretion of evidence is what
allows us to harness the Law of Large Numbers.

5

3.1 Algorithmic Extensions

Essentially, the algorithm is as follows:
1. Identify an appropriate corpus, C.
2. Gather evidence via random draws

a. Select documents at random without replacement (each comparison is guaranteed
to be non-overlapping sets) to form two corpora, R1 and R2. The number of
documents in each random draw is another parameter, D. Larger corpora are less
likely to be noisy (in terms of odds ratios), and more likely to include many terms.

b. Calculate the transformed odds ratio (Equation 1) for R1 and R2, for each unique
token

c. Sort the token set based on absolute value of the odds ratio and take the A%
lowest tokens. The value of A indicates how much evidence the tool gathers per
random draw. For each token in the A% lowest, note it was marked lowest by
iterating its “found lowest” count by 1

d. Merge found tokens with the master set of all tokens ever found
3. Generate the ROC Curve by starting from the highest realized “found lowest” count and

iterating down until all tokens are removed.

3.2 Evaluating Performance across Parameters

I evaluate this technique across multiple settings of C, D, and A to provide a more complete
evaluation of the approach. Please see Table 1 for the virtual experiment. Theoretically, very
low values and very high values of A should produce sub-optimal performance closer to random
– I use many settings of A in order to characterize the inverse-U shaped curve indicated by
theory. I do multiple runs of each parameter setting to evaluate noise.

6

Table 1. Virtual Experiment for testing the Random Draw Corpora Case

Factor # of Values Values

Corpus (C) 3 Early 2013, Late 2013, 2014

Document Draw Size (D) 4 1000, 5000, 10000, 20000

Accretion Rate (A) 8 1, 5, 10, 20, 40, 60, 80, 99

Constants Setting

Filter Value 3

Number of Draws 1000

Outcomes

Best Performance The distance of the performance point closest to 0,1

Average Performance Area under the curve

 Total Combinations 96

 Repetitions 10

 Total Runs 960

Our results indicate that, in general, accretion rate has the expected behavior, with area under
curve describing a U-Shaped Curve, while optimal performance describes an inverse-U-Shaped
curve – see Figure 3. Very small corpora (1000 documents) may benefit from very high
accretion values, because there is relatively little information to be gained from each random
draw. Larger corpora are usually better, although it appears that small corpora sometimes find a
higher optimal performance than medium size corpora. The best performance is found when the
accretion rate is about 40%.

7

Figure 4. Performance based on Accretion Rate (A) – each line indicates a different value of D. I see
the U-Shapes expected from theory.

Figure 4 shows our results for different corpora, C. There is not a statistically significant

difference between performance on these three corpora.

Figure 5. Corpora do not show statistically significant differences.

3 .3 Comparison to TF-IDF

Another technique for identifying stop-words is the Term Frequency - Inverse Document
Frequency (TF-IDF) algorithm. TFIDF uses the entire document corpus and characterizes the

8

value of terms within the corpus. TF-IDF, as the name suggests, suggests that terms are
important if they occur frequently, but are less important if they appear in every document,
reasoning that words such as “the”, and “and” are common in documents and should be
discounted. Both F and D are score vectors representing, respectively, the number of times a
term appeared across all documents, and the number of documents the term appeared in. C
represents the set of documents, so |C| represents the total number of documents in the corpus.

Equation 2. The TF-IDF term score is a function of the total count of the term’s appearance in the
corpus, Ft, and the log of total documents in corpus, |C|, divided by the number of documents the term
appeared in, Dt.

௧ܨܦܫܨܶ ൌ ௧ܨ ∗ ݈݃
|ܥ|
௧ܦ

I can then generate a ROC curve based on the TF-IDF scores, with terms that have the
highest scores being retained the longest. I can then compare these ROC Curves, which is done
in Table 2.

Table 2. Performance of different techniques

Classification

Best Distance from
Goal (Less is Better)

Area Under
Curve (More is
Better)

Random Corpora
Comparison

0.27 0.87

Known Corpora
Comparison

0.365 0.76

Random 0.707 (Typical) 0.5 (Typical)
TF-IDF 0.99 0.135

TF-IDF, as defined here, performs very poorly on this task despite having access to entire

document corpus, the area under the curve is .135 (below random), and the best distance is at 1
(when it essentially removes all documents), also worse than expected from random chance.

4 Discussion and Conclusion

In this paper, I introduced a well-known problem, the need to identify low-value words in a
set of text documents, called a corpus. To address this problem, I created a new technique that
generates an odds ratio of a term appearing in one of two corpora. This can be used to directly
compare corpora to identify words that are low-value and suggest words for deletion, or can be
used in conjunction with stochastic draws to suggest words to remove within a single corpus.

What is a low-value word is dependent on the text corpus and analysis needs, but stop words
are usually low-value, and so I used the ability to identify stop-words as a way of comparing
methodologies. I compared the known case, the stochastic technique, TF-IDF, as well as a null
random classifier to contextualize that performance.

The stochastic technique performs best in our case, with TF-IDF performing the worst. I
think this is because email data is messy, with irregularity of word choice and informal language
being common along with widely varying data lengths. There may be versions of TF-IDF that
perform much better on this data. This technique was primarily developed to help distinguish
between group corpora, and thus the performance in identifying delete words is reassuring but
not required to still find utility in the technique.

9

References

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval.
Information processing & management, 24(5), 513-523.

