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Abstract 

 
Delete Lists are lists of words that have been determined to have little useful meaning for 
textual analysis.  One subset of words that are frequently deleted are stop-words.  Stop-
Words are textual tokens, such as “and”, “a”, or “the”, that provide structural or 
grammatical impact to a sentence but do not themselves have significant inherent 
meaning. Identifying stop-words is a routine process in most text-cleaning applications, 
but frequently is done via user-maintained word lists.  I suggest that the corpora 
comparison technique I devised for word-score polarization can be used to identify low-
value words while preserving the bulk of the text tokens.  I will use both known and 
random draw corpora comparisons for this process.  By “known” corpora, I mean corpora 
drawn from explicit data-sources, the emails of one company and the emails of another, 
for example.  “Random-Draw” corpora are created by drawing document sets at random, 
and therefore this technique could be applied to any sufficiently large text corpus of 
interest.   I use the ability to identify stop words as a proxy for performance in generating 
useful delete lists.  Random-Draw and Known Corpora Comparison techniques 
outperform an iteration of TF-IDF (Term Frequency – Inverse Document Frequency), 
which performs quite poorly on this email data. 
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1 Introduction 

In textual analysis, word removal is a common cleaning process.  Words are usually removed 
because they have little value to the analyst’s goals.  Stop words are one such set of low-value 
words.  These stop words, such as “a”, “and”, “the”, and “or”, have significant structural and 
grammatical importance, but do not themselves have or convey intrinsic meaning.  Often, words 
which are generally considered to have low-value are all placed in a single document, called a 
“delete-word list” or, more simply, a “delete list”. 

Word removal through delete lists significantly reduces the size and complexity of resulting 
analysis products, such as semantic networks and linguistic tree structures, making it easier to get 
useful results from these later analyses. 

Delete lists vary from group to group, and these lists are maintained with significant analyst 
effort.  The exact composition of a delete list may depend on the goals of the group, the text 
medium, and the analysis goals.  There may not be one delete list that every analysis group could 
agree to. 

Because it requires significant human effort to maintain delete lists, I offer an automated 
algorithmic technique for inferring which words are of low-value and can thus be discarded 
safely.  I do this via corpora comparison – taking two sets of documents and identifying terms 
that do not usefully distinguish the two corpora.  This technique should be applicable across 
various mediums, as long as the two corpora are comparable.  I explore this approach with both 
“known” corpora, where there is a reason to distinguish between the documents, and “random 
draw” corpora, where document sets are drawn at random.  I compare these approaches with a 
well-regarded token identification approach, TF-IDF (Term Frequency – Inverse Document 
Frequency) an approach that scores tokens as to their probable value within a set of documents 
(Salton & Buckley, 1988). 

I would expect that the “known” case, where I have two sets of documents of interest would 
perhaps have better results than the random case.  However, the random case is able to leverage 
many draw iterations, and with enough iterations; performance at the task of identifying stop 
words actually exceeds the “known” case. Both forms of corpora comparison out-perform TF-
IDF at identifying stop words in email.    

In the remainder of this chapter, I identify the algorithm used to identify these low-value 
words, explore the performance from the “known” case, and then identify the additions to the 
algorithm used to address the random-draw case and report performance on various settings of 
the variables used in random-draw corpora selection.  Finally, I compare known corpora 
comparison, random-draw corpora comparison, and TF-IDF performance. 

2 The Motivating Case: Comparing Two Corpora with Known Differences 

This algorithm relies on the odds-ratio of the two corpora in comparison.  A token is highly 
useful and/or interesting if the token is highly distinctive.  Essentially, the quantity of interest 
would answer the question: “if I saw this token, would I immediately know which corpus this 
word is from?” I use the normalized odds ratio to compare the frequency of the word in each 
corpus. 

2.1  Comparing Two Corpora 

I will use the following notation.  For each corpora, C, there is a set of tokens, T.  Each token, 
t, appears a certain quantity of times and is noted as the quantity tC. The sum of these quantities 
would be noted as TC. In this case, there are two known corpora, A and G. 
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 The equation, assuming tA and tG are both non-zero, ranges from -0.5 to 0.5.  If the token 
appears only in A, the score is .5, if the token appears only in G, then the score is -0.5. 

 

Equation 1.  The Transformed Normalized Odds Ratio 

 
I can also “pre-treat” the corpus by removing words that occur less than a certain number of 

times; this affects the ultimate distribution of the words.  Removing words that occur less than 3 
times is often recommended. Histograms of token scores across multiple thresholds are presented 
in Figure 1 - a normal distribution with a spike at both tails is expected.  The effect of cleaning is 
evident and definitely valuable when moving from no filter to the “3 or more” words filter. 

 

All Words > 3

> 7 > 11 

Figure 1.  Distributions of token scores across multiple cleaning thresholds 

The results in Figure 1 indicate the tested corpus’ robustness to word removal.  Without 
special knowledge of the corpora involved, I would expect to see a normal distribution with 
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spikes at both ends.  These spikes represent words that only one group or the other uses.  Words 
in each spike usually represent the identities of products, trademarks, or objects related to the 
company’s work.  Many words will be used interchangeably across corpora, and this is 
represented by the bulge at 0. 

2.2   “Known” Case Performance 

In the “Known” case, I have two sets of emails at similar periods of time.  The authors of 
these emails are from two companies, which are undergoing a horizontal merger.  I compare the 
corpus of emails from Group A against the corpus of emails written by Group G from the same 
time-period. 

If I remove terms based on their odds score, Figure 2 displays the ROC curve from known 
corpora comparison of Early 2013, other corpora results are similar.  The X-Axis is the 
percentage of all terms removed, while the Y-Axis is percentage of known stop words removed.  
Random performance is the diagonal – if 30% of the terms are removed at random, 30% of the 
stop words should be removed as well.  The best performance is at the top left of the graph. 

 

 
Figure 2.  The Performance of the Known Case on Early 2013 data  The area in blue indicates the 
relative performance gains compared to a random classifier. 

There are two common aggregates of performance on a ROC Curve – the area under the 
curve, which indicates the overall fitness of the classifier, and the closest point to the ideal 
optimum: 0,1, which indicates the best performance achieved by this classifier across the entire 

Random Performance
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curve.  Another way to think of them is the area serves as a proxy for typical performance, while 
the closest point gives a measure of best performance.  These quantities are highly correlated, but 
there may be trade-offs between them.  For application purposes, there may be a sub-region of 
the curve that can be considered (it may not be feasible to retain 50% of the words, even if that’s 
the best found performance).  Both measures can be calculated for a sub-region. 

What tokens are identified?  In Figure 3, I show tokens that are removed at various cleaning 
levels in the known case for Early 2013. 

 
Figure 3. Stop Words removed at various thresholds in the Early 2013 corpus. 

3 The General Case: Identifying Low-Value Words through stochastic 
draws 

I don’t always have two corpora to work with, and I would like to identify low-value words 
even when I only have a single set of documents (a corpus) to work with.  I will do this by taking 
the set of documents, creating random subsets as comparison corpora and identifying low-value 
words based on those random draws. 

I use multiple (even many) random corpora based on the original data because I expect words 
without the ability to distinguish corpora to do so relatively consistently over time.  There may 
be the occasional outlier where “the” is not identified as a low-value word, but on draw after 
draw, it will be.  Evidence accretes over each draw. This gradual accretion of evidence is what 
allows us to harness the Law of Large Numbers. 
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3.1  Algorithmic Extensions 

Essentially, the algorithm is as follows: 
1. Identify an appropriate corpus, C.    
2. Gather evidence via random draws 

a. Select documents at random without replacement (each comparison is guaranteed 
to be non-overlapping sets) to form two corpora, R1 and R2.  The number of 
documents in each random draw is another parameter, D.  Larger corpora are less 
likely to be noisy (in terms of odds ratios), and more likely to include many terms.   

b. Calculate the transformed odds ratio (Equation 1) for R1 and R2, for each unique 
token 

c. Sort the token set based on absolute value of the odds ratio and take the A% 
lowest tokens.  The value of A indicates how much evidence the tool gathers per 
random draw.  For each token in the A% lowest, note it was marked lowest by 
iterating its “found lowest” count by 1 

d. Merge found tokens with the master set of all tokens ever found 
3. Generate the ROC Curve by starting from the highest realized “found lowest” count and 

iterating down until all tokens are removed.   

3.2  Evaluating Performance across  Parameters 

I evaluate this technique across multiple settings of C, D, and A to provide a more complete 
evaluation of the approach.  Please see Table 1 for the virtual experiment.  Theoretically, very 
low values and very high values of A should produce sub-optimal performance closer to random 
– I use many settings of A in order to characterize the inverse-U shaped curve indicated by 
theory.  I do multiple runs of each parameter setting to evaluate noise. 
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Table 1.  Virtual Experiment for testing the Random Draw Corpora Case 

Factor # of Values Values

Corpus (C) 3 Early 2013, Late 2013, 2014

Document Draw Size (D) 4 1000, 5000, 10000, 20000

Accretion Rate (A) 8 1, 5, 10, 20, 40, 60, 80, 99

  

Constants Setting

Filter Value 3 

Number of Draws 1000

  

Outcomes  

Best Performance The distance of the performance point closest to 0,1 

Average Performance Area under the curve

  

 Total Combinations 96

 Repetitions 10

 Total Runs 960
 

Our results indicate that, in general, accretion rate has the expected behavior, with area under 
curve describing a U-Shaped Curve, while optimal performance describes an inverse-U-Shaped 
curve – see Figure 3.  Very small corpora (1000 documents) may benefit from very high 
accretion values, because there is relatively little information to be gained from each random 
draw.  Larger corpora are usually better, although it appears that small corpora sometimes find a 
higher optimal performance than medium size corpora.  The best performance is found when the 
accretion rate is about 40%. 
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Figure 4.  Performance based on Accretion Rate (A) – each line indicates a different value of D.  I see 
the U-Shapes expected from theory. 

 
Figure 4 shows our results for different corpora, C.  There is not a statistically significant 

difference between performance on these three corpora. 

Figure 5.  Corpora do not show statistically significant differences. 

3 .3  Comparison to TF-IDF 

Another technique for identifying stop-words is the Term Frequency - Inverse Document 
Frequency (TF-IDF) algorithm. TFIDF uses the entire document corpus and characterizes the 



 

8 
 

value of terms within the corpus.  TF-IDF, as the name suggests, suggests that terms are 
important if they occur frequently, but are less important if they appear in every document, 
reasoning that words such as “the”, and “and” are common in documents and should be 
discounted.  Both F and D are score vectors representing, respectively, the number of times a 
term appeared across all documents, and the number of documents the term appeared in.  C 
represents the set of documents, so |C| represents the total number of documents in the corpus.  

Equation 2. The TF-IDF term score is a function of the total count of the term’s appearance in the 
corpus, Ft, and the log of total documents in corpus, |C|, divided by the number of documents the term 
appeared in, Dt. 

௧ܨܦܫܨܶ ൌ ௧ܨ ∗ ݈݃
|ܥ|
௧ܦ

 

I can then generate a ROC curve based on the TF-IDF scores, with terms that have the 
highest scores being retained the longest.  I can then compare these ROC Curves, which is done 
in Table 2. 

Table 2. Performance of different techniques 

Classification 

Best Distance from 
Goal (Less is Better) 

Area Under 
Curve (More is 
Better) 

Random Corpora 
Comparison 

0.27 0.87 

Known Corpora 
Comparison 

0.365 0.76 

Random 0.707 (Typical) 0.5 (Typical) 
TF-IDF 0.99 0.135 

 
TF-IDF, as defined here, performs very poorly on this task despite having access to entire 

document corpus, the area under the curve is .135 (below random), and the best distance is at 1 
(when it essentially removes all documents), also worse than expected from random chance. 

4 Discussion and Conclusion 

In this paper, I introduced a well-known problem, the need to identify low-value words in a 
set of text documents, called a corpus.  To address this problem, I created a new technique that 
generates an odds ratio of a term appearing in one of two corpora.  This can be used to directly 
compare corpora to identify words that are low-value and suggest words for deletion, or can be 
used in conjunction with stochastic draws to suggest words to remove within a single corpus. 

What is a low-value word is dependent on the text corpus and analysis needs, but stop words 
are usually low-value, and so I used the ability to identify stop-words as a way of comparing 
methodologies.  I compared the known case, the stochastic technique, TF-IDF, as well as a null 
random classifier to contextualize that performance. 

The stochastic technique performs best in our case, with TF-IDF performing the worst.  I 
think this is because email data is messy, with irregularity of word choice and informal language 
being common along with widely varying data lengths.  There may be versions of TF-IDF that 
perform much better on this data.  This technique was primarily developed to help distinguish 
between group corpora, and thus the performance in identifying delete words is reassuring but 
not required to still find utility in the technique.  
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