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Abstract

The ”Observe, Orient, Decide, Act” (OODA) loop can be applied to encapsulate
the agility of cyber-physical or cyber-human systems that depend on continuous
iterations of these steps. Systems with faster OODA loops react more quickly to
changes in their environment. This work analyzes the OODA loop of the SteelEagle
edge-enabled autonomous drone system, which transforms consumer aerial photogra-
phy drones into fully autonomous UAVs by offloading computation to the edge using
a drone payload with cellular connectivity.

We identify bottlenecks and opportunities for optimization, leading to a faster
SteelEagle OODA loop and thus improved performance in active vision tasks such
as obstacle avoidance and object tracking. This enables the drone to fly safely at
higher speeds in crowded spaces, increasing the practicality of SteelEagle drones in
applications such as search and rescue and infrastructure inspection. Our findings
show that the hardware encoding of the H.264 video stream on the drone makes up
about two-thirds of the drone-to-cloudlet latency.

Because of its dependence on offloading, SteelEagle is currently limited in its
ability to operate in degraded network conditions. To mitigate these limitations,
we analyze the use of onboard computation with SteelEagle by considering a new
payload that can run float16-quantized DNNs. We discuss how onboard computational
abilities can be combined with offloading to achieve an optimal system based on
computation accuracy, energy efficiency, and latency.
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Chapter 1

Introduction

1.1 Motivation

Mobile devices, such as smartphones and smartwatches, have a key limitation—a limited battery
life which allows them to operate for finite periods before requiring recharging. Resource-intensive
applications, such as those involving augmented reality or deep learning inference, exacerbate
the situation by accelerating battery depletion. Consequently, a mobile device cannot match the
sustained performance and resource capacity of stationary computers, which are free from the
requirements of mobility. Mobile devices will always lag behind static devices in computational
ability because of their size and weight constraints [1]. Increased computational ability, at the
same level of hardware efficiency, demands higher energy consumption. This requires larger
batteries to preserve operating time, thereby increasing weight and size—which are undesirable for
mobile devices. Table 1.1 shows how mobile devices have lagged behind servers in computational
power over a period of 25 years. This limitation has been referred to as the “mobile penalty”, the
cost for reduction in performance required to adhere to mobility constraints [2].

Unmanned aerial vehicles (UAVs), or drones, which spend most of their energy on flight, are
particularly affected by this limitation. Larger batteries required to sustain intensive on-drone
computation increases drone weight. Increased drone weight leads to an upwards spiral in weight
as larger rotors and more powerful motors are needed to achieve the same amount of lift. This
requires even larger batteries which, in turn, may require a more reinforced aircraft structure, and
so on. How, then, can we enable mobile devices to do more given the mobility constraints they
are subject to? Advancements in hardware efficiency provide one possible way forward, but these
advancements are slow and far between. It turns out that there is a way to ”cheat” that enables
mobile devices to do more today, leveraging static infrastructure to overcome the mobility penalty,
known as offloading.

A significant body of work in the field of mobile computing has utilized cloud or cloudlet
offloading techniques to address the inherent resource poverty of mobile devices [5, 6]. Cloudlet
offload allows mobile devices to remotely execute computationally expensive tasks on cloudlets
that do not need to be light or small. This allows mobile devices to retain their low weight and
small size, but possess superior computational abilities.
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Typical Server Typical Mobile Device

Year Processor Speed Device Speed

1997 Intel Pentium II 266 MHz Palm Pilot 16 MHz
2002 Intel Itanium 1 GHz Blackberry 5810 133 MHz
2007 Intel Core 2 Quad Q6600 2.4 GHz x 4 Apple iPhone 412 MHz
2012 Intel Xeon E5-2690 3.8 GHz x 8 Samsung Galaxy S3 1.4 GHz x 4
2017 Intel Xeon Platinum 8180 3.8 GHz x 28 Google Pixel 2 2.35 GHz x 4,

1.9 GHz x 4
2022 AMD EPYC 9654 3.7 GHz x 96 Samsung Galaxy S22 Ultra 3 GHz x 1,

2.5 GHz x 3,
1.8 Ghz x 4

*While processor efficiency depends on more factors than processor frequency, such as instructions per cycle, it
provides a good first-order approximation.

Table 1.1: The Mobility Penalty Over a Period of 25 Years (Adapted from Chen [3], Flinn [4])

Drones are an excellent category of mobile devices to study because of their wide range of
useful applications as well as their design requirements which take mobility constraints to the
extreme. We benchmark an autonomous drone system that leverages offloading techniques to
overcome the computational limitations of consumer-grade drones. We identify its limitations and
evaluate its performance to understand the areas that future work should focus on to enable more
capable drones that can have a wider variety of applications.

1.2 Overview

SteelEagle [7] is an autonomous drone system that leverages offloading. Its main tenet is the use
of commercial-off-the-shelf (COTS) drones, which are readily available at low cost but typically
have minimal to no on-board computational resources. Utilizing cloudlet offload, SteelEagle
enables COTS drones to perform much more intelligent tasks than what they were designed
for, and exhibit autonomous capabilities typically only found in larger, more expensive drones.
SteelEagle focuses on active vision tasks which require the ability to perform live video analytics
during flight to determine the next course of action. SteelEagle drones relay their camera video
stream over a commercial cellular network to a nearby on-ground edge server, a cloudlet, which
runs a computationally expensive pipeline often involving neural networks (Figure 1.1) to perform
tasks such as monocular camera depth perception. This processing of the raw drone sensor stream
allows obtaining higher level semantic information about the drone’s physical environment. In
the case of depth perception, we could infer obstacles that present the danger of a collision. The
drone can then be sent piloting commands to react and actuate to avoid an impending collision.

An important consideration for SteelEagle is the agility of the resulting system. How quickly
can a drone respond to a change in its environment? The end-to-end latency of the entire execution
pipeline, including sensing, offloading, inferencing, decision making, and actuation, defines the
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Figure 1.1: Cloudlet Offload in SteelEagle

agility. A high end-to-end latency can severely handicap the drone—it must fly at a higher altitude
or at slower speeds to be safe if it takes a long time to identify obstacles and actuate to avoid
them. Drone flight at a higher altitude precludes close observation, and slower speeds make
missions take longer, limiting the capabilities of the drone. Search and rescue missions in forests,
and missions to aid law enforcement operations in dense cities, for instance, must fly at low
altitudes while avoiding obstacles in the environment that present a collision risk—trees branches,
streetlight poles, utility wires, and buildings—without impacting mission speed. Unless we can
achieve high agility, SteelEagle drones will struggle to perform these missions well. Since these
missions are one of the most compelling use cases for autonomous drones, benchmarking the
end-to-end pipeline to determine latency bottlenecks and identifying opportunities for latency
optimization is a very worthy pursuit.

SteelEagle drones currently perform no onboard computation—they are controlled exclusively
over the network. While this strategy allows treating consumer-grade non-programmable drones
as black boxes, it presents severe limitations. First, SteelEagle drones struggle in areas with
unreliable cell service and are completely inoperable in regions without cellular coverage. Second,
cloudlet offload imposes an upper bound on drone agility as it adds the cost of a round-trip
latency to a cloudlet. As originally envisioned, cloudlets are differentiated from clouds because
of their network proximity, which allows application end-to-end response time to be just a few
milliseconds. In practice, the usage of commercial cellular networks for offload to the cloudlet
increases this latency to tens of milliseconds. This limits the agility of the drone, as the reaction
time is at least the round-trip time to the cloudlet.

This thesis performs a comprehensive benchmarking of the SteelEagle system, revealing the
current system bottlenecks and identifying opportunities for optimization. In recent years, domain-
specific system-on-a-chip devices have become available that provide substantial energy-efficient
on-board computational resources through the inclusion of hardware accelerators in the chip
design. These chips can decode the video stream generated by the drone and perform analytics
using TensorFlow Lite models, and often include 5G and Wi-Fi connectivity. Using such a chip
as a payload on SteelEagle drones allows us to continue treating the drone as a black box, but
employ new cloudlet offload tactics that result in increasing agility for use cases that can utilize
the hardware accelerators, while retaining the generality offered by cloudlet offload. We explore
the use of onboard computation to mitigate the limitations of SteelEagle, and explore the resulting
impact on drone agility.
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1.3 Contributions

The contributions of this thesis include

• A mapping of the SteelEagle pipeline to the OODA loop framework
• A discussion of efforts to optimize SteelEagle that yielded a two-fold improvement in

drone-to-cloudlet latency
• An analysis of the SteelEagle pipeline’s performance from a latency and bandwidth per-

spective
• An evaluation of the use of an onboard computation device to improve SteelEagle perfor-

mance and alleviate its limitations

1.4 Organization

Chapter 2 describes the history of drones and their development over time. We discuss the
applications that drones are used in today, as well as the capabilities of today’s drones. We
also discuss what autonomy means for drones. Chapter 3 provides a detailed background on
edge computing and the SteelEagle autonomous drone system. In Chapter 4, we describe our
experimental setup for measuring the latency of the SteelEagle system. We include measurements
which provided the insight needed to optimize SteelEagle, allowing for a two-fold improvement
in SteelEagle’s drone-to-cloudlet latency. We also include details on how we performed granular
measurements of individual stages in SteelEagle, which allowed us to identify the video encoding
of the H.264 video stream on the drone as a bottleneck. In Chapter 5, we explore the use of an
onboard computation device called the Modal AI VOXL to augment SteelEagle. We conclude
with Chapter 6, presenting concluding remarks and providing a road map for future work.

4



Chapter 2

Primer on UAVs

This chapter presents background information on unmanned aerial vehicles (UAVs), or drones.
Drones have had a long history of evolution, starting as huge gunnery targets in the 1910s to
today’s small consumer photography drones which are readily available in stores. Beginning with
the history of their evolution in Section 2.1, we move on to describe the capabilities found in
present-day drones in Section 2.2. We end in Section 2.3 with a description of a framework for
characterizing autonomous capabilities in drones.

2.1 History of Drones

Figure 2.1: de Havilland DH82B Queen Bee [8], the first radio-controlled drone

Drones, are aircraft that can be operated remotely without the need for a human pilot on board.
While there were many early pilotless aircraft, the first remote controlled aircraft appeared during
the First World War, developed by Britain and the US in 1917 [9]. Many of these early drones
were used as anti-aircraft gunnery training targets. In the 1930s, the term ”drone” arose inspired
by the de Havilland DH82B Queen Bee (Figure 2.1), designed as a low-cost radio-controlled
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target aircraft, which saw over four hundred units built by 1943. The Queen Bee was the first
drone designed with the ability to return to ground safely and be reused [10, 11].

These early drones were fixed-wing aircraft that were used primarily for combat or training.
From the 1970s, drones such as the Ryan Model 147 Lightning Bugdrones were developed for use
in surveillance missions. These drones carried a camera and could fly for hours at high altitude
[12]. The Pioneer UAV, introduced in 1986, saw extensive use in the Gulf War. Today, the General
Atomics MQ-1 Predator can fly for over 14 hours performing surveillance missions using an array
of sensors, including infrared cameras.

Figure 2.2: DJI Mini 4K

The turn of the century saw the use of small drones in civilian settings, with technology
advances making them cheaper to produce. Drones, particularly quadcopters like the DJI Mini
4K (Figure 2.2), started being used for mapping, aerial photography, industrial inspections
and security, and precision agriculture [13]. Compared to previous fixed-wing military drones,
quadcopters offer superior maneuverability and the ability to hover. They utilize four motor-rotors,
with two spinning clockwise and the other two counterclockwise. Variations in motor speed
allow for precise hovering and maneuverability. This makes quadcopter drones well-suited for
both indoor and outdoor use. Since the 2010s, drones have evolved significantly, with a range of
consumer photography and racing drones easily available to consumers, at a wide range of price
points. Drones are commonly used for filming and recreation, and have also seen use in logistics,
to deliver packages. They have also been put to use in search and rescue [14, 15, 16] and wildlife
conservation [17, 18].

The scale of their adoption is immense—The Federal Aviation Administration (FAA) has
received registrations for almost 800,000 drones [19]. This figure excludes thousands of hobbyist
drones weighing under 250 g that do not require FAA registration.

2.2 Capabilities of Present-day Drones

Today, the set of features available in consumer-grade drones is impressive. The DJI Mini 4K
is priced at $299, weighs under 250g, records video at 4K 30 FPS, and has a maximum flight
time of about 30 minutes [20]. Most drone’s today have the ability to fly semi-autonomously in
addition to the ability to be controlled remotely by a human. As shown in Figure 2.3, drones have
advanced microprocessors that abstract away the lower-level mechanics of quadcopter drone flight.
Components such as the Electronic Speed Controller (ESC) enable precise control of the drone’s

6



brushless electric motors. On-board positioning systems such as Global Navigation Satellite
System (GNSS) receivers give the drone the ability to navigate between waypoints. Using inputs
from on-board inertial measurement unit (IMU) sensors such as gyroscopes, accelerometers,
and magnetometers, drones can determine their orientation, acceleration, and rotation, allowing
them to adjust their motors in real-time to counter wind and hover in a fixed position. They can
also typically takeoff and land autonomously. On-board flight control software such as PX4 or
ArduPilot, also known as an ”autopilot,” makes these higher-level functions possible, taking inputs
from the IMU and GNSS sensors and outputting control commands to the ESC.

Drone

Aerial capacity
● Propulsion: rotary wings 

(quadcopter) or aircraft engines
● Battery: Lithium-polymer (Li-Po) 

or regular engines for larger UAVs

Flight control
● Control unit (IMU): accelerometer, 

gyroscope, compass, 
microcomputer/autopilot

● Artificial intelligence: obstacle 
avoidance, object tracking, video 
processing

Connectivity
● Remote control + telemetry: radio 

frequency, Wi-Fi, 4G, 5G, 
satellite, etc.

Position control
● GNSS (GPS)
● Visual: high fidelity cameras with 

stabilizing gimbal
● Additional sensor data

Figure 2.3: Components of a drone [13]

Drones are equipped with a variety of cameras, such as monocular and stereo. Monocular
cameras capture images and videos from a single point of view, and are common in consumer
aerial photography drones. Monocular cameras are often mounted on a gimbal, which stabilizes
the drone’s camera during motion and also allows the ability to capture different viewing angles
through gimbal motion. Stereoscopic cameras, on the other hand, offer multiple points of view.
Having more than one camera allows the use of epipolar geometry and triangulation to determine
distance from objects efficiently, and perform obstacle avoidance. The DJI Mini 4 Pro, for instance,
has multiple binocular cameras, facing forward, backward, sideways, upwards, and downwards.
This allows the Mini 4 Pro to perform omnidirectional obstacle sensing. During manual pilot
flight, the drone offers pilot assistance features that stop the drone if it is headed for an imminent
collision, and also provide the option to circumvent obstacles automatically altogether. Drones
equipped with monocular cameras typically lack these advanced obstacle avoidance systems, but
are cheaper and more common.

While consumer-grade drones offer many semi-autonomous features, complex fully-autonomous
features are limited to more expensive commercial drones. For example, a consumer drone could
be instructed to navigate to a given GPS coordinate or, in some advanced drones, even track an
on-ground target. But complex missions, such as patrolling a set of waypoints while searching
for an on-ground target, and transitioning to track the target once it is detected, remain out of the
reach of consumer drones.

7



Consumer drones are often controlled over Wi-Fi using a controller or a smartphone app, and
typically lack cellular connectivity, limiting their flying range. Most consumer drones using Wi-Fi
control require the pilot to be no more than two-thirds of a mile away. Proprietary wireless control
systems such as DJI’s OcuSync 4 can increase range to over ten miles under ideal conditions.

2.3 Levels of Drone Autonomy

Manually Piloted Semi-Autonomous Fully-Autonomous

DJI Matrice 
300 RTKDJI Avata 2 DJI Mini 4 ProiFlight Cidora

Parrot Anafi Skydio 2 Skydio X10

Figure 2.4: Drone Autonomy Levels

Drones exhibit varying levels of autonomy, as shown in Figure 2.4. As we move to the
right, the reliance on human drone operators reduces, as the drones feature more autonomous
capabilities. On the manual end of the spectrum are drones such as the DJI Avata 2, a first-person
view (FPV) drone. FPV drone pilots receive a real-time video stream from the drone’s onboard
camera and manually control the drone. These drones are optimized for high-speed flight and
maneuverability, giving them the ability to navigate through tight obstacles at speed. Manually
piloting a drone requires skill and constant human pilot input, which reduces the usefulness of
these drones.

Drones such as the Parrot Anafi include semi-autonomous features such as the ability to hover
and navigate between waypoints. These drones often include a return-to-home (RTH) function
which automatically returns the drone to its takeoff location if the battery is low, or if the drone
loses its connection to the pilot’s controller. Advanced semi-autonomous drones such as the DJI
Mini 4 Pro can also follow a human or vehicle target. These semi-autonomous features reduce the
level of skill required for piloting and the reliance on the human pilot, but still require the pilot to
specify the next course of action to fulfill higher-level mission objectives.

On the right end of the spectrum are fully-autonomous drones, which execute a pre-programmed
mission without a human pilot while adapting to operational and environmental conditions during
flight. The DJI Matrice 300 RTK, for instance, can inspect pre-specified objects of interest, such
as power transmission towers, without any human input.
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Figure 2.5: Drone Operation Line-of-Sight Requirements [21]

Regulatory hurdles, however, impact the versatility of fully-autonomous drones. FAA regula-
tions require that drone operators keep drones within sight during flight [22]. For FPV drones,
it is sufficient to have a visual observer that always has the drone in sight. These two modes
of operation correspond to “Visual Line of Sight” (VLoS) and “Extended Visual Line of Sight”
(EVLoS) in Figure 2.5. While a number of use cases can be covered under these modes of
operation, the holy grail for drones lies in “Beyond Visual Line of Sight” (BVLoS) operation.
BVLoS operation allows drones to fly a much wider range of missions. Missions involve package
delivery requires drones to fly to a far-off destination, improving speed and reducing the logistical
cost compared to human delivery via road. Requiring a human observer to maintain sight of the
drone at all times defeats the purpose of this application.
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Chapter 3

Background and Related Work

This chapter presents background information on the field of edge computing (Section 3.1), the
SteelEagle autonomous drone system (Section 3.2), and the OODA loop framework (Section 3.3).

3.1 Edge Computing

There has been a huge increase in the number of mobile and Internet of Things (IoT) devices
in recent years, driven by advancements in sensor, networking, and processing technologies.
These innovations have made devices smaller, more affordable, and more versatile, enabling
their integration into nearly every aspect of modern life. As explained in Section 1.2, despite the
innovations, these mobile devices remain resource-poor relative to static resources. A wearable
device like a smartwatch, for example, has limited battery life, which constrains its ability to
sustain prolonged conversation with an onboard AI virtual assistant. In 1997, Noble et al extended
an adaptive application-aware framework called Odyssey, which provides remote data access
to mobile clients, to perform speech recognition on a resource-constrained mobile device by
offloading compute to a remote server [23]. This offloading technique allows a mobile device to
circumvent its resource limitations.

But a key question remains—where to offload? The cloud is an appealing choice today because
of its on-demand and scalable nature. However, cloud computing resources are consolidated into
datacenters at a small number of geographic locations to leverage economies of scale, increasing
the distance between end users and the cloud, thus increasing network latency. This can be a deal
breaker for latency-sensitive interactive applications such as augmented reality. An empirical study
conducted with 2,504 Amazon EC2 clients found that more than 60% of the clients experienced
latencies higher than 40 ms [24]. However, immersive augmented reality on a wearable device
has a latency bound of 16 milliseconds [25]. To attain crisp interactive application response,
Satyanarayanan et al introduced the novel paradigm of edge computing [6].

Edge computing is a paradigm in which substantial computing and storage resources—referred
to as ”cloudlets”—are situated at the edge of the Internet in close proximity to mobile devices,
sensors, end users, and Internet of Things (IoT) devices. This proximity offers several key
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advantages [26]:

• It allows offloading to truly shine, enabled by the low latency, high bandwidth, and low
jitter links to the cloudlets

• It reduces the bandwidth demand that IoT devices like video cameras place on the cloud,
thus increasing scalability [27]

• It can enforce a user’s privacy policies specified for their IoT sensors before the data is sent
to the cloud

• Cloudlets help mitigate cloud outages by serving as a fallback service

3.2 SteelEagle Autonomous Drone System

(a) The Samsung Galaxy Watch
and the Onion Omega 2 LTE

(b) Onion Omega 2 LTE
mounted on Parrot Anafi

Figure 3.1: The Hardware Used in SteelEagle (from Bala et al [7])

Autonomous drones perform tasks such as navigating between waypoints and tracking moving
objects without the need for a human pilot. However, autonomous drones today are large and
expensive. Lightweight drones are more appealing, as they present a smaller public safety hazard
and thus face fewer regulations. The FAA, for instance, has pre-authorized flights over people and
vehicles by drones weighing less than 250 g. Cheaper autonomous drones will help accelerate their
uptake in scenarios that stand to benefit the most from their abilities. Search and rescue operations
[16], as well as wildlife conservation efforts that involve monitoring wildlife populations, would
benefit immensely from the ability of drones to cover large areas quickly. The potential for good
increases exponentially with a swarm of drones working cooperatively [14]. In rural areas with
limited law enforcement resources, for instance, a swarm of drones could quickly scan large
swathes of land looking for an abducted child.

Over time, autonomous drones will become cheaper and lighter as new hardware designs are
developed that are more energy efficient and mass production lowers costs. Until then, leveraging
edge computing to add autonomous features to lighter consumer-grade drones at a much lower
price tag is a very appealing proposition. This is the software-hardware co-evolution path that
Satyanarayanan et al outlined, presenting offloading as a way to ”cheat” until ASIC designs are
available [28].
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Bala et al [7] have demonstrated that even drones with a monocular camera can perform tasks
such as object tracking and depth inference reasonably well. In their setup, Bala et al initially used
a Samsung Galaxy smartwatch as a communications relay, mounted on top of a Parrot Anafi drone,
for a total takeoff weight of about 360 g. The Samsung Galaxy smartwatch is appealing because
it is an enclosed system, including a battery and an enclosure protected from the elements. It also
has the ability to run Android applications onboard. However, the constant LTE transmission on
the watch caused it to hit its thermal limits, set so that the watch can be safely worn on the human
wrist, and shut down. Figure 3.2 shows the increase in temperature of the watch for a frame rate
of 0.7 and 2 FPS.

As a result, the Samsung Galaxy smartwatch could sustain a very low frame rate.

Figure 3.2: The Samsung Galaxy Payload Thermal Curve (from Bala et al [7])

As an alternative, Bala et al used the Onion Omega 2 system-on-a-chip device [29]. While the
Omega 2 does not have the thermal limitations present in the Galaxy smartwatch, it has very weak
computational capabilities. Intended for use as an IoT module, the Omega 2 runs the 580MHz
MIPS 24KEc CPU and has only 16 MB of flash storage. In the SteelEagle setup, a VPN tunnel is
established between the cloudlet and the Omega 2, and the drone is connected to the Omega 2
over Wi-Fi. This allows communication with the drone that is connected to the Omega 2 over
4G LTE. The Omega 2 routes packets between its Wi-Fi and LTE network interfaces, acting as a
communications relay.

3.3 OODA Loop Framework

The ”Observe, Orient, Decide, Act” (OODA) loop framework [30] devised by military strategist
John R. Boyd provides a framework to structure our investigation into the end-to-end latency of
SteelEagle. It consists of four stages:

• Observe. Involves obtaining new information about the environment
• Orient. Analysis and interpretation of the obtained information
• Decide. Choosing a course of action
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Figure 3.3: The OODA Loop

• Act. Execution of the chosen action

According to Boyd, decision-making happens in a continuous iteration of these steps. Boyd
attributed the faster OODA loop of U.S. pilots flying F-86s to the bubble-shaped canopy offering
better visibility and hydraulic controls that allowed for easier switching between maneuvers, as
the reason the slower F-86s fared better than the North Korean MiG-15s during the Korean War
[31]. In the context of autonomous drones, a drone with a tighter OODA loop corresponds to a
more agile drone. It means that the drone is able to react faster to changes in its environment.

Instead of measuring just the overall system latency, performing a break down of the latency
across the OODA steps provides more insight into system latency bottlenecks.
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Chapter 4

Optimizing SteelEagle Performance

As explained in Section 1.2, the performance of the SteelEagle system determines its versatility. A
drone that is slow to react will be unable to effectively navigate obstacle-dense environments. The
chances of the drone losing track of a fast on-ground target that is moving erratically increases
substantially if the drone is slow in keeping the target centered in its view. Given the importance of
performance, this chapter details how performance is defined for SteelEagle, how it is measured,
and work done to identify performance bottlenecks and optimize the system.

Section 4.1 describes the factors that determine the performance of SteelEagle. Section 4.2
includes details about the technique used to measure end-to-end latency. Section 4.3 describes
initial efforts to optimize the system that yielded a more than two-fold reduction in drone-to-
cloudlet latency, discovering negative scale-out attributes of FFmpeg, a video decoding library.
Section 4.4 describes subsequent efforts to establish a more systematic approach to profiling
SteelEagle, which found the encoding of the RTSP video stream generated by the drone to be the
biggest contributor to latency.

Figure 4.1: SteelEagle Edge Offload Pipeline
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4.1 How is Performance Defined in SteelEagle?

The performance of SteelEagle is determined by the end-to-end latency and throughput of the
system. Currently, SteelEagle drones function as thin clients, with the use of a communications
relay to make up for the lack of cellular connectivity on commercial-off-the-shelf (COTS) drones.
The sensor stream from the drone is forwarded to the communications relay over Wi-Fi, which in
turn forwards it to the cloudlet over 4G LTE. After performing inference on the received data, the
cloudlet sends back piloting commands to the drone, via a hop through the communications relay
(Figure 4.1). As a result, the end-to-end performance is determined by several components of the
pipeline:

(a) On-drone sensing. Capture of images by the drone’s camera

(b) On-drone pre-processing. Pre-processing of sensor data. For example, generation of
video stream from raw camera images

(c) Transmission to cloudlet. Offloading to cloudlet to perform resource-intensive computa-
tion

(d) Cloudlet processing. Inferencing, planning, and decision making based on sensor data

(e) Transmission to drone. Transmission of actuation command back to the drone

(f) Drone post-processing. Drone processing to interpret command

(g) Drone actuation. Electromechanical actuation of drone’s motors

Each of these components has a latency associated with it, and a throughput that it is capable
of. The performance of components (a), (b), (f), and (g) is fixed for a given drone. Factors such as
the drone camera’s sensor readout time and shutter speed affect the frame capture latency, and
thus determine the performance of component (a). Component (b) consists of any processing
of the sensor data before it is transmitted from the drone. The generation of an H.264 stream,
for instance, adds latency since the compression process is computationally intensive, involving
analysis of deltas between successive frames.

For components (c) and (e), performance is determined by the cellular network used for
communication between the relay and the cloudlet. While there is variance associated with the
performance of these components, factors such as the number of network hops, distance between
the relay to the cloudlet, and the network signal strength available to the relay largely determine
the 99th percentile value of their latency and throughput over a longer period of time. The
performance of component (d) can vary largely based on whether decoding of the drone stream
data is required and type of inferencing that is performed. A DNN with a complex architecture,
for instance, can take much longer for inference than a traditional computer vision approach. The
same inference can also take less time on a more powerful cloudlet.

Figure 4.2 shows how these components can be mapped to the various stages of the OODA
loop framework, defined in Section 3.3. The “Observe” phase includes components (a), (b), and
(c). Components (d) maps to the “Orient” and “Decide” phases. Finally, components (e), (f), and
(g) correspond to the “Act” phase.
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Figure 4.2: Mapping the SteelEagle pipeline to the OODA loop

4.2 Measuring the Performance of the SteelEagle Pipeline

Benchmarking the performance of SteelEagle is challenging since it uses COTS drones that
restrict modification of its onboard software. The inability to add software instrumentation on
the drone makes it difficult to determine when a given frame was transmitted from the drone.
To circumvent this restriction, Bala et al adapted the technique George et al used for measuring
motion-to-photon latency in augmented reality [32].

4.2.1 Setup

Figure 4.3: Technique for measuring end-to-end latency

As shown in Figure 4.3, the drone is kept stationary in a lab setting with its camera pointed at
a display connected to the cloudlet showing the current Unix timestamp at millisecond granularity.
The drone captures images containing the timestamp displayed and transmits them to the cloudlet
through the SteelEagle pipeline. The cloudlet records the timestamp at which it receives each
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frame, storing the frame along with this timestamp. These saved frames are then post-processed to
compute the difference between the timestamps shown in each frame and the timestamps at which
they were received at the cloudlet. This difference corresponds to the latency of components (a)
through (d).

4.2.2 Sources of Error

While the display connected to the cloudlet shows the current timestamp at millisecond granularity,
the measurements obtained have a much higher experimental error. We identify the following
sources of error:

Timestamp granularity. Since the timestamp is displayed at a millisecond granularity, and
is updated at most once every millisecond, an error of about a millisecond is inevitable.

Printing to the console. The technique described in Section 4.2 utilizes a script that continu-
ously prints the Unix timestamp to the console. We determine this to contribute to about 0.2 ms
of latency by profiling code that prints to the console.

Refresh rate of the display. The refresh rate of the display determines the rate at which its
contents are updated. Most displays available today have a refresh rate of at least 60 Hz. This
means that the timestamp displayed can be stale by almost 17 ms for a 60 Hz monitor.

4.3 Optimizing SteelEagle Video Decoding
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Figure 4.4: Original SteelEagle Latency [7]

The starting point of our investigation into the performance of the SteelEagle system is the
mean drone-to-cloudlet latency of 933 ms reported by Bala et al in their benchmarking of the
SteelEagle system (Figure 4.4). This includes the “Observe” and “Orient & Decide” components
of the OODA pipeline, components (a) through (d) in Figure 4.2. The latency was obtained using
the Parrot Anafi drone (Figure 4.5a), which transmits a 720p H.264 RTSP stream at 30 FPS over
UDP from its monocular camera. The Anafi uses a slice encoding and intra-refresh scheme that
disperses keyframe slices across multiple network packets [33]. To reduce network bandwidth
requirements, it generates an H.264 compressed video stream using onboard hardware from
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the raw frames that it obtains from its camera. Consequently, decoding of this H.264 stream is
required to obtain individual video frames. The setup uses the Onion Omega 2 LTE (Figure 4.5b)
as a network gateway to allow the Anafi to reach the cloudlet over LTE, since the Parrot Anafi
lacks cellular connectivity.

The technique to measure latency described in Section 4.2 does not provide a granular latency
breakup. As a result, it is not clear from the measurements where the bottleneck resides. As
an initial approach, we measure the impact on latency when the cloudlet location and the video
decoding library used are modified. If the latency is significantly reduced by changing a factor,
we can conclude that the bottleneck resides in the corresponding component.

4.3.1 Experimentation Parameters

Our first experiment measures the impact on latency when the location of the backend and the
video decoding library used is changed. Table 4.1 summarizes the different parameters tested
along these dimensions.

Table 4.1: Latency Pipeline Experimentation Parameters

Dimension Parameters

Backend Location Cloudlet, AWS Small, AWS Big
Video Decoding Library FFmpeg, PDrAW

We now describe the details of these parameters:

• Location of backend. Three backend locations with different specifications, each offering
varying levels of performance, are considered to evaluate how hardware scale-up affects
system latency. The SteelEagle backend is either set up on a bare-metal server on CMU’s
campus, labeled “Cloudlet”, or on an EC2 VM in AWS East (Virginia). Two types of EC2
instances are used, “AWS Small” and “AWS Big”. The CMU Cloudlet has two Intel® Xeon®

E5-2699 v3 CPUs clocked at 2.30 GHz for a total of 72 vCPUs, 128GB main memory,
and an NVIDIA® GeForce® GTX 1080 Ti GPU. AWS denotes a g4dn.xlarge EC2
instance which has 4 vCPUs, 16GB of memory, and an NVIDIA T4 GPU. AWS Big is a

(a) Parrot Anafi (b) Onion Omega

Figure 4.5: The commercial-off-the-shelf components used in the SteelEagle system
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Table 4.2: Specifications of Backends Used in Experiment

Backend vCPUs Memory GPU

AWS Small 4 16 GB NVIDIA® T4
AWS Big 64 256 GB NVIDIA® T4
Cloudlet 72 128 GB NVIDIA® GeForce® GTX 1080 Ti

g4dn.16xlarge EC2 instance which has 64 vCPUs, 256GB main memory, and also an
NVIDIA T4 GPU. Table 4.2 summarizes these specifications.

• Video decoding library. Two video decoding libraries are considered: FFmpeg and PDrAW
(pronounced “pedro”). FFmpeg [34] is an open-source project that offers libraries for video
encoding/decoding and multiplexing/demultiplexing. FFmpeg is known for forming a core
part of the VLC media player. We interact with FFmpeg through OpenCV [35], which offers
the ability to use FFmpeg as a backend for its video capture APIs. PDrAW [36] is a part of
Parrot’s Ground SDK software. Similar to FFmpeg, it includes multiplexing/demultiplexing
abilities and can read from the RTSP stream generated by the Parrot Anafi drone. Unlike
FFmpeg, however, PDrAW is intended as a video player for RTSP and MP4 videos and
lacks general-purpose encoding and decoding abilities.

4.3.2 Experimental Results

Table 4.3 summarizes the results obtained. For each backend location, the latency is measured
using the two different video decoding libraries. The mean latency of 933 ms obtained by Bala et
al used FFmpeg with the “Cloudlet” backend. We measured a lower mean of 888 ms using these
parameters because our experiments do not include inference time on the cloudlet. Inference time
can vary across different machine learning models, depending on the kind of pre-preprocessing
performed and architectural details such as the number of hidden layers used in deep neural
networks. Not including inference time, then, allows us to focus on the contribution of other
components.

When using FFmpeg, moving the backend from the Cloudlet to AWS Small leads to an
extreme drop in latency, with a reduction in p95 latency from 917 ms to 600 ms (Table 4.3). This
amounts to a 1.5× speedup, with an improvement of over 300 ms. Figure 4.6 shows an interesting
trend. The latency for AWS Small, which has the weakest computation power, is the lowest
when using FFmpeg and the highest when using PDrAW. This discrepancy is unexpected, as we
anticipate AWS Small to perform consistently across both setups.

This led to the hypothesis that FFmpeg’s performance degrades with increased parallelism, as
it struggles to scale effectively with higher CPU counts. To test this hypothesis, measurements
were obtained by varying the number of threads used for FFmpeg from one to six (see Figure 4.7).
The OpenCV option CAP PROP N THREADS was used to set the number of threads used for
the FFmpeg backend. The results show that the latency increases as we increase the number of
threads, suggesting that FFmpeg suffers from negative-scale out attributes. Adding more threads
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Table 4.3: Drone-to-Cloudlet SteelEagle Latency (in ms)

Configuration Average Median p95 Min Max

Cloudlet
FFmpeg 888 ± 30 887 917 838 1,030
PDrAW 380 ± 15 379 402 344 420

AWS Small
FFmpeg 536 ± 75 521 600 473 936
PDrAW 429 ± 21 427 467 387 475

AWS Big
FFmpeg 870 ± 20 868 900 837 925
PDrAW 367 ± 20 365 392 327 416

50 samples obtained for each configuration.

to FFmpeg hurts latency.

Across all backend locations, we achieve the lowest latency by replacing FFmpeg with PDrAW
for video decoding. For CMU Cloudlet, latency reduced from 917 ms to 402 ms by switching to
PDrAW, a speedup of almost 2.3×.

Figure 4.8 shows the distribution of latency obtained using our optimized configuration with
PDrAW and the CMU cloudlet, obtaining a mean of 380 ms and a 95th percentile latency of 402
ms.

4.4 Structured Benchmarking Using the OODA Loop Frame-
work

Section 4.3 covered an initial approach to benchmarking and optimizing the SteelEagle pipeline,
which only considered end-to-end drone-to-cloudlet latency. It did not provide insight into the
latency breakup of the pipeline and where the new performance bottleneck resides. Several aspects
of the pipeline hinder obtaining this breakup.

The drone sensing and pre-processing, components (a) and (b) from Figure 4.2, cannot be
measured individually because the drone is a COTS product that runs closed source software which
does not allow the ability to insert software instrumentation. Similarly, drone post-processing
and actuation, components (f) and (g), must be measured together. Even measuring components
(a) and (b) in aggregate is challenging because of the way the Onion Omega is used. Acting as
a network gateway for the drone, the Onion Omega routes network packets between the drone
and the cloudlet. This is done by establishing a VPN tunnel between the cloudlet and the Onion
Omega using WireGuard. The Onion Omega, in turn, connects to the drone’s Wi-Fi hotspot,
allowing the cloudlet to reach the drone. There is no userspace application on the Onion Omega
where instrumentation can be inserted, the packet routing is done by the kernel.
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Figure 4.6: Latency Across Backend Locations Using Different Video Decoding Libraries
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Figure 4.7: Latency vs. Number of FFmpeg Threads
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Figure 4.8: Optimized SteelEagle Latency using PDrAW for Video Decoding
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Another challenge involves measuring the video decoding time on the cloudlet, part of
component (d). To measure decoding time, we need to measure the time taken to receive the full
decoded frame after the first network packet corresponding to the frame arrived. A mapping from
network packets to decoded frames must be obtained to measure this. Figure 4.9 shows the parts
of the pipeline that can be measured in red: Oberveab, Observec, Orient+Decided, Acte, and Actfg.

gfba edc
Observeab

Observec Acte

ActfgOrient+Decided

Observe ActOrient
+Decide

Only items in red above can be measured.
a = on-drone sensing e = transmission to drone
b = on-drone pre-processing f = on-drone post-processing
c = transmission to cloudlet g = drone actuation
d = processing on cloudlet

Figure 4.9: Measurable Components of the OODA Loop

Our approach involves using the tcpdump program to capture network packets on the Onion
Omega and the cloudlet. As shown in Figure 4.10, we record four timestamps, t1 through t4. t1
corresponds to the Unix timestamp contained in the frame that the drone’s camera sees. t2 is the
timestamp of the first network packet transmitted by the Onion Omega corresponding to this frame.
t2− t1, then, corresponds to Observeab. t3 is the time the first network packet corresponding to this
frame arrives at the cloudlet. t3 − t2 is the network latency Observec. Finally, t4 is the timestamp
recorded when this frame is decoded on the cloudlet. t4 − t3 corresponds to the decoding time for
this frame, which is a part of Orient+Decided.

LAN

Relay
Wi-Fi

Cell tower

LTE 1668168495

Unix time

Cloudlet

1668168495 Video Decoding

Figure 4.10: Obtaining Observe and Orient Latency using tcpdump
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4.4.1 Obtaining a Correspondence between Network Packets and Frames

To establish a correspondence between network packets and frames that is required in this
approach, we exploit the structure of the slice-encoded H.264 video stream transmitted by the
drone1. Video encoding formats typically includes two kinds of frames: intra-coded and predicted.
Intra-coded frames, also known as I-frames, can be decoded independently since they are self-
contained. Predicted frames, or P-frames, are decoded relative to a previous I-frame since they
contain deltas calculated using motion compensation techniques. In H.264 video encoding I-
frames are sent at a fixed periodicity, with a single I-frame sent in a group of pictures (GOP),
a unit defined as a fixed number of successive frames. In the presence of network degradation,
packet loss can cause a lost or incomplete I-frame to affect the decoding of subsequent frames for
the entire GOP.

To mitigate this, the Anafi drone performs video encoding at the slice level, such that each
720p (1280x720) frame is divided into 45 slices, where each slice is a 1280 pixels wide and 16
pixels high row of the frame. I-frames and P-frames become I-slice and P-slices in this slice-level
encoding. The video encoding contains periodic I-slices to prevent error propagation, sending
five I-slices every three frames so that all slices are refreshed with an I-slice every 27 frames
(Figure 4.11).

I-Slices

P-Slices

I-Slices

P-Slices I-Slices

P-Slices

I-Slices

P-Slices
I-Slices

P-Slices

I-Slices

P-Slices

Frames 1–3 Frames 4–6 Frames 7–9

Frames 10–12 Frames 13–15 Frames 16–18

Frames 25–27Frames 22–24Frames 19–21

P-Slices

I-Slices

P-Slices

I-Slices

P-Slices

I-Slices

Figure 4.11: The Anafi’s Slice-Level Video Encoding Refresh Wave

Our approach temporarily filters network packets on the cloudlet originating from the drone
using the Linux kernel’s netfilter framework. During this time, the video decoder will miss
the I-slices that it needs to decode P-slices. After resuming packet flow, the video decoder will be
temporarily unable to correctly decode P-slices for which it missed an I-slice, leading to degraded

1Credit to Qifei Dong, Ph.D. student at Carnegie Mellon University, for devising this approach.
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regions in the decoded frame. This degradation stops as new I-slices are received during the
refresh cycle, as the decoder only needs the latest I-slices.

When packets are unfiltered, we can look for the first network packet that contains an I-slice
for a slice of our choosing. H.264 I-slices and P-slices are encapsulated into Network Abstraction
Layer Units (NALUs) when transmitted over a network, which contains metadata that allows us
to infer information about the type of slice and the row that it corresponds to.

In practice, it is easier to filter network packets containing NALUs with sequence parameter
set (SPS) and picture parameter set (PPS) information, which has general metadata related to the
video stream, such as the video format. This metadata is always sent along with the first frame in
a GOP. Since the first frame of the GOP contains the I-slice for rows 21 through 25 of the frame,
we need to identify the first frame that resolves degradations for these rows.

In Figure 4.12a, we see that the slice corresponding to the Unix timestamp shown on the
screen is degraded in the first few frames after we unfilter UDP packets. Once we find the first
network packet containing an I-slice corresponding to this row, we can map it to the first frame
output by the decoder that resolves the degradation for that row (Figure 4.12b).

(a) Degraded timestamp because of missed I-
slice

(b) I-slice received for slice corresponding to
timestamp

Figure 4.12: Degraded Regions in Decoded Frame After Unfiltering UDP Packets

The kernel timestamps network packets, so we obtain t3, the time the first packet for frame
Figure 4.12b arrived. Once a correspondence has been establish between a network packet and a
frame, we can look at the logical timestamp that is associated with each frame during encoding
and included in each packet’s metadata to obtain t3 for subsequent frames—whenever the logical
timestamp increments, we know that the packet corresponds to the next frame.

4.4.2 Experimental Results

In this section we share our results obtained from benchmarking each OODA loop component. For
latency we share the 99th percentile measurements and for bandwidth we share the first percentile
measurements, in addition to the mean and standard deviation. “p99” refers to the 99th percentile
measurement and “p1” refers to the first percentile.
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4.4.2.1 Observeab
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Figure 4.13: Observeab Measurements

Figure 4.13 shows that onboard drone sensing and pre-processing, Observeab, has a mean
latency of 253 ms, with a standard deviation of 12 ms, and a p99 of 277 ms. Instantaneous
throughput is also measured in frames per second (fps), using the time taken for a new frame to
be transmitted by the drone. It has a mean of 31 fps, with a standard deviation of 5 fps and a p1 of
22 fps.

4.4.2.2 Observec

Figure 4.14 shows the measurements obtained for Observec, which involves transmission from
the drone to the cloudlet. This component includes a short Wi-Fi segment from the drone to the
Onion Omega, carried onboard the drone, and then a longer 4G LTE segment to the cloudlet.
Observec has a mean latency of 39 ms, with a standard deviation of 8 ms, and a p99 of 59 ms.
The throughput measured on the link using iperf has a mean of 16.25 Mbps, with a standard
deviation of 1 Mbps and a p1 of 14.36 Mbps.

4.4.2.3 Orient+Decided

Figure 4.15 presents the latency and throughput measurements for Orient+Decided. This compo-
nent includes three stages:

• Stage 1. Decoding of the drone’s RTSP H.264 video stream to produce individual frames
• Stage 2. Inferencing on each frame. This could involve using a deep neural network (DNN)

to perform tasks such as depth estimation or object detection.
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Figure 4.14: Observec Measurements
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Figure 4.15: Orient+Decided Measurements
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• Stage 3. Determining drone actuation needed based on findings from Stage 2 and generating
the corresponding command.

Stage 2 and Stage 3’s performance can vary depending on the application. Different DNNs can
have different inference times, and the decision logic can vary in complexity. Stage 1, however,
remains the same and so we focus on measuring Stage 1 for Observe+Decided. We see a mean
latency of 32 ms for Stage 1, with a standard deviation of 13 ms, and a p99 of 59 ms. The decoding
software’s throughput was measured as the inverse of its latency, giving an indication of the frame
rate that the decoding software can sustain on our cloudlet hardware. The throughput has a mean
of 37 fps with a standard deviation of 17 fps and a p1 of 17 fps.

4.4.2.4 Acte
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Figure 4.16: Acte Measurements

Figure 4.16 shows the measurements for Acte, which involves the transmission of drone
actuation commands back to the drone via the Onion Omega. This is the return path of Observec,
and involves a 4G LTE and Wi-Fi segment as before. Since drone commands have a small data
size, latency is a more crucial aspect of this component. Nevertheless, bandwidth for Acte is
much higher than Observec because for the Onion Omega it corresponds to 4G LTE downlink,
which offers a higher bandwidth than uplink because mobile networks are designed to optimize
downlink performance.

The latency has a mean of 30 ms, with a standard deviation of 4 ms and a p99 of 49 ms. The
throughput has a mean of 28 Mbps, with a standard deviation of 3.66 Mbps and a p1 of 19 Mbps.

4.4.2.5 Actfg
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Run Latency (ms)

1 188
2 170
3 162
4 189
5 155

Mean 173 ±15

Figure 4.17: Actfg Latency

Actfg involves processing of an actuation command by the drone
and the initiation of actuation. We measure the latency as the
time difference between the receipt of an actuation command
by the drone and the start of actuation. We measure actuation
performance using gimbal actuations because they are commonly
used for object tracking and are easy to measure without needing
to fly the drone. To measure it, we position a stationary drone in
front of a display connected to the cloudlet showing the current
timestamp at millisecond granularity. An actuation command is
sent to the drone to move its gimbal while the display and gimbal
are video-recorded using a slow-motion camera.

We output the timestamp at which the actuation command
is sent and identify the first video frame showing gimbal movement. Then, we calculate the
difference between the timestamp shown on the display in this frame and the timestamp at which
the drone actuation command was sent. Actfg latency is calculated by subtracting the mean Acte
latency from this figure. Figure 4.17 shows that Actfg has a mean latency of 173 ms, with a
standard deviation of 15 ms. We use a slow-motion camera which operates at 240 fps, resulting in
a frame interval of approximately 4 ms. The measurements have an error margin of about five
frames, resulting in an experimental error of approximately 20 ms.

Actfg involves electromechanical actuation, which does not have a concept of streaming. As a
result, throughput can be interpreted as the reciprocal of latency.

4.4.3 Overview of OODA Loop

Orient+Decided

Observeab
Observec Acte

Actfg

Observe
Orient

+Decide Act

527 ms

6 
fp

s

Figure 4.18: SteelEagle OODA Loop Throughput and Latency Overview

Figure 4.18 presents a summary of the measurements from Section 4.4.2, with the height and
width of each component representing the bandwidth and latency respectively. This depiction
shows that in the best case, assuming no time is spent on Stage 2 and Stage 3 in the Orient+Decided
component, the drone takes 527 ms to react to a change in its environment. In practice, Stage
2 and Stage 3 can involve complex computationally-intensive inferencing and decision-making,
such as the use of DNNs for depth estimation or object tracking, and route planning algorithms.
The height and width of the Orient+Decided component in Figure 4.18 would need to be scaled
appropriately to account for this.
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Observeab, which involves sensing and pre-processing on the drone, contributes to almost half
of the total OODA loop latency, or more than two-thirds of the drone-to-cloudlet latency, which
consists of Observeab, Observec, and Orient+Decided. This is a property of the Parrot Anafi drone
that we used in our evaluation. Other drones could have different values of Observeab.

In our evaluation, we measured Actfg as the time taken for the drone to commence moving its
gimbal. Gimbal movement is inherently slower than, say, turning on an LED on the drone because
it involves electromechanical actuation. While we focused on gimbal actuations, other kinds of
actuation such as changing rotor speed may be be faster than gimbal actuations depending on the
inertia of the moving component and the available torque in the motor.

Gimbal actuation performance is critical in cases where rapid actuations are needed to accom-
plish a task. If the drone is, say, following a target traveling at a fixed speed, it does not need to
actuate the gimbal and thus Acte and Actfg are not involved. Only when the target moves abruptly
does the drone need to rapidly actuate to continue following the target. Without abrupt target
movement we see that Observeab dominates the OODA loop.

While we analyzed the OODA loop assuming no time is spent on inferencing or planning, the
eventual goal is to optimize other components so that inferencing starts dominating the OODA
loop latency. Achieving this will require lower latency cellular connectivity and drones with better
Observeab and Actfg performance.
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Chapter 5

Utilizing Onboard Compute In SteelEagle

This chapter discusses work to replace the communications relay used in SteelEagle to the Modal
AI VOXL 2. The VOXL 2 offers significant computational capability, allowing the execution
of machine learning models. We start by characterizing this shift in offloading strategy in more
general terms.

5.1 The Computation Offload Spectrum

Pure offload No offloadPartial offload

Server rackVDI Chromebook

IoT Devices

Smartphone 
AI Assistant

Gaming 
console

Figure 5.1: Devices Placed in the Computation Offloading Spectrum

Devices today leverage offloading to various degrees. Figure 5.1 shows how devices can be
placed in an offloading spectrum, with thin clients found towards the left of the spectrum and thick
clients to the right. A thin client, as opposed to a thick client, has minimal compute and can be
made smaller, lighter, and cheaper. Virtual desktop infrastructure (VDI), for example, leverages
pure offload by providing remote access to desktops hosted on centralized servers. This reduces
the computational demands on the client device, enabling the use of computationally-intensive
applications on weaker and older “thin” hardware, reducing costs. Similarly, internet-of-things
(IoT) sensors, such as video cameras, circumvent their limited storage and computational ability
by leveraging pure offload, transmitting their sensor streams to the cloud for storage and analysis.
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On the other end of the spectrum, we find devices such as gaming consoles, desktop computers,
and autonomous cars. Gaming consoles and desktop computers are expected to have crisp
interaction, which is not achievable by offloading to cloud. Offloading to cloudlets, which can
provide low latency, is not a feasible option for these devices currently because of the absence
of widespread cloudlet infrastructure. Gaming consoles and desktop computers can provide
high-levels of onboard computational power because they are not subject to mobility constraints.
Although autonomous cars are mobile, they typically have sufficient energy available to perform
intensive onboard computations since the majority of energy is needed to propel the car forward.
They must also perform real-time decision making reliably even in the absence of network
connectivity, which makes offloading less appealing.

In the middle of the spectrum, we find devices that perform partial offloading. These devices
have sufficient computational power to function when offloading is unavailable or not advanta-
geous, but they also offload computation in other cases. Smartphone AI voice assistants such as
Apple’s Siri, for example, originally offloaded all computation to the cloud. Over time, it evolved
to utilize on-device capabilities to perform simpler tasks, allowing its use in the absence of an
internet connection. Chromebooks were designed with a focus on the use of cloud-based services,
allowing them to be fitted with lower processing power, memory, and storage capacity compared
to traditional laptops.

5.1.1 Deciding the Offloading Strategy

Choosing an offload strategy for a given application can be done based on some key attributes that
are considered important for the application:

• Mobility requirements. Is the application subject to mobility constraints?
• Disconnected operation. Does the application need to work reliably in the face of net-

work disconnection or degradation? Is degraded operation acceptable during disconnected
operation?

• Latency requirements. Is the application latency-sensitive?
• Bandwidth constraints. How much network bandwidth is available?
• Cost requirements. Is low cost for devices a priority in this application?

These attributes encapsulate the benefits and limitations of offloading. Offloading is most
beneficial for mobile devices. A mobile device that is dependent entirely on offloading will
be unable to function adequately when offloading is impossible altogether because of network
disconnection, or impacted because of degraded network conditions, such as high latency and
low bandwidth availability. Applications that are mission-critical would be wise to equip devices
with sufficient computational resources to support an acceptable level of function when adverse
network conditions impact offloading. Applications that are not mission-critical can rely on pure
offload to benefit from the cost savings resulting from using devices that are not required to have
significant computational resources.

Offloading allows mobile devices to achieve a much higher level of functionality than their
onboard hardware allows for. Equipping mobile devices with the hardware needed to maintain
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the same level of functionality during offload degradations reduces the benefit of offloading—the
mobile device is weighed down with the additional size and weight of more complex hardware
that remains unused when offloading is possible.

A more reasonable approach is to include inferior on-device computational resources on the
device, especially if offload degradations are infrequent. These resources provide results that are
inferior according to an output-specific metric, compared to those obtained using offloading. For
predictions from a machine learning model, the metric could be the accuracy of the prediction. In
previous work, the concept of fidelity has been used in this context, defined as the degree to which
the results differ according to the metric [23].

5.1.2 The Dynamic Nature of Partial Offload

Network conditions affect the performance of offloading, but they are dynamic in nature. Mobile
devices utilizing partial offload, then, must decide an offloading strategy at runtime. But the
decision is not binary—exclusively using onboard compute or remote compute resources. As
Figure 5.1 shows, there is a wide range between the two ends of the spectrum. Depending on the
current network conditions, partial-offload mobile devices can utilize a combination of onboard
and remote computational resources that results in optimal performance.

Mobile devices can achieve this through an optimal partitioning of applications into local
and remote components. Flinn et al tackled the issue of developing applications that can support
devices with different capabilities and dynamic execution conditions with a self-tuning remote
execution system. The system, called Spectra, continuously monitors the application’s resource
supply and demand and suggests which components of an application should be executed remotely,
taking into account factors such as performance, energy usage, and fidelity [37]. This work
requires the application developer to partition the application, specifying application components
that could benefit from remote execution.

More recently, projects such as MAUI [38] and CloneCloud [39] have attemped to reduce the
reliance on developers to partition applications, and require minimum modification of existing
software. MAUI requires the developer to explicitly mark methods that are safe to execute
remotely, deciding at runtime whether to offload methods or execute them locally. Its partitioner
includes a profiler and solver, determining execution costs and making offloading decisions
through reduction to an optimization problem with the costs as input. CloneCloud performs
offloading at the thread level using thread migration, completely eliminating the need for software
application modification and making offloading decisions transparently.

5.1.3 Offloading Shaping

Hu et al [40] demonstrated the value in doing additional onboard computation when offloading,
which was not originally part of the application. The approach, called offload shaping, attempts
to conserve wireless bandwidth and energy through the process of early discard. The process
involves selectively sending inputs for offload computation based on an application-specific metric
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of value assigned to each input. In the case of video analytics, for instance, onboard computation
can detect blurry frames and not transmit them to the cloudlet. Hu et al showed that object
recognition does not perform well on blurry frames, and so it is a waste of bandwidth and energy
to transmit these blurry frames to a cloudlet for computation.

5.2 A Partial Offload Pipeline for SteelEagle

SteelEagle drones can currently be placed in the “pure offload” part of the spectrum in Figure 5.1,
since they do not perform any on-board computation other than the encoding of the raw camera
feed to an RTSP H.264 video stream that is transmitted to a cloudlet. As discussed in Section 5.1.1,
a pure offload strategy does not support disconnected operation, and impacts the application
considerably as network conditions degrade.

Figure 5.2: Modal AI VOXL 2

Replacing the Onion Omega 2 with the Modal AI VOXL 2 (Figure 5.2) as the communications
relay in the SteelEagle pipeline will allow us to pursue a partial offloading strategy that allows
SteelEagle drones to gracefully react to changes in network conditions. Intended for use as an AI
autopilot in custom drones, the VOXL 2 features a Qualcomm QRB5165 processor and a PX4
flight controller. We do not utilize the PX4 flight controller on the VOXL. Table 5.1 provides
information about the computational resources available on the VOXL 2.

The VOXL 2 has support for running Google’s Lite Runtime (LiteRT) machine learning
models, formely known as TensorFlow Lite (TFLite). Trained TensorFlow and PyTorch models
can be converted to LiteRT models by using techniques such as quantization and pruning [41].
Float16 quantization reduces the floating-point precision of the model’s weights to 16-bits, and
full integer quantization converts them to integers. This reduces the model’s size, memory usage
and inference latency, making it more suitable for mobile device inferencing. Float16 quantization,
for instance, reduces the size of the model by half and causes minimal loss in accuracy. However,
GPU acceleration of float16-quantized models requires half-precision floating point support
(FP16) [42].

5.2.1 Mapping to the OODA Loop Framework

Figure 5.3 depicts the new pipeline with the VOXL 2. In the existing SteelEagle architecture,
as described in Section 3.2, video decoding is performed on the cloudlet since all video stream
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ModalAI VOXL 2

Architecture 64-bit ARM
CPU Qualcomm Kyro 585 (7nm, released Dec 2019)

1 x 2.84 GHz high-performance core
3 x 2.42 GHz high performance cores
4 x 1.80 GHz low-performance cores

ISP Qualcomm Spectra 480
GPU Qualcomm Adreno 650, with support for OpenCL
DSP Qualcomm Hexagon 698
Memory 8 GB
Weight 16 grams
Power consumption 4-5 W under high load
Operating system Ubuntu 18.04

Table 5.1: Technical specifications of the Modal AI VOXL 2 system-on-a-chip
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Figure 5.3: Mapping the VOXL 2 pipeline to the OODA loop
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network packets are forwarded to the cloudlet using the Onion Omega as a network relay. To
perform onboard computation on the VOXL 2, we must obtain individual frames from the drone’s
video stream. This requires decoding the H.264 video stream on the VOXL 2, which commences
the Orient phase. The VOXL pipeline has an inner and outer Orient loop:

• Inner loop: Corresponds to components Oriente and Orientf , which involve analysis of the
decoded frame and planning on the VOXL

• Outer loop: Corresponds to components Orientw through Orientz. Involves offloaded
analysis of the decoded frame and planning on the cloudlet

The outer loop involves offloading to the cloudlet, which incurs propagation and transmission
delay to and from the cloudlet, Orientw and Orientz. The cloudlet, being a stationary device, can
run more computationally-intensive analysis and planning phases which can yield more accurate
results in less time.

To conserve bandwidth, the outer loop is not always exercised. The pipeline can leverage
offload shaping techniques (Section 5.1.3) to determine if the frame should be discarded. Then, a
remote execution system (Section 5.1.2) can determine if processing should be offloaded. Once
frame processing is complete, the pipeline determines whether any drone actuation needs to be
performed, and generates the corresponding command.

5.2.2 Onboard Computation Design

TFlite 
Server

Onboard 
Compute 
Module

SteelEagle OSWi-Fi

VOXL 2

Frames

Detections

Unix pipes
Docker

ZeroMQ

Frames

Detections

Components in red are developed in Python, and components in green in C++

Figure 5.4: VOXL 2 Onboard Computation Pipeline

The VOXL 2 supports the Open Computing Language (OpenCL) standard, which assists in
writing parallel programs which leverage its hardware accelerators, including its GPU. The VOXL
2 ships with a software suite that includes various programs designed to be run as systemd
services. One of these programs, VOXL TFlite Server, performs hardware-accelerated machine
learning inference. The inputs and outputs of the programs are sent through an inter-process
communication library called libmodalpipe, which uses Unix pipes. libmodalpipe
includes data structures that represent data items such as camera image metadata and the results of
inference. For example, camera image metadata t specifies image metadata such as width,
height, size and format of the image, and ai detection t includes information relevant to
object detection models, such as detected classes, confidence levels, and bounding boxes.
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VOXL TFlite Server is designed to take the drone’s camera data continuously as input through
a Unix pipe and output detections through another Unix pipe. Any service interesting in consuming
the inference results can register as a client to the output pipe. We can utilize this framework to
perform onboard inference, publishing frames requiring inference to a pipe configured as input to
VOXL TFLite Server.

The VOXL software ecosystem is targeted for C/C++ programs. However, the SteelEagle
pipeline is currently developed in Python. As a result, a C++ proxy is required that can receive
frames from the SteelEagle program and forward them to the VOXL TFLite Server for inference.
As Figure 5.4 shows, an onboard compute module was developed that communicates with
SteelEagle using the ZeroMQ messaging library, listening for inference requests. ZeroMQ has
bindings available for popular programming languages, making it suitable for this use case. A
SteelEagle stub provides a convenience API that generates a protobuf message that is sent to
the onboard compute module. The protobuf message includes the contents of the frame as an
RGB image along with frame metadata such as width and height. The onboard compute client
generates the camera image metadata t structure that VOXL TFLite Server expects, and
sends it to its input pipe along with the frame data.

Once the VOXL TFLite Server receives an input, it publishes one ai detection t data
structure to the output pipe for each detection on a given frame. There is no metadata published
that specifies the number of detections to expect. This works well if a consumer wants a live stream
of object detections. However, in our case, we only want to reply to the SteelEagle program once
we receive all detections for a given frame. To achieve this, the VOXL TFLite Server program
was modified to send a delimiter ai detection t data structure once all the detections have
been sent for a given frame. Once this delimiter is received, the onboard compute module adds all
the detections to a single protobuf message, and sends it back to the SteelEagle program.

5.2.3 Adaptive Transmission Rate in the VOXL 2 Pipeline

In the VOXL pipeline, frames are decoded on the VOXL instead of the cloudlet. This means
that if the remote execution system decides to offload computation to the cloudlet, it must send
individual frames to the cloudlet. This increases bandwidth requirements substantially. Previously,
a bandwidth of 5 Mbps was sufficient to send the video stream to the cloudlet. Individual 720p
frames average about 180 KB when encoded as JPEG, requiring a bandwidth of 43.2 Mbps to
send 30 frames per second.

As Table 5.2 shows, attempting to send 30 frames per second on the VOXL 2, without any
flow control, overwhelms the receiver since the VOXL 2 does not have sufficient bandwidth.
Only a frame rate of 12.58 frames per second is achievable when sending frames at full-fidelity.
We also observe queueing delay leading to significantly higher latency when attempting to send
full-fidelity frames. Reducing frame size allows us to achieve better throughput, and gradually
reduce latency as network queuing delay and transmission delay decrease.

Restricting our transmission rate to 10 frames per second, Table 5.3, we no longer observe
queuing delay. Even with full-fidelity frames we are able to achieve the desired frame rate.
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Frame details Frame size (KB) Avg. Latency (ms) Achievable FPS

720p 180 934±30 12.58
720p, 80% JPG quality 98 600±65 28.63
720p, 70% JPG quality 79 304±12 29.95
360p 79 307±20 29.89
360p, 80% JPG quality 38 288±13 29.89
360p, 70% JPG quality 31 286±17 29.85

“Achievable FPS” is calculated at the cloudlet by considering the number of frames that are received in a given
time frame

Table 5.2: Offloading Performance on the VOXL 2 (30 FPS)

Frame details Frame size (KB) Avg. Latency (ms) Achievable FPS

720p 180 363±22 9.98
720p, 80% JPG quality 98 343±26 10
720p, 70% JPG quality 79 340±46 9.96
360p 79 312±23 9.95
360p, 80% JPG quality 38 301±27 9.97
360p, 70% JPG quality 31 289±18 9.98

“Achievable FPS” is calculated at the cloudlet by considering the number of frames that are received in a given
time frame

Table 5.3: Offloading Performance on the VOXL 2 (10 FPS)
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These results show that an adaptive transmission based on current network conditions is
essential in the VOXL pipeline. Setting a low static frame rate up front can leave performance
on the table if the available bandwidth can sustain a higher frame rate. Similarly, the available
the bandwidth might not even be sufficient to sustain the static frame rate set, which is highly
possible in commercial cellular networks.

Chen [3] approached this issue through the use of a token-bucket filter, which limits the
number of frames allowed to be in flight at any given time. The mechanism replenishes tokens by
having the receiver send back a token when a frame has been received. Table 5.4 shows the results
when using a token-bucket filter in the VOXL pipeline, sending frames at full-fidelity (720p).

Total Tokens Average Latency (ms) Frame Rate (FPS)

1 398±32 6.03
2 443±40 11.42
3 506±34 11.11

Table 5.4: Drone-to-cloudlet Latency with Different Token Counts

In Chen’s approach, the number of tokens used are not dynamic. According to Chen, a small
token count minimizes latency at the expense of throughput and resource utilization. This is
indeed the observation we make: a token count of one results in a mean latency of 398 ms, and
going up to three tokens, which allows up to three frames to be in flight at a time, results in a
mean latency of 506 ms. A set-and-forget approach that uses just one token optimizes latency, but
can lead to a lower throughput than otherwise possible, especially if network bandwidth improves.

Our observations show the need for future work to achieve an optimal balance of latency and
bandwidth based on the current network conditions. A dynamic token limit, for instance, can help
achieve this. Obtaining real-time telemetry that indicates the end-to-end transmission time can
inform a decision to dynamically alter token counts.

These results also emphasize the fact that bandwidth is a precious and limited resource that
can vary over time. Figure 5.5 shows bandwidth measurement obtained using iperf on the
VOXL using a commercial 5G provider. The mean of 11.28 Mbps is decent, but comes with a
standard deviation of 9.34 Mbps and a p1 of 0 Mbps! These findings underscore the importance
of conserving bandwidth using early discard techniques discussed in Section 5.1.3.

5.2.4 OODA Loop of VOXL 2 SteelEagle Pipeline

Using terminology from Figure 5.3, we evaluate the performance of each component of the VOXL
pipeline.

Observeab

The Observeab component of the OODA loop in the new pipeline is the same as in the case of the
Onion Omega (Section 4.4.2.1), including on-drone sensing and pre-processing, which involves
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Figure 5.5: Bandwidth Measurement on the VOXL Using 5G Modem

generation of an RTSP H.264 video stream from the drone camera’s raw video frames. We use
the same drone, the Parrot Anafi, for the VOXL pipeline. As before, this component has a mean
of 253 ms, with a standard deviation of 12 ms, and a p99 of 277 ms.

Observec

Observec involves a short Wi-Fi segment from the drone to the VOXL 2, with the drone positioned
centimeters away. Measurements obtained using the ping tool show that the round-trip latency
has a mean of 10.33 ms, with a standard deviation of 1.56 ms. This provides us with an estimate
of one-way propagation delay of 5 ms. Bandwidth on this segment cannot be measured since the
drone is a black box.
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Figure 5.6: Orientd Measurements

Orientd involves the decoding of the RTSP video stream generated by the drone. Figure 5.6
shows the measurements of the video decoding. The latency distribution has a mean of 55 ms,
with a standard deviation of 12 ms, and a p99 of 76 ms. This is comparable to the decoding
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latency we obtained for the Onion Omega pipeline (Section 4.4.2.3), which had a mean of 32 ms,
with a standard deviation of 13 ms and a p99 of 59 ms. In the case of the Onion Omega, the video
decoding occurred on the cloudlet, where as now it happens on the VOXL.
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Figure 5.7: Oriente Measurements Using a Float16-quantized YOLOv5 Model

Oriente corresponds to Stage 2 of the Onion Omega pipeline, discussed in Section 4.4.2.3.
Figure 5.7 shows measurements for running a machine learning model on the VOXL. We use a
float16-quantized YOLOv5 model for inference, which is used for detecting objects. We obtain a
mean latency of 60.58 ms, with a standard deviation of 6.98 ms and a p99 of 80 ms.

Orientf

Orientf involves processing on the VOXL with the inference results obtained from Oriente. The
performance of this component is very application-specific, so we ignore it for the purposes of
this assessment.

Orientw

Orientw involves the latency for sending a frame to the cloudlet for offloaded computation.
Figure 5.8 shows that this latency has a mean of 54 ms, with a standard deviation of 10 ms and a
p99 of 83 ms.

Orientx

Table 5.5 shows the performance of various YOLO models on a cloudlet. The mean latency
varies from 28 ms for the smallest YOLO model to 42 ms for the largest. The latency of
onboard inference, Oriente, is greater than that of the largest YOLO model on the cloudlet, which
emphasizes the mobility penalty that the VOXL incurs.
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Figure 5.8: Orientw Measurements

Model Latency Throughput mAP
(ms) (fps)

YOLOv5s 28 25 56.8
YOLOv5m 37 20 64.1
YOLOv5l 42 20 67.3

The inference and throughput were obtained on our cloudlet. The mean average precision (mAP) is from the
YOLO documentation.

Table 5.5: YOLOv5 Performance on Cloudlet (from [43])

Orienty

Orienty performs the same function as Orientf on the VOXL. It involves processing with the
inference results obtained from Orientx. The performance of this component is very application-
specific, so we ignore it for the purposes of this assessment.

Orientz

Orientz involves a 5G segment from the cloudlet to the VOXL 2. We re-use the measurements
from Orientw for this component.

Acth

Acth involves a Wi-Fi segment from the VOXL 2 to the drone. We obtain the same measurement
for Acth as Orientc, with a estimate of 5 ms obtained using the ping utility.

Actij

Actij is the same as Actfg in the Onion Omega pipeline, discussed in Section 4.4.2.5, involving
drone post-processing and actuation. For the actuation of the Parrot Anafi drone’s gimbal, it has a
mean of 173 ms and a standard deviation of 15 ms.
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5.2.5 Overview of the VOXL Onboard Computation OODA Loop
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Figure 5.9: VOXL OODA Loop Throughput and Latency for Offloaded Computation

Figure 5.9 provides a visual depiction of the OODA loop using onboard computation on the
VOXL 2, showing a 481 ms OODA loop. In Figure 4.18, we provided a similar visual depiction
of the OODA loop for the Onion Omega payload where we achieved a latency of 527 ms. With
the VOXL, we eliminate the Observec and Acte components that involved 4G LTE segments
to and from the cloudlet, eliminating 70 ms of latency from the OODA loop (Sections 4.4.2.2
and 4.4.2.4). At the same time, onboard video decoding on the VOXL takes 55 ms, an increase of
23 ms from decoding on the cloudlet. This gives the VOXL about a 46 ms tighter OODA loop
compared to offloading to the cloudlet.

However, as discussed in Section 4.4.3, these depictions assume that no time is spent on
inference and planning stages, which can involve the use of deep neural networks and Kalman
filters. As such, these depictions capture the best-case OODA loops. Consequently, since onboard
inference on the VOXL takes longer than that on the cloudlet, the benefit of onboard computation
over offloading decreases. For instance, as Table 5.5 shows, object detection on the cloudlet takes
anywhere from 28 ms to 42 ms depending on the model. But doing the same on the VOXL with
a quantized object detection model can take upwards of 60 ms (Figure 5.7). This reduces the
advantage of onboard computation on the VOXL by at least 18 ms on average.

Overall, the VOXL currently has a 28 ms tighter OODA loop factoring in inference. It is easy
for hardware on the cloudlet to close the gap by using sophisticated modern GPUs. In our setup,
the cloudlet is configured with an NVIDIA GTX 1080 Ti which is almost seven years old at this
point.

5.2.6 Optimal Use of Onboard Compute

Compared to the cloudlet, the VOXL 2 offers reduced flexibility, requiring engineering effort
to create quantized models that can run on it. The requirement for using OpenCL, a framework
that target heterogeneous compute, presents a large learning curve and supports fewer libraries
out of the box compared to popular frameworks such as CUDA and ROCm. Consequently, it is
most practical to implement critical functionality that does not frequently change on the VOXL.
Functionality that is not critical to safe drone flight can be implemented using offloading, which
benefits from the flexibility to run any off-the-shelf model without modification because of its
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generality. This flexibility is incredibly valuable, allowing for a much more agile development
cycle. Tasks critical to safe flight, such as following mission waypoints and avoiding obstacles,
benefit from the resiliency offered by onboard computation.

Our results show that while utilizing onboard computation resources using the VOXL offers
a tighter OODA loop than offloading, the margin is small compared to the overall OODA loop
latency. The drone’s sensing, pre-processing, post-processing, and actuation (Observeab and
Actfg) still dominates the overall pipeline. However, onboard computation is extremely valuable
for resilience in the face of network disruptions.

As the bottlenecks for Observeab and Actfg are resolved, onboard computation will offer
a much more significant advantage. A range of issues will come to the forefront when this
happens. One such issue relates to the fusion of computational results from onboard and offloaded
computation. Onboard computation would eventually offer inference results at a much higher rate
than what offloaded computation could. What happens if the results disagree with each other, for
instance if only one result indicates the risk of imminent collision? The result from the offloaded
computation will always be more delayed, while the result from the onboard computation will
always be less accurate. It is not clear which result to trust in such a situation. One possible
strategy involves first assessing the risk associated with an incorrect or delayed actuation. If either
results indicates the risk of destruction, it may be wise to exercise extra caution and actuate to
avoid destruction. If the risk level is low, there are other ways in which the disagreement can be
resolved, such as by getting a closer look at the target.
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Chapter 6

Conclusion and Future Work

This thesis analyzed the OODA loop of SteelEagle, an edge-enabled autonomous drone system.
We performed an in-depth analysis of the system’s performance to identify bottlenecks, and
discussed approaches to resolve the limitations of SteelEagle using a new payload with onboard
computational capabilities. We end our discussion with concluding remarks and a discussion of
future work.

6.1 Conclusion

Considering the ability of aerial drones to effectively tackle many difficult problems such as
search and rescue and industrial inspections, this thesis discusses the advantage of cost-effective
autonomous drone operation. We identified the performance of autonomous drone systems,
particularly in terms of latency, as a critical attribute that determines the practicality and versatility
of the system. Consequently, we performed a detailed investigation into the SteelEagle pipeline,
measuring the latency and bandwidth of various components.

We discussed initial attempts to benchmark the system that led to identifying the FFmpeg
video decoding software as a system bottleneck. We switched to a different video decoding
software that reduced drone-to-cloudlet latency by a factor of two. Recognizing the need for
a systematic approach to benchmarking the system, we devised a technique to obtain granular
measurements from each component of the pipeline. We mapped the components to the OODA
loop framework to organize our measurements and assist in comprehension of the results. Using
this technique, we found the H.264 encoding of the real-time video stream on the drone to be the
next bottleneck in the system.

The onboard H.264 encoding currently makes up almost half of the total OODA loop latency.
Our experiments used the Parrot Anafi drone, but the video encoding performance of other drones
may be better. Certainly, the agility of the system will be handicapped by this component unless
we switch to drones that are designed with an emphasis on minimizing latency. First-person view
(FPV) drones, for instance, are designed with low latency as a priority as they are intended to
be flown manually with high precision in obstacle-dense environments. The results from our
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experiments emphasize the importance of measuring the latency of the onboard sensing and
pre-processing steps when choosing between drones for latency-sensitive applications.

Recognizing the dependence of SteelEagle on the network for offloading, we explored inte-
grating the VOXL system-on-a-chip device as a payload on SteelEagle drones. Utilizing onboard
compute requires decoding of the drone’s video stream on the VOXL. This requires us to deal
with bandwidth challenges when offloading computation to a cloudlet, as sending full-fidelity
frames over the network requires high bandwidth availability. We showed that the OODA loop of
onboard computation on the VOXL is better than that of the Onion Omega, although the margin is
small compared to the overall OODA loop latency.

6.2 Future Work

There are many avenues for future work that will help improve the practicality and versatility of
SteelEagle.

• Reducing system latency. Exploring new drones for use in SteelEagle that have lower
onboard sensing and pre-processing latency, leading to a tighter OODA loop that increases
system agility.

• Resiliency during network degradation. A remote execution system that takes current
network conditions into account when deciding whether to offload computation increases
system resiliency, allowing its use in a wider range of applications that involve drone
operation in areas with unreliable network coverage. This thesis discussed the feasibility of
onboard computation using the VOXL 2, but future work needs to architect system designs
that allow the drone to make decisions on where to execute computation based on current
conditions.

• Combining onboard and offloaded execution results. Onboard and offloaded execution
have inherent limitations. Offloaded computation offers higher accuracy but adds latency.
Onboard computation supports less accurate models but can potentially offer lower inference
time. Approaches that allow combining these two computational results, such as the one
explored by Srinivas et al [44] to provide hints from a large model operating on an edge
server to the onboard model, can help attain the best of both worlds.

• Improving benchmarking precision. We discussed the measurement error in our tech-
nique to measure the performance of each stage of the system. Error mainly originates from
the refresh rate of the display used to show the Unix timestamp, which can add upwards of
17 ms of error to our latency measurements. Currently, our measurements are much larger
in magnitude than the measurement error. As we optimize our OODA loop and achieve
latency less than 100 ms, we will require a more precise way to measure the system. One
possible approach is to use LEDs connected to a single-board computer, and measure the
time taken for the LED to turn on instead of relying on Unix timestamps.
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