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Abstract
How do user interfaces (UIs) change over time? Understanding the evolution

of UIs is essential for assessing the impact on users and automated systems that
interact with them. To this end, we collected WaybackUI, a dataset of nearly 100,000
UIs from 2014 – 2024 mined from publicly available internet archives, paired with
rendered screenshots and programmatically-extracted semantics. The resulting data
allowed us to analyze how a decade of UI changes has impacted i) visual design,
ii) accessibility, and iii) automated systems that interact with UIs. Examples of our
findings include: i) a growing preference for muted color palettes in visual design, ii)
an increase in the number of highly inaccessible web pages in recent years, and iii)
quantifying the impact of data drift on the performance of UI understanding models.
We conclude with a discussion of how WaybackUI can enable future data-driven
discovery and understanding of UI trends.
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Chapter 1

Introduction

Evolving standards, design trends, and new technology constantly reshape the appearance and
implementation of user interfaces (UIs). How do these changes affect how users and automated
systems that interact with them? For creators of UIs, new design systems and frameworks influ-
ence how they surface application content and functionality. For example, previous work con-
ducted an analysis of the Material Design system measured the rate at which new UI guidelines
were adopted within the Android ecosystem and the corresponding effects on user ratings [16].
For end-users, changes in UIs can affect perception of application usability and familiarity. Sev-
eral projects have scanned popular mobile apps and websites over time to measure the proportion
of accessible applications and inform development recommendations [20, 54]. For automated
systems such as software testing frameworks and accessibility technology often rely on machine-
learning models trained on large datasets of UIs [59]. Understanding the performance of these
systems as real-world UIs gradually diverge from a fixed training dataset [21] could improve
their utility and robustness.

Yet, it is challenging to perform these types of longitudinal analyses, in part due to the dif-
ficulty of capturing the code, content, and asset dependencies needed to accurately archive and
replay UIs.1 Previous research often focused on individual artifacts such as screenshots [14, 30],
web page source code [23, 54], and other extracted metadata [20], or were associated with multi-
ple snapshots of popular apps and websites recollected over a duration of several years [20, 54].
However, these approaches are limited in fully capturing UIs and often require years of data
collection.

In this work, we present WaybackUI, a dataset of nearly 100,000 UIs from 2014 – 2024
downloaded from publicly available internet archives. We describe the collection process of
WaybackUI, which involved mining web archives (WARCs) captures of popular websites, ren-
dering screenshots, and programmatically extracting metadata. The resulting data allowed us
to analyze how a decade of UI changes has impacted i) design trends, ii) accessibility, and iii)
the computational modeling of UIs. We first examined the evolution of UI designs on the web,
tracing the impact of several trends using quantitative and qualitative methods. Our analysis re-
vealed a growing preference for “muted” color palettes in the visual design of websites and layout
changes stemming from responsive design. WaybackUI also enabled a large-scale longitudinal

1For example, saving a web page’s HTML to a file and opening the local copy will often lead to errors.
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evaluation of accessibility [20] across the past decade. Using an automated accessibility checker,
we measured the frequency and type of accessibility failures among popular websites, revealing
an increasing majority of contrast-related errors, possibly related to visual design trends. We also
identified an increasing number of “highly inaccessible” websites in recent years (since 2020)
with over 100 accessibility errors. Our third analysis measured the temporal robustness of UI
element detectors, a popular visual UI understanding model, when trained and evaluated on web
data from different years. Our training experiments revealed that models trained on more recent
UIs perform worse, suggesting that UI designs are becoming more difficult for computer vision
models to learn. We used simulated back-testing experiments to show that models gradually
lose around 5% of their original performance per year, suggesting that they should be updated
roughly every 2 years to maintain 90% of their performance on new data. Finally, we exam-
ine the relationship between our findings and show the cascading effects of design (e.g., color
choice) and implementation (e.g., toolkit accessibility) choices on accessibility and UI modeling
performance.

To summarize, this work presents the following contributions:

1. We present the the WaybackUI dataset, consisting of about 100,000 UIs, collected from a
decade (2014-2024) of captured website archives (i.e., WARCs). We render these WARCs
into screenshots, which we associate with programmaticaly-extracted semantic informa-
tion.

2. We use the WaybackUI dataset to conduct three data-driven analyses of the i) design, ii)
accessibility, and iii) computational modeling of UIs. Throughout these categories, our
experiments contribute to the understanding and discovery of trends over the past decade.

We plan to release our dataset and models upon acceptance.
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Chapter 2

Related Work

In this project, we introduce the WaybackUI dataset and use it to measure the effects of a decade
of UI changes. We contextualize our work in prior research related to i) UI datasets, ii) techniques
for updating UI datasets, and iii) longitudinal analyses of UIs.

2.1 UI Datasets

There have been several datasets of UIs collected to support the data-driven analysis and model-
ing of mobile and web applications.

Rico [14] is a dataset consisting of 72,000 screenshots collected from 9,700 Android apps,
and it has been used for various applications in data-driven design [36, 46], software engineer-
ing [9], accessibility applications [47, 51], and benchmarking machine learning models [35].
Several datasets have also been derived from Rico to enable applications such as UI element
detection [8, 33] and screen classification [32]. AMP is a related dataset of 77,000 screenshots
from 4,000 iOS apps that was used to train Screen Recognition, a model for enhancing the
capabilities of mobile app screen readers [59].

While screenshots are relatively easy to capture, many downstream applications require UI
data to be annotated with additional semantic information. For example, CLAY [33], VINS [8],
and Screen Recognition [59] employed human annotators to annotate the location and widget
types of elements in screenshots; however, this process is costly or time-consuming. To this end,
UI datasets collected from the web are promising, since web pages and browsers expose a lot
of relevant metadata that can be automatically associated with rendered screenshots. Webzeit-
geist [30] collected a database of 100,000 web pages and associated automatically-extracted
metadata such as the document object model (DOM) to enable complex design-related search
queries across layouts and elements. WebUI [57] showed that labels derived from automatically-
extracted metadata could be used to train and improve visual UI understanding models, such as
element detectors.

We construct the WaybackUI dataset as a resource for longitudinal analysis of UIs, taking
advantage of the web pages found in publicly available internet archives that we replayed us-
ing a browser. Like datasets collected by prior work, WaybackUI can support a wide range of
applications using its rendered UIs, page source code, and programatically-extracted semantics.
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2.2 Updating UI Datasets
UIs are constantly changing due to updates in standards, technology, and design trends, which
necessitates periodic updates to datasets. Previous work has investigated several strategies keep-
ing UI datasets up-to-date.

Some approaches have focused on applying advancements in data collection methodology
to re-annotate and filter existing data. For example, Enrico [32] and CLAY [33] applied newer
machine-learning workflows to help human annotators identify errors such as mismatches and
artifacts in Rico [14], which allowed downstream applications to benefit from improved data
quality.

However, as UIs evolve, the underlying data can become outdated. For example, since
Rico [14] was collected, several major updates were made to Android’s design guidelines, re-
sulting in substantial visual differences. Other approaches aim to develop automated and more
sustainable methods for collecting UI data without substantial human effort. WebUI is one exam-
ple that crawled 400,000 web pages using multiple simulated devices and stored visual, semantic,
and style information [57]. MUD applied similar crawling strategies that incorporated LLMs to
more efficiently discover screens within Android apps, and used human annotators to label se-
mantics of the UI screens [18]. The Never-ending UI Learner is a crawler that, in addition to
interacting with applications to discover more UI screens, also observes the effects of its interac-
tions to infer the affordances of UI elements (e.g., tappability) and generate labels for machine
learning models [56].

While these approaches are necessary for keeping datasets updated, a drawback is that they
cannot be effectively used retrospectively, for example, to learn about trends that occurred in a
previous window of time. In our work, we mine publicly available internet archives provided by
the Wayback Machine [27], which is a digital library of archived websites and media that has
previously been used as a data source for research [5, 38]. The online archive contains replayable
snapshots of websites dating back to 1998 (although we focus our analysis to the past decade),
and is continuously updated using automated crawling.
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Chapter 3

Longitudinal Analyses of UIs

Large-scale UI datasets have been used to support a wide variety of design and accessibility-
related longitudinal analyses.

Multiple studies have focused on examining the adoption of design patterns within the app
ecosystems. Ablharbi et al. [4] tracked nearly 25,000 Android apps over an 18 month period and
used decompilation techniques to detect the use of both newly-released and deprecated design
patterns. More recently, Doosti et al. [15] analyzed the adoption rate of a set of UI components
(e.g., Floating Action Button) introduced with Material Design guidelines in 2017 and analyzed
the effect on app installation and ratings. Both studies provided insights into how developers and
designers adapt to evolving design standards.

Another area of work focused on UI conformance to accessibility standards. In the mo-
bile app domain, Fok et al. [20] took monthly snapshots of 312 Android apps over a period of
16 months, revealing a mix of accessibility improvements and regressions within popular apps.
Multiple analyses have analyzed trends within web accessibility [6, 11, 22, 23, 31, 43, 54] by
automatically scanning websites using the standardized Web Content Accessibility Guidelines
(WCAG) [55]. For example, the WebAIM Million project assessed the one million most pop-
ular web pages annually since 2019 [54] using the WAVE [28] API to generate statistics and
recommendations. Similar to the work presented in this project, other work used the Wayback
Machine [27] to gather snapshots of high-traffic and essential government websites over longer
periods of time. Perhaps the closest to our work is an analysis performed by Agarwal et al. [2]
which scraped the Wayback Machine to track popularity trends and page complexity of the top
100 most-visited websites over a period of 24 years (1998 – 2021). This paper presents a larger-
scale (nearly 100,000 UIs) and more comprehensive (coupled with rendered screenshots and UI
semantics) dataset, which enables many additional types of data-driven analyses, such as model
training and benchmarking.

3.1 WaybackUI Dataset

We present WaybackUI, a dataset of nearly 100,000 web pages from 2014 – 2024 (11 years,
inclusive). To construct our dataset, we use the Internet Archive’s Wayback Machine [27] to
download snapshots of the 10,000 most popular websites from each year as web archives. We
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then follow automatic labeling techniques used by prior web-based UI collection strategies [57]
to “replay” the captured WARCs, which generates rich visual and semantic information such
as rendered screenshots and programmatically-extracted accessibility trees. To our knowledge,
WaybackUI is the first large-scale longitudinal dataset of UIs that tracks these visual and semantic
changes over time.

In this section, we provide additional details of WaybackUI’s data collection and analyze its
composition.

3.2 Dataset Construction

In our work, we chose to focus our dataset on the past decade, which has experienced several
technological changes. For example, in late 2014, the specifications for HTML5 and CSS3,
the most recent versions of the HTML and CSS web language standards, were finalized, which
introduced features for more responsive (e.g., improved layouts for web styling) and accessible
(e.g., semantic tags) web pages [53]. In 2016, internet traffic from mobile and tablet devices
exceeded desktops for the first time and has since continued to grow, which has affected UI
design to emphasize mobile and responsive design patterns [48]. Numerous other toolkits and
libraries for developing web pages and web applications (e.g., PWAs) have also influenced how
UIs are designed and built. These trends, along with many others, could be captured in our
dataset and analyzed using data-driven methods.

3.2.1 Website Selection

To make our dataset representative of the most popular websites each year, we used publicly
available rankings to select website seeds for each year. We chose 10,000 as a target number
of seeds for each year, since it is roughly the same size as other datasets that have been used
data-driven modeling purposes [8, 57].

Finding the most popular websites for a given year presents challenges because there are no
comprehensive, publicly available rankings that cover all years from 2014 – 2024. We relied
on two popular sources of website rankings: Alexa Rank [3] and the Majestic Million [37]
rankings. For 2014 – 2020, we used the Alexa rankings, since it estimates the number of daily
visitors and has been used by prior work [2] for sampling popular websites. However, since
the Alexa Rank was discontinued in 2020, we used Majestic Million as an alternative ranking
source for subsequent years. Note that neither ranking list was available for download during our
entire period of analysis (2014-2024), which necessitated a split in ranking sources.1 Historical
rankings for both sources were downloaded from captured snapshots hosted by the Wayback
Machine.

1The Majestic Million rankings were started in 2012; however, early versions were not archived on the Wayback
Machine.
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3.2.2 Website Capture

To collect our dataset, we modified a distributed crawler open-sourced by previous work [57].
The crawler is implemented as a Node.js program that programmatically controls a headless
browser using the Puppeteer library. The crawler consisted of several parallelized worker ma-
chines that were run on a public cloud provider. Each website was captured at a resolution
determined based on the most popular desktop screen resolutions worldwide that year. From
2014 to 2020, the viewport was set at 1366x768 px, and from 2021 to 2024, the viewport was set
at 1920x1080 px [49]. We followed post-processing (e.g., ignoring small, visually undetectable
elements) and metadata extraction techniques from previous work [57]. Using the page’s ac-
cessibility tree, we captured element locations and their corresponding semantic attributes (e.g.,
StaticText, Link, Heading).

Unlike other crawlers, our crawler only visited websites in its input seed list and didn’t per-
form any additional traversal (i.e. discovering new pages to crawl) besides downloading the
resources necessary to render the web page (e.g., image assets and scripts). When replaying web-
sites, the Wayback Machine automatically modified references (e.g., links) to point to versions
of the source archived at the same time as the page. For each crawled year, snapshots of websites
closest to the beginning of the year (January 1st) were chosen. If the snapshot couldn’t be prop-
erly replayed (i.e., resulted in an error), our crawler attempted snapshots captured at subsequent
dates. If more than three snapshots of a website from a year couldn’t be properly replayed (e.g.,
blocked the Wayback Machine’s crawler), the website was excluded from our dataset, which usu-
ally resulted in roughly 10% fewer than 10,000 web pages being included in each year. Crawling
occurred (non-continuously) over a period of four months and cost approximately $1000 to rent
cloud instances.

3.3 Dataset Composition

WaybackUI was collected from archived websites, which presents a unique data composition.
Because we focus on the web as a source of UIs, many of the UIs in our dataset likely differ from
that of datasets collected from the mobile domain [14, 20, 59]. Nevertheless, prior work [57]
suggests that data collected from the web can generalize to other complementary domains, such
as mobile UIs. Because we collected web pages archived at different points in time, the year-to-
year composition of UIs also changes, reflecting the dynamic nature of the web. In this section,
we examine some of these trends at a page and element level.

3.3.1 Page Analysis

To analyze the distribution of pages in our dataset, we used the Content Taxonomy 3.0 defined by
the Interactive Advertising Bureau (IAB), which categorizes websites based on their content us-
ing various degrees of resolution (e.g., tiers) [26]. We chose to use the highest-level classification
tier, which resulted in 40 possible categories for websites. We used GPT-4o-Mini [1] to catego-
rize websites in our dataset by their textual content, which is similar to previous approaches [50].
Figure 3.1 shows the distribution of popular websites in our dataset over the past decade, where
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Figure 3.1: The distribution of web pages found in our dataset based on categories defined by
the IAB.

we visualize the ten most frequent categories, along with an “Other” class. The distribution of
page categories among the top 10,000 websites remained mostly the same, possibly because the
makeup of the URL lists changed slowly. In our sample, “Technology & Computing” websites
(including search engines, CDN, and hosting sites) were the most prevalent, followed by “Edu-
cation” (which included online references such as Wikipedia, publishing, and academic sites).

3.3.2 Element Analysis
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Figure 3.2: Average number of elements for each year. This is calculated by taking total number
of element annotations over the number of successful crawls.

Unlike prior work [57] which assigned multiple categories to each UI elements, we used a
“one-hot” format for representing element semantics, which simplified our analysis. Figure 3.3
shows the most frequent element types (originally represented as lists of accessibility attributes)
found in our dataset and a corresponding label name. Because there are potentially numerous
combinations of attributes, we only considered the top 10 most frequent ones, along with an
“Other” class, to conduct our analysis. Figure 3.2 shows the average number of visible elements
on a page that are “above the fold” i.e., visible without requiring interaction (scrolling) to reveal.
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Example Element Type Accessibility Attributes

Text StaticText
Hyperlink StaticText,link

List Item StaticText,link,listitem

Image img
Heading StaticText,heading

Paragraph StaticText,paragraph

Container generic

Linked Image img,link
Linked Heading StaticText,heading,link

Button StaticText,button

Other —

Table 3.1: Element types in our dataset and their corresponding accessibility attributes. Examples
of each element type is shown on the left.
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Figure 3.3: The distribution of element types found in our dataset. Overall, the number of Text
elements increased the most while the number of Hyperlink elements decreased the most.

Figure 3.3 shows the distribution of elements types across each year. In both figures, some
trends can be observed, although fluctuations may have been caused by the different ranking
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methodologies of websites before and after 2021.
Overall, Figure 3.2 shows that the visible number of elements on each web page decreased

over time. In 2014, there was an average of 48.3 elements visible per page, which decreased on
average 5.4% per year, relative to the original number, until 2020, the last year based on Alexa
Rank. The trend also continued from 2021 to 2024, where 2021 had an average of 40.5 elements
per page and similarly until 2024, which had an average of 37.7 elements per page. It is possible
that the period from 2021 – 2024 had more visible elements other years in our dataset because the
most popular screen resolution increased from 1366x768 to 1920x1080, which led to more area
for elements to appear. Interestingly, the WebAIM Million report [54] found that the complexity
of websites increased from their sampled period of 2019 – 2024, where each year led to roughly
11% more home page elements. Besides differences in element segmentation and filtering (e.g.,
we filtered out very small elements), this suggests that while the complexity of pages increased,
UI designers sought to keep the initial appearance of the web page simple while moving content
“below the fold” or requiring other interaction-based scaffolding (e.g., accordion widgets).

Finally, the makeup of web pages also shifted over time (Figure 3.3). Proportionally, the
number of visible text and image elements increased 30.0% and 76.1%, respectively, relative
to their original proportions. Meanwhile, the number of hyperlinks decreased the most (30.1%
relative to the original) over the same period.
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Chapter 4

Analyses of WaybackUI

The shifting makeup of web pages and the UI elements they contain suggest complementary
trends that reflect how they are created and used. We used WaybackUI to analyze how a decade
of UI changes impacted i) visual design, ii) accessibility, and iii) computational modeling of UIs
using a combination of methodologies introduced by prior work and novel approaches afforded
by the scale and richness of our data.

4.1 Design Changes

To measure trends in design, we used WaybackUI to perform qualitative and quantitative analysis
of web page design over the last decade, focusing on layout and color. Through our analysis,
we tracked several trends in UI design, such as responsive design, content layout patterns, and
shifting color palettes.
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Figure 4.1: Spatial probability distribution maps of element types Heading, Container, and
Linked Image for years 2014 to 2020. While the positions of Linked Image stay consistent,
other elements take up a wider portion of the viewport.
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4.1.1 Layout

We first analyzed the layouts that web pages have used to display content and how they have
changed over time. We focused on the spatial distribution of visible UI elements, which we
computed using our programmatically-extracted accessibility metadata. We adopted a procedure
similar to prior work [30], which generated “heatmaps” to qualitative assess the placement of UI
structures. In our layout analysis, we focused on the 2014 – 2020 subset of our data, since UIs
from subsequent years were captured at a different resolution (1920x1080), which could influ-
ence aggregated element locations. Furthermore, we focused on the placement of the element
types we used for element composition analysis (Table 3.1). While these represent the most fre-
quent combinations of accessibility attributes, they represent lower-level semantics (e.g., buttons
and headings) than ones used by Kumar et al. [30] (e.g., featured, sitemap). Figure 4.1 shows
some illustrative examples of how placement has changed over time for three element types:
Heading, Container, and Linked Image. Spatial maps for all element types across all years can
be found in the appendix.

Some UI layout patterns remained constant over the past decade. For example, the Linked
Images, placed at the top left of the screen, were continually used as hyperlinked logos, which
can be used to return to a website’s home page. Vertical containers are often placed at the right
side of the screen for navigation purposes and advertisements.

We also observed several evolving trends. For example, from 2014, the content width of
pages gradually increased to fill the entire viewport. Qualitatively, this is visible in all three
element types, where there is initially an empty gap between content and the edges, similar to the
page margin of documents. While the size of this content margin stayed constant (around 15% of
the screen width), an increasing number of pages included content that filled in this space. One
motivation for this shift could be the increasing consumption of web content on small-screened
devices like mobile phones and tablets, which surpassed desktop usage in 2016 [48]. Making
visual content larger decreases the need for “zooming in” on smaller screens to see content [7],
which is consistent with our observation that there is, on average, fewer initially visible elements
(Figure 3.2). A related reason for these changes could be the adoption of responsive design,
which creates layouts that adapt content to display factors such as screen size and device type
(e.g., mobile device). One common implementation method is to tie the width of the primary
content container to the size of the viewport, which can be observed from the size of Container
elements (Figure 4.1).

Other effects of responsive layout practices are visible in the spatial distribution of heading
elements. In 2014, headings were primarily placed at the top of the screen or the main content
area of the page. Plots from subsequent years suggest that the size of heading text increased
and heading text was placed at more prominent locations of the page. This observation could
be explained, in part, by the increasing use of “hero” or “call to action” patterns recommended by
web design manuals [19] which suggest using a large-size piece of text to emphasize a message
or draw attention to a specific action.
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Figure 4.2: Color palette trends of the homepages in our dataset. The geometric median of the
dominant color in the webpages becomes darker from 2014 to 2020 and from 2021 to 2024
independently. Color palettes from the most dominant 5 colors become more muted and appear
more ”grey” as it decreases in contrast and saturation.

4.1.2 Color
In addition to UI layout, color choice can have a large impact on visual design and aesthetics.
We used an open-source implementation [17] of the median-cut algorithm [24] to extract the
dominant color and a palette of the five most representative colors (sorted by hue) from the UI
screenshot. To aggregate the extracted colors for each year, we computed the geometric median
of the dominant color and the color palettes.

argmin
y∈Rn

m∑
i=1

∥xi − y∥2 (4.1)

The geometric median finds a multi-dimensional point that minimizes the Euclidean distance
from all given points in a set, and it can be interpreted as the multi-dimensional generalization
of the one-dimensional median statistic. We chose this statistic over simple averaging, which
would would be influenced by outliers and “blend” together diverse colors. Figure 4.2 shows the
results of our color extraction process, where several trends are visible.

First, from 2014 – 2024, the dominant color (corresponding to background color) lu-
minance decreased significantly from 0.80 to 0.52, indicating a darker color (r = −0.92,
p < 0.0001). This trend likely reflects increasing adoption of “dark mode” for websites, which
led to more frequent use of dark background colors as opposed to the default white HTML back-
ground. Another trend visible from our color analysis is the increased use of “muted colors.”
The use of muted colors have been recommended by some design guides for presenting a more
neutral, “comfortable” aesthetic [10], and they are often characterized by low-saturation colors.
Calculating the average saturation of extracted color palettes across years confirms this shift.
Colors in 2014 had an average saturation of 0.13 and significantly decreased to 0.10 in 2024
(r = −0.77, p < 0.01).
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While these trends in color design reflect evolving aesthetic taste, they could also intro-
duce secondary effects. For example, one possible consequence of custom backgrounds and
de-saturation is lower relative contrast between colors on the page. Analysis of each years’ data
revealed that average relative contrast of website color palettes also significantly decreased
from 2014 to 2024 (r = −0.93, p < 0.0001). It is possible that this trend may make some
elements harder to visually discern, although this requires specific local context to evaluate.

4.2 Accessibility

The design trends observed over the past decade can significantly impact the usability of UIs,
especially for users of assistive technology. We assessed the accessibility of data in WaybackUI
using Pa11y, an open-source, command-line accessibility checker [39] designed to measure con-
formance to the Web Content Accessibility Guidelines (WCAG) 2.0 Level AA standard. Our
analysis revealed several trends in the type and frequency of accessibility failures present on
popular websites.

4.2.1 Frequency of Failures

We first measured the frequency of accessibility failures in popular webesites over time, adopting
an approach similar to that of Fok et al.’s analysis of the image accessibility in Android apps [20].
Unlike this prior work which measures the number of inaccessible elements per screen, we mea-
sure the total number of errors detected in the app [54] and do not attempt to de-duplicate errors
by element e.g., a single image element can result in both a contrast error and an alt-text error.
The results of our frequency analysis are shown in Figure 4.3.

The median number of detected errors per site fluctuated but did not change significantly from
2014 (27) to 2024 (27). For the years in our analysis, we found a mostly long-tail distribution
where the majority of web pages have under 50 errors but some have very high numbers (over
100). In 2014, 68.7% of pages had under 50 accessibility errors while 13.7% of pages had
over 100. On the other hand, in 2024, 68.3% of pages had under 50 accessibility errors, and
14.1% had over 100. Both measures fluctuated, but recent years since 2020 saw an increased
number of “highly inaccessible” websites (r = 0.96, p < 0.01), and 2024 was the year with
the highest percentage. This suggests that a growing number of websites are likely developed
with inaccessible tools or practices that result in poor compatibility with assistive technology.

Overall, our findings are similar to those of other analyses of the web [54] and mobile app
ecosystems [20, 44, 45], although our dataset confirms these trends over a much longer time
period. Previous work also identified a subset of UIs that contain a very high number of apps
with accessibility errors, possibly due to low developer awareness. As the WebAIM report states,
“the proportion of pages with fewer errors has increased while the number of pages with many
errors has also increased” [54].
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Figure 4.3: A violin plot that shows the distribution of websites and automatically detected
accessibility errors. There was a higher frequency of webpages with a small amount errors than
with a significant amount (100+) of errors. From 2021 to 2024, there was an increase in the
number of webpages with 100+ number of errors and the median increases accordingly.

4.2.2 Types of Failures
We further analyzed the most frequent errors WCAG errors found by prior work [54], which
include insufficient text contrast, missing image alt-text, broken links, and missing form labels.
Some of the frequent errors originally analyzed in the WebAIM report were not tested by the
automated Pa11y tool (e.g., including empty button elements), so we exclude them from our
analysis. The breakdown of detected errors can be found in Figure 4.4.

Across our dataset, insufficient contrast errors made up an increasing majority of de-
tected accessibility errors (r = 0.71, p < 0.05), going from 34.9% in 2014 to 40.0% in 2024.
This is noteworthy because our design analysis also showed the increasing prevalence of muted
color schemes with lower pairwise contrast and saturation. The minimum contrast recommended
by WCAG 2 is 4.5:1, although this refers to contrast between foreground (e.g., text) and back-
ground colors, rather than all colors on the palette. Guides for choosing accessible colors recom-
mend the use of more vibrant colors [29], which could avoid contrast-related problems.

The three other common types of accessibility errors, either stayed the same (broken links) or
decreased (image alt-text, form labels) in overall proportion. Within the “Other” meta-category,
duplicate ID errors, which could cause unexpected behavior with JavaScript and assistive tech-
nologies, increased from 6.9% of all errors in 2014 to 12.1% in 2024. Note that we analyzed the
proportion of these errors and not the absolute number errors in these categories.

4.3 Computational Modeling
Data-driven models for understanding UIs have increasingly found application in accessibility [9,
59], design [8, 13, 14], and software testing [52]. These models are often trained using large
datasets such as Rico [14] and AMP [59], which were collected several years ago. Like all
machine learning models, changes in their input data, like the visual appearance of UIs, could
result in data drift [21], negatively affecting their performance.
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Figure 4.4: Relative frequency of accessibility failures from 2014 to 2024. The majority of errors
resulted from insufficient contrast between text and background, with the rest was from missing
image alt text, broken links, and missing labels on form elements.

In this section, we use WaybackUI to analyze the performance characteristics of these models
when trained and evaluated on UIs from different years. Specifically, we focus on UI element
detectors, a type of model that allows automated systems to understand and operate UIs visually,
without relying on developer-defined metadata or APIs.

4.3.1 UI Detection Performance

We first investigated the performance of UI element detection models trained on web data from
various years. We conducted our experiments using Ultralytics for the medium-sized YOLO
v8 model [40]. We collected the intersection of all successfully crawled sites across all years
and randomly split the resulting list into training (80%), validation (10%), and testing (10%)
splits. Then, each year was segmented to capture the corresponding training and validation lists,
whereas the test set were each year’s remaining web pages. To measure model performance,
we adopted the default evaluation settings to measure mean average precision (mAP). Note that
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compared to other work on UI element detection, our models have lower mAP scores because of
the noisiness of extracted web data [57] and because the bounding boxes in the evaluation sets
are not “tight,” since they are extracted from the DOM. The appendix contains some examples
of our model predictions on screenshots to qualitatively demonstrate performance.
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Figure 4.5: Left: mAP scores of models trained and evaluated from the same year. Over time,
model performance decreases when evaluated on the same dataset it was trained on. Right: mAP
scores of model trained on 2014 and evaluated from 2014 to 2024, and of model trained on 2021
and evaluated from 2021 to 2024.

The results of our evaluation are found in Figure ??, where we show models trained data
from more recent years perform worse (r = −0.89, p < 0.001), suggesting that UI data is
becoming more difficult for computer vision models to learn. Since our models were trained on
labels automatically derived from the page’s accessibility tree, data quality could be negatively
affected by a growing number of “highly inaccessible” websites with more than 100 detected ac-
cessibility errors (Section 4.2.1). Another possibility is that design trends (e.g., minimalism or the
use of low-contrast colors) affect visual signifiers traditionally used for some types of interactive
elements (e.g., tappable elements) [47, 51, 56]. To investigate this, we generated confusion ma-
trices to analyze mis-classifications between element classes. Our findings (Figure 4.6) confirm
that text and images are increasingly confused with their interactive counterparts, suggesting that
they are increasingly difficult to distinguish. The F1 score of all interactive elements we tested
declined from 2014 – 2024, where the decrease was significant in Text/Hyperlink (r = −0.93,
p < 0.0001), Image/Linked Image (r = −0.91, p < 0.001), and Text/Button (r = −0.88,
p < 0.0005).
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Figure 4.6: F1 score of visually-similar elements based on the confusion matrix for the model
trained and evaluated on data from 2014
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4.3.2 Performance over Time
To investigate this, we analyzed the performance of our 2014 and 2021 models and tracked their
performance using the testing splits of subsequent years (Figure 4.5). We chose these models
since they are trained on the first year of data from the Alexa and Majestic Million rankings,
respectively. We also chose not to evaluate pre-trained UI element detectors [9, 57] or models
trained on existing datasets [8] to better simulate a real-world scenario where data drift occurs
from a fixed starting point in time.

Based on our analysis, we found that models gradually lose around 4-5% of their original
performance per year. On average, the 2014 model’s performance decreased 1% mAP every
year, and after 10 years, its performance (14.28% mAP) was only around half of its original
(24.13% mAP). This suggests that UI understanding models, such as element detectors, should
be updated roughly every 2 years to maintain 90% of their performance on new data.

Among our element categories, the average precision (AP) of the Button class decreased the
most from 41.2 in 2014 to only 11.6 in 2024 for the model trained on 2014 data. On the other
hand, classes such as Linked Headings, Containers, and Headings saw smaller absolute decline,
under 5 AP during the same period. Overall, the amount of degradation fluctuates as well, with
2017 seeing the greatest drop in performance. The rate of degradation could be influenced by
numerous factors, such as the release of new design trends, development libraries, and changes
in standards. Tracking these influences could help inform more timely updates of models by
focusing on rapidly changing apps or websites and possibly forecast future trends [25].
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Chapter 5

Discussion

In our project, we demonstrated the utility of WaybackUI by conducting longitudinal analyses
targeted towards i) design, ii) accessibility, and iii) computational modeling.

In each category, we present several findings summarized below.
• Design

Layouts changed to reflect responsive design practices and content-related design
patterns.

Color palettes became more muted (lower saturation) and exhibited lower relative
contrast.

• Accessibility

Recently (since 2020), the number of “highly inaccessible” websites with over 100
detected errors has been increasing.

Insufficient contrast errors make up an increasing majority of automatically detected
accessibility errors.

• Modeling

Data from more recent years are more difficult for UI element detectors to learn,
particularly in distinguishing interactive and non-interactive versions of elements.

UI element detectors lose around 5% of their original performance per year.

In this section, we discuss the implications of our findings and directions for future work.

5.1 Understanding and Discovering Trends
The primary goal of our work was to enable data-driven analysis of UI trends and their effects,
and we demonstrated the utility of the WaybackUI dataset through three types of analysis.

Some of the analyses that we conducted followed methodologies from prior work. Our goal
was to verify their findings across a longer time span [20, 30, 54], larger dataset [2, 20], or new UI
domain [20]. For example, our first design analysis focused on understanding the how designers
choose to arrange content in UIs by analyzing web layouts. We repeated the spatial distribution
analysis conducted by Kumar et al. to analyze the relationship between element position and
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semantics. Some of our findings were similar, such as placement tendencies of certain element
types (e.g., logos at the top left corner), but we also provided a deeper analysis in how place-
ments and layouts have been affected by larger technological trends (e.g., mobile and responsive
design), leading to the decline of page margins and new uses of heading and container elements.
In our second analysis, we followed prior methodologies [20, 54] to track the accessibility con-
formance of web UIs. Previously, these longitudinal analyses, which have typically focused on
the last 5 years, found that there are a growing number of “highly inaccessible” websites [54]
and UIs with significantly more detected errors. For example, Fok et al. found that around 20%
of apps had failures in more than 95% of their images [20] and the WebAIM Million analysis
from 2019 – 2024 found that “pages with many errors have gotten worse” [54]. Our analysis
presents similar findings for recent years, where we found that the number of websites with over
100 errors detected by the Pa11y accessibility scanner has been increasing since 2020 (r = 0.96,
p < 0.01). However, further zooming out using our data reveals that in the first half of the decade
(2014 – 2019), the number of these websites was slowly declining (r = −0.81, p < 0.05). This
is promising because it i) highlights a relatively recent period in which one form of large-scale
accessibility improvement has occurred and ii) could provide data to diagnose and address these
challenges.

In addition to new insights gained from replicating previous work, we used WaybackUI to
conduct several new types of analyses, afforded by our dataset’s scale and rich visual and se-
mantic information. Our third modeling analysis investigated the effect on evolving UI data on
training and evaluating visual UI understanding models. To our knowledge, this type of analysis
has not been performed previously, possibly due to the lack of historical UI data for training
deep learning models. Our experiments led to two findings. First, we trained UI element de-
tectors on UIs from different years in our dataset and found that more recent data were more
difficult to learn, i.e., led to lower performance on the same year’s testing set. We also evalu-
ated how models trained on outdated UI datasets perform over time, e.g., how accurate would
a model trained on UIs from 2018 perform with today’s designs? We conducted a simulated
”back-testing” experiment [21] and found that UI element detection models lose around 5% of
their original performance every year after they are trained. This result suggests that to maintain
the performance of automated systems that depend on them, models should be retrained roughly
every two years to maintain 90% of their original performance.

To summarize, we discussed how WaybackUI facilitates both the understanding and discov-
ery of trends. We showed how analyzing known trends using existing methodologies using our
dataset led to more nuanced, longer-term insights related to UI layout patterns and accessibility
errors. At the same time, the scale and rich visual and semantic data in WaybackUI supports the
discovery and quantification of trends, like the gradual degradation of visual UI model perfor-
mance.

5.2 Cascading Effects of Design Choices
How are trends in design, accessibility, and modeling performance related to each other? Various
aspects of UI evolution have previously been studied (e.g., design [15, 16], accessibility [20,
54]); however, our work is unique in that multiple analyses were performed on a unified dataset,
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which presents opportunities for understanding the interrelated nature of these trends. We draw
connections between our different analyses to show how UI design choices can trigger cascading
effects in usability and other down-stream applications.

We first investigated the choice of color, which are influenced by a wide variety of aesthetic
(e.g., minimalism) and cultural factors [25] and can directly impact usability. Our initial design
analysis quantified how the color palettes of UIs changed over the past decade and led to two find-
ings. We found that i) the dominant color (likely corresponding to background color) of websites
significantly decreased, suggesting the increased use of dark background colors and ii) color
palettes became more muted with significantly decreased saturation and relative contrast (Figure
4.2). While these changes could reflect evolving aesthetic taste, they also introduce secondary
affects, such as making UIs more difficult to discern. In our subsequent accessibility analysis,
we used an automated tool to check WCAG 2.0 compliance and found a significantly increasing
number of websites had insufficient contrast errors during the same period of time (Figure 4.4).
We found a statistically significant correlation between the saturation and proportion of contrast
errors (r = −0.87, p < 0.001) which suggests a possible underlying relationship. Finally, our
UI modeling experiments revealed, among things, that data from recent years were more difficult
for computer vision models to learn. These findings are likely related to color choice in UIs,
which also affects how elements can be visually distinguished. We found a statistically signifi-
cant correlation between the saturation and per-year model performance (r = 0.78, p < 0.01),
suggesting a possible underlying relationship between them. Specifically, we note that the de-
tection performance on interactive elements decreased significantly (Figure 4.6), which also rely
on visual signifiers (e.g., color contrast to denote clickability).

In addition, the toolkits and libraries used to implement designs can also have significant
downstream effects. While our accessibility analysis did not attempt to identify the toolkit or
authoring software behind websites in our dataset, previous research has shown that some pop-
ular web toolkits result in a significantly higher number of accessibility errors on average [54].
From our analysis, we found an increasing number of “highly inaccessible” websites with over
100 detected errors (more than 3 times the median number of errors), which could negatively
impact assistive technology and machine learning systems that use programmatically-extracted
accessibility metadata [34, 57]

Given the complexity UI authoring and use, it is difficult to create the controlled conditions
necessary to establish exact causal relations [12]; however, our analyses reveals several patterns
in design, accessibility, and modeling performance emerge. As previously discussed, our ap-
proaches and dataset could be used to aid in understanding why trends occur and potentially help
address negative ones (e.g., increasing accessibility errors). Finally, our analyses underscores the
importance of good UI design and implementation practices, as they can have significant, lasting
effects on how users and automated systems are able to interface with them.

5.3 Limitations & Future Work
We see several avenues to improve the WaybackUI dataset and build on the longitudinal anal-
yses presented in this work. We discuss limitations and future work for both our dataset and
longitudinal analyses.
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5.3.1 WaybackUI Dataset

The WaybackUI dataset can be improved in several ways. While automated crawling and meta-
data extraction enabled the construction of our large-scale dataset, they also present drawbacks.

First, automated crawlers are limited in the kinds of screens that they can discover (e.g., by-
passing a login screen), and this likely affected the distribution of UIs in our dataset. Previous
work noted that web UIs often contain various sources of noise (e.g., mismatched metadata,
“ghost annotations”), they could be useful in conjunction with a small number of high-quality
human annotations in transfer learning settings [57]. Since we do not use human annotations or
checking, it is likely that these noisy labels limited the performance UI detectors. Other sources
of noise specific to historical web data include errors in WARC playback, missing browser plug-
ins (e.g., Adobe Flash), and deprecated APIs from websites designed for older browsers. Future
work could apply techniques for automated [33] or human-driven [32] filtering to improve the
quality of our dataset. Additional human annotations [59] and feedback [41] would allow for
much deeper analysis and understanding UI trends.

Finally, while WaybackUI is the largest longitudinal dataset (to the best of our knowledge),
it is smaller than that of other UI datasets (e.g. 400k for WebUI dataset [57] and 70k for
RICO [14]). Since all our crawling focused on a single website (the Wayback Machine), this
imposed constraints on the duration of data collection (e.g., due to host-side throttling), as we
sought to avoid placing excessive load on their servers. This may influence some of our find-
ings, Future work could expand WaybackUI using other data archives, real-time collections, and
expand to new UI platforms (e.g., mobile apps).

5.3.2 Longitudinal Analyses

The analyses presented are primarily meant to demonstrate the utility of WaybackUI and only
investigate a subset of the potential applications for longitudinal analysis. Specifically, we fo-
cused primarily on ones that could be completed with automated tools and without additional
human annotations. This limited in the type of phenomena that could be analyzed. For example,
we used Pa11y to automatically scan websites for accessibility errors, but it is unable to detect
many types of accessibility errors and barriers faced by users. Since Pa11y operates by checking
properties of the accessibility tree, it is difficult to detect if there are any errors with the acces-
sibility tree itself, e.g., if an element is visually rendered but not appropriately represented in
the accessibility metadata. Future analyses using WaybackUI could use human annotations of
UI elements to more reliably measure the quality of web accessibility trees by computing the
agreement between these two sources of data [59].

Finally, incorporating feedback from users and experts not only expands the types of anal-
yses possible, it could also help explain and improve understanding of results from data-driven
analyses. For example, while we successfully measured changes in the layout and color and
hypothesized effects on usability, we lacked direct feedback and preferences that could establish
a causal connection [41]. Similarly, while our results led us to hypothesize an increasing diffi-
culty in discerning semantically-important visual signifiers, incorporating human insights could
validate or refine this hypothesis by identifying specific design elements that contribute to the
decline in model performance. In summary, the statistical analysis (i.e., correlation testing) we
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performed could help identify promising directions and inform future studies that more deeply
investigate these relationships.

23



24



Chapter 6

Conclusion

In this paper, we introduced the WaybackUI dataset, which consists of nearly 100,000 web UIs
mined from 11 years of (2014 – 2024, inclusive) of web archives. The large scale of data and in-
clusion of rich visual and semantic information in WaybackUI facilitates comprehensive analysis
of UI evolution and design trends over the past decade. We used our data to analyze how grad-
ual UI on the web changes impacted i) visual, ii) accessibility, and iii) automated systems that
interact with UIs. We present several findings in each category. In our design analysis, we found
increased use of responsive layout patterns and a growing preference for “muted” color palettes.
In our accessibility analysis, we found an increasing number of contrast-related accessibility er-
rors and “highly inaccessible” websites with over 100 detected errors. Finally, in our analysis of
UI models’ temporal performance, we found that more recent UI designs may be harder to learn
and that element detectors lose around 5% of their original performance each year after they are
trained. In summary, we presented examples of how WaybackUI’s scale and richness enables
data-driven discovery and understanding of how UIs change over time and believe it can serve as
the foundation for future longitudinal analysis of UIs.
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Chapter 7

Appendix

7.1 Spatial Distribution Figures
We provide a complete set of spatial distribution maps (Figure 7.1 )to supplement the example
in our paper (Figure 4.1). Each map in the grid displays the positional probability of an element
type from our dataset in a specific year. Note that years 2014 to 2020 contain crawled data based
on Alexa rankings and is captured with 1366x768 resolution. Data from years 2021 to 2024 are
based on Majestic Million rankings and captured with 1920x1080 resolution.

7.2 Model Detection Examples
To supplement the mAP scores provided in our paper (Figure 4.5), we provide some examples of
our model predictions to demonstrate their performance (Figure 7.2). Notably, the annotations
were extracted from noisy web data, thus leading to missing bounding boxes in our dataset or
misclassifications of some elements. Note that the model outputs are from prior experiments
using Detectron2’s [58] Faster-RCNN model [42]. Model predictions are similar to the method
presented previously.
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Figure 7.1: Spatial distribution maps of each element type from 2014 to 2024. We observed
that (i) the content width of pages gradually increased from elements not just mentioned in our
work, but for a majority of all element types, (ii) Text annotations seemed to concentrate towards
the center of the viewport screen, suggesting a supplementary function to the ”call to action”
headings, and (iii) navigational elements like Hyperlink and List Item transitioned from spanning
across the page to concentrating in one area of the screen, such as to the left and top of the screen,
respectively.
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Figure 7.2: Top: Predictions from the model trained on data from 2014 and evaluated on
www.apple.com.cn from 2014. Ground truth boxes are annotated with solid lines and la-
beled with the corresponding box color. Predictions are dashed boxes with solid black labels.
Missing labels in the html led to unidentified elements in the navigation bar at the top. However,
the model still predicted these elements. This mismatch is representative of other examples,
which is a possible explanation for our lower mAP scores compared to other baseline models.
Bottom: Predictions from the model trained on data from 2014 and evaluated on
www.apple.com from 2021. Ground truth boxes are annotated with solid lines and labeled
with the corresponding box color. Predictions are dashed boxes with solid black and white la-
bels. While the resolution from the screenshots in the training and test set differed, the model
still performs decently well. However, there are some mislabeling of text-based elements, where
this is some confusion between Text, Linked Text, and Headings.
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