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Abstract
The Internet has become the central source of information and communication in

modern society. Congestion control algorithms (CCAs) are critical for the stability of the
Internet: ensuring that users can fairly and e�ciently share the network. Over the past
30 years, researchers and Internet content providers have proposed and deployed dozens
of new CCAs designed to keep up with the growing demands of faster networks, diverse
applications, and mobile users. Without tools to understand this growing heterogeneity in
CCAs deployed on the Internet, the fairness of the Internet is at stake.

Towards understanding this growing heterogeneity, we develop CCAnalyzer, a tool to
determine what CCA a particular web service deploys, outperforming previous classi�ers
in accuracy and e�ciency. With CCAnalyzer, we show that new CCAs, both known
and unknown, have widespread deployment on the Internet today, including a recently
proposed CCA by Google: BBRv1. Next, we develop the �rst model of BBRv1, and prove
BBRv1 can be very unfair to legacy loss-based CCAs, an alarming �nding given the proli�c
deployment of BBRv1.

Consequently, we argue the need for a better methodology for determining if a new
CCA is safe to deploy on the Internet today. We describe how the typical methodology
testing for equal-rate fairness (every user gets the same bandwidth) is both an unachievable
goal and ultimately, not the right threshold for determining if a new CCA is safe to deploy
alongside others. Instead of equal-rate fairness, we propose a new metric we call, harm,
and argue for a harm-based threshold.

Lastly, we present RayGen, a novel framework for evaluating interactions between
heterogeneous CCAs. RayGen uses a genetic algorithm to e�ciently explore the large
state space of possible workloads and network settings when two CCAs compete. With
a small budget of experiments, RayGen �nds more harmful scenarios than a parameter
sweep and random search.
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Chapter 1

Introduction

I’ve been thinking a lot about this question of Internet
fairness that you posed during your IC talk ... How
should we de�ne "fairness"?

Email to Justine Sherry titled ’Is The Internet Fair?’
(August 2017)

Ranysha Ware

In 1988, the rapidly growing Internet was on the verge of collapsing. The saviors
at the time were congestion control algorithms (CCAs) added to the reliable transport
protocol: TCP Tahoe and later TCP Reno. These protocols used the additive increase
multiplicative decrease algorithm (AIMD) to manage congestion [60]. AIMD o�ered much-
needed stability to the Internet with provable guarantees: as long as every server used
AIMD, everyone could fairly and e�ciently share the Internet [30].

However, since the initial deployment of TCP Reno, the Internet has changed drastically.
Bandwidth speeds have increased from Kbps to Gpbs. Internet users spend most of their
time on tasks hardly imagined in the 1980s including scrolling social media, watching
video streaming content, messaging and video conferencing, online shopping, and playing
video games [97]. In addition, there are billions of active mobile Internet users. While
AIMD and TCP Reno ensured e�ciency and fair use of the Internet, as these changes to
the Internet emerged, TCP Reno could no longer meet the requirements of faster networks,
more diverse applications, and mobile users.

This desire for movement away from the homogenous deployment of “Standard TCP”
(TCP Reno) sparked many concerns about the stability of the Internet. A decade after the
deployment of TCP Reno, in 1999, Floyd and Fall’s seminal paper [39] described concerns
for possible congestion collapse:

1



2 Introduction

The danger of congestion collapse from undelivered packets is due primarily
to the increasing deployment of open-loop applications not using end-to-end
congestion control.

In this paper, Floyd and Fall advocate for enforcement at routers for �ows that are
not TCP-friendly: “A �ow that is not ‘TCP-friendly’ is one whose long-term arrival rate
exceeds that of any conformant TCP in the same circumstances.”

In the same year, Legout and Biersac argued that TCP-friendliness required homoge-
nous deployment and was too restrictive; emerging applications were going to continue
to use non-TCP-friendly congestion control [71]:

Companies start to use non-TCP-friendly congestion control schemes, as they
observe better performance for audio and video applications than with TCP-
friendly schemes. However the bene�t due to non-TCP-friendly schemes is a
transitory e�ect and an increasing use of non-TCP-friendly schemes may lead
to a congestion collapse in the Internet.

Ultimately, the requirement for TCP-friendly congestion control became the gold stan-
dard to ensure new CCAs were not igniting a race to the bottom of deploying increasingly
aggressive algorithms. It was cemented that equal-rate fairness was the goal: “if a non-
TCP connection shares a bottleneck link with TCP connections, traveling over the same
network path, then the non-TCP connection should receive the same share of bandwidth
(i.e., achieve the same throughput) as a TCP connection” [88]. In RFC 5033 [42], Floyd
and Allman describe the requirements for specifying a new congestion control within the
IETF:

The minimum requirements for approval for widespread deployment in the
global Internet include the following guidelines on: (1) assessing the impact
on standard congestion control, (3) investigation of the proposed mechanism
in a range of environments, (4) protection against congestion collapse, and (8)
discussing whether the mechanism allows for incremental deployment.

Consequently, CCAs proposed for deployment on the Internet included evaluations of
their protocol’s TCP-friendliness. In 2006, TCP Cubic became the default CCA in Linux, in
part because the protocol developers carefully designed Cubic to be TCP-friendly. In a pub-
lished paper [49], Cubic developers declare: “CUBIC tackles the shortcomings of BICTCP
and achieves fairly good Intra-protocol fairness, RTTfairness and TCP-friendliness.”

Even though there was widespread deployment of TCP Cubic, which resolved some
issues with TCP Reno/NewReno, the Internet continued to change in ways that inspired
further innovation. Between 2012 and 2015, Google �rst proposed and deployed QUIC [70],
a replacement for TCP which implements reliable transport at the application layer running



3

atop UDP. This enabled far easier testing and deployment of new CCAs. QUIC has rapid
adoption including open-source implementation in the Linux kernel [96, 82].

Around the same time, there were several innovations in congestion control schemes
including machine-learning-based approaches [129, 33] and approaches focused on mini-
mizing delay while maximizing throughput [130, 6, 24]. A notable algorithm proposed
around this time in 2016, was Google’s algorithm TCP BBR [24]. BBR developers pro-
posed it as a replacement for Cubic, reducing queueing delays imposed by loss-based
congestion control, while still achieving maximal utilization [25, 26, 79]. Like BBR, there
is also an open-source implementation in the Linux kernel. Anyone could deploy BBR,
and several content providers discussed doing just that including Akamai [9], Spotify [28],
Dropbox [59], and Verizon CDN [105].

Both QUIC and TCP BBR are examples of the current state of congestion control on
the Internet. With implementations by organizations outside of Google and open-source
implementations in the Linux kernel, anyone can, and has deployed these protocols. In
addition, content providers are privately tuning their transport protocols and networking
stacks to squeeze out better and better network performance for their applications [99,
69]; some even deploying unknown congestion control algorithms [133, 83].

Consequently, we noticed two trends. First, there was still agreement to arguments
from 1999: new CCAs should at least try to share reasonably with already wide-deployed
CCAs to prevent congestion collapse. CCA designers all attempted to show that their new
proposed CCA was “fair” and could reasonably share with Cubic [33, 34, 6, 24]. However,
the second thing we noticed was widespread disagreement on the methodology for showing
that a new CCA does share reasonably. The experiments, metrics, and thresholds used
to claim “reasonable deployability” were inconsistent. This state of a�airs motivated the
three over-arching questions we ask in this dissertation:

What CCAs are widely deployed on the Internet today? While several large con-
tent providers have discussed deploying new CCAs, and there is some research showing
increased deployment of new protocols, known and unknown [133, 83, 46], there is an
ever-growing need to understand how the congestion control landscape on the Internet
has evolved (and will continue to evolve).

How does BBR interact with loss-based CCAs? In their initial white paper, Cardwell
et al. boldly claim BBR1 is TCP-friendly: “BBR converges toward a fair share of the bottle-
neck bandwidth whether competing with other BBR �ows or with loss-based congestion
control” [24]. However, even their presentations showed this blanket statement was not
true in networks with small queues [25]. In this dissertation, we investigate these

How should we evaluate inter-CCA interactions to decide if a CCA is deployable?

1While Google developed BBRv2 and then BBRv3, when we mention BBR we mean BBRv1. At the time
of this work, BBRv1 is still the BBR version deployed in Linux
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Despite BBR’s TCP-unfriendliness, it was deployed. Should we re-think our de�nitions of
fairness? Can we come up with a consistent methodology for evaluating new algorithms
for deployability?

This thesis focuses on answering these questions. We aim to develop methodologies
and tools to evaluate if a new CCA is deployable on the Internet today. This dissertation
shows the following:

Thesis statement: Given the growing diversity in novel congestion control algorithms
(CCAs) deployed on the Internet today, we argue that the deployability of new CCAs must be
evaluated for how they harm widely deployed CCAs in realistic network settings.

To support this thesis, we �rst measure the current deployment of congestion control
algorithms in Chapter 2, then prove when and why BBR, a new CCA, can be very unfair
to widely deployed loss-based CCAs in Chapter 3, and lastly propose a new metric in
Chapter 4 and tool for evaluating interactions between heterogeneous congestion control
algorithms in Chapter 5.

1.1 Overview of Contributions
We support this thesis statement through our insights and contributions which we

describe in this section.
1.1.1 Chapter 2: CCAnalyzer

In our thesis statement, we claim there is a growing diversity in new CCAs based on
an open-source implementation of BBR in the Linux kernel and the discussions about
deployment at large content providers. To quantify this diversity, we seek to develop a
congestion control classi�er that addresses limitations of prior work, that the networking
community can use to give a comprehensive survey of what CCAs are deployed on the
Internet today.

Limitations of Prior Work: Prior work relies on brittle active measurements techniques
forcing packet drops and timeouts, attempting to generate CWND traces to classify web-
sites [133, 83, 46]. We �nd these tools have signi�cant limitations including limited
coverage of all known CCAs in Linux, ine�ciency, and an inability to discover unknown
CCAs without considerable e�ort.

Key Insights & Approach: We develop CCAnalyzer, a congestion control classi�er that
outperforms prior work both in accuracy and e�ciency. To overcome the limitations of
prior work, we show that we can create a local bottleneck between a server we want to
classify and a receiver we control. Then we can passively observe CCAs in their natural
habitat: at the bottleneck queue. Turns out, each CCA has a unique queue occupancy trace.
Given queue occupancy traces, we frame the problem of CCA classi�cation as a time series
classi�cation problem and use Dynamic Time Warping (DTW) [128] to determine if two
traces are from the same CCA.
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Takeaways: Using CCAnalyzer, we classify Top 10K websites from Google Chrome’s
UX Report and �nd there is indeed heterogeneity within congestion control deployment.
CCAnalyzer �nds widespread deployment of BBRv1 at massive content providers including
Akamai, Cloudfront, Cloud�are, and Cubic at Fastly. CCAnalyzer is even able to discover
the deployment of BBRv3 at Google without BBRv3 samples in its training set. BBRv3
deployment is another signi�cant shift in the Internet’s congestion control landscape.

Broader Impact: This work was very recently published at SIGCOMM 2024 [127]. While
we have yet to see what its broader impact will be, when we shared our results with Google’s
BBR developers, they were surprised that BBRv1 had such widespread deployment. One
nice feature of CCAnalyzer is it treats CCAs as black boxes: to extend to classify new
and known CCAs (like BBRv3), we only need to add training samples. CCAnalyzer will
be a useful tool to continue to monitor the deployment of versions of BBR as well as
other new CCAs. We also hope this work inspires more innovation in congestion control
classi�cation.
1.1.2 Chapter 3: BBRv1 Model

With CCAnalyzer, we measure a proli�c deployment of BBRv1 beyond Google. As
described in RFC 5033 [42], it is a minimal requirement to evaluate a new CCA’s interactions
with already widely deployed CCAs in a range of environments. This begs the question:
How does BBRv1 interact with widely deployed loss-based CCAs?

Limitations of Prior Work: BBR’s initial white paper and presentations made blanket
statements about BBR’s fairness to Cubic based on 1 BBR �ow and 1 Cubic �ow in a few
settings [25, 24]. BBR developer’s claims about fairness to TCP Cubic did not meet the
bar for “investigation of the proposed mechanism in a range of environments”, inspiring
further study by networking researchers. Several empirical studies found after BBR’s
deployment into the Linux kernel, it was actually extremely unfair in certain common
scenarios. In one example paper, Scholz et al. found: “In fact, independent of the number
of BBR and CUBIC �ows, BBR �ows are always able to claim at least 35% of the total
bandwidth.” However, missing from con�icting empirical results was a clear explanation.

Key Insights &Approach: We �rst reproduce prior empirical measurements and observe
a single BBR �ow consuming 40% of link capacity when competing with as many as 16
Cubic or Reno �ows. After a bit of digging, we discovered why: although BBR is a
rate-based algorithm, under competition with loss-based congestion control it becomes
window-limited by an “in-�ight cap”, a seemingly Innocuous parameter which happened
to be set to an arbitrary value. Therefore, if we could model the in-�ight cap, then we
could model BBR’s interactions with loss-based CCAs. We present a simple model of BBR’s
throughput fraction when competing with one loss-based �ow, and a more complex model
that relaxes that assumption.

Results: We develop the �rst model proving BBR’s �xed in-�ight cap determines its
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bandwidth consumption when competing with loss-based �ows. Because BBR does not
directly respond to packet loss, instead of backing o� due to congestion it actually increases
its sending rate during its ProbeBW state when competing with Cubic or Reno under
certain conditions. Our model shows all the variables that impact BBR’s link fraction
under competition and none are dependent on the number of competing loss-based �ows,
explaining empirical results about BBR’s constant link fraction.

Broader Impact: This work was published at IMC 2019 [126]. Of the work presented in
this dissertation, our �ndings about BBR received the most news coverage [116, 121, 14].
In addition, it is often cited in papers referencing BBR’s unfairness, inspiring additional
models of BBR’s interactions with Cubic [84]. Since our �nding, Google has proposed and
deployed BBRv2 and BBRv3 which increased the complexity of ProbeBW to account for
issues with the �xed in-�ight cap and not backing o� in response to packet losses [22,
23, 27]. Google developers are working to replace the implementation of BBRv1 in the
Linux kernel with BBRv3, recently submitting an Internet Draft to the IETF describing
the algorithm in detail [11]. Hopefully this time around, they spend more time evaluating
BBRv3 before Linux kernel deployment, though recent results suggest they may have yet
again failed to deliver on their promises [138] (We revisit some of these BBRv3 �ndings in
Chapter 5).

1.1.3 Chapter 4: Harm
In our thesis statement, we argue for the need to change the metric and threshold used

to evaluate interactions between new CCAs and widely deployed CCAs to determine if a
new CCA is safe to deploy.

Limitations of Prior Work: Over the past 30 years, the methodology for evaluating the
deployability of a new CCA on the Internet, has essentially been a manual and arbitrary
process: pick some network settings, some duration of experiments to emulate long-
running �ows, run competing �ows and check how far away the bandwidth allocation is
to perfect fair sharing. These evaluations all have the same goal: show that the new CCAs
is not too unfair to widely deployed CCAs (usually Cubic). The threshold for “too unfair”
was typically equal-rate bandwidth sharing which was consistently unattainable with
CCA developers making various, inconsistent excuses about why being unfair was ok [33,
6, 35, 24]. We argue that classical de�nitions of fairness are neither an achievable goal
nor the right one. A fairness-based threshold su�ers from three key issues: ideal-driven
goal-posts, throughput-centricity, and assumption of balance.

Key Insights & Approach: In contrast to fairness and TCP-friendliness, a new metric we
call harm, meaningfully quanti�es the impact of deploying a new CCA α on already widely
deployed CCAs β . Harm measures the throughput achieved by β when β is running solo in
a network with a certain workload, and when β is under competition with α . We propose
a harm-based threshold for the deployability of a new CCA: If the amount of harm caused



Overview of Contributions 7

by �ows using a new algorithm α on �ows using an algorithm β is within a bound derived
from how much harm β �ows cause other β �ows, we can consider α deployable alongside β .
A harm-based threshold is demand-aware, practical, status-quo-biased, and future-proof.

Broader Impact: Perhaps the most impactful work from this thesis is our harm proposal
published at HotNets 2019 [125]. It is often cited in discussions about the current state
of Internet congestion control and the deployability of new schemes (ex: [19, 134, 18]).
Our harm proposal has even made it into the textbook TCP Congestion Control: A Systems
Approach [91] by the authors of one of the most proli�c networking textbooks Computer
networks: A Systems Approach [92].

This paper won the IRTF’s Applied Networking Research Prize and was presented
at IETF-109 with a positive reception and lively discussion IETF-109 was moved online
due to the COVID-19 pandemic. It was originally supposed to be in Bangkok, Thailand!
Interestingly over the past year, the IETF’s congestion control working group (CCWG)
has been writing a draft to update RFC 5033 [109]. The latest version from July 2024,
explicitly states CCA proposals to the IETF must evaluate interactions between “the
proposed congestion control algorithm and commonly deployed algorithms.” The draft
says, “In contexts where di�ering congestion control algorithms are used, it is important
to understand whether the proposed congestion control algorithm could result in more
harm than previous standards-track algorithms.” Although it is not cited, this is nearly
verbatim our proposal in Chapter 4 [125].

1.1.4 Chapter 5: RayGen
We have both measured and modeled interactions between a new CCA and legacy

CCAs in our analysis of BBRv1 vs. Cubic/Reno. We see that in certain conditions, CCAs
are unfair to one another, and not so much in others. It is critical to �nd these cases where
new CCAs signi�cantly harm widely deployed CCAs. The key question then is: how do
we �nd the conditions under which unfairness may occur?

Limitations of Prior Work: The current methodology for �nding these conditions is
typically manual: pick a network setting (e.g. bottleneck bandwidth, RTT, queue size), pick
some number of �ows, and measure throughput achieved by CCA α and CCA β when they
compete[104, 138, 55, 119, 34, 25] looking for how far away the results are from perfect
fair sharing. There are several limitations of this process. First, as we discussed in the
previous chapter, equal rate fairness is not an achievable goal, the duration of experiments
may impact results and there are wide-variety of realistic network settings to test.

Key Insights & Approach: We propose doing this search for worst-case settings in an
automated way to automatically generate network settings where poor interactions between
CCAs may occur. Toward this goal, we frame �nding worst-case outcomes as an optimiza-
tion problem. We present RayGen a novel framework for evaluating interactions between
CCAs. We discuss how we can measure the relative harm when �ows between CCAs
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interact in a testbed. RayGen uses a genetic algorithm to search a large state space of
network scenarios and over generations �nd more and more scenarios with high harm.
Results: Using RayGen we can �nd high-harm scenarios with a small budget of only
300 experiments compared to random search with the same budget. Surprisingly, we can
even �nd more high-harm scenarios than a parameter sweep of 3500 experiments over the
same parameter space.
Broader Impact: We will soon re�ne and submit Chapter 5 to a conference, and we
plan to share RayGen to help the networking community determine if a new CCA is
safe to deploy on the Internet. The recent RFC draft 5033 on specifying new congestion
control algorithms says: “An evaluation MUST assess the potential to cause starvation” and
RayGen can help with this evaluation. RayGen helps CCA developers search a wide state
space of possible network settings and workloads to �nd worst-case high-harm scenarios.



Chapter 2

CCAnalyzer: An E�cent and Nearly-Passive
Congestion Control Classi�er

The ability to understand what CCAs are used on the
Internet is useful, and the work clearly demonstrates
advantages over prior work. The proposed mechanism
is simple, e�cient, and accurate.

Reviewer #1

2.1 Introduction
With the growing diversity in CCA proposals and potential deployments, we have

an ever-growing need to understand what CCAs are currently deployed on the Internet
today. Assumptions about what CCAs are widely deployed underlie decisions about how
to size bu�ers in routers [44] (proportional to 1√

n
, if everyone is deploying NewReno [53]);

whether or not routers need multiple queues [17] (to protect low-latency tra�c from bu�er
�lling tra�c, if both classes of CCAs are deployed); and how to test new Internet services
to ensure that they do not starve legacy tra�c [125, 126, 49] (if Reno is no longer widely
used, perhaps we do not need to test new CCAs for Reno-friendliness).

This leads to the �rst question of this thesis: What congestion control algorithms
arewidely deployed on the Internet today? The desire to understand CCA deployment
motivated the development of CCA classi�ers starting with TBIT in 2001 [89, 101, 133,
46, 83]. Most of these tools try to estimate the CCA’s congestion window (cwnd) by
requesting a bulk data transfer from the server and then observing the transfer’s reaction to
dropping and delaying packet acknowledgments or to modulating the available bandwidth.
Unfortunately, state-of-the-art CCA classi�ers using these techniques, e.g., Gordon [83]
and Inspector Gadget [46], have several limitations preventing them from providing a
truly comprehensive picture of CCA deployments. We discuss prior approaches and their
limitations in detail in §2.2.

9
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Figure 2.1: Time series of queue occupancy for four CCAs (from top, left to right: New
Reno, BBR, Cubic, and BIC). Each CCA has a visually distinct queue occupancy behavior.

We seek to develop a CCA classi�er with several desirable properties:

Support for all well-known CCAs: A CCA classi�er should be able to identify known
CCAs with minimal errors. Supporting identi�cation of the 15 built-in wide area CCAs in
Linux1 is especially desirable.

E�cient and nearly-passive: Network measurements should aim to be as lightweight
and minimally burdensome as possible on non-cooperating parties. Heavyweight tech-
niques make it di�cult to perform large-scale measurement studies and can lead to mea-
surement tools being ‘blocklisted’ by services.

Discover new CCAs: Open-set classi�cation is the ability for a classi�er to classify
that a testing sample is not in the training set [81]. In the current period of signi�cant
experimentation in the congestion control space, a CCA classi�er should be able to identify
if a website is using a known or unknown CCA. Furthermore, to identify truly novel CCAs,
the classi�er should be able to determine which servers using unknown CCAs all appear
to be using the same algorithm.

Interpretable results: A CCA classi�er should be ‘interpretable’ [75]. That is, as human
experts, we should be able to understand why our algorithm classi�es two web servers as
using the same CCA. This allows for evaluation and validation of results as well as aiding
in the discovery of new CCAs.

In this chapter, we present CCAnalyzer, a new CCA classi�er. CCAnalyzer can cor-
rectly classify all built-in Linux CCAs. It is 40x faster than Gordon, and unlike Inspector

1In fairness, we exclude the lp and dctcp algorithms because these algorithms require in-network support
which is not available in the wide area. All other prior work also excludes these algorithms.
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Gadget, CCAnalyzer can e�ciently identify if a group of servers are all using the same
unknown algorithm. CCAnalyzer achieves this by taking a radically di�erent approach
to classi�cation than prior work. Both Gordon and Inspector Gadget use decision trees
hand-crafted or trained on observed cwnd values or gradients; they in�ate round-trip-
times (RTTs) and/or introduce timeouts to precisely measure the cwnd at each point in
time. In contrast, CCAnalyzer starts from a simple observation: if we visually observe the
occupancy of packets in a bottleneck queue over time, even a human expert can identify
the connection’s CCA. In Figure 2.1, we present the queue occupancy of the bottleneck
link from real TCP connections; the familiar Reno ‘sawtooth’ is visible for Reno while
other CCAs have their patterns of rising and falling queue size. Because CCAnalyzer does
not interfere with a connection’s normal behavior (beyond introducing a low-capacity
link to force a bottleneck) we describe the approach as nearly-passive and argue that it is
minimally intrusive for operators.

Rather than trying to collect cwnd traces, CCAnalyzer works by measuring a con-
nection’s queue occupancy over time and uses this time series data as input to a classic
algorithm for measuring the distance between two time series called Dynamic Time Warp-
ing (DTW) [128]. DTW is used in a variety of applications requiring signal comparison,
such as voice recognition and shape detection. DTW compares two signals for similarities
in shape and magnitude while accounting for distortions such as stretching or noise – this
latter accounting is especially valuable since we expect to see such distortions in network
traces due to variances in RTT, jitter, random packet loss, etc. CCAnalyzer uses a 1-Nearest
Neighbor(1NN) classi�er with DTW as the distance measure and labeled time-series as the
training set. A testing trace is given the label as the closest training sample. CCAnalyzer
collects 4 queue occupancy traces for each website, and votes across the labels of those
traces to give a website a �nal label. We describe our methodology in more detail in §2.3.

We �nd that, in addition to being more e�cient and broadly applicable than prior
approaches, CCAnalyzer o�ers additional advantages. Collecting queue occupancy traces
as well as the ability to compare these traces to one another using the ‘distance’ measure
provided by DTW allows us to visualize and validate results. By looking at the website
traces and their closest training sample we can see when and why the classi�cation may
have been incorrect for identifying possible errors. In addition, using a matrix of all
the pairwise distances between a set of traces, we can cluster traces and identify the
deployment of new CCAs outside of our training set. We demonstrate these additional
advantages in §2.4 and §2.5.

We use CCAnalyzer to conduct a measurement study of Top 10K websites ranked by
Google Chrome’s UX Report (CrUX) [135] and �nd the following:

1. Inspector Gadget can only classify 1% of these 10K websites.

2. We �nd several major CDNs have deployed BBRv1 (Cloud�are, Akamai), while
others still use Cubic (Fastly).
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Table 2.1: CCA classi�er desirable properties
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Gordon [83] 7 7 3 7

IG [46] 7 7 7 7

CCAnalyzer 3 3 3 3

3. Clustering queue occupancy traces makes our results interpretable and straightfor-
ward to validate. It allows us to �x when a website’s traces are marked as unknown
when they are actually known and using a CCA in the training set.

4. CCAnalyzer was able to discover Google’s deployment of BBRv3, even though we
do not have a BBRv3 implementation in our testbed and did not train CCAnalyzer
on BBRv3 tra�c.

5. We see some deployment of other unknowns CCAs.

The rest of this chapter is organized as follows. In §2.2 we discuss prior work in
classifying CCAs. In §2.3, we present the CCAnalyzer methodology. In §2.4 we evaluate
CCAnalyzer’s accuracy, speed, and resource utilization. In §2.5 we provide a brief mea-
surement study focusing on (a) a 2023 update on CCAs used by web servers and (b) the
results of clustering unknown CCAs. In §2.6 we conclude and highlight future work.

2.2 Prior Work and Limitations
There have been several attempts at CCA classi�cation over the past two decades

beginning with TBIT [133, 101, 89, 83, 46]. Of recent classi�ers, we focus on the two
state-of-the-art algorithms: Gordon [83] (2019) and Inspector Gadget[46] (2020). Table 2.1
highlights the limitations of these classi�ers.

Gordon: Gordon inspired a renaissance in CCA classi�cation algorithms after two
decades of relative dormancy. The authors insightfully noted the deployment of numerous
novel algorithms (at the time, BBRv1 was beginning to ‘take o�’ [83]) and the need to
measure the changing CCA landscape due to the impact of CCAs on a wide range of
Internet issues from infrastructure design to network fairness. In addition to developing
the Gordon classi�cation tool, the paper also provides the widest measurement study of
CCA deployment in the post-BBR era; signi�cantly, the authors noted the surprisingly
rapid growth in the deployment of BBRv1, which 17.75% of servers they measured used at
the time.
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The Gordon classi�er works by creating a bottleneck between the web server and
the client, introducing various network events including packet losses and changes in
bandwidth and delay in the hopes of exactly measuring the cwnd. Generating these cwnd
traces comes at a high cost: Gordon requires incremental probing, RTT-by-RTT, starting
and restarting connections with a web server many times—requiring up to 800MB of data
transferred to successfully perform a classi�cation. In addition, we observe in our own
evaluation that more servers reject connections from the Gordon tool [1] than reported in
2019; conversations with one of the Gordon authors lead to the hypothesis that Gordon
is being blocked or rate-limited due to these overheads. In 2023, Gordon authors were
only able to classify 4% of Alexa Top 10K. As we will show in §2.4.2, CCAnalyzer trace
collection transfers 85% fewer bytes, and is 40x faster than Gordon. CCAnalyzer’s passivity
avoids the pitfalls Gordon has with onerous active cwnd estimation.

After collecting cwnd traces, Gordon, uses a hard-coded decision tree to classify these
traces. Because some algorithms are not distinguishable based on the parameters in
this decision tree, Gordon cannot tell the di�erence between Compound TCP/Illinois,
Vegas/Veno, and New Reno/Highspeed (HSTCP) and instead groups these into the same
category although all of these algorithms are distinct.

Consequently, Gordon requires detailed knowledge about how each CCA works to
support a new CCA. For example, it needed a special-cased test to support BBR. While
Gordon can mark a cwnd trace as ‘unknown’, Gordon cannot group web servers as using the
same unknown CCA without running several additional hand-crafted tests putting even
more additional load on web servers. In addition, we will show in §2.4.1, although Gordon
has good accuracy for supported CCAs, its lack of support for many CCAs, requirements
for special tests for new CCAs, ine�ciency and inability to natively discover new novel
CCAs makes it challenging to use with a constantly evolving transport layer.

Inspector Gadget (IG): Published in 2020, IG’s authors developed the tool to �ngerprint
a web server’s networking stacks, including its CCA. In their results, they notably found
that Cubic was the dominant CCA followed by BBR in North America, but also saw most
servers from other regions were still using Reno. Similarly to Gordon, IG also tries to
carefully inject network events including timeouts and changes in delay to generate cwnd
traces. To generate these traces, IG addresses issues with prior work’s cwnd estimations
with some optimizations. Rather than classifying raw cwnd traces, IG extracts a vector
capturing the cwnd as a series of o�sets, using a decision tree classi�er on these vectors.

IG’s published code [57] includes a user-level TCP stack and modi�cations to a TLS
library to manipulate packets in a HTTPS connection, which we �nd does not work in
practice. We ultimately had to re-implement IG to the best of our ability. As we will show
in §2.4.1 we obtain reasonably good accuracy with our re-implementation. We �nd this
technique is more e�cient than Gordon. However, we highlight three limitations of IG.

First, we �nd that IG does not make it straightforward to classify a CCA as unknown
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Table 2.2: IG measurement results for 10K websites

Result Count

BBR 71
Cubic 25
Yeah 10
Highspeed 5
BIC 2

Not large enough object 9533
Trace collection fail 354

Total 10000

or discover new CCAs. Given the decision tree classi�er, we can only mark a trace as a
known label. Second, it takes considerable e�ort to re-implement; we �nd that we need to
carefully account for TCP stack optimizations at the sender like F-RTO [67] that impact
how a TCP �ow will respond to losses that are independent of CCA behavior. These special
cases are also challenges in prior work that try to collect cwnd traces [133].

Lastly, when we try to use our re-implementation of IG to classify the 10K websites
in our measurement study, we �nd that we can only successfully classify 1% of these
websites. The labels for these websites are shown in Table 2.2 if we restrict the training
set to the the CCAs in the IG paper. We are able to use the IG web crawler code to try and
�nd large enough objects on the 10K websites we want to classify. From our controlled
measurements (§2.4) we �nd that we need a �le size of at least 1.5 MB. However, for 95%
of the websites, we could not not �nd �les that large despite crawling up to 500 links
per website. Ultimately, we are only able to successfully classify 113 websites. IG cwnd
estimation technique generally fails in practice when attempting to classify real websites.

We are able to use the IG web crawler code to try and �nd large enough objects on
the 10K websites we want to classify. From our controlled measurements (§2.4) we �nd
that we need a �le size of at least 1.5 MB. However, for 95% websites we could not not �nd
�les that large despite crawling up to 500 links per website. Ultimately, we are only able
to successfully classify 113 websites. The labels for these websites are shown in Table 2.2
if we restrict the training set to the the CCAs in the IG paper.

Furthermore, because of IG and Gordon’s signi�cant active manipulation of ACK
timings and packet drops, their extensibility to other protocols with encryption (e.g. QUIC)
or applications (e.g. video) is severely limited relative to a more passive measurement
approach.

Other classi�ers: The literature prior to Gordon and IG includes other in�uential classi-
�ers such as TBIT [89] and CAAI [133], however, all of these approaches are superseded
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Figure 2.2: Testbed to issue requests to third-party servers and identify their CCAs.

in both accuracy and coverage by Gordon and IG, therefore we focus our comparisons
on these to prior approaches only. Other techniques that attempt to classify the CCA
of a �ow as it crosses a router (rather than classifying a server) such as DeePCCI [101]
and DragonFly [29], are solving an orthogonal problem that is out of scope for this work.
Given the limitations of prior work our goal is the following: We want to design a new
CCA classi�er with higher coverage of known CCAs, better e�ciency, better pas-
sivity, and open set: able to discover new CCAs without considerable e�ort. In
the following sections we discuss how CCAnalyzer achieves these goals.

2.3 Methodology
We propose a new algorithm CCAnalyzer for identifying CCAs in an e�cient and

nearly-passive way. CCAnalyzer takes a radically di�erent approach to prior cwnd es-
timation techniques by relying on bottleneck queue occupancy traces. In this section,
we describe how we can frame the CCA classi�cation problem as a time series classi�ca-
tion problem and how this enables CCAnalyzer to achieve the goals outlined in previous
sections.
2.3.1 Observing Queue Occupancy

A key issue with prior techniques is that they require brittle and resource-intensive
�ow manipulation to estimate the cwnd, which is not directly observable, and then perform
classi�cation. Our key insight is that we need not try to force network events e.g.timeouts
to force a CCA to behave in some expected way, but rather we can observe CCAs in their
natural habitat: at the bottleneck queue.

In order to observe the bottleneck queue occupancy when downloading data from
a server, we insert our own switch with a deliberately slowed egress link between the
server and the client using a testbed as shown in Fig. 2.2. Because the switch processes
incoming packets at a speed much slower than upstream links, it becomes the connection
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bottleneck. The switch uses a queue of a chosen size and we con�gure it to record when
packets are enqueued, dequeued, or dropped. We implement this switch using the BESS
software switch [13], and the client issues pipelined HTTP requests to third party servers
using h2load [48] to utilize the available bandwidth.

On page 1, Fig. 2.1 shows real example bottleneck queue occupancy traces collected
from our testbed. A human observer can clearly see the classic ‘TCP sawtooth’ of Reno, x3
curves of Cubic and even periodic bandwidth probes of BBR in these traces. CCAs will
cycle through their behavior: increasing their sending rates to use the available bandwidth
and react to losses (depending on their design) that occur naturally if they �ll the bottleneck
queue. We posit that if the patterns observed by two di�erent �ows in the bottleneck
queue are equivalent, then the CCAs are equivalent.

CCAnalyzer’s simple inference from queue occupancy traces achieves the goals outlined
in the previous section. CCAnalyzer has higher coverage of known CCAs and is more
general than prior work. We can support classifying a CCA, if we can collect queue
occupancy traces for that CCA. CCAs may be loss-based, may be latency sensitive, or have
other characteristics and CCAnalyzer can still classify them without needing any special
tests.

CCAnalyzer is nearly-passive: it does not need to force timeouts, radically modulate
bandwidth, implement numerous serial connections, etc.. Although CCAnalyzer does
normalize round-trip times and bottleneck bandwidth, to the server under test it appears
as a normal TCP connection with no anomalous behaviors.

Lastly, CCAnalyzer is also open-set. Because we can compare queue occupancy traces,
we can determine if a trace does not match anything in the training set. Further, we
can cluster like traces and detect if multiple servers are deploying the same CCA that is
not in the training set. No prior tool can automatically cluster servers using like, novel
CCAs and we believe that this trait of CCAnalyzer is crucial to measuring and modeling
a continuously-evolving Internet. While some prior work also creates a local bottleneck
(e.g. Gordon [83]), or may try to estimate queue occupancy for a particular �ow crossing
a router (e.g. DragonFly [29]), our work is the �rst to directly measure bottleneck queue
occupancy by creating a local bottleneck and recording every time a packet is enqueued,
dequeued, and dropped from that bottleneck queue to use this trace to classify CCAs.

2.3.2 A Time Series Classi�cation Approach
CCAnalyzer compares two queue occupancy traces to each other using a well-known

algorithm called Dynamic Time Warping (DTW) [128], which takes in two time series
traces and returns a ‘distance’ measurement quantifying how similar the two traces are.
DTW is traditionally used in pattern matching tasks like automatic speech recognition and
speaker identi�cation; just as a speaker will have a signature pitch and cadence, congestion
control algorithms each have a unique typical queue occupancy and rate of change. These
types of problems are known as ‘time series classi�cation’ problems, and despite 40 years of
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usps.com
cubic-training

(a) Euclidean distance = 2.47

usps.com
cubic-training

(b) DTW distance = 0.76

Figure 2.3: Queue occupancy distance calculation for a sample from usps.com to a Cubic
training sample. DTW allows a �exible one-to-many mapping between similar points,
while euclidean is a one-to-one mapping to points at the exact same time.

research since the invention of DTW, it remains a widely used general-purpose algorithm
for this class of challenges [7].

To understand DTW, we �rst consider a naïve approach to compare two traces using
Euclidean distance (ED). Consider two queue occupancy traces, X = (x1...xn) and Y =
(y1...ym), where xi is the queue occupancy at time i in traceX , where X is n time steps long.
A simple approach to measuring the di�erence between the two traces is to to calculate
the Euclidean distance (ED) (assuming X and Y are the same length n =m):

ED(A,B) =

√√
n∑
i=0
(X [i] − Y [i])2

Fig. 2.3 shows why this one-to-one mapping approach fails for most network traces. In
Fig. 2.3a, we compute the ED between a trace collected from usps.com to a Cubic training
sample, while in Fig. 2.3b we take the same traces and compute the DTW distance. Traces
can dilate and contract relative to time on the real Internet. For example: a host may stall
during the trace, sending a packet a few ms later than expected; an in-network queue may
�ll up with background tra�c, temporarily increasing the RTT; a long-running �ow in
the background may end, suddenly reducing the RTT. These e�ects can cause two traces
from the same CCA to appear stretched and squeezed relative to one another.
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Unlike ED, DTW allows a one-to-many mapping between X and Y : a given index
from each trace can map to one or more indices in the other trace. DTW �nds the best
point-to-point mapping between two traces to minimize the sum of distances between
all their points with two constraints: 1) The �rst and last indices must be mapped to one
another and 2) the mappings must be monotonically increasing. Fig. 2.3b shows how this
results in DTW measuring a smaller distance than ED for same-CCA traces. DTW �nds
the optimal "warp path", the one-to-many mapping between points in an NxM matrix
where N and M are the lengths of two time series, that minimizes the overall distance
between the time series. Exact mappings would be a diagonal line, but DTW accounts
for phase shifts with horizontal and diagonal lines which show when many points in one
trace are mapping to the same point in the other trace. For DTW the time series need not
be the same length, although in this work we truncate all the traces to be the same size.

More formally, let DTW (i, j) be the optimal distance between the �rst i and j elements
in time series X and Y. Then, the value of DTW (i, j) is de�ned recursively as follows:

DTW (i, j) = distance(xi ,yi)

+min


DTW (i, j − 1) repeat xi
DTW (i − 1, j) repeat yi
DTW (i − 1, j − 1) repeat neither

where distance(xi ,yi) may be de�ned in di�erent ways including the squared di�erence
which we use in Fig. 2.3; in the rest of this work we �nd the absolute di�erence works
better for our use case |xi −yi |. There are many more well-studied aspects and applications
of DTW [128, 63, 66, 100, 94, 7], but we do not require their discussion here to understand
CCAnalyzer.

CCAnalyzer uses a one-nearest-neighbor classi�er with DTW as the distance measure
(1NN-DTW), a commonly used time series classi�cation methodology [7]. Given a website
to classify, CCAnalyzer computes the DTW distances between the queue occupancy traces
of all training samples and the queue occupancy trace of the website. The website is given
the label of the closest training sample.

Given this approach, DTW allows us to classify if a time series matches one within the
training set, but how will we determine if a CCA is not in the training set and should be
classi�ed as unknown? We explore using a well-known extension to our 1NN classi�er
called TNN where T is a distance threshold [81]. If the DTW distance between a website
trace and its closest label is higher than T, then the trace is marked as unknown.
2.3.3 Parameter Tuning

CCAnalyzer observes a TCP connection’s natural behavior as its cwnd rises and falls,
probing for bandwidth. However, classifying CCAs based on this natural behavior requires
that we observe TCP connections in su�cient conditions that they act distinguishably
from one another. To be speci�c:
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Wemust choose bottleneck bandwidth, RTT, andqueue size such that same-family
CCAs exhibit di�erent behavior (§2.3.3.2): This is most important for Reno-family
CCAs (Westwood, Highspeed, YeAH, etc.) which are all variants of each other. Many are
designed to simply ‘act like Reno’ in low BDP environments and only exhibit their unique
growth and backo� behaviors at higher BDP environments.

We must observe connections for long enough that each CCA goes through sev-
eral ‘cycles’ of operation (§2.3.3.3): DTW matches similar traces to each other, but
minor perturbations in the network environment (arrival/departure of background �ows,
external packet loss) can make traces appear dissimilarly. Having multiple iterations of
the CCA’s characteristic behavior allows DTW to self-correct for brief abberations as the
characteristic connection behavior re-emerges after a few RTTs.

We need to identify when a trace is too far from its nearest neighbors in the
training set (§2.3.3.4): We would expect servers using novel CCAs to produce a DTW
distance which is ‘far’ from any training sample: but how far is far enough to declare that
a server is indeed using a new algorithm?

Note that the above issues all somewhat depend on the set of CCAs that the system
is meant to classify. We take an empirical approach to setting appropriate parameters to
correctly distinguish CCAs which we describe in the following sections. However, it is not
unlikely that if the CCA landscape were to evolve dramatically with the deployment of
many new CCAs and the phasing out of many old ones, that we would need to re-tune
these parameters for CCAnalyzer to remain e�ective in the future.

2.3.3.1 Experimental Setup

The CCAnalyzer testbed is installed on Cloudlab servers in Wisconsin, USA [36] (see
Fig 2.2). To generate ground truth data for evaluation, we collect traces to servers installed
on Amazon Web Services (AWS) datacenters in Virginia and Microsoft Azure’s ‘East’ US
datacenter. We use the AWS-Virginia dataset as our training data for CCAnalyzer and
our Azure-East datasets for testing. When measured using iperf[58], the total available
bandwidth between the CCAnalyzer testbed client and the AWS machines is 500Mbps and
between the testbed client and Azure machines is 920Mbps.

Each server is con�gured as follows:

• Training Set (AWS-Virginia): Ubuntu 22.04.2, Linux kernel version 5.19. RTT to
testbed 22ms. 3 samples per CCA.
• Testing Set (Azure-East): Ubuntu 20.04.6, Linux kernel version 5.15. RTT to testbed

24ms. 5 samples per CCA.

Training and Testing for CCAnalyzer: Using AWS-Virginia we generate training sam-
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Figure 2.4: Example CCAnalyzer CCA training sample traces from AWS-Virginia (5bw-
85rtt-64q setting)

ples for 15 CCAs available in Linux.2 We run iperf �ows between a transmitting host
located in AWS Virginia and a receiving host in our testbed for 120s (as we will discuss
in §2.4.2 we need not use all 120s for accurate training and only need 20s). To generate
testing data, we set up an Apache web server on Azure-East with a 100 MB �le. We use
wget to download the �le to the receiving host in our testbed for 60s.

We highlight some example training samples for the 5bw-85rtt-64q setting in Fig. 2.4
to give some sense for what the traces look like for 20s for each CCA. These traces each
capture some of the cyclical behavior of each CCA which helps CCAnalyzer to be accurate

2Note: We only include BBRv1 in our testing and training sets. In §2.5.2 we will show we can also
classify websites using BBRv3.
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Figure 2.5: Distribution of ping time to 10K websites. Most websites are within a distance
of 275ms.

and interpretable.

2.3.3.2 Network Con�guration

Many CCAs, especially Reno-family CCAs, are designed to behave similarly in low-
BDP environments. Therefore, we need to identify network settings in which these CCAs
exhibit their distinguishing behavior. Our testbed enables us to emulate di�erent network
conditions by varying the bottleneck bandwidth, round-trip time, and the bottleneck queue
size. Our main goal is to �nd a minimal set of network settings that we can con�dently
use to classify all 15 CCAs in Linux and identify unknown CCAs. We need to capture just
enough cycles of CCA probing behavior that makes these algorithms distinguishable.

Bandwidth setting: We choose to use small bandwidth ranges because we want to ensure
that our queue is the bottleneck for the connection; if queueing were to build up elsewhere
in the network we would not observe useful behavior in the queue occupancy traces. We
test setting the bandwidth to 5Mbps, 10Mbps, and 15Mbps.

RTT setting: We enforce an RTT in our testbed by adding additional delay to packets sent
to the web server. Therefore, the RTT we choose for our network settings cannot be so
small that the majority of websites will be too far away. In addition, if we set the RTT to be
too large, then it can take the CCA a long time to �ll the queue resulting in traces without
enough cycles of CCA probing behavior to distinguish di�erent algorithms. Fig. 2.5 shows
the distribution from the 10K websites we will attempt to classify in §2.5. We test setting
the RTT to 85ms, 130ms, and 275ms.

Queue size: Given the bandwidth and RTT of a setting, we need to chose a queue size
that captures the right number of cycles of CCA probing to highlight distinguishable
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Figure 2.6: 5bw-275rtt: Example BBR and Cubic queue occupanchy traces from Azure-East
for varying queue sizes (pkts).

behavior. We �nd a queue size of 1BDP works well.3 Fig. 2.6a and Fig. 2.6b show how
queue occupancy traces change depending on the queue size for a 5Mbps and 275ms RTT
network setting (128 packets is ∼1 BPD in this setting). With queue sizes too large, queue
occupancy traces degrade. In case of Cubic, it takes too long to �ll the queue so the trace
does not have enough cycles of Cubic probing behavior. In the case of BBR, it uses very
little of the queue when the queue it is too large.

We run 1NN-DTW on our test dataset from Azure-East, classifying each 60s trace as its
‘nearest’ training trace. Fig. 2.7 shows the accuracy of CCAnalyzer for 9 network settings
for each testing set. Some settings work slightly better than others but overall accuracy
across these settings is 96% (649 correct out of 675 samples). Misclassi�cations include
Illinois samples misclassi�ed as Westwood, both Reno variants. Similarly, BBR samples
get misclassi�ed as Vegas, both low-latency CCAs. The most accurate 4 settings are when
the bandwidth is 5mbps or 10mbps, and when the RTT is 85ms or 130ms.

Our ultimate design relies on voting across multiple settings in order to ‘boost’ our
accuracy to 100%, but we want each voter to be as con�dent as possible: hence we restrict
our measurements in CCAnalyzer to the four most accurate settings. In addition, we want
to minimize the load on the web servers by �nding a small number of network settings
that can produce distinct traces.

Fig. 2.8a shows an example of why 1NN-DTW works well, with a BBR testing sample
and its closest training sample which are nearly identical. More illuminating is how closely
the testing sample relates to the incorrect CCAs. Fig. 2.8b shows all the distances between
a BBR sample and all the training samples in the 10bw-130rtt setting. All the BBR training
samples are closest to this testing sample, but other similar CCAs that are also not loss-
based, such as CDG and Vegas, are the next closest. These algorithms all have relatively
low magnitude in their queue occupancy compared to, e.g., Reno and Cubic variants. This

3BESS requires the queue size to be a power of 2 so the actual queue size is set to be a power of 2 closest
to 1BDP.
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Figure 2.7: Accuracy mapping each testing sample to closest training sample per network
setting.

also highlights the interpretability of our results as the traces are visually distinct, with
clear similarities between testing samples and their closest training sample and the DTW
distance quanti�es the similarity. Furthermore, unlike both Gordon and IG, CCAnalyzer
does not need a special test to classify BBR or other algorithms that are not loss-based.

Given the accuracy we have for these 4 settings, we complete the rest of our analysis
and measurement study using these settings. These work well and achieve our goals but
these are not the only settings that will have high accuracy. There are many settings that
could accurately distinguish CCAs using 1NN-DTW. We discuss further network setting
options and their accuracy in §2.5.3.

2.3.3.3 Trace Length/Duration
One of our key goals with CCAnalyzer is to reduce the overhead of probing relative

to prior approaches. At the same time, we need to observe CCAs over a su�cient pe-
riod of time such that they iterate through multiple ‘cycles’ of their bandwidth probing
mechanisms. Consequently, we aim to identify the minimum duration we should measure
a network trace while still ensuring strong accuracy. Fig 2.9 shows the accuracy from
classifying �ows individually (without voting) with durations ranging from 10 to 50s. We
see a modest dip in accuracy when we drop as low as 10s. However, for traces from 20s-50s,
we see relatively indistinguishable accuracy. Hence, we can use traces as short as 20s with
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Figure 2.8: 10bw-130rtt: BBR trace correctly labelled. It is close to other low-latency CCAs,
Vegas and CDG.
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Figure 2.9: Results from classi�cation for truncated traces in accurate settings. Near perfect
accuracy is reached with as little as 20s �ows.

minimal impact to classi�cation accuracy and hence use this duration as our minimum
trace length.

2.3.3.4 Classifying Unknowns
Our �nal parameter tuning step enables us to identify unknown or novel CCAs. This is

referred to as solving an ‘open-set’ classi�cation problem (a problem in which some of
the data to be classi�ed may not match any of the labels in the training set) rather than a
‘closed-set’ problem. In prior work, only Gordon [83] provides an open-set algorithm –
all other algorithms in the literature, including Inspector Gadget, are closed-set, meaning
that they will always erroneously identify novel CCAs as some other existing algorithm in
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Figure 2.10: Distribution of distances between training samples for 5bw-85rtt-64q accurate
settings. The seperation between the same CCA distribution and di�erent CCA distribution
suggests we can set a distance threshold to mark CCAs as unknown.

the training set.
CCAnalyzer’s mechanism for identifying novel CCAs requires identifying some DTW

distance threshold T such that if the nearest training sample to a trace is more than
T distance away according to DTW, we should mark it as unknown. The algorithm
for classifying with such a threshold, called TNN [81], is otherwise identical to the 1NN
algorithm we described previously. Figure 2.10 provides intuition as to why such a threshold
is useful. Here, we plot a CDF of all DTW distances between pairs of traces in our training
data in which the pairs use the same CCA or in which they represent di�erent CCAs. The
distribution of distances between samples with the same CCA is tight – between roughly
1 and 15 – where pairs of di�erent CCAs generally have a much higher DTW distance
between them. The key is to choose the threshold T smartly: if we set T too high, we
will mark true unknowns with a known CCA (a false known) and if we set T too low we
will mark things that should have been labeled as a known CCA as unknown (a false
unknown). Between the two classes of errors, we slightly prefer false unknowns because
we believe that the vast majority of servers on the Internet do indeed use well-known
CCAs. Consequently, we choose a low T that will have some false unknowns. In §2.5 we
explore how we can further reduce false unknowns through clustering.

Our challenge in setting T is that we lack a way to rigorously evaluate our choice of
T , since we lack ground-truth knowledge about the deployment of novel CCAs on the
Internet, or even at what frequency novel CCAs are used. We can, however, emulate the
deployment of novel CCAs to guide our search for a good value of T .

We use our existing training data (AWS-Virgina) and run classi�cation on a new testing
set (we use a server hosted in the AWS-Ohio region) to simulate unknowns. To classify a
testing sample, we remove that testing sample’s CCA from the training set. For example,
when we want to classify a Reno testing sample, we remove all Reno training samples from
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Table 2.3: Distance thresholds per setting.

Setting Quantile Distance Threshold

10bw-130rtt-128q 0.90 4.41
10bw-85rtt-128q 0.94 6.45
5bw-130rtt-64q 0.90 9.73
5bw-85rtt-64q 0.95 6.68
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Figure 2.11: False positives when removing the training samples with the correct label
from the testing set and seeing if we can correctly classify as unknown using a distance
thresholds in Table 2.3 per CCA. After voting only CDG, BIC, and Scalable are misclassi�ed
as known labels.

the training set, and see if the Reno testing sample will be correctly classi�ed as unknown,
or if it will be erroneously given a known label. We repeat this process for all 15 CCAs,
and vary T to balance false knowns and false unknowns. Table 2.3 shows the results of
these experiments with our choice of T for each setting. For example, in the 5bw-85rtt
setting, we choose the value that is the 95th percentile of the "Same CCA" distribution in
Fig. 2.10.

To evaluate how well these values of T work, we repeat this process with the Azure-
East testing set. Figure 2.11 shows how each CCA is classi�ed when we remove that CCA’s
training samples; ideally the CCA should be classi�ed as unknown. Once we apply our
voting scheme across all four settings (voting description in §2.3.4), only CDG, BIC, and
Scalable are misclassi�ed with known labels – and are mislabeled with similar CCAs (CDG
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is mapped to another low-latency CCA; BIC and Scalable are mapped to each other).
Now that we have a mechanism to classify unknowns, a new question arises: how do

we tell which services are all using the same unknown? The short answer is that we can
cluster unknown traces using pairwise DTW distance measures – groups of traces with
small distances between them are likely to represent the same novel CCA. We return to
this clustering procedure in §2.5.1.
2.3.4 CCAnalyzer End-to-End

In order to classify servers, CCAnalyzer is con�gured with a ground truth set of labeled
queue occupancy traces for 15 CCAs for 4 network settings. Using TNN-DTW and the
testbed in Fig. 2.2, CCAnalyzer does the following to classify a server:
1. Collect a queue occupancy trace for 20s (§2.3.3.3) for 4 network settings where the

bandwidth is 5 or 10mbps and RTT is 85 or 130ms (§2.3.3.2).
2. Compute the DTW distance between each queue occupancy trace and all the training

traces in the same network setting.
3. Each queue occupancy trace is given the label of the CCA that has the closest DTW

distance.
4. If the distance is bigger than a distance threshold shown in Table 2.3 (§2.3.3.4) the trace

is marked as unknown.
5. To assign the �nal label, for a website there is a vote between the 4 traces for the website.

The �nal label for the website is the majority label across the 4 traces. If there is a tie
between a known label and marking it as unknown, the CCA is marked as the known
label. Lastly, if there is a tie between multiple CCAs, the �nal label is from the trace
with the minimal distance to its closes training sample.

Finally, we use Agglomerative Clustering [86] to group unknown traces based on their
DTW distances to each other. We use the distance threshold and manual inspection of
these clusters to detect and identify proprietary, new, or unknown algorithms. CCAnalyzer
is the only classi�er which clusters unknown CCAs in any automated fashion. We explore
the accuracy and e�ciency of this approach in the next section.

2.4 Evaluation
In §2.4.1 and §2.4.2, we measure the accuracy and e�ciency of CCAnalyzer and compare

its performance with Gordon and IG. We were unable to obtain an executable version
from the authors of IG, and ultimately had to re-implement it using the same techniques
described in the paper (we describe them in §2.2) to the best of our ability. We �nd that
CCAnalyzer is able to achieve 100% accuracy using its voting scheme for all 15 built-in
CCA algorithms in Linux. During trace collection, on average, CCAnalyzer transmits 85%
fewer bytes of the data that Gordon needs to classify a website, and completes 40x faster
in terms of wall-clock time. CCAnalyzer achieves the same accuracy and coverage as IG
and better e�ciency than Gordon (§2.4.2), with the �exibility of open-set classi�cation
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Figure 2.12: Comparison between CCAnalyzer, IG and Gordon classifying the same servers.

(§2.5.2) and more interpretable results (§2.4.1).
2.4.1 Accuracy

Experimental setup: We evaluate Gordon and IG using the same Azure-East web
server we use to evaluate CCAnalyzer (§2.3.3.1). We point the Gordon client and IG client,
installed on a server in the CloudLab Utah testbed, to download the same 100MB �le from
the Apache web server. We classify each CCA 5 times for Gordon and CCAnalyzer using
their hand-crafted decision tree (as is done in the Gordon paper). We classify each CCA 20
times for IG (as is done in the IG paper) using traces collected from the same AWS-Virginia
web server as the training set.

Both Gordon and CCAnalyzer use a voting scheme to determine their �nal result. In
the case of CCAnalyzer, we generate measurements in four bandwidth/RTT/queue-size
settings, measure DTW distances to our training data for each sample, and then vote across
these four settings (§2.3.4). In the case of Gordon, they run 15 trials and take a vote across
these 15 trials. To repeat classifying each CCA 5 times, CCAnalyzer classi�es 20 queue
occupancy samples per CCA and Gordon classi�es 75 cwnd trace samples per CCA.

In Fig. 2.12 we show the number of correct classi�cations for IG, Gordon and CCAna-
lyzer. For both Gordon and CCAnalyzer we report the results after applying their voting
schemes. CCAnalyzer achieves 100% accuracy across all CCAs. The results for Gordon
are more complex: CDG, Hybla, and New Vegas (nv) are not supported by Gordon and so
we mark these as unsupported. Further, the published code does not support Westwood
so we also mark that as unsupported. For the algorithms that Gordon does support, it
misclassi�ed all Highspeed samples, and is mostly accurate for the other CCAs
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Figure 2.13: Individual votes for each CCA trace for Gordon and IG. Note that CDG, NV,
and Hybla are correctly marked as unknown for Gordon because they are not in their
training set.

We illustrate the accuracy of these individual votes in Fig. 2.13a for Gordon and in
Fig. 2.13b for CCAnalyzer. Stacked bars show how many ‘votes’ went to each CCA. For
CCAnalyzer, its individual votes are accurate with the exception of marking known CCAs
as unknown (we do favor false unknowns vs. false knowns §2.3.3.4) and mislabelled Illinois
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Figure 2.14: Traces from CCAnalyzer and IG.

samples as YeAH (both are variants of Reno). For Gordon, the errors are more varied, with
several loss-based protocols (BIC, Highspeed, and Illinois), identi�ed unexpectedly as BBR.
While the results in the Gordon evaluation include correct classi�cations for Westwood, the
publicly released code [47] for Gordon does not classify traces as Westwood, and therefore
does not support this algorithm. Notably, Gordon does correctly classify 3 algorithms it
does not support (CDG, Hybla, and NV) as unknown, demonstrating its ability to classify
some CCAs not in its known set as unknown.

To validate that our IG implementation is faithful, we attempt to replicate the results
in [46] by using Azure servers to generate both testing and training samples. Under this
setting, IG achieves 100% accuracy, likely due to over-�tting. IG’s overall accuracy dips to
73% if we include all 15 CCAs in the training and testing set and use AWS training samples
to classify Azure testing samples (like we do to evaluate CCAnalyzer); these are the results
shown in Fig. 2.12. When restricting this set to just the 12 CCAs that IG classi�es in their
paper, the accuracy is 74%.

Interpretability: There are many competing de�nitions for what makes a classi�er
"interpretable" [75]. Human experts want to be able to understand our classi�er’s output:
why are these two traces labeled as the same CCA? Is this classi�cation likely correct? This
is one of the key advantages of CCAnalyzer over the prior work: capturing the inherent
cyclical nature of CCAs, makes them more distinguishable. So much so, that not only
can a classi�er �nd these distinguishable patterns, but so too can a human observer. In
Fig. 2.14, we compare cwnd traces from IG to queue occupancy traces from CCAnalyzer.
While the top graphs show traces for IG for Cubic and HTCP are nearly identical, the
traces for the same CCAs from CCAnalyzer are easily distinguishable. Note cwnd is not
directly measurable, and techniques that estimate cwnd by forcing timeouts have a shorter
set of observations. This makes it more di�cult to interpret these cwnd estimations rather
than queue occupancy measurements. CCAnalyzer is able to achieve better accuracy than
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Figure 2.15: E�ciency comparison between CCAnalyzer and Gordon classifying the same
web server. Gordon’s cwnd estimator depends on the CCA so both bytes transferred and
time is CCA dependent.

prior work, with the important additional bene�t of interpretable results.

2.4.2 E�ciency
We have two measures of e�ciency: total bytes transferred and wall-clock time. Using

our testbed experiments, we measured that for CCAs supported by Gordon, CCAnalyzer
requires on average 15% fewer bytes to perform classi�cation and completes probing 40x
faster in terms of wall-clock time. IG is more e�cient than Gordon and CCAnalyzer. For
all of these classi�ers, classi�cation is inexpensive and done o�ine after collecting traces,
so here we only consider the e�ciency of collecting the traces before classi�cation. We
collect pcaps for all experiments and measure the average amount of bytes transferred
between the web server and the client for classifying each CCA. In addition, we measure
the time from the �rst packet sent from the client to the last received from the web server.

Bytes transferred. Fig. 2.15a compares the number of bytes transferred between
CCAnalyzer and Gordon. Because Gordon waits to measure the reaction to packet loss,
the time and amount of data transferred to classify a webpage is heavily dependent on the
CCA. Because BBR does not respond to individual packet losses, it transmits more data
during the measurement and requires a special test to classify. In contrast, CCAnalyzer’s
classi�cation is not as dependent on the CCA, aside from CDG which doesn’t always
manage to maintain full throughput, data transferred is independent of the underlying
algorithm. The mean number of bytes transferred for CCAnalyzer over the 13 CCAs
supported by Gordon is 68MB (total for collecting 4 traces) while for Gordon it is 456 MB
(with a large std dev. of 186) since it heavily depends on the CCA. IG only collects 1 trace
for up to 50 RTTs without any repetitions or restarts and at most transfers 2MB. However,
since IG only emulates a single timeout, this e�ciency comes at the cost of failing to
capture the cyclical nature of CCA behavior, leading to worse accuracy than CCAnalyzer
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and poor interpretability of generated traces (see Fig. 2.14).
Time comparison. Fig. 2.15b compares the amount of time it takes to collect traces

for CCAnalyzer and Gordon. CCAnalyzer only needs 20s per trace. Including setup,
CCAnalyzer overhead takes only a maximum of 30s per measurement and is not dependent
on the CCA. Since we collect 4 traces for each CCA the total amount of time for trace
collection for CCAnalyzer is about 2 minutes. In contrast, Gordon’s runtime heavily
depends on the CCA with a max of 130 minutes and a minimum of 2.6 minutes to complete
all of its 15 trials. IG takes at most 90s to collect traces.

2.5 CCA Measurement Study of Top 10K Websites

Table 2.4: Classi�cation results for websites by CDN websites. The values after the slashes
are after a clustering step on traces within each CDN.

CDN A
ka

m
ai

Cl
ou

d�
ar

e

Cl
ou

df
ro

nt

Fa
st

ly

G
oo

gl
e

O
th

er
CD

N

N
o

CD
N

To
ta

l

BBR 470/491 1233/1595 530/545 21/25 29 28/32 116/122 2427/2839
BIC 0 0 0 1/13 0 2/0 3/0 6/13
CDG 3/4 6/7 9/10 3 1 1 8/9 31/35
CUBIC 4 5/6 7/10 25/130 2 53/92 89/116 185/360
Highspeed 0 0 0 0 0 0 3/5 3/5
HTCP 0 0 0 0 0 0 2 2
NV 0 0 3/2 0/1 2 1 5 11
Reno 0 1 0 0 0 0 4/3 5/4
Vegas 0 0 0 0 0 0 1/0 1/0
Westwood 0 0 0 0 0 0 3 3
Yeah 0 0 0 0 1 0 0 1
Unknown 115/91 824/460 74/56 174/52 230 72/31 146/115 1635/1035
All Invalid 189 394 78 26 37 54 127 905

RTT > 85ms 36 55 10 3 18 41 1205 1368
Unresponsive 233 989 121 30 66 226 1752 3417

Total 1050 3507 832 283 386 478 3464 10000

We conduct a measurement study using our comprehensive tool and our testbed in
Fig. 2.2. We have two goals here. The primary goal is to demonstrate the e�ectiveness and
robustness of CCAnalyzer in classifying known CCAs and detecting novel CCAs. We show
how we can detect a new CCA, BBRv3, with minimal e�ort. The second goal is to take
steps towards answering important questions about the current state of CCA deployment
on the Internet today, for example: Is Cubic still the most dominant CCA? How has the
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deployment of BBR evolved? Is Reno deprecated?

2.5.1 Methodology

The Google Chrome UX Report (CrUX) releases rank ordered lists of top websites,
which is more accurate than alternatives [103, 98]. We pull the websites from the Top
10K bucket from the February 2023 dataset, which accounts for 70% of all Chrome page
loads [135, 98]. The websites in the CrUX dataset are identi�ed by origin, not domain. For
example, this list includes www.google.com, scholar.google.com, maps.google.com,
and so on as separate websites, so we try to classify each of these separately. While
we believe that this measurement study covers a large fraction of popular websites, and
we draw some important conclusions, we do not claim to be a comprehensive Internet
measurement study. We leave a larger measurement study for future work (which is
considerably more feasible with CCAnalyzer than prior work).

Both Gordon and Inspector Gadget had to search websites for a webpage large enough
to download to generate cwnd traces. We found we could only classify 1% of the 10K
websites with IG primarily because we could not �nd large enough �les (§2.2). Similarly,
we need a web transfer between the client and server for at least 20s. To achieve this goal
without requiring large �les, we use the h2load [48] tool to send multiple parallel HTTP
requests to the websites we want to classify to download enough data from the webpage to
utilize the available bandwidth (5Mbps, 10Mbps). We use the findcdn [38] tool to identify
if a website is hosted by a CDN. Occasionally, this tool returns more than one CDN for a
given website. In those cases, we use the �rst result returned by this tool.

Unresponsive and invalid traces: Table 2.4 shows a summary of how many websites
we were able to successfully classify and their classi�cations. 34% of these 10K websites
are "unresponsive" because they did not respond to pings or the homepage did not respond
with a 200 OK response to h2load. 13% had RTTs that were larger than 85ms. In addition,
we measure the bandwidth utilization for each trace. We set a bandwidth threshold of 80%
because for all our training samples the CCA is able to use at least 90% of the available
bandwidth; a threshold of 80% gives some headroom. A trace is marked invalid if it does
not meet the bandwidth threshold. A website is marked as "All Invalid" if all of the traces
collected for that website do not meet the bandwidth threshold. 9% of the websites have
traces that are all invalid.

Validation and clustering within CDNs: We initially classify each web server using
the methodology described in §2.3.3.1, and report those numbers in Table 2.4 (the numbers
before slashes). We notice about 1600+ websites are marked as unknown which means
most of the traces for these websites were not close enough to their closest training sample.
Recall in §2.3.3.4, when we determined the distance threshold, we set a small T based on
experiments to an AWS server. We favored false unknowns vs. false knowns. Because of the
likely possibility of more noise in our measurements to third-party servers, the distance
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…

Figure 2.16: Example of a portion of a dendrogram from hierarchical clustering Fastly
websites in 5bw-85rtt-128q setting. The vertical line is the distance threshold.

threshold may be too conservative. To further reduce false unknowns, we do an additional
clustering step where we may re-classify websites. The values after the slashes are the
counts per CDN, per CCA if there were changes after this additional clustering step.

In this additional step, we cluster all the CCAs that are in the same CDN using agglom-
erative clustering [86]. Agglomerative clustering works by putting each sample initially in
its own cluster, and then merging samples into the same cluster based on the distances
between the samples. We use the "average" metric based on the DTW distances between all
samples, which links samples to minimize the average of the distances of each observation
of the two sets. Once we compute the links between all the samples, samples can be put
into clusters based on a distance threshold; we use the distance thresholds described in
Table 2.3. If a resulting cluster contains 5% or more labeled traces, we re-classify unknowns
or invalid traces as that label. For the cases where we re-classify, while the traces initially
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Figure 2.17: The full dendrogram of results from clustering across all the Fastly websites
(5bw-85rtt- 128q setting) using the distance threshold. Each leaf shows one testing sample
from each of the resulting clusters. Clusters with numbers indicate how many samples are
in that cluster.

labelled unknown are not close enough to other training samples, they are close enough to
other testing samples with a known label. We believe in this case, these are false unknowns
and should be given a known label. After re-classifying traces, we re-do the voting across



36 CCAnalyzer: An E�cent and Nearly-Passive Congestion Control Classi�er

0 10 20
Time(s)

0.0

0.5

1.0
Qu

eu
e 

Si
ze douyu.com

0 10 20
Time(s)

newyork.craigslist.org

Figure 2.18: Example of unknown traces from websites not hosted by a CDN.

the 4 settings (§2.3.4) and give websites potentially new labels (we do not re-label ’All
Invalid’ websites).

We see two notable changes after this clustering of all samples from the same CDN.
First, the majority of the unknown Fastly websites (105) are re-classi�ed as Cubic. Second,
there is a similar shift with Cloud�are websites: 362 websites are re-classi�ed as BBR. In
Fig. 2.16, we visually show the partial output of the clustering of Fastly results. The yellow
vertical dotted line shows the clustering distance threshold used. The labels on the green
lines indicate the �nal label given to all traces in each cluster and the number of traces in
the cluster. The boxes on the left show some example traces in each cluster, along with
their initial label. For example, in the cluster labeled ’cubic (N=151)’, 20% of these traces
are Cubic traces so this cluster is labelled Cubic. It is encouraging that the these traces
are highly similar and are clearly Cubic traces based on manual inspection. Similarly, the
process does a good job keeping the ’unknown’ label for unusual traces.

There are two bene�ts of this clustering step. First, we can validate the results of
our classi�cation. Looking at the dendrograms of the output we can visualize how close
samples are to each other and can see at what distance threshold similar samples are
clustered together (highlighting the interpretability of CCAnalyzer results). Fig. 2.17
shows an example of a full dendrogram for Fastly websites in the 5bw-85rtt-128q setting.
We expect like traces to end up close together, while dissimilar traces to be far apart. In
this example, we see clusters of BBR and Cubic samples. Second, which we demonstrate
in Fig. 2.16, it can help classify false negative unknowns as actually known CCAs.
2.5.2 Clustering Unknowns

After the initial classi�cation as well as the clustering within CDNs and validation, we
now have websites that are still classi�ed as unknown. We take the traces from all of these
websites, across CDNs, and run agglomerative clustering on all of them. We manually
view the dendrogram of these results and look for web servers that are likely using the
same unknown CCA.

BBRv3: We notice that the majority of websites originating from Google CDN are classi-
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Figure 2.19: Example trace from a Google website that we believe is BBRv3 from 2 settings:
10bw-130rtt-128q (left), 10bw-85rtt-128q (right)

�ed as unknown when we expected to see BBRv1. We see these traces are closest to BBRv1,
but the periods of bandwidth probing and RTT probing are more spaced out. Fig. 2.19
shows an example queue occupancy traces for 2 settings for scholar.google.com. We
conclude these sites are using BBRv3 and con�rm with Google’s BBR team [2]. According
to presentations from Google, BBRv3 was deployed on Google servers by Summer 2023
when our measurement study was conducted in Fall 2023. Based on clustering, we label
102 Google CDN websites originally classi�ed as unknown instead as BBRv3. This example
also highlights the ease in discovering new CCAs with CCAnalyzer.

Other Unknowns: Our ability to cluster traces using DTW distances makes discovering
new CCAs a simple and straightforward process of reviewing queue occupancy traces,
dendrograms and DTW distances. We see the potential for further reverse engineering of
these CCAs using recent work [37]. While some unknowns can be re-classi�ed as existing
designs as part of the clustering process, we still see other behaviors that remain classi�ed
as unknown, like clusters unknown #1-#3 in Fig. 2.16. In our broader study of websites,
we �nd several websites using unknown CCAs which we highlight in Fig. 2.18. Note that
further study is needed to determine if these are truly novel CCA designs or a known CCA
in an unexpected or pathological state.
2.5.3 Addressing Limitations

We �nd our RTT limit (85ms), bandwidth utilization threshold (80% of 5Mbps and
10Mbps), and h2load settings, limit the coverage we have for the websites we could
measure in this study. As noted earlier, 13% had too high RTTs. 9% had too low bandwidth,
and 34% of the servers did not respond to h2load. This is not a fundamental limitation
of 1NN-DTW and can be mitigated in several ways. In this section, we discuss how we
could increase coverage, to potentially classify the ’unresponsive’ websites and gather
more valid traces in this study.

An obvious mitigation for the lack of response to h2load is to issue HTTP/1.1 requests
if HTTP/2 requests fail. In addition, we could avoid using h2load by requesting a large
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Figure 2.20: 0.3bw-275rtt: Accuracy for di�erent queue sizes and trace lengths for 0.3Mbps
and 275ms RTT setting using training and testing samples from Cloudlab server. A queue
size of ∼1BDP (16 pkts) works well.

�le from the website using wget as we did in our evaluation. To reduce the number of
servers with too high RTTs or too low bandwidth, we consider the smallest bottleneck
bandwidth and largest RTT that we can use to generate clear queue occupancy traces. We
consider an RTT constraint of 275ms based on Fig. 2.5. To determine a low bandwidth, we
observe the queue occupancy plots as we decreased bandwidth by 0.1 Mpbs at a time. We
did this until we visually observed a distinctive change in the shape. We �nd 0.3 Mbps
produces distinguishable traces as shown in Fig. 2.21.

Given this bandwidth and RTT constraint, the core question is: what queue sizes will
produce distinguishable traces? To answer this question, we generate 5 queue occupancy
traces for varying queue sizes from within our testbed using iperf with a server that is a
Cloudlab machine. We split these traces into 3 training and 2 testing samples for each of
the 15 CCAs, using Cloudlab traces to classify other Cloudlab traces to determine which
queue sizes result in high accuracy. Fig. 2.20 shows the accuracy for the 0.3 Mbps and
275ms RTT network settings with varying queue sizes and varying trace lengths. A queue
size of about ∼1BDP (16 packets) has an accuracy of 100% for traces as short as 20s, similar
to the accuracy we see in §2.3.3.2. Fig. 2.21 shows the queue occupancy traces using a 16
packet queue.

CCAnalyzer can work with a wide range of network settings to support a large majority
of web servers. We only need network settings that produce distinct queuing behavior
for di�erent CCAs for 1NN-DTW to work. While we only explore a few settings in this
work, we also show that there other settings, especially ones with lower expectations from
servers, that could be used in practice. Future work could use alternative network settings
to classify websites that we did not in this study, improving coverage further without
sacri�cing accuracy.
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Figure 2.21: 0.3bw-275rtt-16q: Example training samples traces from Cloudlab

2.5.4 Takeaways

Widespread deployment of BBRv1: While we are not able to classify all websites,
we do �nd that the majority of those we can classify are classi�ed as BBRv1. While we
cannot conclude that there is an increasing deployment of BBRv1, we do see widespread
deployment at “Hypergiants“[45] like Akamai which was previously known to have
deployed a di�erent CCA [83]. We so see some large CDNs (e.g. Fastly) still use Cubic.

Discovery of new CCAs: Using CCAnalyzer, we can automatically discover new CCAs,
as we show in this work with our discovery of BBRv3. We do not need specialized or
hand-crafted tests to classify new CCAs (like Gordon and Inspector Gadget) nor do we
need to know details of how the algorithm works (like Gordon). We can add support for
new CCAs, like BBRv3, simply by collecting queue occupancy traces and adding them to
our training set.

2.6 Conclusion
CCAnalyzer takes a signi�cant step forward in CCA classi�cation. While only relying

on collecting bottleneck queue occupancy traces, CCAnalyzer achieves accuracy that is
equal to or better than state-of-the-art classi�ers. In addition, CCAnalyzer is e�cient,
unobtrusive, has interpretable results, and supports open-set classi�cation. We use CCAn-
alyzer to analyze the CCAs of 5000+ websites. CCAnalyzer’s DTW-based distance measure
allows it to not only detect unknown CCAs, but also cluster them into groups of similar
unknowns, simplifying the detection and classi�cation of new CCA variants as they appear
on the Internet. Unlike prior work, CCAnalyzer’s approach has the potential to classify
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the rising popularity of user-space protocols (e.g. QUIC) and other popular applications
(e.g. video streaming), a promising direction for future work.

At the beginning of this chapter we asked: What congestion control algorithms
are widely deployed on the Internet today? Of the 10K websites we attempted to
classify, 35% were from Cloud�are, the most common CDN in our dataset. Of these, 45%
(1595 websites) were classi�ed as BBRv1. In addition, we saw deployment of BBRv1 at
other large CDNs Cloudfront and Akamai, and the deployment of Cubic at Fastly. We
found a number of unknown CCAs. With these results, we con�rm that this heterogeneity
in the Internet today as we declare in our thesis statement. Given this deployment of
BBRv1 and Cubic, in the next chapter we discuss how BBRv1 interacts with loss-based
congestion control.



Chapter 3

Modeling BBR’s Interactions with Loss-Based
Congestion Control

Very insightful paper - and a thorough analysis of the
problem. It is interesting that such a major aspect of
BBR’s behavior – how much of the bottleneck queue it
occupies – hinges on an arbitrary choice.

Reviewer #5

3.1 Introduction
In 2016, Google published a new algorithm for congestion control called BBR [25,

24]. Now deployed as the default CCA for Google services including YouTube, which
commands 11% [77] of US Internet tra�c, BBR consequently impacts a large fraction of
Internet connections today. In our measurement study in Chapter 2, we also saw rapid
and proli�c deployment of BBR beyond just Google. While BBR is available in the Linux
kernel, Cubic is still the default. This leads to the second question in this dissertation:
How does BBR interact with loss-based CCAs?

We are not the �rst to investigate BBR’s properties when competing with traditional
loss-based CCAs. Experimental studies have noticed two key phenomena. First, in shallow-
bu�ered networks, BBR’s bandwidth probing phase causes bu�er over�ows and bursty
loss for competing �ows; these bursts can lead to Cubic and Reno nearly starving for
bandwidth. This phenomena was �rst explored in [55] and BBRv2 was expected to patch
the problem [22]. Currently BBRv2 is deprecated and has been replaced by BBRv3 which
is now deployed on all Google sites [27].

In residential capacity links (e.g. 10-100Mbps) with deep bu�ers, studies [124, 34, 25,
104, 119] have generated con�icting reports on how BBR shares bandwidth with competing
Cubic and Reno �ows. We [124] and others [34, 104] observed a single BBR �ow consuming
a �xed 35-40% of link capacity when competing with as many as 16 Cubic �ows. These

41
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�ndings contradict the implication of early presentations on BBR [25] which illustrated
scenarios where BBR was generous to competing Cubic �ows. In short, the state of a�airs
is confusing, with no clear indication as to why any of the empirically observed behaviors
might emerge.

The contribution of this chapter is to model BBR’s behavior when it competes with
traditional, loss-based congestion control algorithms in residential, deep-bu�ered net-
works (studies [68] suggest that residential routers typically have bu�er depths 10-30×
a bandwidth-delay product for a 100ms RTT). The key insight behind our model is that,
while BBR is a rate-based algorithm when running alone, BBR degrades to window-based
transmission when it competes with other �ows. BBR’s window is set to a maximum
‘in-�ight cap’ which BBR computes as 2×RTTest ×Btlbwest , for RTTest and Btlbwest , BBR’s
estimates of the baseline RTT and its share of bandwidth.

While the original BBR publication presented the in-�ight cap as merely a safety
mechanism – included to allow BBR to handle delayed ACKs [24] – this mechanism, unex-
pectedly, is the key factor controlling BBR’s share of link capacity under competition. Our
model focuses on how BBR estimates its in-�ight cap under di�erent network conditions;
by computing what we expect BBR’s in-�ight cap to be, we can predict BBR’s share of
link capacity for long-lived �ows. The size of the in-�ight cap is in�uenced by several
parameters: the link capacity and latency, the size of the bottleneck queue, and the number
of concurrent BBR �ows. But, notably absent, the number of competing loss-based (Cubic
or Reno) �ows does not play a factor in computing this in-�ight cap. Hence, BBR’s sending
rate is not in�uenced by the number of competing traditional �ows; this is the reason
behind reports that BBR is ‘unfair’ to Cubic and Reno in multi-�ow settings [124, 34].

In what follows, we discuss our testbed in §3.2 and early measurements of BBR’s
‘fairness’ or ‘friendliness’ in §3.3. We then provide a primer on the BBR algorithm in
§3.4. We then develop our analysis of BBR in §3.5 along with an explanation of BBR’s
convergence to 40% of link capacity. We connect our results to related work in §3.6 and
and conclude in §3.7.

3.2 Testbed
Throughout this chapter, we show experiments generated in the testbed illustrated in

Fig. 3.1. Each experiment involves three servers: a server/sender, a BESS [50] software
switch, and a client/receiver. All servers are running Linux 4.13 (using internal TCP pacing),
have Intel E5-2660V3 processors, and have dual-port Intel X520 10Gb NICs. Senders and
receivers use iPerf 3 [58] to generate/receive tra�c. Within BESS, tra�c is serviced at a
con�gurable rate below the link capacity to introduce queueing. The queue size is set to
ratios relative to BDP; since the BESS queue module only supports powers-of-two sizes
we rounded to the nearest power-of-two. To con�gure delay, we hold all ACKs for a
con�gurable amount of time. Unless otherwise noted, we set bandwidth to 10 Mbps and
RTT to 40ms, following Google’s parameters in IETF presentations [25, 26].
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service at k Mbps

delay by j millisecondsServers Client

BESS Node

Figure 3.1: Testbed for congestion experiments which introduces queueing at a controlled
bottleneck.

Figure 3.2: Average goodput for two competing �ows over 4 min in a 40ms×10Mbps
network with varying queue sizes.

3.3 BBR In Competition
A natural concern when deploying a new CCA on the Internet is how the new CCA

will interact with other deployed algorithms. Will the new CCA be ‘fair’ to existing CCAs,
or starve them?

An early BBR presentation [25] provided a glimpse into these questions. A graph in
the presentation measures 1 BBR �ow vs. 1 Cubic �ow over 4 minutes, and illustrates a
correlation between the size of the bottleneck queue and BBR’s bandwidth consumption.
We set out to replicate Google’s experiments and easily did so – shown in Fig. 3.2 – as
done in other studies [104]. The implication of these graphs is that BBR is generous to
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Figure 3.3: BBR and Cubic or Reno’s queue when competing for 4 minutes over a network
with a 64 BDP (1024 packet) queue.

(a) Convergence time for 1 BBR �ow and 1 Cubic
�ow over varying queue sizes

(b) Goodput for 1 BBR �ow and 1 Cubic �ow over
varying measurement intervals.

Figure 3.4: BBR vs Cubic in a 40ms × 10Mbps network

existing CCAs in typical bu�er bloated networks, especially to Cubic.
Subsequent studies in our group and others questioned both the results – what fraction

of the link BBR consumed – as well as the implication of generosity [124, 34, 104]. Some
data [124] showed that BBR converged to di�erent rates – around 40% of the link capacity
for queue sizes up to 32×BDP, matching the Reno graph, but not matching the Cubic
graph. We show in Figs. 3.3 and 3.4 that this incongruity is merely the result of di�ering
experimental conditions and the amount of time it takes for BBR to converge to its steady-
state share of link capacity. Where BBR quickly matches Reno’s queue occupancy – and
therefore consumption of the link capacity – BBR takes longer to scale up when competing
with Cubic (Fig. 3.3). As a consequence, the ‘average goodput’ one computes is dependent
on how long one measures the competition between BBR and Cubic (Fig. 3.4a). Furthermore,
to reach convergence can take on the order of minutes in very deep bu�ered networks
(Fig. 3.4b).
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Figure 3.5: BBR’s goodput over time competing with 16 Cubic �ows in a 40ms×10Mbps
network with a 32 BDP queue.

Another set of experiments [124, 34] suggest that BBR may consume far more than its
‘fair’ share of link capacity. Fig. 3.5 shows goodput over time of BBR vs 16 Cubic �ows in
the same 40ms × 10Mbps scenario. BBR consumes an outsized share of bandwidth, leaving
just over half to be shared by the sixteen other connections.

Unfortunately, relying only on these empirical studies leave us like the blind men
and the elephant, each relying on only pieces of the overall picture to understand BBR’s
characteristics. To get to the bottom of why BBR behaves in the way it does, and to predict
how BBR might behave in unobserved scenarios, we turn to modeling in the rest of this
chapter.

3.4 BBR Primer
BBR is designed to be a rate-based algorithm. BBR maintains two key variables:

Btlbwest BBR’s estimate of the available throughput for it to transmit over the network,
and RTTest BBR’s estimate of the baseline round-trip time. BBR paces packets at Btlbwest

rate. Assuming that BBR is transmitting over a single link with no queueing (and a sender
which ACKs instantaneously), BBR should expect to never have more than Btlbwest×RTTest
unacked packets outstanding.

As a failsafe and to keep the pipe full in networks that delay or aggregate ACKs, BBR
implementations impose a ‘in-�ight cap’ – it will never allow itself to have more than
2 × Btlbwest × RTTest unacknowledged packets outstanding [24, 26]. As we will show, this
cap turns out to be the central parameter controlling BBR’s link utilization in competition
with Cubic and Reno.
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ProbeRTT ProbeBW Drain Steady 
State

repeat

8 RTTs

9th RTT

Every 10 seconds

Return to Prev. State

Figure 3.6: BBR’s steady-state operation.

To estimate Btlbwest and RTTest , BBR cycles (post-startup) through a simple state
machine illustrated in Fig. 3.6.1

Estimating the rate. BBR sends at a �xed rate BWest . BBR sets its initial rate using its own
version of ‘slow start’; henceforth BBR ‘probes for bandwidth’ (ProbeBW in Fig. 3.6) one
out of every 8 RTTs. During this stage, BBR in�ates the rate to 1.25∗Btlbwest and observes
the achieved throughput during that interval. BBR then lowers its rate to (0.75 ∗ Btlbwest )
to drain any excess packets out of queues. BBR’s Btlbwest is then the max observed packet
delivery rate over the last 8 RTTs. It then sends at the newly-recalculated Btlbwest for the
next 6 RTTs before probing again.

Estimating the RTT. BBR also keeps track of the smallest observed RTT. If BBR goes 10
seconds without observing a smaller RTT, it enters ProbeRTT. During ProbeRTT, BBR
caps the amount of data it has in-�ight to only 4 packets and measures the RTT for those
packets for at least 200ms and one packet-timed round-trip. 2 BBR drops its sending rate to
try to ensure none of its own packets are occupying queues in the network: in Fig. 3.5 one
can observe BBR dropping its rate to almost zero on ten-second intervals. After ProbeRTT,
BBR returns to the state it was in previously.

1Our state machine �gure di�ers from the ‘standard’ BBR �gure [21] by focusing on only steady-state
operation rather than startup, and separating apart the three sub-phases of ProbeBW.

2A "packet-timed round-trip" means that a data packet is sent and then the sender waits for that packet
or some late packet to be acknowledged
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3.5 Analysis and Modeling
We model BBR’s post-convergence share of link capacity when competing with loss-

based CCAs in three phases.

(1) Simple Model of In-�ight Cap: We �rst model a simple scenario to understand
how BBR’s in-�ight cap controls BBR’s sending rate. In this scenario, the queue is highly
bloated, baseline RTTs are negligible, and there are only two �ows (one BBR, one loss-based)
competing.

(2) Extended Model of In-�ight Cap: After demonstrating that BBR’s in-�ight cap
controls its sending rate, we develop a more robust model, covering scenarios with multiple
BBR �ows, �nite queue capacities, and non-negligible RTTs.

(3) Model of Probing Time: BBR’s in-�ight cap is only 4 packets during ProbeRTT, hence
BBR spends time without transmitting data every ten seconds. To predict BBR’s sending
rate overall, we must reduce the rate predicted by the in-�ight cap proportionally to the
amount of time BBR spends in ProbeRTT.
3.5.1 Assumptions and Parameters

Table 3.1 lists the parameters in our model. We use these parameters to compute p,
Cubic/Reno’s share of the link capacity at convergence, and 1 − p, BBR’s share of link
capacity at convergence. Our model is based on the following assumptions:

(1) Flows have in�nite data to send; their sending rates are determined by their CCA,
which is either BBR, Cubic, or Reno.

(2) All �ows experience the same congestion-free RTT and the available link capacity is
�xed.

(3) All packets are a �xed size.

(4) The network is congested and the queue is typically full; a �ow’s share of throughput
hence equals its share of the queue.

(5) All loss-based CCA’s are synchronized [107]. All BBR �ows are synchronized [24]. All
�ows begin at the same time.
3.5.2 Simple Model: BBR’s ProbeBW State

The �rst insight of our model is that BBR is controlled by its in-�ight cap: in BBR’s
ProbeBW phase, BBR aggressively pushes out loss-based competitors until it reaches its
in-�ight cap.

Model: Why this happens follows from the BBR algorithm and loss-based CCAs’ reaction
to packet losses. Assume a link capacity c , where BBR and the loss-based CCAs, in
aggregate, are consuming all of the available capacity. By probing for 125% of its current
share of bandwidth, BBR pushes extra data into the network (o�ered load > c) leading
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Parameter Description
N Number of BBR �ows sharing bottleneck
q Bottleneck queue capacity (packets)
c Bottleneck link capacity (packets per second)
l RTT when there is no congestion (seconds)
X Queue capacity as multiple of BDP: q = Xcl

d Flow completion times after convergence (seconds)

Table 3.1: Description of BBR model parameters

(a) 2 BDP in-�ight cap (b) 4 BDP in-�ight cap

Figure 3.7: BBR vs Cubic in a 10Mbps×40ms testbed with a 32 BDP queue. Black dashed
line is the model (3.5).

to loss for all senders. Loss-based algorithms back o�, dropping their window sizes and
corresponding sending rate. BBR does not react to losses and instead increases its sending
rate, since it successfully sent more data during bandwidth probing than it did in prior
cycles. The loss-based CCA returns to ramping up its sending rate, and together the
combined throughput of the two becomes slightly higher than the link capacity and the
two �ows begin to �ll the bottleneck bu�er. This process continues until BBR hits an
in-�ight cap; we expect that in the absence of a cap it would consume the entire link
capacity.

Validation: We modi�ed BBR in our testbed to run with a in-�ight cap of 4 × BDP . In
Fig. 3.7b we show one run with our elevated in-�ight cap along with a run with the
standard cap in a testbed in a 40 ms × 10 Mbps network with a 32 BDP packet queue. BBR
increases its share of the link capacity; we show in the next subsection that this increased
share matches our prediction of a window-limited sender with a window the size of the
in-�ight cap.
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3.5.3 Simple Model: BBR’s In-�ight Cap
To understand the impact of the in-�ight cap on BBR’s performance, we build a model

making two simplifying assumptions (we relax these assumptions later): (1) There is only
1 BBR �ow competing with any number loss-based CCAs, and (2) The queue capacity is
much greater than the BDP (q � cl ).
Model: Recall that the in-�ight cap is calculated as:

in�ightcap = 2 × RTTest × Btlbwest (3.1)

With a queue capacity of q we can assume that, at any given point of competition p from
loss-based �ows, BBR will consume the remaining bandwidth:

Btlbwest = (1 − p)c . (3.2)

About every 10 seconds, BBR enters ProbeRTT to measure the baseline RTT, draining any
packets BBR has in the queue.

When there is no competing tra�c, 1 BBR �ow can successfully measure the baseline
RTT l during ProbeRTT. When there is competing tra�c from loss-based CCAs, there will
be p × q data in the queue. Assuming a negligible baseline RTT (q � cl ) — as bu�erbloat
increases, queuing delay becomes the dominant factor in latency — we have:

RTTest =
pq

c
. (3.3)

Plugging (3.2) and (3.3) into (3.1) and reducing gives:

in�ightcap = 2(p − p2)q. (3.4)

We know from the previous subsection that BBR will increase its rate until it is limited by
the in-�ight cap. To compute this, we set in�ightcap equal to the amount of data BBR has
in-�ight and solve for p:

2 × (p − p2)q = (1 − p)q

p =
1
2

(3.5)

We can now see that while 1 BBR �ow increases its sending rate during ProbeBW, once
it intersects the in-�ight cap it will not be able to consume more than 50% of the available
capacity.
Validation: This simple model for the in-�ight cap in a deep-bu�ered network says if the
BDP cap is 2, then BBR should occupy about half the queue after convergence. Similarly,
if the BDP cap is 4, then BBR should occupy at most 75% of the queue after convergence.
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(a) RTTest . (b) In�ightcap .

Figure 3.8: Comparisons between model and observation for RTTest and in-�ightcap at
40ms × 15Mbps and 64 BDP queue.

Fig. 3.7 shows BBR converging at each of these points in a deep-bu�ered network with a
32 BDP queue.

Note: This simple model demonstrates why BBR retains the same share of link capacity
regardless of the number of competing Cubic or Reno �ows. ProbeBW is aggressive enough
to force one or many loss-based �ows to back o�; the bandwidth cap is set simply by the
queue occupancy of the competing loss-based �ows – but not how many loss-based �ows
there are. The calculations behind ProbeBW and the in-�ight cap lack any signal to infer
number of competing loss-based �ows and adapt to achieve equal shares/fairness.
3.5.4 Extended Model: In-�ight Cap

Our simple model assumes a bu�er-bloated network and only one BBR �ow. In this
section, we show how BBR’s in-�ight cap changes given the size of the queue (bloated or
not) and with an increasing number of BBR �ows.

Multiple BBR Flows Alone: To understand multiple BBR �ows competing with loss-
based �ows, we �rst need to understand multiple BBR �ows competing in the absence of
other tra�c. After convergence, each BBR �ow has a slightly overestimated Btlbwest near
their fair share: 1

N × c + ϵ . The additional ϵ is – similar to our discussion in §3.5.2 – due to
the aggression of ProbeBW. Here, BBR �ows compete against each other; BBR uses a max()
operation to compute BtlBwest over multiple samples of sending rates resulting in, usually,
a slight overestimate of its fair share. While we ignore this ϵ in our modeling, its existence
forces the aggregate of BBR �ows to send at a rate slightly higher than c , �lling queues
until each �ow reaches its bandwidth cap and becomes window-limited and subsequently
ACK-clocked.

However, the cap may also be elevated due to the presence of multiple competing �ows.
During ProbeRTT, each �ow will limit in�ight to 4 packets, so that they can drain all of
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their packets from the queue and measure the baseline RTT. For N BBR �ows, this means
in aggregate they will have 4N packets in�ight. However, if 4N packets is greater than the
BDP, the queue will not drain during ProbeRTT so RTTest includes some queueing delay:

RTTest = max(l ,
4N − cl

c
+ l) (3.6)

Thus, the the in-�ight cap when N BBR �ows compete is dependent on the BDP.
Further, if the queue is smaller than 4N − cl when 4N > cl , then the BBR �ows will
consume the entire queue and hence 100% link capacity.

Validation: Fig. 3.8a shows the measured median RTT estimate across a varying number
of BBR �ows versus (3.6). The estimate increases linearly, similar to our prediction. Here,
the BDP is only 75KB, so the queue will not completely drain during ProbeRTT when
there are 13 or more BBR �ows. Fig. 3.8b shows how this corresponds to the in�ight cap.
If the BDP were larger, the �ows would have been able to measure the correct RTTest .

Multiple BBR Flows vs Loss-Based Flows: We now return to multiple BBR �ows vs
loss-based �ows. As we saw when BBR �ows were only competing with each other, if
the BDP is not large enough to accommodate 4N packets during ProbeRTT, BBR’s RTT
estimate will be too large. If we assume 4N additional packets are in the queue during
ProbeRTT, then,

RTTest =
pq + 4N

c
+ l . (3.7)

Here, we also include l , no longer assuming it is negligible compared to queueing delay.
Plugging (3.7) and (3.2) into (3.1), in aggregate all N BBR �ows will have:

in�ightcap = 2(1 − p)c
(
pq + 4N

c
+ l

)
. (3.8)

To compute the BBR �ows’ aggregate fraction of the link, we set in�ightcap equal to
the amount of data BBR �ows have in-�ight and solve for p:

2(1 − p)c
(
pq + 4N

c
+ l

)
= (1 − p)q + (1 − p)cl

p =
1
2
−

1
2X
−
4N
q

(3.9)

If p were a negative number, this would mean BBR’s in�ight cap exceeded the total capacity
(BDP + the queue size) and hence BBR’s share of the link would be 100%.

In the next section, we complete our extended model by computing the amount of time
BBR operates at its in-�ight cap.
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3.5.5 Extended Model: ProbeRTT Duration
During ProbeRTT, BBR stops sending data while it waits for its in-�ight data to fall to

4 packets. You can see this behavior impacting goodput in Fig. 3.5. If the queue is large
and also full when BBR goes into ProbeRTT, this results in long intervals where BBR is
not sending any data. 3 This results in BBR on average consuming a lower fraction of link
capacity than if it were sending constantly at a rate proportional to its in�ight cap.
Model: If the total duration of time the �ows are competing (after convergence) is d , the
fraction of the link BBR �ows will use when competing with loss-based CCAs is:

BBR f rac = (1 − p) ×
(
d − Probetime

d

)
, (3.10)

where p is computed using (3.9). During Probetime throughput is nearly zero.
We compute Probetime by computing the length of time spent in ProbeRTT state, and

multiply by how many times BBR will go into ProbeRTT state. Assuming the queue
is full before BBR enters ProbeRTT state, BBR will have to wait for the queue to drain
before its data in-�ight falls to 4 packets. Once it reaches this in-�ight cap, BBR also waits
an additional 200ms and a packet-timed round trip before exiting ProbeRTT. Assuming
synchronized �ows and the queue is typically full, BBR �ows should rarely measure a
smaller RTT outside of ProbeRTT state so it should enter ProbeRTT about every 10 seconds.
Altogether, this means probe time increases linearly with queue size:

Probetime =
(q
c
+ .2 + l

)
×

d

10
(3.11)

Validating Probertt : First, we measure the probe time from experiments with competing
BBR �ows in for a 40ms×15 Mbps network for experiments run for 400 seconds after
convergence (d=400) for Cubic We compare this to our prediction computed from (3.11).
Fig. 3.9 compares (3.11) to measured probe time—the model �ts the observations well.
Most commonly the predicted probe time for experiments with Cubic is 1-3 seconds larger
than the expectation and is at most about 8 seconds too large.
Validating the Extended Model: We measure the average throughput for BBR compet-
ing against Cubic or Reno after convergence (d = 400 for Cubic, d = 200 for Reno). We
use (3.10) to compute BBR’s expected fraction of the link versus our measurements. Our
expectations closely follow empirical results in most cases, validating our model. Fig. 3.10
compares (3.10) to the BBR �ows aggregate fraction of the link when competing with Reno
or Cubic. The median error competing against Cubic 5%, and against Reno 8%.

3In fact, BBR authors have even noted that this is a signi�cant limitation on BBR’s performance, and
in BBRv2 design change ProbeRTT so that it reduces BBR’s in�ight cap to 50% of it’s BDPest instead of 4
packets [22].
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Figure 3.9: Probetime model for 40ms × 10 Mbps link vs. measured probe time for BBR
�ows competing with 1 Cubic �ow in varying queue sizes.

(a) 40ms × 10 Mbps, vs 1 Cubic
Flow

(b) 30ms × 50 Mbps, vs 1 Cubic
Flow

(c) 40ms × 10 Mbps, vs 1 Reno
Flow

Figure 3.10: Model compared to observed aggregate fraction of the link.

For Cubic, the model �ts the observations best with large queue sizes and large numbers
of �ows. In this case, our assumptions that the queue is typically full, and 4N BBR packets
will be in the queue during ProbeRTT, in�ating RTTest , are more likely to be true. However,
Reno reveals an opposite trend: the model does worse as the queue becomes larger. We
suspect this is due to Reno’s slower (relative to Cubic) additive increase failing to take
advantage of the available capacity and hence leaving a larger share of throughput for
BBR.

3.6 Related Work
The �rst independent study of BBR was presented by Hock et al. [55]. Their analysis of

BBR identi�es the important property that multiple BBR �ows operate at their in-�ight cap
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in bu�er-bloated networks. Further, they present experiments for 1 BBR �ow and 1 Cubic
�ow, noting that in large bu�ers, they oscillate around equally sharing the bottleneck.
They also observe that when 2 BBR �ows compete with 2 Cubic �ows in a shallow-bu�ered
network, BBR �ows will starve the Cubic �ows. Several additional empirical studies have
reproduced and extended these results [104, 34, 119]. Scholz et al. [104] run tests for up
to 10 BBR �ows competing with up to 10 Cubic �ows in a large bu�er and conclude that,
“independent of the number of BBR and Cubic �ows, BBR �ows are always able to claim at
least 35% of the total bandwidth." Dong et al. [34] also note that as 1 BBR �ow competes
with an ever increasing number of Cubic �ows, BBR’s fraction of the bandwidth remains
the same.

Each of these studies touches on important aspects of BBR’s behavior, but we are the
�rst to model BBR’s behavior in these scenarios rather than to simply observe it. Through
our model, we are able to explain the missing parts of seemingly con�icting conclusions
drawn in prior work.

Google is actively developing BBRv2 and very recently released a Linux kernel imple-
mentation of BBRv2 [22, 23, 12]. Early presentations [23] imply that it primarily resolves
the fairness issues discussed by Hock et al [55], but does not touch on the �xed proportion
of link capacity as discussed in this chapter.

3.7 Conclusion
In this chapter, we have shown that BBR’s in�ight cap – a ‘safety mechanism’ added

to handle delayed and aggregated ACKs – is in reality central to BBR’s behavior on the
Internet. When BBR �ows compete with other tra�c (BBR, Cubic, or Reno), BBR becomes
window-limited and ACK-clocked, sending packets at a rate entirely determined by its
in�ight cap.

When competing with loss-based TCPs such as Cubic and Reno, BBR’s cap can be
computed using the bottleneck bu�er size, the number of concurrent BBR �ows, and the
baseline network RTT. However, the number of competing loss-based �ows are not a
factor in computing this cap. Hence, BBR does not reduce its sending rate even as more
loss-based �ows arrive on the network. This is the cause of reports arguing that BBR is
‘unfair’ to legacy TCPs.

While we were able to use modeling in this chapter, this is not a general methodology
for studying the interactions between CCAs. In the next two chapters we revisit how
CCAs are evaluated for deployability on the Internet today and describe a new metric,
methodology, and tool for this evaluation. While we were able to use modeling in this
chapter, we discuss why this is not a general methodology and how we can improve
empirical m
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Beyond Jain’s Fairness Index: Setting the Bar
For The Deployment of Congestion
Control Algorithms

It’s a timely and thoughtful paper, there is an
explosion of CCAs to handle the variety of workloads
that have di�erent connectivity requirements. Often
however there is no clear means to decide whether to
adopt one or not, and this paper can instigate a lively
and timely debate.

Reviewer #5

4.1 Introduction
In Chapter 2 we measured the deployment of new CCAs both known and unknown.

Then in Chapter 3 we both measured and modelled unfairness between recently deployed
CCA BBR and legacy loss-based CCAs. This state of a�airs leads to the last question in this
dissertation: How should we evaluate inter-CCA interactions to decide if a CCA is
deployable? Without a standard deployment threshold, we are left without foundation to
argue whether a service provider’s new algorithm is or is not overly-aggressive.

A deployment threshold concerns inter-CCA phenomena, not intra-CCA phenomena.
Rather than analyzing the outcomes between a collection of �ows, all using some CCA
α , we need to analyze what happens when a new CCA α is deployed on a network with
�ows using some legacy CCA β . Is α ’s impact on the status quo is acceptable?

Our community has traditionally analyzed inter-CCA competition in two ways, which
we refer to as ‘fairness’ and ‘mimicry.’ While both approaches are insightful, we argue
that neither is a sound basis for a deployment threshold.

55
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A throughput allocation is fair if it maximizes every users utility function given limited
link capacity [110]. A end-host CCA, typically de�nes users as �ows, aiming to maximize
utility per-�ow by ensuring that every �ow sharing the same bottleneck link gets equal
bandwidth. For example, CCA designers try to argue their CCA α is deployable if it is fair
to Cubic (β), the default CCA in Linux [130, 33, 35, 6, 26, 22, 27]. However, a fairness-based
deployment threshold su�ers from three key issues:

(1) Ideal-Driven Goalposting: A fairness-based threshold asserts a new CCA α should
equally share the bottelneck link with currently deployed CCA β . In practice, this goal is
too idealistic to achieve in practice. The end result is that ideal-driven goalposts are simply
ignored as impractically high requirements. For example, CCA designers have argued that
it is acceptable to be unfair to Cubic because Cubic is not even fair to itself [6].

(2) Throughput-Centricity: A fairness-based threshold focuses on how a new CCA α impacts
a competitor �ow using CCA β by focusing on β ’s achieved throughput. However, this
ignores other important �gures of merit for good performance, such as latency, �ow
completion time, or loss rate.

(2) Assumption of Balance: Inter-CCA interactions often have some bias, but a fairness
metric cannot tell whether the outcome is biased for or against the status quo. It makes a
di�erence in terms a deployability whether a new CCA α takes a larger share of bandwidth
than a legacy CCA β or leaves a larger share for β to consume: the former might elicit
complaints from legacy users of β , where the latter would not. Jain’s Fairness Index [62]
assigns an equivalent score to both scenarios.

Mimicry is a separate approach where new algorithms replicate properties of TCP-Reno
(e.g., driving throughput as a function of the loss rate [88]) in order to be ‘friendly’ to legacy,
Reno-derived TCPs. The issue with mimicry is that it binds new algorithms to repeating
the often undesirable idiosyncrasies of Reno, sti�ing improvement and evolution [71]. We
discuss the drawbacks of fairness and mimicry as the basis of a deployment threshold
further in §4.2.

We advocate instead for a deployment threshold based on harm. Harm allows us to
speak in quanti�able, measurable terms about the impact of deploying a new CCA to
the Internet. One can use measurements or models to determine that, in the presence
of a competing �ow using CCA α , a �ow using a CCA β su�ers, e.g. a 50% reduction in
throughput or a 10% increase in latency. We refer to this degradation as the harm.

Perhaps the most crucial aspect of harm is recognizing that we are not designing a
clean-slate Internet. We believe that we need to shift our focus from if pairs of CCAs
’fairly‘ share and instead focus on how a new CCA impacts the status quo (whether or
not the new algorithm damages the performance of existing tra�c). We argue that our
deployment threshold should be based on the amount of harm already caused by deployed
algorithms.
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If the amount of harm caused by �ows using a new algorithm α on �ows using an algorithm β
is within a bound derived from how much harm β �ows cause other β �ows, we can consider
α deployable alongside β .

Turning this insight into a concrete threshold is challenging; we present three ap-
proaches in §4.4. Nonetheless, we believe that a harm-based threshold is the right way
forward. A harm-based threshold avoids ideal-driven goalposts like fairness by settling for
outcomes that are unfair, but no worse than the status quo. A harm based-threshold does
not su�er from the limits of throughput centricity. We can speak of throughput-harm as
well as latency-harm, FCT-harm, or loss-harm. Lastly, a harm based-threshold prescribes
no mechanism or behavior to replicate, which allows for a broader range of outcomes than
mimicry.

In what follows, we discuss the limitations of fairness and mimicry in §4.2. We then
introduce harm in §4.3, how to quantify it, and our intuition as to why a harm-based
threshold is the right path forward for the Internet. In §4.4 we propose three possible
harm-based thresholds. Finally, in §4.6, we leave open questions for the community and
conclude.

4.2 Fairness and Mimicry
Our goal in this chapter is to identify a deployment threshold: a bound on the behavior

of a new CCA when competing with legacy CCAs. If a new CCA meets the conditions
of the threshold, we ought to consider it deployable. Furthermore, if a new CCA does
not meet the conditions, it should be considered unacceptable for deployment. In this
section, we discuss the limitations of prior approaches to evaluating new CCAs and their
interactions with other algorithms. We argue that both fairness(§4.2.1) and mimicry based
approaches (§4.2.2) are unsuitable for a deployment threshold. Through our discussion,
we derive a set of desiderata for a deployment threshold, which we list in Table 4.1.

4.2.1 Limitations of Fairness
Fairness measures are the typical tool used for determining if a new CCA is deployable

on the Internet [35, 6]. A fairness-based threshold, asserts if a CCA α is fair to a legacy
CCA β , then the algorithm is deployable. Fairness is typically measured by looking at the
throughput ratio between competing CCAs or by computing Jain’s Fairness Index (JFI) [62],
which returns a number between 1 (perfectly meeting the expected fair allocation) and 0
(the closer to 0, the more ‘unfair‘).

Typically, fairness is measured assuming in�nitely backlogged �ows: each �ow wants
to use an equal fraction of the bottleneck link. In this case, we expect the throughput
ratio and Jain’s Fairness Index to be 1. In reality, not all �ows are in�nitely backlogged
and not all �ows can fully utilize their equal share. In that case, equal rate fairness has
a well-known shortcoming: it does not account for the demand of each �ow. Demand is
the amount of resources a �ow uses when operating in absence of contention. Consider
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Demand-Aware Like max-min fairness, takes into account the fact that some
�ows have di�erent demands than others.

Multi-metric Addresses throughput, latency, �ow completion time, or
any other performance metric.

Practical Practical, rather than ideal-driven (unlike fairness); it should
be feasible for new CCAs to meet this threshold.

Status-Quo Biased Does not su�er from the assumption of balance. Speci�cally,
we should worry about the impact of a new CCA on the
currently deployed CCAs, and should not focus on how
deployed CCAs harm a new CCA.

Future-Proof Useful on a future Internet where none of today’s current
CCAs are deployed; does not restrict the development of
new CCAs based on the idiosyncrasies of currently deployed
CCAs.

Table 4.1: Desiderata for a deployment threshold, derived from insights and shortcomings
of fairness and mimicry.

a new CCA α competing against a TCP NewReno �ow on a 10Gbps link. We know that
the NewReno algorithm will fail to take advantage of the full link capacity due to its slow
additive increase and aggressive reaction to loss [41].

Intuitively, it would seem that a new �ow using α should be able to take advantage of
the remainder of link capacity, but equal rate fairness disallows such an outcome. Including
demand is important for a deployment threshold: a new CCA should not be penalized as
‘unfair’ to a legacy CCA when the legacy CCA, on its own, is incapable of claiming its
equal share of the network. Hence, we list ‘Demand-Aware’ as our �rst item in Table 4.1.
Unlike equal rate fairness, max-min fairness, allows for �ows to increase its rate if it would
not decrease the rate of any other �ows [110]. Thus, when we refer to fairness throughout
this chapter, we refer to max-min fairness.

Although we argue against a fairness-based deployment threshold, fairness measures
have many practical uses in the design of CCAs and scheduling systems. In this section, we
do not attack fairness as a valued measure for systems in general. In particular, we believe
throughput fairness is sometimes a desirable property, especially for intra-CCA interactions.
Nonetheless, we object to using fairness measures as a threshold for determining CCA
deployability for the reasons we discuss as follows.
4.2.1.1 Throughput-Centricity

Fairness strategies focus on sharing a resource like ‘dividing a pie’. This is appropriate
for performance metrics like throughput since there is a maximum link capacity which
must be divided by all competing �ows. However, modern CCA designers consider many
performance metrics which do not always easily map to a network resource which should
be divided or shared, e.g., latency, loss rate, �ow completion time.
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Consider a future Internet where the majority of Internet services use a TCP algorithm
called tinybuffer which, like algorithms BBR and Vegas, has very little queue occupancy
and therefore low latency and loss. Hence, tinybuffer provides very good user experi-
ence for video conferencing and voice calls. A new company wishes to introduce a new
algorithm α , which is derived from Cubic and therefore �lls bu�ers. Is this an acceptable
deployment? Videochat users of tinybuffer would likely say no, since α �ows competing
with tinybuffer would increase latency and loss, harming their video calls.

Unfortunately, we cannot say that the behavior of α relative to tinybuffer is ‘unfair’
– bu�er occupancy is not a resource we want to divide equally. Instead, it is a value we
simply want minimized which is not captured by the concept of fairness. For this reason,
we say that fairness is not ‘multi-metric’, our second requirement in Table 4.1.
4.2.1.2 Ideal-Driven Goal Posts

A second problem with fairness is that, even when we focus on throughput alone, it
is simply very di�cult to achieve. For example, Cubic and Reno, both known to have
a ‘short �ow penalty’ where short �ows do not achieve their fair share of throughput
before completing [73, 85]. BBR is also unfair to connections with shorter RTTs, allocating
them lower throughput than competing connections with long RTTs [25].1 If algorithm
designers cannot achieve perfect fairness in the intra-CCA context, why would it make
sense to expect algorithm designers to achieve perfect fairness in the more challenging
inter-CCA context? We list our third requirement in Table 4.1 as being ‘practical.’

Many readers at this point may �nd themselves thinking, ‘Of course we don’t expect
new algorithms to be perfectly fair to existing ones!’ But, even if we do not expect
perfect fairness, the community still leaves algorithm designers with no real guideline for
acceptability based on fairness. This often results in CCA designers making the argument
that it is acceptable for their algorithm to be somewhat unfair to legacy CCAs. [6, 33, 35].
Nonetheless, we lack a practical threshold and clear consensus on how far from perfectly
fair sharing a new algorithm may be permitted to deviate.
4.2.1.3 The Assumption of Balance

We call our third and �nal objection to fairness the Assumption of Balance, meaning
that it values the performance outcome of both the new CCA and the existing, deployed
CCA.

To illustrate our objection, we look to Figure 4.1. We imagine a future Internet where
most senders use some algorithm β ; two senders are transmitting very large �les over a
100Mbps link. Sender B is using β , but sender A is using some brand new algorithm α .
Both senders’ demands are 100Mbps – both desire to use as much capacity as they can.
However, sender B achieves 90Mbps throughput and sender A only achieves 10Mbps. Is
this fair? No. In both the above scenario and a scenario where the allocations are swapped

1Reno’s throughput allocation has the opposite bias.
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Figure 4.1: Fairness and the assumption of balance.

(B receives 10Mbps, A receives 90Mbps) have the same JFI – 0.61. But, it should be perfectly
acceptable to deploy α if α is the one receiving unfair treatment – no users other than user
A, who chose to use α , would be impacted negatively.

It is highly unlikely that many new services will set out to deliberately deploy al-
gorithms that penalize the performance of their own �ows – but given the di�culty of
achieving perfect fairness (§4.2.1.2) it is likely that this outcome may happen in some
scenarios.2 A very deployable, friendly algorithm would err on the side of harming their
own connections where a more aggressive algorithm would err on the side of harming
those of others – and a good measure of deployability should be able to distinguish between
the two. Thus, our fourth requirement in Table 4.1 is that the new threshold be ‘status-quo
biased.’

4.2.2 Limitations of Mimicry
A mimicry-based threshold asserts if a CCA α mimics the behavior of a legacy CCA β ,

then the algorithm is deployable. Two mimicry based approaches are:

TCP-Friendly Rate Control (TFRC) [88]: a CCA using TCP-Friendly Rate Control
transmits at a rate ≤ MSS

RTT∗
√
p

for p the link loss rate; this formula describes TCP Reno’s
average sending rate over time [87, 80].

RTT-biased Allocation [40]: a CCA obeying RTT-biased Allocation grants more
throughput to connections with low RTTs than to those with higher RTTs; this behavior
is a property of TCP Reno.

Mimicry introduces an elegant solution to the challenge of ideal-driven goal posts: it
should be acceptable to deploy a new CCA which introduces the same side-e�ects – fair or
unfair – as the already deployed algorithm. A mimicry-based approach is always practical

2Consider Google’s BBR, which, when one BBR �ow competes with one Reno �ow will only consume
40% of link capacity – less than its fair share [25, 126]. Furthermore, ‘background’ CCA algorithms, such as
TCP-Nice [122] and LEDBAT [106] deliberately only consume leftover bandwidth that is underutilized by
other connections.
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because the existence of the original, deployed algorithm demonstrates at least one way
to achieve these performance outcomes (although as TFRC illustrates, a CCA may use a
di�erent algorithm than the original to achieve this outcome).

However, mimicry will not serve as a good threshold because it binds new algorithms
to replicating the often undesirable idiosyncrasies of the deployed CCA, and hence sti�es
improvements and evolution. For example, TFRC limits new CCAs from achieving high
throughput. Indeed, an animus for most of the new CCAs which are replacing Reno on
today’s Internet (e.g. Cubic [49], Compound [112]) was to supersede the ≤ MSS

RTT∗
√
p

rate, as
this very limit is what prevents Reno from taking advantage of high-capacity links.

Similarly, RTT-biased Allocation is not an ideal outcome that was proposed from �rst
principles: it is simply the throughput allocation that Reno achieves. Given this, perhaps
it should be acceptable, on an Internet dominated by RTT-biased algorithms, to deploy yet
another RTT-biased algorithm – but RTT-bias should not be enshrined as the goal itself.3

In a future Internet where no one any longer deploys Reno variants, a mimicry-based
threshold would lack grounding; even worse, it could prevent us from reaching a future
Internet with improved fairness, lower latency, etc. due to our replicating the inherent
limitations of existing CCAs. Thus, our �nal requirement in Table 4.1 is that our threshold
be ‘future-proof.’

4.3 Harm
We now present harm, and argue that a harm-based threshold would meet all of our

desiderata. In the next section (§4.4), we present a few possible harm-based thresholds.

4.3.1 Calculating Harm
We imagine a TCP connection where Alice is video conferencing with her friend Bob.

When running alone, the connection achieves 15Mbps of throughput, packets arrive with
40ms latency, and jitter is 10ms. When Alice’s roommate Charlie starts a large �le transfer,
Alice’s video conference connection drops to 10Mbps of throughput, latency increases to
50ms, and jitter increases to 15ms. Since all of these performance metrics became worse
due to to Charlie’s connection, we say that Charlie’s connection caused harm to Alice’s
connection.

We can measure harm by placing it on a [0, 1] scale (much like Jain’s Fairness Index [62])
where 1 is maximally harmful, and 0 is harmless. Let x = demand (solo performance); let y
= performance after introduction of a competitor connection. For metrics where ‘more
is better’ (like throughput and QoE) harm is x−y

x . For metrics where ‘less is better’ (like

3Some will disagree with us, arguing that longer �ows consume more network resources and therefore
should receive lower throughput [40] – and call this ‘RTT Fairness.’ This could be a good reason to continue
with RTT-biased allocation. Our point is that, if we really prefer Max-Min fairness, it would be bad to
continue with RTT-biased allocation simply because we have required ourselves to mimic Reno’s behavior.
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latency or �ow completion time) harm is y−x
y . On this scale, Charlie caused 0.33 throughput

harm, 0.2 latency harm, and 0.33 loss harm.
The amount of harm done by one TCP connection to another depends not only on the

algorithm(s) in use, but also the network and workload. For example, a connection with a
very bursty tra�c pattern will induce higher worst-case latency for competitor connections
than a connection with very steady, paced tra�c (a change in workload). Throughput
harm between TCP Cubic and BBR varies depending on whether the network is shallow or
deeply bu�ered [25] (a change in network). Note that we also include background tra�c
in our model of the ‘network’.
Harm is multi-metric. It can be computed for latency, throughput, jitter, or any other
quanti�able measure.
Harm is demand-aware. Harm is computed from a baseline of a TCP connection running
on its own; new algorithms are not penalized when deployed algorithms perform poorly
due to their own limitations. A �ow which only ever consumes 10% of link capacity has
no throughput harm done to it when another �ow arrives and consumes the remaining
90%. A �ow using a CCA which occupies all of the bu�er space has no latency harm done
to it when another bu�er �lling algorithm competes with it.
Harm is status-quo biased. Harm does not su�er from the assumption of balance
because it does not involve the performance of connections using the new algorithm at all.
Harm only measures the new connection’s impact on existing �ows.

In the next section (§4.3.2), we provide the intuition behind how to derive a threshold
from harm, and why such a threshold would be practical and future-proof. Then (§4.4) we
discuss several proposals for a threshold based on harm.
4.3.2 A Harm-Based Threshold

Simply measuring harm does not tell us whether or not the harm introduced by a new
algorithm is acceptable. We take inspiration here from TCP mimicry (§4.2.2): the behaviors
of deployed algorithms today should be our guidelines for what is acceptable. However,
we need to relax mimicry to allow innovation and improvement. We suggest that, if the
harm done by a new CCA α to an widely deployed CCA β is comparable or less than the harm
done when β competes against β , we should consider it acceptable to deploy. We say that
the harm of the alpha upon beta is bounded by the harm already done by alpha to itself.
We leave up to discussion how ‘widely deployed’ a β must be in order to merit protection
under our deployment threshold.

For example, a new algorithm α is developed for a future Internet where the pre-
dominant algorithm is called k-latency. Every �ow in k-latency maintains a constant
queue occupancy of exactly k packets – thus, latency increases linearly with the number
of competing �ows. A harm based threshold, grounded in how k-latency connections
interact in the intra-CCA scenario, would deem α acceptable with respect to latency so
long as it never bu�ers more than k packets per �ow.
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The di�erence between bounded harm and mimicry can be subtle. In the above example,
mimicry would demand that α always bu�er exactly k packets per �ow, just as k-latency
does (restricting improvement). On the other hand, bounded harm allows α to bu�er
up to k packets while competing with k-latency (allowing for improvement, if feasible).
Bounded harm allows for a broader range of outcomes than mimicry. Further the bound
for α is unde�ned when not competing with k-latency – α �ows may behave di�erently
when competing with other α �ows or competing with some third CCA γ . For example,
‘modal’ algorithms like Copa [6], exhibit very diverse behaviors within one CCA, adjusting
behavior online as di�erent cross-tra�c is detected. But, an algorithm need not be
explicitly modal to have bounded-harm outcomes that are acceptable across multiple
CCAs.

On an Internet with many competing algorithms β ,γ ,ϕ . . . (as today’s Internet) one
might ask why we are bounding harm from a new α to the harm that each algorithm does
to itself. We suggest that α do harm to β �ows that is bounded by the harm caused to β by
other β �ows, and that α do harm to γ �ows that is bounded by the harm caused to γ by
other γ �ows. Why not bound α ’s behavior in the harm done by β to γ and vice versa?

One reason we reject this approach is that on today’s Internet, there are many well-
known pessimal cross-CCA outcomes (e.g., BBR’s starving Cubic on high capacity links [56]).
A CCA designer for a new CCA α could use the existence of any single pessimal scenario
to justify continuing that behavior with α . By bounding harm to a CCA by the harm
any other CCA, we settle for the absolute lowest common denominator in performance
outcomes.

Furthermore, bounding the inter-CCA harm (caused by a new α on an existing β)
by the intra-CCA harm (caused by β to β) carries forward the design trade-o�s made
by CCA developers. CCA designers tune their algorithms for the outcomes they want
under intra-CCA competition. The designers of Reno and Cubic allow the loss rate to
increase with the number of competing Reno/Cubic �ows [80]. The designers of BBR
aim to keep bu�ers empty, but do allow the queue occupancy to increase when multiple
BBR �ow compete [54]. In this way, the designers implicitly encode their tolerance to
performance degradation for each metric. As a consequence, bounding inter-CCA harm by
the intra-CCA harm means that new CCAs will respect the implicitly expressed preferences
of typical tra�c.

In practice, we already see CCA designers try to make the argument that their algorithm
is deployable because it is not any more aggressive towards the status-quo (Cubic) than
it is to itself [6, 22, 35, 33]. Unforunately, they try to make this argument using fairness,
which su�ers from the limitations dicussed in §4.2.1. We believe explicitly measuring
harm would give CCA designers a more clear language to argue for deployability. The
networking community need only agree on concrete harm-based threshold to provide a
guideline for how much harm is allowable.
Unlike fairness, a harm-based threshold is practical. The original algorithm is an
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existence proof that the demanded threshold is feasible and hence the goal posts cannot
be set too high.
Unlike mimicry, a harm-based threshold is future-
proof. A harm-based threshold does not require replicating the behavior of a deployed
algorithm – only matching or improving upon its outcomes while competing with that
algorithm. Furthermore, as CCAs die out in popularity or new ones arise, a harm-based
threshold will shift to requiring similar harm to the new algorithms rather than the old
ones.

The reader may wonder how an algorithm can be both status-quo biased and future
proof. Consider the bi-modal Copa algorithm [6]. Unlike a mimcry approach, Copa only
seeks to match the throughput of loss-based algorithms when it detects its competition
is loss-based. When Copa is alone, it behaves like a delay-based algorithm, minimizing
excess queueing. So, in a world, where legacy algorithms are nearly phased out, Copa will
be able to behave di�erently than legacy loss-based algorithms. Further, if Copa were to
become widely deployed, subsequent algorithms would then measure harm against Copa’s
delayed-based behavior.
Deriving a concise, usable harm-based threshold is challenging. So far, we have
only described how to measure harm and why a harm-based threshold is overcomes
the limitations of fairness and mimicry. However, we have not yet de�ned a concrete
deployment threshold based on harm. We believe a concrete threshold should consider
how harm plays out between existing algorithms. In the next section, we propose several
harm-based thresholds – and invite the community to scrutinize and improve upon them.

4.4 Concrete Thresholds
We now discuss several options for a concrete threshold, driven by our intuition from

§4.3. We de�ne the following variables and functions to help discuss each:

Let a TCP connection (‘�ow’) f = (a,w) for a ∈ A, the set of all congestion control
algorithms, and w ∈W , the set of all connection workloads (short �ows, video streams,
etc.).

Let M be the set of all performance metrics (throughput, latency, QoE, jitter, etc.).

Let N be the set of all network paths (with varying throughput, latency, loss rate, queue
capacity, and background tra�c).

Let harm(fi , fj ,n ∈ N ,m ∈ M) be the harm done to fi by fj according to metric m in
network n as de�ned in §4.3.

Note, we assume to compare the harm across workloads, you must compare them
using harm functions with the same metric. Because of our status-quo bias, the harm
function should be determined by the workload and CCA β . For example, if we assume β
is adaptive bitrate video using BBR, the harm function might use some metric for quality
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Figure 4.2: Under Worst Case Bounded Harm, a new α may do as much harm to a β �ow
f as any other β �ow in the same network.

of experience like rebu�ering rate.
4.4.1 Worst Case Bounded Harm

We illustrate our �rst potential threshold in Figure 4.2. We imagine a network with
numerous applications and servers all of which use a legacy CCA β . We want to deploy a
new application with workload w? using CCA α . Is this acceptable?

We can start by considering whether it is acceptable to deploy (α ,w?) alongside a
speci�c �ow f = (β,w). Worst case bounded harm looks to the worst case harm f might
receive from any of the other services, with their workloadsw1,w2, . . .. If (α ,w?) does not
more harm than this worst case, we would consider it acceptable.
De�nition: A TCP connection f ? = (α ,w?) for α a new algorithm and w? a speci�c
tra�c workload, respects worst case harm with respect to metricm for an algorithm β i�

∀f =(β,w ∈W ),∀n ∈ N :
harm(f , f ?,n,m) ≤ max

w†∈W
(harm(f , (β,w†),n,m))

We similarly say that the algorithm α itself has worst-case harm equivalence with
respect tom for β if all connections fn = (α ,wn ∈W ) all respect worst-case harm inm.
Suitability as a deployment threshold: Worst-case bound-ed harm, as a threshold, is
too loose: it can allow the outcomes of pathological scenarios to become common through
the deployment of a new CCA. Consider a CCA β which is widely deployed and has perfect
performance under competition: an ideal fair-sharing allocation, no additional latency,
jitter or loss due to new �ows, etc., with only one exception. A pessimal workload, ŵ
can cause any other �ow to su�er starvation. However, ŵ is extremely rare – so rare
in practice that β generally works well. Nonetheless, a malicious protocol designer can
take advantage of that – observing that there exists any workload that leads a �ow f to
starvation can justify that all of the �ows using the new CCA cause starvation for f . This
is the same logic – avoiding falling to the lowest common denominator – we used to argue
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Figure 4.3: Under Equivalent Bounded Harm, a new α with workload w? may do as much
harm to a β �ow as a β �ow with workload w? as well.

against bounding harm across arbitrary CCA pairs (the max harm in β vs some γ , §4.3.2),
and it is the same logic that leads us to reject bounding harm across di�erent networks
(the max harm across all n ∈ N ).
4.4.2 Equivalent Bounded Harm

To overcome the least common denominator challenge from Worst-Case Bounded
Harm, we consider an approach where we pin the workloads being compared. We illustrate
the Equivalent Bounded Harm in Figure 4.3. We start by focusing on a pair of workloads
w and w? in a legacy network where all services use β . We want to switch the service
with workload w? to use α . With Equivalent Bounded Harm, α would be acceptable i�
(α ,w?) does no more harm to (β,w) than (β,w?) would.
De�nition: A TCP connection f ? = (α ,w?) for α a new algorithm and w? an speci�c
tra�c workload, has equivalent harm with respect to metricm for an algorithm β i�

∀f =(β ,w ∈W ),∀n ∈ N :
harm(f , f ?,n,m) ≤ harm(f , (β ,w?),n,m)

We similarly say that the algorithm α itself has equivalent bounded harm with respect
tom for β if all connections fn = (α ,wn ∈W ) are harmless inm.
Suitability as a deployment threshold: Equivalent bound-ed harm is too strict to serve
as a threshold. Consider a CCA bigflow where large �ows competing with short �ows
lead to unfair outcomes. Large �ows achieve 75% of available bandwidth capacity and short
�ows achieve only 25% of available bandwidth capacity. Requiring harm equivalence would
entail that short �ows using any new algorithm α would only ever be able to achieve up
to 25% of the available link capacity when competing with bigflow. Equivalent bounded
harm hence falls too close to the trap of mimicry in constraining improvement.
4.4.3 Symmetric Bounded Harm

Our third proposal, shown in Figure 4.4, sits between the too-strict harm-equivalence
and the too-permissive worst-case bounded harm. Symmetric Bounded Harm considers
pairs of workloads w,w? like harm-equivalence. For an existing CCA β with a �ow f
running workload w , the �ow can receive as much harm from (α ,w?) as either f would
experience from (β ,w?) or as f would in�ict on (β ,w?).
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Figure 4.4: Under Symmetric Bounded Harm, a new α with workload w? may do as much
harm to a β �ow f as f does to (β ,w?) or as (β ,w?) does to f .

Returning to bigflow, a large �ow f1 may only receive 25% throughput-harm from a
small �ow f2, but since it also in�icts 75% throughput-harm on f2, a small �ow using a
new CCA α can in�ict up to 75% throughput-harm on f1.
De�nition: A TCP connection f ? = (α ,w?) for α a new algorithm andw? an speci�c traf-
�c workload, respects symmetric-bounded harm with respect to metricm for an algorithm
β i�

∀f =(β ,w ∈W ),∀n ∈ N :
harm(f , f ?,n,m)
≤ max(harm(f , (β,w?),n,m),harm((β,w?), f ,n,m))

We similarly say that the algorithm α itself has symmetric-bounded harm equivalence
with respect to m for β if all connections fn = (α ,wn ∈W ) all respect symmetric-bounded
harm inm.
Suitability as a deployment threshold: Symmetric bound-ed harm resonates with a
sense of justice: ‘do unto other �ows as you would have other �ows do to you.’ It is not
too restrictive, like harm equivalence, but it is not vulnerable to the expansion of harm as
we saw in worst-case harm. For these reasons, we prefer symmetric-bounded harm as a
potential threshold to the prior two harm-based threshold. Nonetheless, we believe that
further work is needed to re�ne an ideal harm-based threshold.

4.5 Open Questions
De�ning a harm-based threshold is only a �rst step in setting the bar for deploying a

new CCA on the Internet. Given a harm-based threshold, we can eventually develop a
modern evaluation methodology for CCA deployability. This leaves many open questions
and directions for future work:

• Is there an better threshold that improves on symmetric bounded harm?
• Given that Internet outcomes always have some distribution of results, is there ‘leeway’

in harm? Should we worry about average or worst-case results?
• How widely deployed must a legacy CCA be in order to merit protection by our

threshold?
• What are the right workloads for deployability testing?
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• If we have a threshold, should it be enforced? If so, how?

4.6 Discussion and Conclusion
In this chapter we argue for the networking community to adopt a deployment threshold

which provides a �rm de�nition for when a new CCA is allowed to be deployed on the
Internet, and when it is not. We believe that the right way forward is by analyzing harm,
a way to quanti�ably measure the outcomes of introducing a new CCA to the Internet.

We argue that the harm caused by a new CCA α should be bounded by the status quo:
do no more harm to �ows from a CCA β than β already in�icts upon itself. In this way,
algorithms can improve upon outcomes under contention (do no more harm than) but are
not required to meet overly idealistic goals. A challenge remains in turning this insight
into a concise and practical formula for a threshold.

In the following chapter we continue to discuss how we can use harm to create a tool
to evaluate the deployability of new congestion control algorithms.



Chapter 5

RayGen: EvaluatingHeterogeneousCongestion
Control Algorithm Interactions

Google is most interested in BBR, but I do think a
somewhat generic multi-algorithm comparison will
have a better chance than "test the daylights out of
BBR", mostly because we are already testing BBR far
harder than possible at any university.

Google employee

5.1 Introduction
In Chapter 2, we measure widespread deployment of BBRv1 at large content providers

including Cloud�are, Cloudfront, and Akamai, while others still use Cubic like Fastly. Yet,
we prove in Chapter 3 that in common scenarios, BBRv1 is unfair to Cubic, sometimes
leading to starvation. Consequently, in the previous chapter we asked: How should
we evaluate inter-CCA interactions to decide if a CCA is deployable?. While we
discuss in Chapter 4 theoretical terms how we can set a deployment threshold using harm
rather than traditional notions of equal-rate fair sharing, we do not discuss how to, in
practice, do an evaluation of inter-CCA interactions. In this work, we aim to provide a
comprehensive methodology for evaluating inter-CCA interactions.

With the growing heterogeneity of CCAs on the Internet, it is more important than
ever to make sure CCAs share reasonably. Even the IETF’s working group on congestion
control is working on an updated draft RFC 5033 (latest version from July 2024 [109])
on “Specifying Congestion Control Algorithms”. This draft speci�cally says that newly
proposed CCAs are required to “include a statement in the abstract describing environments
where the protocol is not recommended for deployment and MUST evaluate the interaction
between the proposed algorithm and already widely deployed CCAs:

69
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In contexts where di�ering congestion control algorithms are used, it is impor-
tant to understand whether the proposed congestion control algorithm could
result in more harm than previous standards-track algorithms (e.g., [RFC5681],
[RFC9002], [RFC9438]) to �ows sharing a common bottleneck. The measure of
harm is not restricted to unequal capacity, but ought also to consider metrics
such as the introduced latency, or an increase in packet loss. An evaluation
MUST assess the potential to cause starvation, including assurance that a loss
of all feedback (e.g., detected by expiry of a retransmission time out) results in
backo�.

While inter-CCA fairness evaluation is critical, it is also di�cult, as we saw with
the development and deployment of BBR at Google. First proposed and deployed in the
Linux kernel in 2016, BBRv1 was purported to �x issues with loss-based CCAs. Since its
deployment, us and others consistently found issues when BBRv1 �ows interact both with
other BBRv1 �ows [126] and with loss-based CCAs despite widespread deployment of
BBRv1 at major content providers [83, 127]. These undesirable fairness outcomes (as well
as other issues with BBRv1 like excessive retransmissions) were signi�cant enough for
Google to develop BBRv2 and later BBRv3 to �x these issues. In 2023, all Google sites
now use BBRv3 with plans to push it into the Linux kernel, replacing BBRv1 [27]. Even
still, recent work has shown BBRv3 is still unfair to Cubic [138] (We will revisit these
�ndings in §5.3). This example highlights both the importance of evaluating fairness for
CCA developers and the di�culty of that evaluation.

Notably our evaluation of the interactions between BBR and loss-based congestion
control was an arduous, arbitary, and manual process. During our empirical measurement,
we did what many do for this sort of evaluations (examples: [104, 138, 55, 119, 34, 69, 93,
82]): choose some duration of �ows to emulate “long-running �ows”, choose some network
settings, and measure if there is fair sharing amongst the �ows such that each �ow gets
the same throughput, perfectly dividing the available bandwidth amongst the �ows. Rinse
and repeat this process until we �nd some behavior we do not expect or is not desirable;
then �gure out what is wrong with the CCA. In our case, we were able to determine from
these measurements that BBR’s fraction of the link would always be approximately half of
the link. In order to gain a stronger sense for when these poor interactions would occur,
we attempted to model BBRv1, something even BBR developers did not think was possible
and were miraculously able to do so. This did not come without considerable e�ort and a
bit of luck.

Modeling interactions between any pairing of CCAs is not a practical approach for
evaluating CCA interactions. CCAs are complex and models often need to make many
simplifying assumptions that can impact the �ndings and the severity of the issues. For
example, our model of BBR interactions with loss-based congestion control was later
improved by removing some assumptions by Ayush et al. [84]. Similarly, researchers have
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made progress in using formal methods to prove CCAs meet performance goals [5, 3],
but these approaches leave proving conjectures about interactions between �ows of the
same CCA as future work because of the di�culty of these proofs; using these methods
for �ows from di�erent CCAs seems even more di�cult.

In practice, when CCA developers and researchers want to evaluate a new CCA, they
turn to empirical measurements in emulated networks with the ultimate goal of �nding
where the CCA performs poorly, especially where it may cause starvation of already
widely deployed CCAs. To alleviate the arduous manual process of �nding worst-case
scenarios, we present RayGen, a tool that CCA protocol designers and researchers can use
to evaluate interactions between CCAs, and automatically �nd settings with worst-case
outcomes.

RayGen addresses several challenges in these evaluations of the interactions between
heterogeneous CCAs. We frame �nding worst-case outcomes as an optimization problem.
RayGen uses a genetic algorithm to search a large state space of network settings (e.g.
bottleneck bandwdith, RTT, queue size) and workloads (e.g. number of competing �ows).
Expanding on the arguments presented in Chapter 4 for using harm rather than JFI as the
metric for inter-CCA evaluations, for a given scenario RayGen measures relative harm
when �ows between di�erent CCAs interaction in a testbed. The GA searches for the
scenarios with the highest harm by starting from an initial population of random scenarios,
and each generation using the relative harm results for each scenario to produce children
for the next generation, narrowing in on �nding more and more harmful scenarios.

With only a small budget of 300 experiments, RayGen is able to �nd higher harm
scenarios than a random search with the same budget. Surprisingly, in some cases RayGen
can even �nd higher harm scenarios than a parameter sweep of 3500 experiments over the
same state space. In addition, to �nding scenarios with high harm, we also do not want to
get stuck in local minima, �nding only a few high harm settings. We show that not only
can RayGen �nd worst-case scenarios, it also can �nd a diverse set of them.

The rest of this chapter is organized as follows First, we motivate using relative harm as
the metric for poor outcomes rather than JFI in §5.3.1. Second, we discuss how the duration
of experiments can impact outcomes and develop an algorithm to determine when CCA
interactions have “converged” in §5.3.3. We then present RayGen in §5.4, discussing the
design and evaluation. Finally, we discuss related work in §5.6 and conclude in §5.7.

5.2 Challenges in Evaluating CCA Interactions
There are several challenges in evaluating inter-CCA interactions. In CCA performance

evaluations there are always 4 questions we need to ask and answer. We outline these as
challenges we need to address in this work.
What metric to evaluate? De�nitions of “fairness” are consistently under debate with
arguments that achieving equal �ow-rate fairness for inter-CCA interactions is neither
an achievable nor realistic goal [125, 136, 16, 19]. Recent publications with experiments
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showing interactions between recently proposed CCAs and Cubic, all report slightly
di�erent metrics: We see JFI [138], throughput ratio [34, 55, 49], throughput share of
Cubic [126, 104], ratio of throughput to ideal fair share [6], and just made up metrics like
fness in in Kunze et al. [69]. Ultimately, all of these metrics are trying to quantify the same
thing: is there or there is or is not equal rate-fair sharing, and how far away from that goal
are the outcomes. Is the new CCA too unfair to Cubic? As we argue in Chapter 4, harm is
the right metric to quantify this. We further motivate using relative harm as our metric in
§5.3.

How long should we run experiments? CCA performance evaluations have to happen
over some workload. Typically, this workload assumes some “in�nitely backlogged �ows”
for some duration. While most �ows on the Internet are short (and fast) [139, 64, 10, 136],
we typically see work also trying to make some general statements about “’long-running
�ow” (ex: [27]). In recent CCA proposals and evaluations, duration of �ows to measure
inter-CCA interactions range from 10-60 seconds [6, 119] to 2-6 minutes [126, 93, 104, 138,
55]; there is no agreed upon rule-of-thumb. Recall in Chapter 3 we see that when BBR
and Cubic compete it may take a long time for �ows to “converge” to stable performance
in large bu�ers, and that the outcome of BBR and Cubic interactions depends on the
duration of the experiments and if the �ows are “converged” or not. However, in that
work we manually reviewed traces to decide when �ows converged. In this work, we
show how de�nitions of convergence for intra-CCA interactions do not apply to inter-
CCA interactions and develop an algorithm to determine if �ows have converged in an
automated way. We run experiments for 3 minutes and use our convergence algorithm to
�nd the point when we are reasonably certain the throughput has stabilized and compute
harm after this point. If the �ows do not converge we compute harm after the �rst minute.
We describe this algorithm and rationale in §5.3.3.

What network settings to test? For CCA developers that do attempt this evaluation,
they test in just a few “common” case scenarios. However, the outcomes are incredibly
dependent on the scenario as we saw in Chapter 3. Further, there are many possible
“realistic” scenarios given the diversity in network quality around the world. For example,
the range of access link bandwidth varies by three orders of magnitude across regions of the
world [118, 31]; depending on access medium there might be high or low background loss;
ISPs may have di�erent settings for bu�er capacity, drop policies, or rate shaping – and
each of these parameters can impact performance outcomes. Testing a few scenarios is not
necessarily going to illuminate the bad scenarios CCA developers care about remedying.
Therefore, developers are faced with a challenge in identifying under what scenarios
their CCA plays nicely with other players and under what scenarios it might fail – but a
combinatorial nightmare of literally millions or billions of possible scenarios to test and
evaluate.
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How can we �nd worst-case scenarios? In order to �nd the settings that may result in
poor performance, CCA developers need to be able to �nd worst-case scenarios. Ultimately,
this leads us to the core question of this work: how can we �nd worst-case scenarios with
poor CCA interactions so CCA developers and researchers can �nd where these algorithms
fail and possibly �x these issues? Towards answering this question we frame this as an
optimization problem: Given the function we want to optimize (harm) we want to �nd the
worst-case settings. Existing frameworks (including CCAC [5], CCmatic [3], CCFuzz [95],
and Mahak [90]) that could look for worst-case scenarios fall short of achieving this goal,
primarily because they do not consider interactions between �ows and leave this as future
work with unclear extensions to consider inter-CCA interactions.

In contrast, we develop RayGen, a genetic algorithm with the goal of solving this
problem: Given the harm function (input with network setting and output is the harm)
what are the settings with the highest harm when two di�erent CCAs compete? While
there are many options for solving this optimization problem we are drawn to using a
genetic algorithm for its many advantages over alternatives in solving this particular
problem. It produces a population of solutions, rather than just one. It does not require any
knowledge about the function optimizing other than the inputs and outputs. For example,
the function does not need to be di�erentiable. We describe RayGen in §5.4.

5.3 Motivating A Harm Metric
In this section, we discuss our motivation for using harm as our metric to optimize

with our genetic algorithm. In addition, we discuss how the duration of experiments can
impact the harm metric, the pitfalls of using harm and how we can overcome those pitfalls.

5.3.1 JFI vs. Harm
When thinking about the metric we want to use to evaluate "fairness" we have to

think about what is it that we actually want to optimize. Typically, when evaluating
CCA interactions we see CCA developers and researchers optimize for equal-rate fair
sharing using JFI [61]. Despite our compelling argument against using JFI [125], we still see
award-winning research using JFI exactly in the way we discourage [138]. Unfortunately,
our description of harm in Chapter 4 is theoretical. We do not say how we can use harm
in practice to evaluate CCA interactions and ultimately decide what magnitude of harm is
unacceptable. In this section, we discuss why JFI falls short for our goals in inter-CCA
evaluations. We are not going to reiterate the arguments made in Chapter 4, but here
we do show with empirical results that harm is a better metric, how we can use harm to
compare performance outcomes across network settings, and we revisit results in prior
work through the lens of harm rather than JFI.

Recall our overall goal: to �nd scenarios where CCAs have bad interactions. This
is our primary evidence for an indictment of JFI: JFI con�ates scenarios that we care
about distinguishing when we say we want to �nd “bad interactions.” This con�ation is
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Figure 5.1: 3 BBR �ows vs. 1 Cubic �ow comparison of JFI and relative harm. While both
of these scenarios have the same JFI they do not have the same harm. JFI con�ates which
CCA is more aggressive while harm does not.

especially bad when trying to compare JFI values to say that one JFI is “worse” or “better”
than another, as well as what a higher or lower JFI actually means. JFI evaluates the
fairness of resource allocation among �ows using the following formula:

JFI =
(
∑n

i=1 xi)
2

n ·
∑n

i=1 x
2
i

where n is the number of �ows and xi is the throughput for the ith �ow. The value of
JFI ranges from 1

n (worst case, when one �ow gets all the bandwidth) to 1 (best case, when
all �ows get an equal share of the bandwidth).

In Figure 5.1 we highlight an example of two di�erent scenarios we want to distinguish.
In both examples shown in Figure 5.1, we have 1 Cubic �ow competing with 3 BBRv1
�ows in two di�erent settings. Figure 5.1a shows an example network setting where the
Cubic �ow is being “unfair” to the BBR �ows. In contrast, Figure 5.1b shows an example
setting where the BBR �ows are being “unfair” to the Cubic �ow. However, both of these
scenarios have the same JFI of 0.8!

This is because JFI can only say how far away the outcome is to a perfect fair-sharing
bandwidth allocation, and in these cases, that distance is approximately equivalent. As we
argue in Chapter 4, we do not need (nor expect) perfect fair-sharing; we actually need to
show that a new CCA will share reasonably with an already widely deployed CCA. JFI
cannot discern this; it cannot tell the di�erence between Cubic �ows being unfair to BBR
�ows and vice versa.

Further, and most critical for our goal of �nding the “worst” scenarios, JFI cannot
meaningfully quantify unfairness to compare the severity of “unfairness” across network
settings and scenarios. Comparing JFI values to say that one scenario is more “unfair”
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than another is nonsensical, particularly when the scenarios are di�erent (e.g. a di�erent
number of �ows). The di�erence between how “bad” 0.85 JFI is to 0.80 JFI is unclear
and comparing JFI numbers in this way is not meaningful because the scenarios could
be completely di�erent in a way that we care about distinguishing like the examples in
Figure 5.1.
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Figure 5.2: Comparison of absolute and relative harm for 1 Cubic �ow vs. 1-5 BBR �ows
for varying network settings

Unlike JFI, harm can quantify the reduction in throughput a particular set of �ows from
one CCA (β) experiences while it is under competition with �ows from a di�erent CCA (α ).
Recall harm computes the fractional di�erence between a CCA when it competes “alone”
βsolo versus when it is under competition βcompete with another CCA for some metricm:

Harm =
m(βsolo) −m(βcompete)

m(βsolo)

Recall that in Chapter 4 harm is de�ned in context of both a workload (the number
and duration of �ows) and the network scenario (bandwidth, RTT, etc.). However, in
Chapter 4, we do not discuss how to actually compare harm across scenarios. Turns out,
in order to compare across scenarios, we must normalize by the number of competing
�ows. Consider the case where when a Cubic �ow solo achieves 30 Mbps throughput.
Under competition with a BBR �ow, it now achieves 15 Mbps throughput. The harm
here is 0.5, which is actually perfectly fair in this scenario given the number of �ows.
Consider another example where now there are 2 BBR �ows and 1 Cubic �ow and the
Cubic �ow now achieves 10 Mbps. Again, this is perfectly fair given the number of �ows.
The denominator for computing harm is the same, Cubic’s solo throughput, but now the
reduction under competition is 0.67. If we were to compare just these harm values it would
appear that 0.67 is larger than 0.5 so BBR is more unfair to Cubic in the scenario with more
�ows which is untrue.
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Figure 5.2a shows how the number of �ows can impact these harm values. This plot
shows the absolute harm in relation to JFI for a variety of network settings with 1 Cubic
�ow competing with 1-5 BBRv1 �ows. As we add �ows, absolute harm numbers are going
to get worse even though unfairness is not necessarily worse. Absolute harm alone, does
not give a sense for how bad the result is; it needs to be put in relation to something.
We don’t want our "worst case settings" be solely dictated by the number of �ows which
would happen if we used absolute harm.

Therefore, instead of comparing these absolute harm, we instead use relative harm as
our metric to compare how poor interactions may be across scenarios of varying numbers
of �ows. We compute relative harm by computing expected harm as the harm if there
was perfect fair sharing with the number of �ows and subtracting expected absolute harm
from observed absolute harm. With nβ �ows and nα �ows we compute the expected harm
as the expected performance for the β �ows if there was equal sharing1:

RelativeHarm =
m(βsolo) −m(βcompete)

m(βsolo)
− (1 −

Nβ

Nβ + Nα
)

A value of 0 relative harm means there is no harm and there was roughly equal fair
sharing; anything above 1 means there is some harm done to β by α �ows. A negative
value means there is no harm done to β but rather β �ows are being unfair to α �ows.
Absolute harm allows us to distinguish these scenarios and to meaningfully quantify the
magnitude of the unfairness2 across scenarios. Figure 5.2 contrasts absolute harm and
relative harm. Figure 5.2b shows that relative harm centers values with no harm and
perfect fairness (high JFI) at 0. Thus, when we are searching for scenarios with the worst
case relative harm, we are actually searching for scenarios with the worst interactions,
independent of the number of competing �ows. In the rest of the chapter, when we refer
to harm we mean relative harm.

5.3.2 A motivating example
To further motivate using relative harm as our metric over JFI, we revisit a very recent

work evaluating the fairness of BBRv3 to Cubic in relation to the fairness of BBRv1 to Cubic.
We will show this evaluation is perfectly suited for our relative harm metric rather than
JFI. Further, using JFI can lead to the wrong conclusions about how BBRv3’s interactions
with BBRv1 di�er. In addition, this example will lead to our next question which is: how
long do we run experiments?

1Another possibility is to compute the expected harm as the harm β does to itself, as suggested by our
proposal for harm-based threshold in Chapter 3. However, this does double the number of experiments
that we need to run for each network scenario. Exploring this alternative de�nition for relative harm is a
promising direction for future work.

2We will use the terms ‘harm’ and ‘unfairness’ interchangeably.
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Figure 5.3: 100bw-100ms: 1 BBRv1 or BBRv3 �ow vs. 1 Cubic for varying queue sizes

In Zeynali et al. [138], researchers evaluate how the performance of BBRv3 compares
to the performance of BBRv1 and BBRv2. The authors run Cubic �ows competing with
BBRv1, BBRv2, and BBRv3 �ows and compare the JFI values to draw conclusions about
how the fairness to Cubic changes with each version of BBR. The authors declare in a
takeaway from these results: “BBRv3 does not equitably share bandwidth with loss-based
CCAs such as Cubic, and its behavior in some instances is even worse than that of BBRv1".

We seek to reproduce these results. We run 1 BBRv1 or 1 BBRv3 �ow competing with
1 Cubic �ow using the same settings as describe in Zeynali et al.: experiments run for 300
seconds, 100 Mbps bandwidth, 100 ms RTT, and a varying bottleneck queue size. Just as
the authors visualize their results using a matrix plot, we too visualize our results in this
way and roughly achieve the same JFI values. From our shown in Figure 5.3a it appears
that BBRv3 is more unfair to Cubic than BBRv1 in the settings with 4096 and 2048 packet
size queues. This is misleading so we contrast those JFI values with what is relative harm
computed with the same data.

We highlight the throughput traces for the 4096 queue size settings in Figure 5.4,
where the JFI when Cubic competes with BBRv1 has a JFI of 0.988 while the JFI when Cubic
competes with BBRv3 is lower, 0.874. However, looking at the throughput allocations of
the two �ows in this �gure, we can see that in the case with a higher JFI, Cubic is doing
well and is getting slightly higher bandwidth than BBRv1, but they are approximately
equally sharing. Conversely, which in the case with a slightly lower JFI, Cubic is still doing
well, so well that for the �rst 150s it is being unfair to BBR! That is why the JFI is lower.
This example again highlights that we absolutely should not compare JFI values to make
conclusions about when an inter-CCA interaction is more “fair” or “unfair” than another.
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In contrast, we show what the relative harm values are for the same scenarios in
Figure 5.3b and that we can draw relevant conclusions. We see in the 4096 queue setting,
it appears that BBRv3 is less harmful to Cubic than BBRv1 because the relative harm is
smaller, the correct observation from the traces shown in Figure 5.4. The harm is a small
negative value in both cases which already indicates that neither BBRv1 nor BBRv3 is
being unfair to Cubic and further, the harm is less for BBRv3 (-0.194) because Cubic is
being unfair to BBRv3 in this case. Relative harm allows us to draw the correct conclusions.

There is one more argument that could be made for using JFI. One could say that you
could draw the correct conclusions from comparing JFI values if you pair them with the
bandwidth allocation between �ows (as is shown in �gures in Zeynali et al.). However,
this defeats the purpose of using JFI in the �rst place. If we need to pair JFI with the
performance of individual �ows, it means JFI does not give us all the information we need
to decide if the outcome is truly “bad” and the degree of that badness. Relative harm does
not have this issue.
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Figure 5.4: 100bw-100ms-4096q: 1 BBRv1 or BBRv3 �ow vs. 1 Cubic for 4096 packet queue
(~2 BDP). The JFI in these scenarios indicates that BBRv1 is "more fair" to Cubic than
BBRv3 which is clearly not true from the traces.

5.3.3 Duration of Experiments & Convergence
In the previous section, in Figure 5.4b we see an example, where inter-CCA dynamics

changed over time and if we had computed harm at a later point that would have changed
the results. This ultimately leads to a common question when running evaluations of CCA
performance: how long should we run experiments for? In the recent CCA proposals
and evaluations, duration of �ows to measure inter-CCA interactions range from 10-60
seconds [6, 119] to 2-6 minutes[126, 93, 104, 138], so there is no agreed upon rule-of-thumb.
Recall in our work in Chapter 4 when di�erent CCAs compete, it may take a long time for
�ows to “converge” to a stable bandwidth allocation in large bu�ers and that the outcomes
of BBR and Cubic interactions is depends on the duration of the experiments and if the
�ows are converged or not. However, in this work we do not describe how convergence
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is determined and we do this by manually observing the traces and deciding when we
believe the �ows have “converged”. In this work, we ask, can we automatically �nd the
point of convergence? Does that help us decide how long to run experiments?

So what do we mean by “convergence” and how do we determine if �ows have con-
verged during inter-CCA competition? We see the term “convergence” and “converging
to a fair rate” in recent CCA proposals, both wide area [6, 34] and in data centers [123]
as it is one of the important features of a good CCA (as de�ned by Chiu and Jain [30]).
These proposals check for convergence by checking if the �ows all end up near the value
of equal fair share.

In PCC Vivace [34], authors de�nes convergence time as time it takes for all the �ows
to be within 25% of equal fair share:

The convergence time is calculated as the time from the second �ows entry to
the earliest time after which it maintains a sending rate within ±25% of its ideal
fair share for at least 5s.

For the example in Figure 5.4b, this would work since the CCAs each end up converging
to a point of roughly equal fair share at about 175 seconds. Where this de�nition breaks
down for inter-CCA dynamics is we do not know a priori that the �ows will converge to
equal fair share. In fact, in this work we are precisely interested in �nding the cases where
the �ows do not equally share like examples in Figure 5.1b where there is not fair sharing
the behavior of the CCAs is consistent across the run.

Maybe we might now know that the �ows will converge to their equal fair share, but
can we expect they will converge to some value? Will the �ows be within some percentage
of another value? One possible intuitive de�nition for convergence time is to �nd time
step t such that is for all time after t the throughput does not vary by more than X%.
An example of this de�nition of convergence can be found in Axiomatizing Congestion
Control [137], where authors make mathematical de�nitions for various CCA metrics
including convergence time:

We say that a congestion-control protocol P is α-convergent, for α ∈ [0, 1], if
there is a con�guration of window sizes (x∗1 , . . . ,x

∗
n) ∈ [0,M]n and time step T

such that for any t > T and sender i ∈ N ,αx∗i ≤ x (t)i ≤ (2 − α)x
∗
i (e.g., α = 0.9

means that from some point onwards the window sizes are within 10% from a
�xed point.)

Let’s consider a common scenario where both PCC Vivace and Axiomatizing Conges-
tion Control convergence de�nitions break down. We often see this kind of behavior in our
experiments when heterogeneous CCAs interact: large oscillations. In addition, in a com-
prehensive study of various CCAs and their interactions, authors note that convergence



80 RayGen: Evaluating Heterogeneous Congestion Control Algorithm Interactions

time to a fair share for many CCAs is long, and often under heterogeneous competition
�ow behavior is not stable [119]. Figure 5.5a shows an example from our experiments
where we see these large oscillations. Notably, while these oscillations are large, they
are consistent in their magnitude and frequency, so we do want to say these �ows have
converged.

In Figure 5.5b shows the output for each �ow in Figure 5.5a computing the following:
at each time stepT the point is the di�erence (α ) between the throughput at timeT and the
average throughput for all t > T . Here we see that BBR1 and Cubic hover around 40% and
60% from their �xed points (average throughput) respectively. We �nd that this de�nition
su�ers from the same pitfalls of PCC Vivace, where it assumes convergence towards a
�xed point. In addition, tuning the parameters of α is nontrivial and various CCAs have
di�erent kinds of oscillations, so such parameters do not generalize well across multiple
CCAs. If we set an α value as large as 60% then �ows that have clearly not converged will
be considered converged. For example in Figure 5.6 the �ows do not converge, but the
di�erence from the average varies a similar amount as Figure 5.5 where it does.
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Figure 5.5: 100bw-10rtt-256q: 1 Cubic �ow competing with 1 BBR �ow where there are
large, but consistent oscillations. Other methods for determining convergence does not
work with this example.

We care about convergence because we want the values we compute for harm to be
representative about the performance for the CCAs. Ultimately, notions of convergence
for intra-CCA fairness does not work well for inter-CCA interactions for two reasons,
1) these de�nitions focus on convergence to some ϵ where ϵ is known a priori and 2)
because it speci�cally does not want the sorts of large oscillations we see with inter-CCA
interactions. We cannot expect CCAs to converge to their fair share, so we cannot check
for convergence to some value we know a priori to running an experiment. Given the
possibility of oscillations the de�nition: throughput does not vary more than X%, does not
work.

Given there is no prior work that de�nes an algorithm to determine if and when �ows
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Figure 5.6: 50bw-20rtt-32q: 8 Cubic �ow competing where there is no convergence.

under competition have converged, we next seek to develop such an algorithm.

5.3.3.1 Algorithm
Our algorithm takes an experiment with N �ows and returnsT , whereT is a timestamp

after convergence has occurred. Thus, the algorithm allows us to conclude with reasonable
certainty that all �ows have converged after this time T . It is important to note that
our algorithm computes the point of post-convergence and does not determine the exact
point when a �ow has converged, rather, it identi�es a point where we know convergence
has already occurred. It is possible that actual convergence happens before the point we
choose, but that is ok because under either circumstance our computation for throughput
and subsequently harm would be approximately the same which is our overarching goal.
Determining the exact point of convergence or convergence speed is a not our goal.

We have two requirements for our algorithm. First, we do not want to assume that
the �ows will arrive to a �xed value that we know a priori (like equal-rate fair sharing).
Second, we want our algorithm to be able to allow for large oscillations in throughput as
long as those oscillations are consistent and stable over time. Consequently, we say a �ow
has converged at the point where the CCA behavior has reached a consistent state where
the standard deviation and the mean has stabilized. More concretely we want to �nd that
the oscillations reach a consistent pattern. In order to �nd the distinct points where the
CCA behavior has changes, we rely on change point detection to �nd the points where the
statistical properties of a �ow has changed. We describe our algorithm in Algorithm 1.

The core part of post-convergence point selection lies in the recursive_breakpoints
function. This function takes in a singular �ow’s throughput over time trace to identify a
change in the �ow. It accomplishes this by recursively applying a change point detection
algorithm (Ruptures-Dynp) on a rolling window of the trace’s standard deviation. Ruptures-
Dynp is a dynamic-programming based method that identi�es a break point, the point
where the mean of the signal changes, by minimizing the sum of squared errors when
approximating the signal by a piece-wise constant signal [117]. In practice, this is recursive
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calls to a function in the ruptures Python package asking it to �nd a single breakpoint in
the trace between the point we think convergence has occurred and the end of the trace.
Algorithm 1 Convergence

Input:
f - �ow’s throughput trace
window_size - size of rolling window for std. deviation
abs_thresh - threshold for absolute di�erence between left and right means of std.

deviation
pct_thresh - threshold for percent di�erence between left and right means of std.

deviation
Output:

t - time after convergence has occurred
1: procedure RecursiveBreakpoint
2: Generate rolling windows of window_size
3: Calculate standard deviation of each window to generate trace s
4: abs_di f f = in f
5: pct_di f f = in f
6: breakpoint = 0
7: while abs_di f f > abs_thresh or pct_di f f > pct_thresh do
8: s = s[breakpoint :]
9: breakpoint = call ruptures on s to �nd breakpoint

10: if can no longer segment s then
11: return in f
12: end if
13: le f t_mean =mean(s[: breakpoint])
14: riдht_mean =mean(s[breakpoint :])
15: abs_di f f = abs(le f t_mean − riдht_mean)
16: pct_di f f = abs(le f t_mean − riдht_mean)/riдht_mean
17: end while
18: return breakpoint
19: end procedure

To determine convergence for each experiment, we take the PCAP output of an experi-
ment with competing �ows and compute throughput over time over windows of 1 second.
Then we run Algorithm 1 on each f �ow independently and �nd convergence time ft . If
our algorithm says that any of the �ows in an experiment did not converge, we say the
experiment did not converge. Alternatively, if all the �ows do converge, then we say the
point in which we will say convergence has occurred is the latest time t of all �ows f .
An example of how the convergence algorithm works over iterations is highlighted in
Figure 5.8. This is illustrations of each of the iterations of the algorithm for �nding the
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Figure 5.7: An example trace of 1 Cubic �ow competing with 2 BBRv3 which we manually
label as converging at 65 seconds where Algorithm 1 labels the point of post-convergence
as 70 seconds. In either case, the throughput after these points is nearly identical
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Figure 5.8: Convergence algorithm output over iterations before deciding the �ow has
converged for the bbr3-0 �ow in Figure 5.7.

point of convergence for the �ow labelled bbr3-0 in Figure 5.7.
First, the algorithm computes the standard deviation over time over a rolling window.

In the �rst iteration the algorithm starts by setting the convergence time to time 0. Then it
calls ruptures to �nd a change point between our current possible convergence time (time
0) and the end of the standard deviation trace. This change point is labelled the “validation
breakpoint” in Figure 5.8. The algorithm then computes the “left mean" of the standard
deviation of the trace from where the convergence point is to the validation breakpoint,
and the “right mean" of the standard deviation trace from the validation breakpoint to the
end of the trace. In the �rst iteration example in Figure 5.8a, the validation breakpoint
is at 40 seconds, and the left mean from 0s-40s of the standard deviation is 11.26 while
the right mean from 40s-120s is 6.51. To determine if the convergence point is the point
our algorithm decides convergence occurs, we compare the absolute di�erence between
the left mean (4.75) and percent di�erence (0.42) to thresholds for both. If at least one of
thresholds is met, the algorithm says the �ow has converged at the convergence point. In
this case neither threshold is met, so the algorithm now goes to the next iteration.
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In the next iteration the convergence point is where the previous validation breakpoint
was. As shown in Figure 5.8b this is at 40s. The algorithm then repeats �nding the next
change point between this new possible convergence point which is 55s, compute the left
mean and right mean and again checks if they meet the thresholds. In this example, it again
does not meet the threshold, so the algorithm moves onto the third iteration checking
if the convergence point is now at the previous validation breakpoint which is 55s. As
shown in Figure 5.8c this new possible convergence point and validation points end up
meeting the thresholds and the algorithm returns that the convergence time for this �ow
is at 70s.
5.3.3.2 Parameter Selection

As shown in Algorithm 1 there are several parameters that we need to tune for the,
there are several parameters which we need to choose including: the rolling window size
for the standard deviation trace and the thresholds for the absolute and percent di�erence
between the standard deviation left mean and right mean. In order to choose our parameter
thresholds, we hand-labeled 100 experiments for the convergence point and calculated
the average throughput after these traces. We then used our algorithm to label traces
using various abs_thresh and pct_thresh thresholds. Then, out of the settings that resulted
in over 90% agreement on which �ows converged, we picked the settings that showed
the smallest mean di�erence in percentage from the average threshold selected by our
manual labeling. These settings ended up being an abs_thresh and pct_thresh of 0.2 and
0.2 respectively. To pick the window_size , we simply �xed the abs_thresh and pct_thresh
and varied the window size from 30-100 increasing in increments of 10 and picked the
result that had the smallest mean di�erence from the average threshold selected by our
manual labeling. This resulted in an optimal window size of 60.
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Figure 5.9: Percent di�erence between manual labeling and auto label from Algorithm 1,
20s, 1min into experiment (on a logx scale)

When comparing the average throughput from the auto labeled vs. the manually
labeled experiments, we �nd that our method is able to get the lowest percent di�erence
in throughput from the manual labeled results. Fig 5.7 shows an example of our labeling
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results. We can see in Fig 5.9 that our auto labeling results in the tightest �t, with over
80% having less than a 10% di�erence in average throughput from our manual labels.
In addition, we see that the di�erent in throughput between our manual labels and just
ignoring the �rst 1 minute of the trace is also very close. Consequently, throughput this
chapter, we run our experiments for 3 minutes and run the convergence algorithm to decide
over what interval to compute relative harm. If our algorithm says the �ows converged we
compute relative harm from the point of convergence until the end of the trace, ignoring
the time before our convergence point. If the algorithm says the �ows do not converge,
we compute harm from time 60s to the end of the trace, ignoring the �rst 1 minute of the
experiment.

Now that we have spent considerable e�ort developing a convergence algorithm, it begs
the question if it is even useful. More speci�cally we ask: does the duration of experiments
and convergence actually matter when computing harm for inter-CCA interactions? We
run experiments for 300 seconds for 1-5 Cubic �ows competing with 1-5 BBRv1 or BBRv3
�ows over 100 Mbps link and 100 ms RTT, the same network settings in Zeynali et al, once
again reproducing this work. We compute the di�erence between computing relative harm
over the entire trace to computing it after the point of convergence for the experiments
Algorithm 1 says converged.

As shown in Figure 5.10 there is a di�erence. Especially for the experiments that have
later convergence times, the di�erence between the non-convergence and convergence
harm values can vary signi�cantly. The percent di�erence in harm is at its worst when
the algorithm identi�es later convergence times For example, if the convergence time is at
200 seconds, the harm di�erence varies by up to 10%.

This further demonstrates the importance of considering the duration of experiments
and what you are trying to measure and conclude given the duration. Trying to draw
sweeping generalizations like “BBRv3 is more unfair to Cubic than BBRv1” is deceptive
and highly depends on the duration of experiments. If we are going to make statements
like this, they need to be quali�ed by the duration of experiment. There is typically no
discussion about how the duration of the experiments impacts the results and subsequently
conclusions. With our convergence algorithm, we can at least declare that the throughput
over time for �ows during an experiment has stabilized and consequently can make
statements about long-term CCA interactions.

Until now, there has been no agreement on the duration of experiments for exploring
inter-CCA interactions; as we mentioned at the beginning of this section, the times vary
widely. In evaluations of CCA performance, CCA developers and researchers pick arbitrary
times and try to draw conclusions about CCA behavior given these arbitrary times declaring
what they care about is “in�nitely backlogged �ows”. While we are not necessarily saying
that you must compute convergence time and need to run experiments until the point of
convergence (in this work, we do not even do that and run all experiments for 3 minutes),
we are o�ering a tool to determine if the behavior of �ows under competition has reached a
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stable point so when we compute our metric (in our case, harm) it is meaningful, measuring
what we want it to measure.

It is possible of course that CCA developers do not care about long-term behavior and
rather care about �ows of a speci�c duration (as most �ows are short). In that case, results
must be quali�ed with duration of the �ows. We cannot make sweeping generalizations
about inter-CCA dynamics without considering convergence, if we care about that. Now
we have an algorithm to help us decide how long we may want to run experiments if we
care about making statements about long-term behavior.
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Figure 5.10: Reproducing results from Zeynali et al. [138] and running convergence
algorithm. For the experiments that do converge late in the CCA, the di�erence in harm
varies. There is a di�erence between taking the harm over the whole traces vs. after
convergence especially for the CCAs with later convergence (Though we are not �nding
the exact moment of convergence.)

5.4 RayGen
In this section we describe RayGen, our approach for automatically �nding worst-case

outcomes for CCA interactions. While alternative approaches like simulated annealing are
also able to �nd optimal values of unknown functions, we found that genetic algorithms
succeed for three reasons. First, GAs are less susceptible to getting stuck in local minima
because they return a random population of results rather than converging to a single value.
Second, crossover among populations can be limited to chromosomes of similar network
settings, allowing us to achieve a broader range of high harm scenarios across network
settings. This is particularly applicable in cases where high harm scenarios may bias
towards a single network setting like bandwidth. In this case, we can employ strati�cation
of initialization to force our algorithm to come up with high harm settings across di�erent
bandwidths, rather than only coming up with settings with a single bandwidth. Lastly,
GAs do not require knowledge of the underlying function (or for the function to be
di�erentiable), we need only the inputs (network settings and workload) and outputs
(relative harm). A GA can �nd worst-case high harm scenarios and a set of them rather
than just one.
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Figure 5.11: Illustration of RayGen’s genetic algorithm. After creating an initial random
population, the top 50% are chosen for mating in random pairs. Two children are created
from each set of parents using uniform crossover. The parents and their children all form
a new population for the next generation. If running another generation would exceed the
budget of experiments then the GA is terminated.

While GAs work well in a solving a variety of problems, this also comes with the
drawback of the sheer volume of parametric choices. In making these choices we choose
to keep things as simple as possible. There are many complicated variations of each
element described below, but when we considered the options we always make a simple
and straightforward approach. We primarily draw inspiration from Haupt and Haupt’s
popular book and chapter on implementing continuous genetic algorithms [51].

Initialization: A GA is initialized with an initial random population of chromosomes. Our
chromosomes consist of 5 genes: bottleneck bandwidth ∈ [25, 400]Mbps, RTT ∈ [10, 320]
ms, queue size ∈ [0.25, 5] BDP, as well as the number of competing α and β �ows ∈ [1, 5]3.
This is essentially a vector with 5 elements. Once we have an initial population, we need
to compute the �tness function which in our case entails running 2 experiments in our
testbed. (The same testbed we use throughout this thesis. Figure 3.1). We need to run an
experiment with these network settings with the number of β �ows alone and a second
experiment with the number of competing β and α �ows to compute relative harm.

Selection: Once we have an initial population and the harm values for each chromosome,
we have to decide which chromosomes will mate. There are many possible selection
algorithms, another parametric choice. RayGen uses “natural selection", selecting the
top 50% of chromosomes (where the �tness is the relative harm, the higher harm, the
more �t the chromosome) for mating. Because our population size is 60, this will be 30
chromosomes selected for mating. Chromosomes are randomly shu�ed into pairs.

3The step size of our ranges is log scale because CCA behavior varies by factors of change. For example,
there is going to be a signi�cant di�erence in outcomes between doubling the bandwidth rather than
increasing it by 1.
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Mating: Once we select the chromosomes we want to mate we need to make two o�spring
for each pair of parents by performing crossover. 4 There are many possible crossover
algorithms, another parametric choice. RayGen uses “uniform crossover". For each gene,
we �ip a coin to decide if we want to do crossover for that gene. For example, we may
decide we are going to crossover the bandwidth gene b between parent 1 and parent 2,
b1 and b2. Because the variables in our genes are continuous we use a standard blending
method to combine these genes to make two o�spring by picking a random value β ∈ [0, 1]:

bchild1 = b1 − β(b1 − b2)

bchild2 = b2 + β(b1 − b2)

Intuitively, this will introduce new genes into the population by choosing a random
value between the two parents. Each gene has equal likelihood of being selected for
crossover. We never blend across genes, bandwidth genes will only every cross with other
bandwidth genes, the same for RTT and so on. In the extremes it is possible to crossover
every gene or to crossover none of them. In the case there is no crossover the children are
copies of the parents. There are ways to prevent this possibility, but the most basic GA
implementation does not force unique children. Altering crossover in various ways could
improve it, but we choose to keep things simple here.

Mutation: Once we have two children, the next step is to perform mutation. Mutation
happens with some probability, another parametric choice. We choose to perform mutation
with a probability of 30%. Given our population of 30 children, from mating, this would in
expectation mutate 9 children. We do a weighted coin �ip to determine if we are going to
mutate genes within a child. Weight is 40% so in expectation we are mutating 2 genes. We
err on the side of a large mutation probability. The way we are blending the chromosomes
during mating will require the gene of a child to be between the value of the parents.
While this is good for narrowing down to a speci�c solution, it could cause RayGen to
get stuck in local minima if we are not introducing enough new possible chromosomes in
each generation. RayGen uses a random mutation algorithm, taking the mutated gene and
assigning it a random value.

Replacement: Once we have children, we need to decide what chromosomes will “die
o�” and which will remain to form the new population for the next generation. RayGen
combines the parents which were selected for mating (the Top 50% from the current
population) and the o�spring from these children to form the new population. For the
children, we compute the relative harm for these possibly new settings.

Stopping condition: RayGen stops when running another generation would exceed the
experiment budget which we set to 300 experiments. We will show that with just this

4Technically there is an additional parameter: the probability of crossover. In our case we ignore this
and set the probability to 1.
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Figure 5.12: Distribution of relative harm for 300 random experiments for various CCA
pairs. We use Reno vs. Westwood and BBRv1 vs. BBRv3 in our evaluation.

small budget of experiments, RayGen is able to not only �nd worst-case harmful scenarios,
but also a diverse set of scenarios.

5.5 Evaluation
To determine a good set of scenarios to test RayGen, we run experiments for 300

random scenarios for various pairs of CCAs. We show the CDF of relative harm for each
of these pairs in Figure 5.12. Each of these lines refers to β vs. α . The distribution of
random experiments gives some sense for the di�culty of the problem of �nding worst
case scenarios. Considering a pair like Cubic vs. BBRv1 will be too easy for an evaluation
because you can throw a stone and �nd a harmful scenario. For our evaluation we focus
on Reno vs. Westwood because the majority of the settings found from a random search
have low harm, but there is a longer tail than the other pairs, suggesting there are some
harmful scenarios that may be hard to �nd.

Our metric for success for RayGen is to �nd both harmful scenarios and a diverse set
of them with a small budget of experiments. We compare RayGen to a random search as
well as to an “exhaustive search” where we perform a parameter sweep over the same
range of values we allow the GA to search. The range of values is continuous, so we
cannot do an actual exhaustive search over the entire parameter space and instead do a
“parameter sweep" as an approximation. For the parameter sweep we visit exponential
spaced scenarios for a total of 3500 experiments.

To show RayGen can �nd high harm scenarios, we run RayGen and compare the
top 100 scenarios found by RayGen to those found by the parameter sweep and random
search. We show that RayGen is better than random search at �nding harmful scenarios in
Figure 5.13 with the distribution of the Top 100 harm values found by RayGen compared
to parameter sweep and random search.

To show RayGen �nds a diverse set of high harm scenarios, we take the top 20 harm
scenario’s chromosomes and compute the euclidean distance between them. We max-min
normalize each feature of the vector, so the ranges of the values does not impact the
distance. A small euclidean distance means the scenarios are very similar. We do not want
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Figure 5.13: Comparison of the top 100 relative harm values found by RayGen to the top
values found from a random search and parameter sweep. The GA �nds more harmful
scenarios than random search.
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Figure 5.14: Comparison of the euclidean distances between the top 20 harmful scenario’s
vectors. If the distance is far then the vectors are far away and are di�erent settings, while
if the distance is small the settings are very similar.

to just �nd very similar scenarios. In Figure 5.14 we see that there is as much variety in
the high harm scenarios found by RayGen as there are in random search.
5.5.1 Impact of experiment budget

RayGen is able to �nd high harm scenarios with only a budget of only 300 experiments.
In Figure 5.15 we highlight how the quality of the solutions found by the GA improves
over generations and as it runs more experiments. We compare the highest harm value as
well as the 90th percentile found by RayGen after each generation in Figure 5.15a, to the
highest harm value found by the parameter sweep. After 6 generations and running only
200 experiments, RayGen is able to �nd harm values almost as high as the parameter sweep
which was 3500 experiments. With RayGen, CCA developers can �nd these worst-case
scenarios without having to a run many experiments.

Does increasing the budget of experiments improve RayGen’s results? To see the
impact of the experiment budget on the results, we run RayGen with a budget of 500
experiments. Figure 5.16 shows that with an increased budget we can �nd scenarios with
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(b) Solution improvement per experiment run

Figure 5.15: Each generation what the highest harm value RayGen has found so far
improves as well as the 90th percentile. We see the same trend for the highest harm found
in relation to how many experiments RayGen has run so far up to a maximum budget of
300 experiments. We compare these values to the highest harm values found by RayGen
the highest harm value found by the parameter sweep.
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Figure 5.16: Each generation what the highest harm value RayGen has found so far
improves as well as the 90th percentile for a budget of 500 experiments. With a larger
budget we �nd scenarios with even worse harm than those found by the parameter sweep.

even worse harm than those found by the parameter sweep.
5.5.2 Impact of repeats

We repeat running RayGen two more times to see if we get similar results when re-
running the GA. Figure 5.17 compares all three runs of the RayGen to the parameter sweep
and random search. While they vary slightly in the quality of top solutions, in all cases
the results are better than random search. In addition, we still get the same improvements
in the quality of harmful scenarios over generations for the repeated runs of RayGen
(Figure 5.18) as well as a variety of those scenarios (Figure 5.19).

The top scenarios found by each run of RayGen are di�erent. This could be considered
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Figure 5.17: Comparison of the top 100 relative harm values found by RayGen to the
top values found from a random search and parameter sweep for 3 repetitions. For all
repetitions, RayGen �nds more harmful scenarios than random search.
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(a) Solution improvement per generation (run 2)
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(b) Solution improvement per generation (run 3)

Figure 5.18: Each generation what the highest harm value RayGen has found so far
improves as well as the 90th percentile for repeated runs. We see similar results as
Figure 5.15a.

a �aw of RayGen but in fact is an advantage. This indicates that there are local maxima
in the harm function and with each run of RayGen it is able to �nd those settings. If
RayGen converged to the exact same worst-case settings every run, this would indicate
that there is not enough randomness being introduced over generations. In practice, CCA
developers could use RayGen in an iterative process, run RayGen �nd high harm scenarios,
investigate those and possibly �x them, and then run RayGen again and so on.

5.6 Related Work
There are two notable ways prior work evaluate CCA performance: 1) models and

proofs that use models of CCAs and networks to prove CCA behavior and 2) empirical
methods that take real implementations of CCAs and explore the state space of possible
network scenarios.
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Figure 5.19: Comparison of the euclidean distances between the top 20 harmful scenario’s
vectors for repeated runs. We see similar results across runs.

Models and proofs: Formal veri�cation techniques [5, 3], generating models of CCAs,
and writing proofs about CCA behavior based on those models [126, 137, 115] are all
examples of operating on models of CCAs and networks, seeking to prove that certain
CCA behavior will (or will not) happen.

For example, Arun et al. develop CCAC [5], using network path and CCA models,
to prove certain properties of a CCA using an SMT formulation. The authors note that
extending this work to the interaction between multiple �ows introduces "non-linear
constraints" that the SMT solver is unable to solve. This work does not scale well for
multi-�ow competition for long timescale, so the authors declare that as future work. The
authors later extended CCAC’s model to support two �ows and developed a proof about
how jitter can lead to starvation during intra-CCA interactions [4]. In addition, Agarwal
et. al develop CCmatic a framework for designing CCAs that provably meet performance
guarantees [3]. The authors also notes the di�culty of designing provably fair CCAs and
also declare this future work.

Similarly, there have been other approaches to modeling CCAs and writing proofs
about CCA behavior including our BBR modeling work. As we described in §4.1, modeling
interactions in the way we did BBRv1 and Cubic, is not always going to be possible or
practical. Another example is Zarchy et al. [137] who seek to prove if CCA designs like
AIMD and Cubic can meet certain requirements at once like being e�cient, fair and
TCP-friendly. The main limitation of this work is that it only works for window-based
algorithms and is not easily extendable to CCAs like BBR. Another example is Thaker et
al. who prove that certain utility functions with trade-o�s between throughput and delay
are fundamentally incompatible. These utility functions in this work encode application
bandwidth and latency requirements rather than speci�c CCA designs.

Overall, these mathematical techniques are only as good as their models. If the CCA
model and network model do not account for multiple �ows or do not account for all the
kinds of CCAs we want to test, the proofs will not translate well to the realistic network
settings and real CCA implementations with bad outcomes we are searching for with
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RayGen.

Empirical methods: An alternative to operating on models of CCAs is to operate on
implementations of CCAs, testing a variety of network settings using empirical methods.
While some of these techniques that present a platform for manual testing like Pantheon5

or Prudentia [93], other tools, like RayGen try to go a step beyond this and automatically
search the state space of possible scenarios.

One thread of this work uses software testing techniques, speci�cally fuzzing. Fuzzing
is a software testing technique which can automatically generate test cases. Fuzz testers
then run test cases on the target program and then observe the behavior, perturb the inputs
based on some heuristic and run the target program again with those new inputs repeating
this process until some condition is met [74]. Fuzzing is typically used for �nding bugs or
vulnerabilities in code where the metric for success is high code coverage. Zou et al. use
fuzzing in this way to �nd bugs in TCP stack code [140]. We are not looking for speci�c
bugs in TCP code.

Two similar works to our problem, ACT [111] and CCFuzz [95], use fuzzing to test CCA
implementations using network simulator NS36. The goal of ACT is to �nd a mapping
between network parameters (e.g. link bandwidth, loss rate, application rate) and CCA
states (e.g. cwnd, ssthresh, srtt) to �nd if a CCA can reach certain bad states depending
on the network setting. ACT uses feedback-guided random testing that takes inspiration
from genetic algorithms to explore as much of the CCA state space as possible. Unlike any
of the prior work, ACT speci�cally claims: “ACT can be used to test not only a single CCAI
�ow, but also the interaction among multiple di�erent/same CCAI �ows” however there is
no evaluation that this is true. CCFuzz uses a genetic algorithm to generate bandwidth
traces that capture a certain link variation or cross-tra�c variation. The goal is to �nd
traces that are successful in triggering certain undesirable behavior from a CCA. The main
challenge with ACT and CCFuzz work is guiding the search of large state spaces in their
single CCA settings. In multi-�ow scenarios this state space will only explode, making the
search even more di�cult and possibly ine�cient and infeasible.

The most closely related work with nearly the same goals, is Mahak, which uses active
learning to automate assessment of CCA performance over a parameter space of network
settings [90]. It aims to As the authors describe Mahak as a proof-of-concept, at the time
of this writing they have not made their code public (despite claiming so in their paper)
and they do not have evaluations for either inter-CCA or intra-CCA interactions. It is
unclear if it as simple as adding parameters for the di�erent �ows and their CCAs to the
parameter space in the same way we have for RayGen. It is certainly possible to try and

5While the Pantheon authors note in their publication [132] that adding support for competing �ows is
future work, I was able to extend it to do so

6ACT uses NC3 enabled with DCE [113] to execute actual Linux kernel implementations, while CCFuzz
operates on CCA implementations in NS3.
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use Mahak to evaluate intra-CCA interactions though the authors have not currently made
that possible.

Ultimately the issue with all the prior work is none of these frameworks where designed
with evaluating and proving inter-CCA fairness as a �rst-order goal. In contrast, RayGen
was designed with the speci�c purpose of e�ciently evaluating inter-CCA interactions,
unlike prior work where these evaluations would be an extension of what is currently pro-
posed in these works. Further, we �nd that designing CCAs with intra-CCA performance
guarantees is already a challenge not tackled by this recent line of work, but it is highly
likely extensions to complex inter-CCA interactions will be even more challenging.

We can develop new CCAs and even prove they meet performance goals [5, 3], but
those performance goals cannot only focus on CCAs in isolation, but must also include
some goals for interactions between �ows.

In conclusion, while there are many innovations in designing and evaluating new
congestion control algorithms, in all of this work evaluating inter-CCA fairness is either
ignored completely (CCFuzz, Mahak) or declared future work in these frameworks (CCAC
and CCmatic). To the best of our knowledge, RayGen is the �rst framework designed
speci�cally with the goal of evaluating interactions between �ows e�ciently.

5.7 Conclusion
We present RayGen a genetic algorithm for �nding harmful inter-CCA interactions and

show that it performs well with a small budget of experiments compared to a parameter
sweep and a random search. RayGen takes away the arbitrary and manual process of
�nding worse-case scenarios by using harm as a metric, determining when �ows converge
to compute harm, and using a GA to automatically �nd settings with high harm. This
work presents a comprehensive methodology that CCA developers and researchers can
use to �nd harmful interactions between CCAs under competition to ease in the task of
�nding worst-case scenarios to possibly �x or as a recent draft RFC requires, declare as
unsafe environments for deployment [109]. In future work, we hope to improve RayGen by
exploring other options for its many parameters and con�gurations. In addition, we want
to further demonstrate the e�cacy of RayGen by conducting case studies, investigating
how new CCAs (e.g. BBRv3) interacts with widely deployed CCAs.





Chapter 6

Conclusion

It’s a classically challenging problem to get these
algorithms to play nice with each other, and therefore
we worry that there is a lot more unfairness going on
on the Internet than we know about.

Google’s Network Congestion Algorithm
Isn’t Fair, Researchers Say [14]

Ranysha Ware

In this dissertation, we address the limitations of the current methodology for deter-
mining if a CCA is reasonable to deploy on the Internet today. Recall our thesis statement:
Thesis statement: Given the growing diversity in novel congestion control algorithms
(CCAs) deployed on the Internet today, we argue that the deployability of new CCAs must be
evaluated for how they harm widely deployed CCAs in realistic network settings.

To support this thesis statement, we present a new CCA classi�er, CCAnalyzer, in
Chapter 2 that collects bottleneck queue occupancy traces and uses time series classi�cation
to determine if a website uses a known or unknown CCA. With CCAnalyzer, we measure
the deployment of BBR variations, Cubic, and some unknown CCAs, supporting our
statement that there is a growing diversity of CCAs deployed on the Internet. Next in
Chapter 3 we can prove BBRv1’s fraction of the link when under-competition with Cubic
�ows is determined by an“in-�ight cap.” Surprisingly, our model showed the “in-�ight
cap” did not depend on the number of competing loss-based �ows, resulting in signi�cant
unfairness. Next, in Chapter 4 we proposed a new metric called harm and that the bar
for deployability should be how much harm a new CCA does to already widely deployed
CCAs. Finally, in Chapter 5 we present RayGen a tool that uses a genetic algorithm to �nd
worst-case high-harm scenarios.

Consider a new CCA developer in 2030 wanting to develop and deploy a new CCA
into the Internet to �x issues with BBRv10. They can use CCAnalyzer, an e�cient tool, to
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determine the one or two most popular, widely deployed CCAs. Then they can use RayGen
to �nd scenarios where their new CCA performs poorly during interactions with these
already widely deployed CCAs. Our perspective in this dissertation is that the methodology
for evaluating if a CCA is reasonable to deploy on the Internet today is fundamentally
�awed. The battle for bandwidth remains, but we are hopeful for a future where evaluating
CCA for deployability is easier thanks to this work.

6.1 Looking Backwards
Since the publication of our �rst paper in this dissertation, I am frequently asked

hypothetical and philosophical questions: If we evaluated harm when we were thinking
about making TCP Cubic the default algorithm in Linux, would that have changed things?
Should we have deployed it? What about when Google deployed BBRv1? The Internet
hasn’t collapsed, does any of this talk of deployability even matter? In this section, I
discuss my answers to these questions based on our �ndings.

If we evaluated harm when considering replacing TCP Reno with TCP Cubic,
should we have deployed it? I speculate that TCP Cubic likely still would have even-
tually replaced TCP Reno as the default CCA in Linux. Cubic (and its predecessor TCP
BIC) addressed TCP Reno’s issues in higher bandwidth networks, which was of critical
importance at the time. Arguments for deployment were less about achieving perfect
fairness with Reno, and more about not being too harmful to Reno in settings where it
worked well [49], similar to the deployment threshold we propose in Chapter 4.

BBR is unfair to Cubic, should we have deployed it? BBRv1 should not have been
pushed into the mainline Linux kernel without more public and published extensive
testing.1 Our results and model described in Chapter 3, proved signi�cant unfairness
after it was deployed. So why was it deployed? I believe BBR developers had the best
intentions: share this huge step forward in congestion control with the world. On a
global scale, we could reduce queueing delays without sacri�cing utilization, reshaping
the Internet in a time when there are increasingly delay-sensitive applications. Due to
Google’s sheer size and in�uence, BBR variants now likely serve a massive fraction of
Internet tra�c with deployment on YouTube. In addition, with CCAnalyzer, which we
describe in Chapter 2, we measure 28% of a Top 10K list of websites we measure using
BBRv1 including “Hypergiants” [45] Akamai and Cloud�are.

Why hasn’t everything collapsed? Does fairness even matter at all? 7 years since
its inception, despite poor interactions with TCP Cubic, BBRv1 is still available to deploy

1There is an argument that an open-source implementation in the Linux kernel makes testing easier,
but there should have been a similar approach to the development of BBRv2/BBRv3. There are published
open-source implementations [12, 114] that the network community can use for testing before adding it to
the mainline Linux kernel.



Looking Forward 99

in the Linux kernel.2 However, we did see the backlash of deploying a CCA �rst and
asking questions later [116, 14, 121]; but ultimately, BBR is an important case study in
the importance of deployability evaluations. These evaluations led to the changes to
subsequent BBR versions and will likely continue to lead to more changes, which our
proposals in Chapter 4 and Chapter 5 can facilitate.

Based on this state of heterogeneous deployment of congestion control algorithms, I
argue that we must clarify and streamline our methodology for determining whether a
CCA is deployable to enable the public evaluation missing from BBRv1’s development.
Before my harm proposal, CCA developers argued that it was ok to be unfair just not
“too unfair”. Our proposal for measuring harm instead of traditional notions of unfairness
in Chapter 4, codi�ed already existing but inconsistent methodologies for congestion
control deployability. In addition, harm can measure additional metrics we care about like
latency rather than just bandwidth. In Chapter 5, we take this harm proposal one step
further, designing a tool, RayGen, that applies this methodology. CCA developers (and
researchers) can use RayGen to identify worst-case high-harm scenarios, much like the
ones we found with BBRv1, to make �nding and �xing potential issues easier. Evaluation
of CCA deployability by comparing how a new CCA will interact with widely deployed
CCAs is not going away any time soon. While I do not necessarily declare what the exact
right “threshold” for declaring a CCA is deployable, the work presented in this dissertation
shows how we can improve that evaluation.

6.2 Looking Forward
This dissertation makes signi�cant progress toward understanding and measuring

interactions between heterogeneous CCAs. However, there is still much work to do and in
this section, we discuss important future directions and their challenges.
6.2.1 Addressing Limitations

There are several limitations of our work that we can address with future work.

Workloads beyond “long-running” �ows: The measurements in this dissertation were
all centered around “long-running TCP �ows.” However, most of the �ows on the Internet
are short [10, 64, 139] and at least 65% of Internet tra�c today is video streaming [102],
which can stream at high-quality at low bandwidths [93]. Our work must be extended to
consider these prevalent workloads.

Consequently, RayGen needs to include workloads with di�erent kinds of applications,
�ow durations, and bitrates. It should also include other network parameters like loss rate
and jitter. These extensions present three challenges. The �rst challenge is we need to
encode the workloads so we can perform meaningful crossover. The second challenge
is adding additional parameters increases the size of the search space. It is unclear if
the current design of the GA will still work well in a larger parameter space. The third

2BBR developers are working to replace this with BBRv3 but it is unclear when that will happen.
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challenge is knowing what are “realistic” values for parameters like loss rate. Cloud�are
recently publicly published all of their data from speed tests [32, 31] to Measurement
Lab [118] which, unlike other speed tests, includes data on latency, jitter, and packet loss!
We could also explore this data to determine more realistic network conditions.

We also want to extend CCAnalyzer to QUIC �ows and video streams. Classifying
video streams is challenging for two reasons. First, there are complex interactions between
adaptive bitrate streaming and congestion control; we want to classify just the CCA when
the sending rate may be determined more by the adaptive bitrate algorithm than the CCA.
Second, CCAnalyzer requires training samples, and it is unclear if we can generate training
samples that will work across di�erent adaptive bitrate algorithms.

6.2.2 Future Opportunities
There are opportunities for future work that uses the methodologies and tools presented

in this dissertation.

Is BBRv3 a safer replacement to BBRv1? Perhaps we can expand the model in Chap-
ter 3 to include BBRv3 interactions with Cubic. However, we made many simplifying
assumptions and BBRv3 is even more complex than BBRv1. Using RayGen, we can �nd
worst-case scenarios when BBRv3 interacts with Cubic. RayGen currently computes harm
relative to if the same number of �ows had perfect fair sharing. For this evaluation of
BBRv3, we could instead compute harm relative to the harm that BBRv1 causes to Cubic
in the same scenario, to quantify the di�erence and speci�cally look for cases where the
harm BBRv3 does to Cubic is worse than the harm BBRv1 does to Cubic. In addition, now
with the deployment of BBRv3, there will be interactions between BBRv1 and BBRv3 that
we can also investigate with RayGen.

What are consequences of heterogeneity? How prevalent is CCA contention? In
Chapter 2, we measure heterogeneity in the Internet’s transport layer and consequently
wonder about the implications of that heterogeneity. Does the changing congestion
control deployments actually impact congestion on the Internet and is it even possible
to measure that? Some aruge that congestion control fairness is not as important as we
may believe [120] and implementations of isolation [18, 134] can address unfairness issues
without requiring di�erent CCAs to have to work well together.

We do not know how persistent congestion is on the Internet today, however, we do
know that most of the bytes on the Internet are from long, fast �ows [10, 64, 139] and
that in these cases, the throughput allocation will be determined by the interactions of
CCAs. Dhamdhere et. al. found that between March 2016 and December 2017, there was
no evidence of widespread interdomain congestion from their measurements. However,
this was before the widespread deployment of BBR. CCAnalyzer can measure the evalua-
tion of congestion control deployments, and it would be interesting to couple this with
measurements of interdomain links and congestion.
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6.3 Impact
When we set out to do this work, a famous computer scientist in computer networking

was kind enough to give us some feedback on an early draft of a grant proposal. Their
comments, in retrospect, sum up the di�culty and impact of our work. Here are a few
quotes:

The goal "fairness" turns into a rathole very quickly, and swallows new re-
searchers every couple of years.

Fingerprinting CC types from transit tra�c is really hard, especially if you are
downstream from the bottleneck (the bottleneck shapes the tra�c and masks
the CC). Furthermore it is needless.”

Claiming that you might derive models is a bit too much hubris. People have
been working on that for years.

Our work on congestion control deployability has impacted the conversation in the net-
working community about the importance of measuring the impact of how new CCAs will
interact with legacy CCAs. Fairness is important, and thanks to our work, the conversation
is about the harm new CCAs do to legacy CCAs. We highlight two examples.

Our �rst example is related to the development of BBRv3. BBR developers recently
shared an Internet draft with the IETF describing BBRv3 in detail. It describes the speci�c
changes that �x the previous ProbeBW state to ensure better coexistence with Reno/CU-
BIC [11]:

Choosing the time scale for probing bandwidth is tied to the question of how
to coexist with legacy Reno/CUBIC �ows since probing for bandwidth runs a
signi�cant risk of causing packet loss, and causing packet loss can signi�cantly
limit the throughput of such legacy Reno/CUBIC �ows.

BBR has an explicit strategy for coexistence with Reno/CUBIC: to try to behave
in a manner so that Reno/CUBIC �ows coexisting with BBR can continue to
work well in the primary contexts where they do today

As our model shows in Chapter 3, BBRv1 caused signi�cant packet loss by increasing
its rate while probing for bandwidth. BBRv3 (and BBRv2) tries to �x this issue. The goal
for BBRv3 is not to share perfectly fairly with Reno/CUBIC, but rather not to seriously
harm loss-based �ows in the context in which they perform well.

Our second example, which we mentioned in previous chapters, is a recent draft update
to RFC 5033: Specifying Congestion Control Algorithms from the IETF’s congestion control
working group [109] which speci�cally mentions harm:
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In contexts where di�ering congestion control algorithms are used, it is impor-
tant to understand whether the proposed congestion control algorithm could
result in more harm than previous standards-track algorithms (e.g., [RFC5681],
[RFC9002], [RFC9438]) to �ows sharing a common bottleneck. The measure of
harm is not restricted to unequal capacity, but ought also to consider metrics
such as the introduced latency, or an increase in packet loss. An evaluation
MUST assess the potential to cause starvation, including assurance that a loss
of all feedback (e.g., detected by expiry of a retransmission time out) results in
backo�.

Despite the doubts and challenges, in this dissertation we achieved our goal of better
understanding congestion control heterogeneity on the Internet, and how the networking
community should evaluate new CCAs for deployability.



Bibliography

[1] Private communication with Ayush Mishra.
[2] Private communication with Neal Cardwell.
[3] Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben Martins, and Srinivasan Seshan.

Towards provably performant congestion control. In 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24), pages 951–978, Santa
Clara, CA. USENIX Association, April 2024. isbn: 978-1-939133-39-7. url: https:
//www.usenix.org/conference/nsdi24/presentation/agarwal-anup.

[4] Venkat Arun, Mohammad Alizadeh, and Hari Balakrishnan. Starvation in end-
to-end congestion control. In Proceedings of the ACM SIGCOMM 2022 Conference,
SIGCOMM ’22, pages 177–192, Amsterdam, Netherlands. Association for Comput-
ing Machinery, 2022. isbn: 9781450394208. doi: 10.1145/3544216.3544223. url:
https://doi.org/10.1145/3544216.3544223.

[5] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad Alizadeh, and
Hari Balakrishnan. Toward Formally Verifying Congestion Control Behavior. In
Proceedings of the 2021 ACM SIGCOMM2021 Conference, SIGCOMM ’21, 1âĂŞ16, Vir-
tual Event, USA. Association for Computing Machinery, 2021. isbn: 9781450383837.
doi: 10.1145/3452296.3472912. url: https://doi.org/10.1145/3452296.
3472912.

[6] Venkat Arun and Hari Balakrishnan. Copa: Practical Delay-Based Congestion
Control for the Internet. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 329–342, Renton, WA. USENIX Association,
2018. isbn: 978-1-931971-43-0. url: https://www.usenix.org/conference/
nsdi18/presentation/arun.

[7] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh.
The great time series classi�cation bake o�: a review and experimental evaluation
of recent algorithmic advances. Data Mining and Knowledge Discovery, 31(3):606–
660, 2017.

[8] Andrea Baiocchi, Angelo P Castellani, Francesco Vacirca, et al. YeAH-TCP: yet
another highspeed TCP. In.

103

https://www.usenix.org/conference/nsdi24/presentation/agarwal-anup
https://www.usenix.org/conference/nsdi24/presentation/agarwal-anup
https://doi.org/10.1145/3544216.3544223
https://doi.org/10.1145/3544216.3544223
https://doi.org/10.1145/3452296.3472912
https://doi.org/10.1145/3452296.3472912
https://doi.org/10.1145/3452296.3472912
https://www.usenix.org/conference/nsdi18/presentation/arun
https://www.usenix.org/conference/nsdi18/presentation/arun


104 Bibliography

[9] Alex Balford. Akamai improves global delivery performance, 2019. url: https:
//web.archive.org/web/20191219225447/https://blogs.akamai.com/
2019/12/akamai-improves-global-delivery-performance.html.

[10] Simon Bauer, Benedikt Jaeger, Fabian Helfert, Philippe Barias, and Georg Carle.
On the evolution of internet �ow characteristics. In Proceedings of the 2021 Applied
Networking Research Workshop, ANRW ’21, pages 29–35, Virtual Event, USA. As-
sociation for Computing Machinery, 2021. isbn: 9781450386180. doi: 10.1145/
3472305.3472321. url: https://doi.org/10.1145/3472305.3472321.

[11] BBR Congestion Control, 2024. url: https://datatracker.ietf.org/doc/
draft-cardwell-ccwg-bbr/.

[12] BBRv2 alpha Linux code. https://github.com/google/bbr/blob/v2alpha,
2019.

[13] BESS: A Software Switch. https://github.com/NetSys/bess.
[14] Karl Bode. Google’s Network Congestion Algorithm Isn’t Fair, Researchers Say,

2019. url: https://www.vice.com/en/article/xwepkw/googles-network-
congestion-algorithm-isnt-fair-researchers-say.

[15] Lawrence S Brakmo, Sean W O’malley, and Larry L Peterson. TCP Vegas: New
techniques for congestion detection and avoidance. In Proceedings of the conference
on Communications architectures, protocols and applications, pages 24–35, 1994.

[16] Bob Briscoe. Flow rate fairness: Dismantling a religion. ACM SIGCOMM Computer
Communication Review, 37(2):63–74, 2007.

[17] Bob Briscoe, Koen De Schepper, Olivier Tilmans, Mirja Kühlewind, Joakim Misund,
Olga Albisser, and Asad Sajjad Ahmed. Implementing theâĂŹPrague Require-
mentsâĂŹ for Low Latency Low Loss Scalable Throughput (L4S). Netdev 0x13,
2019.

[18] Lloyd Brown, Albert Gran Alcoz, Frank Cangialosi, Akshay Narayan, Mohammad
Alizadeh, Hari Balakrishnan, Eric Friedman, Ethan Katz-Bassett, Arvind Krishna-
murthy, Michael Schapira, and Scott Shenker. Principles for Internet Congestion
Management. In Proceedings of the ACM SIGCOMM 2024 Conference, ACM SIG-
COMM ’24, pages 166–180, Sydney, NSW, Australia. Association for Computing
Machinery, 2024. isbn: 9798400706141. doi: 10.1145/3651890.3672247. url:
https://doi.org/10.1145/3651890.3672247.

https://web.archive.org/web/20191219225447/https://blogs.akamai.com/2019/12/akamai-improves-global-delivery-performance.html
https://web.archive.org/web/20191219225447/https://blogs.akamai.com/2019/12/akamai-improves-global-delivery-performance.html
https://web.archive.org/web/20191219225447/https://blogs.akamai.com/2019/12/akamai-improves-global-delivery-performance.html
https://doi.org/10.1145/3472305.3472321
https://doi.org/10.1145/3472305.3472321
https://doi.org/10.1145/3472305.3472321
https://datatracker.ietf.org/doc/draft-cardwell-ccwg-bbr/
https://datatracker.ietf.org/doc/draft-cardwell-ccwg-bbr/
https://github.com/google/bbr/blob/v2alpha
https://github.com/NetSys/bess
https://www.vice.com/en/article/xwepkw/googles-network-congestion-algorithm-isnt-fair-researchers-say
https://www.vice.com/en/article/xwepkw/googles-network-congestion-algorithm-isnt-fair-researchers-say
https://doi.org/10.1145/3651890.3672247
https://doi.org/10.1145/3651890.3672247


Bibliography 105

[19] Lloyd Brown, Ganesh Ananthanarayanan, Ethan Katz-Bassett, Arvind Krishna-
murthy, Sylvia Ratnasamy, Michael Schapira, and Scott Shenker. On the Future
of Congestion Control for the Public Internet. In Proceedings of the 19th ACM
Workshop on Hot Topics in Networks, HotNets ’20, pages 30–37, Virtual Event, USA.
Association for Computing Machinery, 2020. isbn: 9781450381451. doi: 10.1145/
3422604.3425939. url: https://doi.org/10.1145/3422604.3425939.

[20] Carlo Caini and Rosario Firrincieli. TCP Hybla: a TCP enhancement for heteroge-
neous networks. International journal of satellite communications and networking,
22(5):547–566, 2004.

[21] N. Cardwell, Y. Chen, S. Hassas Yeganeh, and V. Jacobsen. BBR Congestion Control.
IETF Draft draft-cardwell-iccrg-bbr-congestion-control-00, 2017.

[22] N. Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Ian Swett, Victor Vasiliev,
Priyaranjan Jha, Yousuk Seung, Matt Mathis, and Van Jacobson. BBRv2: A Model-
Based Congestion Control. In Presentation in ICCRG at IETF 104th meeting, 2019.

[23] N. Cardwell, Yuchung Cheng, Soheil Hassas Yeganehand Priyaranjan Jha, Yousuk
Seung, Ian Swett, Victor Vasiliev, Bin Wu, Matt Mathis, and Van Jacobson. BBRv2:
A Model-Based Congestion Control IETF 105 Update. In Presentation at IETF105,
2019.

[24] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van
Jacobson. BBR: Congestion-based Congestion Control. Commun. ACM, 60(2):58–66,
January 2017. issn: 0001-0782. doi: 10.1145/3009824. url: http://doi.acm.
org/10.1145/3009824.

[25] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van
Jacobson. BBR Congestion Control. In Presentation in ICCRG at IETF 97th meeting,
2016. url: https://www.ietf.org/proceedings/97/slides/slides- 97-
iccrg-bbr-congestion-control-02.pdf.

[26] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van
Jacobson. BBR Congestion Control: An update. In Presentation in ICCRG at 98th
meeting, 2017.

[27] Neal Cardwell, Yuchung Cheng, Kevin Yang, David Morley, Soheil Hassas Yeganeh,
Priyaranjan Jha, Yousuk Seung, Van Jacobson, Ian Swett, Bin Wu, and Victor
Vasiliev. BBRv3: Algorithm Bug Fixes and Public Internet Deployment. https:
//datatracker.ietf.org/meeting/117/materials/slides- 117- ccwg-
bbrv3-algorithm-bug-fixes-and-public-internet-deployment-00, 2023.

[28] Erik Carlsson and Eirini Kakogianni. Smoother Streaming with BBR, 2018. url:
https://engineering.atspotify.com/2018/08/31/smoother-streaming-
with-bbr/.

https://doi.org/10.1145/3422604.3425939
https://doi.org/10.1145/3422604.3425939
https://doi.org/10.1145/3422604.3425939
https://doi.org/10.1145/3009824
http://doi.acm.org/10.1145/3009824
http://doi.acm.org/10.1145/3009824
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
https://datatracker.ietf.org/meeting/117/materials/slides-117-ccwg-bbrv3-algorithm-bug-fixes-and-public-internet-deployment-00
https://datatracker.ietf.org/meeting/117/materials/slides-117-ccwg-bbrv3-algorithm-bug-fixes-and-public-internet-deployment-00
https://datatracker.ietf.org/meeting/117/materials/slides-117-ccwg-bbrv3-algorithm-bug-fixes-and-public-internet-deployment-00
https://engineering.atspotify.com/2018/08/31/smoother-streaming-with-bbr/
https://engineering.atspotify.com/2018/08/31/smoother-streaming-with-bbr/


106 Bibliography

[29] Dean Carmel and Isaac Keslassy. Dragon�y: In-Flight CCA Identi�cation. In 2023
IFIP Networking Conference (IFIP Networking), pages 1–9, 2023. doi: 10.23919/
IFIPNetworking57963.2023.10186432.

[30] Dah-Ming Chiu and Raj Jain. Analysis of the Increase and Decrease Algorithms for
Congestion Avoidance in Computer Networks. Comput. Netw. ISDN Syst., 17(1):1–
14, June 1989. issn: 0169-7552. doi: 10.1016/0169- 7552(89)90019- 6. url:
http://dx.doi.org/10.1016/0169-7552(89)90019-6.

[31] Cloud�are. Cloud�are Radar, 2024. url: https://radar.cloudflare.com/.
[32] Cloud�are Spped Test, 2024. url: https://speed.cloudflare.com/.
[33] Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael Schapira.

PCC: Re-architecting Congestion Control for Consistent High Performance. In Pro-
ceedings of the 12th USENIX Conference on Networked Systems Design and Implemen-
tation, NSDI’15, pages 395–408, Oakland, CA. USENIX Association, 2015. isbn: 978-
1-931971-218. url: http://dl.acm.org/citation.cfm?id=2789770.2789798.

[34] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,
and Michael Schapira. PCC Vivace: Online-Learning Congestion Control. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),
pages 343–356, Renton, WA. USENIX Association, 2018. isbn: 978-1-931971-43-0.
url: https://www.usenix.org/conference/nsdi18/presentation/dong.

[35] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,
and Michael Schapira. PCC Vivace: Online-Learning Congestion Control. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),
pages 343–356, Renton, WA. USENIX Association, 2018. isbn: 978-1-931971-43-0.
url: https://www.usenix.org/conference/nsdi18/presentation/dong.

[36] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig,
Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink,
Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The Design and Oper-
ation of CloudLab. In Proceedings of the USENIX Annual Technical Conference (ATC),
pages 1–14, July 2019. url: https://www.flux.utah.edu/paper/duplyakin-
atc19.

[37] Margarida Ferreira, Akshay Narayan, Inês Lynce, Ruben Martins, and Justine
Sherry. Counterfeiting Congestion Control Algorithms. In Proceedings of the Twenti-
eth ACMWorkshop on Hot Topics in Networks, HotNets ’21, 132âĂŞ139, Virtual Event,
United Kingdom. Association for Computing Machinery, 2021. isbn: 9781450390873.
doi: 10.1145/3484266.3487381. url: https://doi.org/10.1145/3484266.
3487381.

https://doi.org/10.23919/IFIPNetworking57963.2023.10186432
https://doi.org/10.23919/IFIPNetworking57963.2023.10186432
https://doi.org/10.1016/0169-7552(89)90019-6
http://dx.doi.org/10.1016/0169-7552(89)90019-6
https://radar.cloudflare.com/
https://speed.cloudflare.com/
http://dl.acm.org/citation.cfm?id=2789770.2789798
https://www.usenix.org/conference/nsdi18/presentation/dong
https://www.usenix.org/conference/nsdi18/presentation/dong
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.flux.utah.edu/paper/duplyakin-atc19
https://doi.org/10.1145/3484266.3487381
https://doi.org/10.1145/3484266.3487381
https://doi.org/10.1145/3484266.3487381


Bibliography 107

[38] �ndcdn. https://github.com/cisagov/findcdn.
[39] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the

Internet. IEEE/ACM Transactions on Networking, 7(4):458–472, 1999. doi: 10.1109/
90.793002.

[40] Sally Floyd. Connections with Multiple Congested Gateways in Packet-switched
Networks Part 1: One-way Tra�c. SIGCOMM Comput. Commun. Rev., 21(5):30–
47, October 1991. issn: 0146-4833. doi: 10.1145/122431.122434. url: http:
//doi.acm.org/10.1145/122431.122434.

[41] Sally Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649, December
2003. doi: 10.17487/RFC3649. url: https://www.rfc- editor.org/info/
rfc3649.

[42] Sally Floyd and Mark Allman. Specifying New Congestion Control Algorithms.
RFC 5033, August 2007. doi: 10.17487/RFC5033. url: https://www.rfc-editor.
org/info/rfc5033.

[43] Cheng Peng Fu and Soung C Liew. TCP Veno: TCP enhancement for transmission
over wireless access networks. IEEE Journal on selected areas in communications,
21(2):216–228, 2003.

[44] Jim Gettys and Kathleen Nichols. Bu�erbloat: Dark Bu�ers in the Internet. In
volume 9 of number 11, 40:40–40:54, New York, NY, USA. ACM, November 2011.
doi: 10.1145/2063166.2071893. url: http://doi.acm.org/10.1145/2063166.
2071893.

[45] Petros Gigis, Matt Calder, Lefteris Manassakis, George Nomikos, Vasileios Kotronis,
Xenofontas Dimitropoulos, Ethan Katz-Bassett, and Georgios Smaragdakis. Seven
years in the life of Hypergiants’ o�-nets. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM ’21, pages 516–533, Virtual Event, USA. Association
for Computing Machinery, 2021. isbn: 9781450383837. url: https://doi.org/10.
1145/3452296.3472928.

[46] Sishuai Gong, Usama Naseer, and Theophilus A Benson. Inspector Gadget: A
Framework for Inferring TCP Congestion Control Algorithms and Protocol Con-
�gurations. In Network Tra�c Measurement and Analysis Conference, 2020.

[47] Gordon. https://github.com/NUS- SNL/Gordon/blob/master/Scripts/
tcpClassify.py.

[48] h2load. https://nghttp2.org/documentation/h2load.1.html.
[49] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New TCP-friendly High-speed

TCP Variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July 2008. issn: 0163-5980. doi:
10.1145/1400097.1400105. url: http://doi.acm.org/10.1145/1400097.
1400105.

https://github.com/cisagov/findcdn
https://doi.org/10.1109/90.793002
https://doi.org/10.1109/90.793002
https://doi.org/10.1145/122431.122434
http://doi.acm.org/10.1145/122431.122434
http://doi.acm.org/10.1145/122431.122434
https://doi.org/10.17487/RFC3649
https://www.rfc-editor.org/info/rfc3649
https://www.rfc-editor.org/info/rfc3649
https://doi.org/10.17487/RFC5033
https://www.rfc-editor.org/info/rfc5033
https://www.rfc-editor.org/info/rfc5033
https://doi.org/10.1145/2063166.2071893
http://doi.acm.org/10.1145/2063166.2071893
http://doi.acm.org/10.1145/2063166.2071893
https://doi.org/10.1145/3452296.3472928
https://doi.org/10.1145/3452296.3472928
https://github.com/NUS-SNL/Gordon/blob/master/Scripts/tcpClassify.py
https://github.com/NUS-SNL/Gordon/blob/master/Scripts/tcpClassify.py
https://nghttp2.org/documentation/h2load.1.html
https://doi.org/10.1145/1400097.1400105
http://doi.acm.org/10.1145/1400097.1400105
http://doi.acm.org/10.1145/1400097.1400105


108 Bibliography

[50] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia
Ratnasamy. SoftNIC: A Software NIC to Augment Hardware. Technical report
UCB/EECS-2015-155, EECS Department, University of California, Berkeley, 2015.
url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-
155.html.

[51] Randy L Haupt and Sue Ellen Haupt. Practical genetic algorithms. John Wiley &
Sons, 2004.

[52] David A Hayes and Grenville Armitage. Revisiting TCP congestion control using
delay gradients. In International Conference on Research in Networking, pages 328–
341. Springer, 2011.

[53] Tom Henderson and Sally Floyd. The NewReno Modi�cation to TCP’s Fast Recovery
Algorithm. RFC 2582, April 1999. doi: 10.17487/RFC2582. url: https://www.rfc-
editor.org/info/rfc2582.

[54] M. Hock, R. Bless, and M. Zitterbart. Experimental evaluation of BBR congestion
control. In 2017 IEEE 25th International Conference on Network Protocols (ICNP),
pages 1–10, 2017.

[55] Mario Hock, Roland Bless, and Martina Zitterbart. Experimental evaluation of BBR
congestion control. In 2017 IEEE 25th International Conference on Network Protocols
(ICNP), pages 1–10. IEEE, 2017.

[56] Geo� Huston. BBR TCP. http://www.potaroo.net/ispcol/2017-05/bbr.html, May
2017.

[57] Inspector Gadget. https://github.com/Brown-NSG/inspector-gadget.
[58] iperf3. https://software.es.net/iperf/, 2018.
[59] Alexey Ivanov. Evaluating BBRv2 on the Dropbox Edge Network, 2020. arXiv:

2008.07699. url: https://arxiv.org/abs/2008.07699.
[60] V. Jacobson. Congestion Avoidance and Control. SIGCOMM Comput. Commun. Rev.,

18(4):314–329, August 1988. issn: 0146-4833. doi: 10.1145/52325.52356. url:
http://doi.acm.org/10.1145/52325.52356.

[61] Raj Jain, Dah-Ming Chiu, and W. Hawe. A Quantitative Measure Of Fairness And
Discrimination For Resource Allocation In Shared Computer Systems. DEC TR-301,
1984.

[62] Raj Jain, Dah-Ming Chiu, and William R Hawe. A Quantitative Measure of Fairness
and Discrimination for Resource Allocation in Shared Computer Systems. DEC
Research Report TR-301, 1984.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
https://doi.org/10.17487/RFC2582
https://www.rfc-editor.org/info/rfc2582
https://www.rfc-editor.org/info/rfc2582
https://github.com/Brown-NSG/inspector-gadget
https://software.es.net/iperf/
http://arxiv.org/abs/2008.07699
https://arxiv.org/abs/2008.07699
https://doi.org/10.1145/52325.52356
http://doi.acm.org/10.1145/52325.52356


Bibliography 109

[63] Young-Seon Jeong, Myong K Jeong, and Olufemi A Omitaomu. Weighted dynamic
time warping for time series classi�cation. Pattern Recognition, 44(9):2231–2240,
2011.

[64] Piotr Jurkiewicz, Grzegorz Rzym, and Piotr Borylo. Flow Length and Size Distribu-
tions in Campus Internet Tra�c. arXiv 1809.03486v2, September 2018.

[65] Tom Kelly. Scalable TCP: Improving performance in highspeed wide area networks.
ACM SIGCOMM computer communication Review, 33(2):83–91, 2003.

[66] Eamonn J Keogh and Michael J Pazzani. Scaling up dynamic time warping for
datamining applications. In Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 285–289. ACM, 2000.

[67] Markku Kojo, Pasi Sarolahti, Kazunori Yamamoto, and Max Hata. Forward RTO-
Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission Timeouts
with TCP. RFC 5682, September 2009. doi: 10 . 17487 / RFC5682. url: https :
//www.rfc-editor.org/info/rfc5682.

[68] Christian Kreibich, Nicholas Weaver, Boris Nechaev, and Vern Paxson. iNetalyzr:
Illuminating the Edge Network. In Proceedings of the 10th ACM SIGCOMM Con-
ference on Internet Measurement, IMC ’10, pages 246–259, Melbourne, Australia.
ACM, 2010. isbn: 978-1-4503-0483-2. doi: 10.1145/1879141.1879173. url: http:
//doi.acm.org/10.1145/1879141.1879173.

[69] Ike Kunze, Jan RÃĳth, and Oliver Hohlfeld. Congestion Control in the WildâĂŤIn-
vestigating Content Provider Fairness. IEEE Transactions on Network and Service
Management, 17(2):1224–1238, 2020. doi: 10.1109/TNSM.2019.2962607.

[70] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. The
quic transport protocol: Design and internet-scale deployment. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication, pages 183–
196. ACM, 2017.

[71] A. Legout and E.W. Biersack. Beyond TCP-Friendliness: A New Paradigm for End-
to-End Congestion Control. Technical report, 1999.

[72] Douglas Leith and Robert Shorten. H-TCP: TCP for high-speed and long-distance
networks. In Proceedings of PFLDnet, volume 2004. Citeseer, 2004.

[73] Qingxi Li, Mo Dong, and P. Brighten Godfrey. Halfback: Running Short Flows
Quickly and Safely. In Proceedings of the 11th ACM Conference on Emerging Net-
working Experiments and Technologies, CoNEXT ’15, 22:1–22:13, Heidelberg, Ger-
many. ACM, 2015. isbn: 978-1-4503-3412-9. doi: 10.1145/2716281.2836107. url:
http://doi.acm.org/10.1145/2716281.2836107.

https://doi.org/10.17487/RFC5682
https://www.rfc-editor.org/info/rfc5682
https://www.rfc-editor.org/info/rfc5682
https://doi.org/10.1145/1879141.1879173
http://doi.acm.org/10.1145/1879141.1879173
http://doi.acm.org/10.1145/1879141.1879173
https://doi.org/10.1109/TNSM.2019.2962607
https://doi.org/10.1145/2716281.2836107
http://doi.acm.org/10.1145/2716281.2836107


110 Bibliography

[74] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. Fuzzing:
State of the Art. IEEE Transactions on Reliability, 67(3):1199–1218, 2018. doi: 10.
1109/TR.2018.2834476.

[75] Zachary C. Lipton. The Mythos of Model Interpretability. Queue, 16(3):30:31–
30:57, June 2018. issn: 1542-7730. doi: 10.1145/3236386.3241340. url: http:
//doi.acm.org/10.1145/3236386.3241340.

[76] Shao Liu, Tamer Başar, and Ravi Srikant. TCP-Illinois: A loss and delay-based
congestion control algorithm for high-speed networks. In Proceedings of the 1st
international conference on Performance evaluation methodolgies and tools, 55–es,
2006.

[77] Rob Marvin. Net�ix and YouTube Make Up Over a Quarter of Global Internet
Tra�c. PC Magazine, October 2018.

[78] Saverio Mascolo, Claudio Casetti, Mario Gerla, Medy Y Sanadidi, and Ren Wang.
TCP westwood: Bandwidth estimation for enhanced transport over wireless links.
In Proceedings of the 7th annual international conference on Mobile computing and
networking, pages 287–297. ACM, 2001.

[79] Matt Mathis and Jamshid Mahdavi. Deprecating the TCP macroscopic model.
SIGCOMM Comput. Commun. Rev., 49(5):63–68, 2019. issn: 0146-4833. doi: 10.
1145/3371934.3371956. url: https://doi.org/10.1145/3371934.3371956.

[80] Matthew Mathis, Je�rey Semke, Jamshid Mahdavi, and Teunis Ott. The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm. SIGCOMM Comput. Com-
mun. Rev., 27(3):67–82, July 1997. issn: 0146-4833. doi: 10.1145/263932.264023.
url: http://doi.acm.org/10.1145/263932.264023.

[81] Pedro R Mendes Júnior, Roberto M De Souza, Rafael de O Werneck, Bernardo V
Stein, Daniel V Pazinato, Waldir R de Almeida, Otávio AB Penatti, Ricardo da S
Torres, and Anderson Rocha. Nearest neighbors distance ratio open-set classi�er.
Machine Learning, 106(3):359–386, 2017.

[82] Ayush Mishra and Ben Leong. Containing the Cambrian Explosion in QUIC Con-
gestion Control. In Proceedings of the 2023 ACM on Internet Measurement Conference,
IMC ’23, pages 526–539, Montreal QC, Canada. Association for Computing Ma-
chinery, 2023. isbn: 9798400703829. doi: 10.1145/3618257.3624811. url: https:
//doi.org/10.1145/3618257.3624811.

[83] Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben
Leong. The Great Internet TCP Congestion Control Census. Proc. ACM Meas. Anal.
Comput. Syst., 3(3), 2019. doi: 10.1145/3366693. url: https://doi.org/10.
1145/3366693.

https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1145/3236386.3241340
http://doi.acm.org/10.1145/3236386.3241340
http://doi.acm.org/10.1145/3236386.3241340
https://doi.org/10.1145/3371934.3371956
https://doi.org/10.1145/3371934.3371956
https://doi.org/10.1145/3371934.3371956
https://doi.org/10.1145/263932.264023
http://doi.acm.org/10.1145/263932.264023
https://doi.org/10.1145/3618257.3624811
https://doi.org/10.1145/3618257.3624811
https://doi.org/10.1145/3618257.3624811
https://doi.org/10.1145/3366693
https://doi.org/10.1145/3366693
https://doi.org/10.1145/3366693


Bibliography 111

[84] Ayush Mishra, Wee Han Tiu, and Ben Leong. Are We Heading towards a BBR-
Dominant Internet? In Proceedings of the 22nd ACM Internet Measurement Confer-
ence, IMC ’22, pages 538–550, Nice, France. Association for Computing Machin-
ery, 2022. isbn: 9781450392594. doi: 10.1145/3517745.3561429. url: https:
//doi.org/10.1145/3517745.3561429.

[85] Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, and Scott Shenker. Recursively
Cautious Congestion Control. In Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation, NSDI’14, pages 373–385, Seattle,
WA. USENIX Association, 2014.

[86] Fionn Murtagh and Pierre Legendre. WardâĂŹs hierarchical agglomerative clus-
tering method: which algorithms implement WardâĂŹs criterion? Journal of clas-
si�cation, 31(3):274–295, 2014.

[87] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP
Throughput: A Simple Model and Its Empirical Validation. In Proceedings of the
ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, SIGCOMM ’98, Vancouver, British Columbia,
Canada, 1998. isbn: 1-58113-003-1.

[88] Jitendra Padhye, Jim Kurose, Don Towsley, and Rajeev Koodli. A Model Based
TCP-friendly Rate Control Protocol. In Proceedings of NOSSDAV ’99. Citeseer, 1999.

[89] Jitendra Pahdye and Sally Floyd. On Inferring TCP Behavior. In Proceedings of
the 2001 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM ’01, 287âĂŞ298, San Diego, California, USA.
Association for Computing Machinery, 2001. isbn: 1581134118. doi: 10.1145/
383059.383083. url: https://doi.org/10.1145/383059.383083.

[90] Parsa Pazhooheshy, Soheil Abbasloo, and Yashar Ganjali. Harnessing ML For
Network Protocol Assessment: A Congestion Control Use Case. In Proceedings
of the 22nd ACM Workshop on Hot Topics in Networks, HotNets ’23, pages 213–
219, Cambridge, MA, USA. Association for Computing Machinery, 2023. isbn:
9798400704154. doi: 10.1145/3626111.3628182. url: https://doi.org/10.
1145/3626111.3628182.

[91] Larry Peterson, Lawrence Brakmo, and Bruce Davie. TCP Congestion Control: A Sys-
tems Approach. Systems Approach, 2022. url: https://tcpcc.systemsapproach.
org/design.html#evaluation-criteria.

[92] Larry L Peterson and Bruce S Davie.Computer networks: a systems approach. Morgan
Kaufmann, 2007.

https://doi.org/10.1145/3517745.3561429
https://doi.org/10.1145/3517745.3561429
https://doi.org/10.1145/3517745.3561429
https://doi.org/10.1145/383059.383083
https://doi.org/10.1145/383059.383083
https://doi.org/10.1145/383059.383083
https://doi.org/10.1145/3626111.3628182
https://doi.org/10.1145/3626111.3628182
https://doi.org/10.1145/3626111.3628182
https://tcpcc.systemsapproach.org/design.html#evaluation-criteria
https://tcpcc.systemsapproach.org/design.html#evaluation-criteria


112 Bibliography

[93] Adithya Abraham Philip, Rukshani Athapathu, Ranysha Ware, Fabian Francis
Mkocheko, Alexis Schlomer, Mengrou Shou, Zili Meng, Srinivasan Seshan, and
Justine Sherry. Prudentia: Findings of an Internet Fairness Watchdog. In Proceedings
of the ACM SIGCOMM 2024 Conference, ACM SIGCOMM ’24, pages 506–520, Sydney,
NSW, Australia. Association for Computing Machinery, 2024. isbn: 9798400706141.
doi: 10.1145/3651890.3672229. url: https://doi.org/10.1145/3651890.
3672229.

[94] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,
Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. Searching and
mining trillions of time series subsequences under dynamic time warping. Pro-
ceedings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining - KDD ’12, 2012. doi: 10.1145/2339530.2339576. url: http:
//dx.doi.org/10.1145/2339530.2339576.

[95] Devdeep Ray and Srinivasan Seshan. CC-Fuzz: Genetic Algorithm-Based Fuzzing
for Stress Testing Congestion Control Algorithms. In Proceedings of the 21st ACM
Workshop on Hot Topics in Networks, HotNets ’22, 31âĂŞ37, Austin, Texas. Associa-
tion for Computing Machinery, 2022. isbn: 9781450398992. doi: 10.1145/3563766.
3564088. url: https://doi.org/10.1145/3563766.3564088.

[96] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld. A First Look at
QUIC in the Wild. In Passive and Active Measurement, pages 255–268. Springer
International Publishing, 2018. isbn: 978-3-319-76481-8.

[97] Kimberly Ruth, Aurore Fass, Jonathan Azose, Mark Pearson, Emma Thomas, Caitlin
Sadowski, and Zakir Durumeric. A World Wide View of Browsing the World
Wide Web. In Proceedings of the 22nd ACM Internet Measurement Conference, IMC
’22, 317âĂŞ336, Nice, France. Association for Computing Machinery, 2022. isbn:
9781450392594. doi: 10.1145/3517745.3561418. url: https://doi.org/10.
1145/3517745.3561418.

[98] Kimberly Ruth, Deepak Kumar, Brandon Wang, Luke Valenta, and Zakir Durumeric.
Toppling Top Lists: Evaluating the Accuracy of Popular Website Lists. In Proceedings
of the 22nd ACM Internet Measurement Conference, IMC ’22, 374âĂŞ387, Nice, France.
Association for Computing Machinery, 2022. isbn: 9781450392594. doi: 10.1145/
3517745.3561444. url: https://doi.org/10.1145/3517745.3561444.

[99] Jan RÃĳth, Ike Kunze, and Oliver Hohlfeld. An Empirical View on Content Provider
Fairness. In 2019 Network Tra�c Measurement and Analysis Conference (TMA),
pages 177–184, 2019. doi: 10.23919/TMA.2019.8784684.

[100] Stan Salvador and Philip Chan. Toward Accurate Dynamic Time Warping in Linear
Time and Space. Intell. Data Anal., 11(5):561–580, October 2007. issn: 1088-467X.
url: http://dl.acm.org/citation.cfm?id=1367985.1367993.

https://doi.org/10.1145/3651890.3672229
https://doi.org/10.1145/3651890.3672229
https://doi.org/10.1145/3651890.3672229
https://doi.org/10.1145/2339530.2339576
http://dx.doi.org/10.1145/2339530.2339576
http://dx.doi.org/10.1145/2339530.2339576
https://doi.org/10.1145/3563766.3564088
https://doi.org/10.1145/3563766.3564088
https://doi.org/10.1145/3563766.3564088
https://doi.org/10.1145/3517745.3561418
https://doi.org/10.1145/3517745.3561418
https://doi.org/10.1145/3517745.3561418
https://doi.org/10.1145/3517745.3561444
https://doi.org/10.1145/3517745.3561444
https://doi.org/10.1145/3517745.3561444
https://doi.org/10.23919/TMA.2019.8784684
http://dl.acm.org/citation.cfm?id=1367985.1367993


Bibliography 113

[101] Constantin Sander, Jan Rüth, Oliver Hohlfeld, and Klaus Wehrle. DeePCCI: Deep
Learning-Based Passive Congestion Control Identi�cation. In Proceedings of the
2019 Workshop on Network Meets AI & ML, NetAI’19, 37âĂŞ43, Beijing, China.
Association for Computing Machinery, 2019. isbn: 9781450368728. doi: 10.1145/
3341216.3342211. url: https://doi.org/10.1145/3341216.3342211.

[102] Sandvine. Sandvine’s 2023 global internet phenomena report shows 24% jump
in video tra�c, with Net�ix volume overtaking YouTube, 2023. url: https://
www.prnewswire.com/news-releases/sandvines-2023-global-internet-
phenomena- report- shows- 24- jump- in- video- traffic- with- netflix-
volume-overtaking-youtube-301723445.html.

[103] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmermann,
Stephen D. Strowes, and Narseo Vallina-Rodriguez. A Long Way to the Top: Signif-
icance, Structure, and Stability of Internet Top Lists. In Proceedings of the Internet
Measurement Conference 2018, IMC ’18, 478âĂŞ493, Boston, MA, USA. Association
for Computing Machinery, 2018. isbn: 9781450356190. doi: 10.1145/3278532.
3278574. url: https://doi.org/10.1145/3278532.3278574.

[104] Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer, Daniel Raumer, Fabien
Geyer, and Georg Carle. Towards a Deeper Understanding of TCP BBR Congestion
Control. In IFIP Networking 2018, Zurich, Switzerland, May 2018.

[105] Anant Shah. BBR Evaluation at a Large CDN, 2019.url: https://eng.verizondigitalmedia.
com/2019/09/27/bbr-explore/.

[106] Stanislav Shalunov, Greg Hazel, Jana Iyengar, and Mirja KÃĳhlewind. Low Extra
Delay Background Transport (LEDBAT). RFC 6817, December 2012. doi: 10.17487/
RFC6817. url: https://www.rfc-editor.org/info/rfc6817.

[107] Scott Shenker, Lixia Zhang, and David D Clark. Some observations on the dynamics
of a congestion control algorithm. ACM SIGCOMM Computer Communication
Review, 20(5):30–39, 1990.

[108] Joel Sing and Ben Soh. TCP New Vegas: Improving the performance of TCP Ve-
gas over high latency links. In Fourth IEEE International Symposium on Network
Computing and Applications, pages 73–82. IEEE, 2005.

[109] Specifying New Congestion Control Algorithms, 2024.url: https://datatracker.
ietf.org/doc/draft-ietf-ccwg-rfc5033bis/07/.

[110] Rayadurgam Srikant. The mathematics of Internet congestion control. Springer Sci-
ence & Business Media, 2012.

https://doi.org/10.1145/3341216.3342211
https://doi.org/10.1145/3341216.3342211
https://doi.org/10.1145/3341216.3342211
https://www.prnewswire.com/news-releases/sandvines-2023-global-internet-phenomena-report-shows-24-jump-in-video-traffic-with-netflix-volume-overtaking-youtube-301723445.html
https://www.prnewswire.com/news-releases/sandvines-2023-global-internet-phenomena-report-shows-24-jump-in-video-traffic-with-netflix-volume-overtaking-youtube-301723445.html
https://www.prnewswire.com/news-releases/sandvines-2023-global-internet-phenomena-report-shows-24-jump-in-video-traffic-with-netflix-volume-overtaking-youtube-301723445.html
https://www.prnewswire.com/news-releases/sandvines-2023-global-internet-phenomena-report-shows-24-jump-in-video-traffic-with-netflix-volume-overtaking-youtube-301723445.html
https://doi.org/10.1145/3278532.3278574
https://doi.org/10.1145/3278532.3278574
https://doi.org/10.1145/3278532.3278574
https://eng.verizondigitalmedia.com/2019/09/27/bbr-explore/
https://eng.verizondigitalmedia.com/2019/09/27/bbr-explore/
https://doi.org/10.17487/RFC6817
https://doi.org/10.17487/RFC6817
https://www.rfc-editor.org/info/rfc6817
https://datatracker.ietf.org/doc/draft-ietf-ccwg-rfc5033bis/07/
https://datatracker.ietf.org/doc/draft-ietf-ccwg-rfc5033bis/07/


114 Bibliography

[111] Wei Sun, Lisong Xu, Sebastian Elbaum, and Di Zhao. Model-Agnostic and E�-
cient Exploration of Numerical State Space of Real-World TCP Congestion Control
Implementations. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 719–734, Boston, MA. USENIX Association, Febru-
ary 2019. isbn: 978-1-931971-49-2. url: https://www.usenix.org/conference/
nsdi19/presentation/sun.

[112] Kun Tan, Jingmin Song, Qian Zhang, and Murad Sridharan. A Compound TCP
Approach for High-Speed and Long Distance Networks. In Proceedings-IEEE INFO-
COM, 2006.

[113] Hajime Tazaki, Frédéric Urbani, Emilio Mancini, Mathieu Lacage, Daniel Camara,
Thierry Turletti, and Walid Dabbous. Direct Code Execution: Revisiting Library
OS Architecture for Reproducible Network Experiments. In The 9th International
Conference on emerging Networking EXperiments and Technologies (CoNEXT), Santa
Barbara, United States, December 2013. url: https://inria.hal.science/hal-
00880870.

[114] TCP BBRv3 Release. https://github.com/google/bbr/tree/v3, 2023.
[115] Pratiksha Thaker, Matei Zaharia, and Tatsunori Hashimoto. Don’t Hate the Player,

Hate the Game: Safety and Utility in Multi-Agent Congestion Control. In Pro-
ceedings of the Twentieth ACM Workshop on Hot Topics in Networks, HotNets ’21,
140âĂŞ146, Virtual Event, United Kingdom. Association for Computing Machin-
ery, 2021. isbn: 9781450390873. doi: 10.1145/3484266.3487392. url: https:
//doi.org/10.1145/3484266.3487392.

[116] James Titcomb. Google algorithm ’hogs’ internet tra�c, researchers show, 2019.
url: https://www.telegraph.co.uk/technology/2019/10/27/google-
algorithm-hogs-internet-traffic-researchers-show/.

[117] Charles Truong, Laurent Oudre, and Nicolas Vayatis. Selective review of o�ine
change point detection methods. Signal Processing, 167:107299, 2020. issn: 0165-
1684. doi: https://doi.org/10.1016/j.sigpro.2019.107299. url: https:
//www.sciencedirect.com/science/article/pii/S0165168419303494.

[118] David Tuber. Measuring network quality to better understand the end-user ex-
perience, 2023. url: https://blog.cloudflare.com/aim- database- for-
internet-quality.

[119] Belma Turkovic, Fernando A Kuipers, and Steve Uhlig. Fifty Shades of Congestion
Control: A Performance and Interactions Evaluation. arXiv preprint arXiv:1903.03852,
2019.

https://www.usenix.org/conference/nsdi19/presentation/sun
https://www.usenix.org/conference/nsdi19/presentation/sun
https://inria.hal.science/hal-00880870
https://inria.hal.science/hal-00880870
https://github.com/google/bbr/tree/v3
https://doi.org/10.1145/3484266.3487392
https://doi.org/10.1145/3484266.3487392
https://doi.org/10.1145/3484266.3487392
https://www.telegraph.co.uk/technology/2019/10/27/google-algorithm-hogs-internet-traffic-researchers-show/
https://www.telegraph.co.uk/technology/2019/10/27/google-algorithm-hogs-internet-traffic-researchers-show/
https://doi.org/https://doi.org/10.1016/j.sigpro.2019.107299
https://www.sciencedirect.com/science/article/pii/S0165168419303494
https://www.sciencedirect.com/science/article/pii/S0165168419303494
https://blog.cloudflare.com/aim-database-for-internet-quality
https://blog.cloudflare.com/aim-database-for-internet-quality


Bibliography 115

[120] Belma Turkovic, Fernando A. Kuipers, and Steve Uhlig. Interactions between
Congestion Control Algorithms. In 2019 Network Tra�c Measurement and Analysis
Conference (TMA), pages 161–168, 2019. doi: 10.23919/TMA.2019.8784674.

[121] Un algoritmo di Google "monopolizza" il tra�co web, 2019. url: https://www.
wired.it/internet/web/2019/10/28/google-bbr-traffico-web/.

[122] Arun Venkataramani, Ravi Kokku, and Mike Dahlin. TCP Nice: A mechanism for
background transfers. ACM SIGOPS Operating Systems Review, 36(SI):329–343, 2002.

[123] Weitao Wang, Masoud Moshref, Yuliang Li, Gautam Kumar, T. S. Eugene Ng,
Neal Cardwell, and Nandita Dukkipati. Poseidon: E�cient, Robust, and Practical
Datacenter CC via Deployable INT. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages 255–274, Boston, MA. USENIX
Association, April 2023. isbn: 978-1-939133-33-5. url: https://www.usenix.org/
conference/nsdi23/presentation/wang-weitao.

[124] R. Ware, M. K. Mukerjee, J. Sherry, and S. Seshan. The Battle for Bandwidth:
Fairness and Heterogeneous Congestion Control. In Poster at NSDI 2018, 2018.

[125] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry. Be-
yond Jain’s Fairness Index: Setting the Bar For The Deployment of Congestion
Control Algorithms. In Proceedings of the 18th ACM Workshop on Hot Topics in
Networks, HotNets ’19, 17âĂŞ24, Princeton, NJ, USA. Association for Computing
Machinery, 2019. isbn: 9781450370202. doi: 10.1145/3365609.3365855. url:
https://doi.org/10.1145/3365609.3365855.

[126] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry. Mod-
eling BBR’s Interactions with Loss-Based Congestion Control. In Proceedings of
the Internet Measurement Conference, IMC ’19, pages 137–143, Amsterdam, Nether-
lands. ACM, 2019. isbn: 978-1-4503-6948-0. doi: 10.1145/3355369.3355604. url:
http://doi.acm.org/10.1145/3355369.3355604.

[127] Ranysha Ware, Adithya Abraham Philip, Nicholas Hungria, Yash Kothari, Justine
Sherry, and Srinivasan Seshan. CCAnalyzer: An E�cient and Nearly-Passive Con-
gestion Control Classi�er. In Proceedings of the ACM SIGCOMM 2024 Conference,
ACM SIGCOMM ’24, pages 181–196, Sydney, NSW, Australia. Association for Com-
puting Machinery, 2024. isbn: 9798400706141. doi: 10.1145/3651890.3672255.
url: https://doi.org/10.1145/3651890.3672255.

[128] Contributors to Wikimedia projects, 2023. url: https://en.wikipedia.org/
wiki/Dynamic_time_warping.

https://doi.org/10.23919/TMA.2019.8784674
https://www.wired.it/internet/web/2019/10/28/google-bbr-traffico-web/
https://www.wired.it/internet/web/2019/10/28/google-bbr-traffico-web/
https://www.usenix.org/conference/nsdi23/presentation/wang-weitao
https://www.usenix.org/conference/nsdi23/presentation/wang-weitao
https://doi.org/10.1145/3365609.3365855
https://doi.org/10.1145/3365609.3365855
https://doi.org/10.1145/3355369.3355604
http://doi.acm.org/10.1145/3355369.3355604
https://doi.org/10.1145/3651890.3672255
https://doi.org/10.1145/3651890.3672255
https://en.wikipedia.org/wiki/Dynamic_time_warping
https://en.wikipedia.org/wiki/Dynamic_time_warping


116 Bibliography

[129] Keith Winstein and Hari Balakrishnan. TCP Ex Machina: Computer-generated
Congestion Control. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, SIGCOMM ’13, pages 123–134, Hong Kong, China. ACM, 2013. isbn:
978-1-4503-2056-6. doi: 10.1145/2486001.2486020. url: http://doi.acm.org/
10.1145/2486001.2486020.

[130] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic Forecasts
Achieve High Throughput and Low Delay over Cellular Networks. In Proceedings
of the 10th USENIX Conference on Networked Systems Design and Implementation,
NSDI’13, pages 459–472, Lombard, IL. USENIX Association, 2013. url: http://dl.
acm.org/citation.cfm?id=2482626.2482670.

[131] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary increase congestion control
(BIC) for fast long-distance networks. In IEEE INFOCOM 2004, volume 4, pages 2514–
2524. IEEE, 2004.

[132] Francis Y Yan, Jestin Ma, Greg Hill, Deepti Raghavan, Riad S Wahby, Philip Levis,
and Keith Winstein. Pantheon: the training ground for Internet congestion-control
research. Measurement at http://pantheon. stanford. edu/result/1622, 2018.

[133] Peng Yang, Juan Shao, Wen Luo, Lisong Xu, Jitender Deogun, and Ying Lu. TCP con-
gestion avoidance algorithm identi�cation. IEEE/ACM Transactions On Networking,
22(4):1311–1324, 2013.

[134] Liangcheng Yu, John Sonchack, and Vincent Liu. Cebinae: scalable in-network
fairness augmentation. In Proceedings of the ACM SIGCOMM 2022 Conference, SIG-
COMM ’22, pages 219–232, Amsterdam, Netherlands. Association for Computing
Machinery, 2022. isbn: 9781450394208. doi: 10.1145/3544216.3544240. url:
https://doi.org/10.1145/3544216.3544240.

[135] Zakir Durumeric. https://github.com/zakird/crux-top-lists.
[136] Adrian Zapletal and Fernando Kuipers. Slowdown as a Metric for Congestion Con-

trol Fairness. In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks,
HotNets ’23, pages 205–212, Cambridge, MA, USA. Association for Computing
Machinery, 2023. isbn: 9798400704154. doi: 10.1145/3626111.3628185. url:
https://doi.org/10.1145/3626111.3628185.

[137] Doron Zarchy, Radhika Mittal, Michael Schapira, and Scott Shenker. An Axiomatic
Approach to Congestion Control. In Proceedings of the 16th ACM Workshop on
Hot Topics in Networks, Palo Alto, CA, USA, HotNets 2017, November 30 - December
01, 2017, pages 115–121, 2017. doi: 10.1145/3152434.3152445. url: https:
//doi.org/10.1145/3152434.3152445.

https://doi.org/10.1145/2486001.2486020
http://doi.acm.org/10.1145/2486001.2486020
http://doi.acm.org/10.1145/2486001.2486020
http://dl.acm.org/citation.cfm?id=2482626.2482670
http://dl.acm.org/citation.cfm?id=2482626.2482670
https://doi.org/10.1145/3544216.3544240
https://doi.org/10.1145/3544216.3544240
https://github.com/zakird/crux-top-lists
https://doi.org/10.1145/3626111.3628185
https://doi.org/10.1145/3626111.3628185
https://doi.org/10.1145/3152434.3152445
https://doi.org/10.1145/3152434.3152445
https://doi.org/10.1145/3152434.3152445


Bibliography 117

[138] Danesh Zeynali, Emilia N. Weyulu, Seifeddine Fathalli, Balakrishnan Chandrasekaran,
and Anja Feldmann. Promises and Potential of BBRv3. In Passive and Active Mea-
surement: 25th International Conference, PAM 2024, Virtual Event, March 11âĂŞ13,
2024, Proceedings, Part II, pages 249–272, Berlin, Heidelberg. Springer-Verlag, 2024.
isbn: 978-3-031-56251-8. doi: 10.1007/978-3-031-56252-5_12. url: https:
//doi.org/10.1007/978-3-031-56252-5_12.

[139] Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. On the Characteristics and
Origins of Internet Flow Rates. In Proceedings of the 2002 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM
’02, pages 309–322, Pittsburgh, Pennsylvania, USA. ACM, 2002. isbn: 1-58113-570-X.
doi: 10.1145/633025.633055. url: http://doi.acm.org/10.1145/633025.
633055.

[140] Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang Qin, and Shi-
Min Hu. TCP-Fuzz: Detecting Memory and Semantic Bugs in TCP Stacks with
Fuzzing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages 489–
502. USENIX Association, July 2021. isbn: 978-1-939133-23-6. url: https://www.
usenix.org/conference/atc21/presentation/zou.

https://doi.org/10.1007/978-3-031-56252-5_12
https://doi.org/10.1007/978-3-031-56252-5_12
https://doi.org/10.1007/978-3-031-56252-5_12
https://doi.org/10.1145/633025.633055
http://doi.acm.org/10.1145/633025.633055
http://doi.acm.org/10.1145/633025.633055
https://www.usenix.org/conference/atc21/presentation/zou
https://www.usenix.org/conference/atc21/presentation/zou

	1 Introduction
	1.1 Overview of Contributions

	2 CCAnalyzer: An Efficent and Nearly-Passive Congestion Control Classifier
	2.1 Introduction
	2.2 Prior Work and Limitations
	2.3 Methodology
	2.4 Evaluation
	2.5 CCA Measurement Study of Top 10K Websites
	2.6 Conclusion

	3 Modeling BBR's Interactions with Loss-Based Congestion Control
	3.1 Introduction
	3.2 Testbed
	3.3 BBR In Competition
	3.4 BBR Primer
	3.5 Analysis and Modeling
	3.6 Related Work
	3.7 Conclusion

	4 Beyond Jain's Fairness Index: Setting the Bar For The Deployment of Congestion Control Algorithms
	4.1 Introduction
	4.2 Fairness and Mimicry
	4.3 Harm
	4.4 Concrete Thresholds
	4.5 Open Questions
	4.6 Discussion and Conclusion

	5 RayGen: Evaluating Heterogeneous Congestion Control Algorithm Interactions
	5.1 Introduction
	5.2 Challenges in Evaluating CCA Interactions
	5.3 Motivating A Harm Metric
	5.4 RayGen
	5.5 Evaluation
	5.6 Related Work
	5.7 Conclusion

	6 Conclusion
	6.1 Looking Backwards
	6.2 Looking Forward
	6.3 Impact

	Bibliography

