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Abstract

T
his thesis presents algorithms and data structures for performing
robust computation on surfaces that evolve over time. Throughout
scientific and geometric computing, surfaces are often modeled as
triangle meshes. However, finding high-quality meshes remains a
challenge because meshes play two distinct and often-conflicting

roles: defining both the surface geometry and a space of functions on that surface.
One solution to this dilemma, which has proven quite powerful in recent years, is

the use of intrinsic triangulations to decouple these two concerns. The key idea is that
given a triangle mesh representing an input surface, one can find many alternative
triangulations which encode the exact same intrinsic geometry but offer alternative
function spaces to work in. This techniquemakes it easy to find high-quality intrinsic
triangle meshes, sidestepping the tradeoffs of classical mesh construction. However,
the fact that intrinsic triangulations exactly preserve the input geometry—one of
the central benefits of the technique—also makes it challenging to apply to surfaces
whose geometry changes over time.

In this thesis we relax the assumption of exact geometry preservation, allowing
the intrinsic perspective to be applied to time-evolving surfaces. We take as examples
the problems of mesh simplification and surface parameterization. In the case
of mesh simplification, we provide a general-purpose data structure for intrinsic
triangulations which share only the topological class of the input surface, but may
feature different geometry. In the case of surface parameterization, we build more
efficient data structures and algorithms for the special case where the geometry
changes conformally, using a connection between discrete conformal maps and
hyperbolic geometry. In both cases, we find that the intrinsic perspective leads to
simple algorithms which are still robust and efficient on a variety of examples.
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Chapter 1

Introduction

“You see,” Mrs. Whatsit said, “if a very small insect were to move from the section of skirt in Mrs.

Who’s right hand to that in her left, it would be quite a long walk for him if he had to walk

straight across.”

Madeleine L’Engle, A Wrinkle in Time [1962]

T
he distinction between intrinsic and extrinsic properties has played a central
role throughout the history of differential geometry, dating back to pioneering
work by Gauß [1825] and Riemann [1854] in the early 19th century. Intrinsic
geometry describes the properties of a surface which depend on local measure-
ments along the surface like lengths or angles, independent of the surface’s

embedding in space. A common metaphor—referenced above—is that intrinsic geometry takes
the perspective of an ant walking along the surface. By contrast, extrinsic geometry encompasses
the properties which do depend on the embedding of a surface. Importantly, one can consider
surfaces which have only intrinsic geometry, without any embedding into ambient space. This
intrinsic perspective is famously used in general relativity, where one considers the curved
spacetime of our universe without requiring any larger space for the universe to “curve into”.

More recently, the intrinsic perspective has become a useful tool in geometry processing,
where it allows one to work with triangle meshes which are not embedded into R3—and even
meshes which cannot be embedded into R3. This opens up a larger space of meshes to work in,
providing meshes of much higher quality than is possible extrinsically, while still supporting
a wide variety of geometry processing tasks. However, existing techniques apply only as a
precomputation for static objects: they find alternative representations of fixed objects, but
these representations immediately become invalid if the object deforms.

This thesis begins with a discussion of our integer coordinates data structure for efficiently
encoding static intrinsic triangulations (Chapter 3), before moving on to explore two settings
where intrinsic triangulations sit atop changing geometries:

1. Maintaining an intrinsic triangulation while coarsening a surface to perform intrinsic
simplification (Chapter 5).

2. Using an intrinsic triangulation while parameterizing a surface via discrete conformal
maps (Chapter 4).

1



Chapter 1 Introduction Introduction

Thesis Content
The work described in this thesis was published in several articles, from which much of the
text and figures have been drawn. In particular, see:

Mark Gillespie, Nicholas Sharp, and Keenan Crane (2021a). “Integer Coordinates for
Intrinsic Geometry Processing”. ACM Transactions on Graphics 40.6, pp. 1–13. doi:
10.1145/3478513.3480522.
(code: https://github.com/MarkGillespie/intrinsic-triangulations-demo)

Nicholas Sharp, Mark Gillespie, and Keenan Crane (2021). “Geometry Processing with
Intrinsic Triangulations”. ACM SIGGRAPH 2021 Courses. doi: 10.1145/3450508.3464592.
(code: https://github.com/nmwsharp/intrinsic-triangulations-tutorial)

Mark Gillespie, Boris Springborn, and Keenan Crane (2021b). “Discrete Conformal
Equivalence of Polyhedral Surfaces”. ACM Transactions on Graphics 40.4, pp. 1–20.
doi: 10.1145/3592401.
(code: https://github.com/MarkGillespie/CEPS)

Hsueh-Ti Derek Liu, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson,
and Keenan Crane (2023). “Surface Simplification using Intrinsic Error Metrics”. ACM
Transactions on Graphics 42.4, pp. 1–17. doi: 10.1145/3592403.
(code: https://github.com/HTDerekLiu/intrinsic-simplification/)
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Chapter 2

Background & Related Work

The start of intrinsic geometry was made by Gauss’ paper “Disquisitiones generales circa su-

perficies curvas,” which appeared in 1827. Since that time, intrinsic geometry has advanced so

far that, at present, all of its major issues can be considered solved, at least those that deal with

the geometry of small pieces of regular surfaces . . . Meanwhile, irregular surfaces merit no less

consideration, as they often occur in real life and can be made from, say, a sheet of paper. For

example, any polyhedron or cone, or the surface of a lens with sharp edges are not regular. It is

no wonder then that there is a need to study irregular surfaces, too.

A. D. Alexandrov, Intrinsic Geometry of Convex Surfaces [1948]

P
erhaps the first major result concerning the intrinsic geometry of polyhedra—
rather than smooth surfaces—was Alexandrov’s uniqueness theorem for embed-
dings of convex polyhedra in the 1940s [Alexandrov 1942]. A decade and a half
later Regge [1961] took inspiration from Alexandrov’s work and used intrinsic
polyhedra in his study of numerical general relativity. It is fitting that general

relativity, which motivated much of the development of smooth differential geometry, was also
a key impetus behind the devlopment of discrete differential geometry.

From there, the study of polyhedral intrinsic geometry branched in several direction: Troy-
anov [1986] developed the smooth theory of polyhedra in his study of smooth conformal maps
between polyhedral surfaces, while Rivin [1994a] defined intrinsic Delaunay triangulations of
polyhedral surfaces and introduced the deep connections between Euclidean and ideal hyperbolic
polyhedra. He also introduced the flip algorithm for computing intrinsic Delaunay triangulations.
Several years later Indermitte et al. [2001] fixed a flaw in Rivin’s proof of correctness of the flip
algorithm, although they themselves left open the possibility of a topological obstruction which
was only ruled out by Bobenko & Springborn [2007]. Glickenstein [2005, 2023] generalized the
intrinsic Delaunay triangulation and edge flip algorithm, introducing increasingly broad classes
of triangulations such as weighted, Thurston, and duality triangulations, sharing many of the
important properties of intrinsic Delaunay triangulations. Bobenko & Izmestiev [2008] used
weighted Delaunay triangulations to provide a constructive proof of Alexandrov’s theorem on
isometric embeddings of convex polytopes.

In parallel, intrinsic geometry has developed through the study of discrete conformal maps,
starting with the work of Roček & Williams [1984] on discrete conformal field theories. Discrete
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conformal maps were rediscovered in mathematics by Luo [2004] in his work on combinatorial
Yamabe flow, starting a line of work which culiminated in the discrete uniformization theorem
for polyhedral surfaces [Gu et al. 2018b; a; Springborn 2019].

The computer graphics community was introduced to intrinsic geometry by the work of
Kharevych et al. [2006] and Springborn et al. [2008] on discrete conformal parameterization,
and the work of Fisher et al. [2007] exploring the benefits of intrinsic Delaunay triangulations.
de Goes et al. [2014] went on to explore applications of weighted triangulations in geometry
processing, including architectural design andmesh generation. More recently, Sharp et al. [2019]
proposed a lightweight data structure for computing with intrinsic triangulations, alongside a
suite of novel intrinsic retriangulation algorithms beyond the intrinsic Delaunay flips introduced
by Rivin in the ’90s. Gillespie et al. [2021a] introduced a more robust data structure for encoding
intrinsic triangulations. Since then, intrinsic triangulation have proved useful in a variety
of contexts, from spectral geometry processing [Fumero et al. 2020] to mesh deformation
[Finnendahl et al. 2023]. A more exhaustive survey of the literature on intrinsic triangulations
and their applications was provided by Sharp et al. [2021].

Notably, all past work has considered intrinsic triangulations which are isometric to the
reference input surface—i.e. intrinsic triangulations which preserve the input geometry exactly.
In this thesis, we introduce data strucures an algorithms for manipulating intrinsic triangulations
of surfaces whose geometry changes over time. These data structures necessarily accomodate
intrinsic triangulations whose geometry differs in various ways from the input geometry.

In the rest of this chapter, we review our notation and conventions (Section 2.1), before
providing an introduction to smooth differential geometry (Section 2.2), and the analogous
discrete theory used in this thesis (Section 2.3).

2.1 Notation & Conventions
Throughout, we consider a manifold triangle mesh 𝑀 with vertex set V,
edge set E and face set F. We denote vertices by indices 𝑖 ∈ V and edges
and faces by tuples 𝑖𝑗 ∈ E, 𝑖𝑗𝑘 ∈ F respectively. We also denote the oriented
halfedge pointing from vertex 𝑖 to vertex 𝑗 by ⇀

𝑖𝑗 ∈ H, and the corner of
face 𝑖𝑗𝑘 at vertex 𝑖 as 𝑗𝑘𝑖 ∈ C.

Quantities and functions. The value of a function𝑢 : 𝑉 → R at vertex 𝑖 is written as𝑢𝑖 ; similarly,
values on edges are denoted 𝑢𝑖𝑗 and values on faces are denoted 𝑢𝑖𝑗𝑘 . A value at the corner of
face 𝑖𝑗𝑘 incident on vertex 𝑖 is denoted 𝑢 𝑗𝑘

𝑖
. For instance, the position of a vertex may be denoted

𝑝𝑖 , the length of an edge ℓ𝑖𝑗 , the area of a face 𝐴𝑖𝑗𝑘 , or the angle of a corner 𝜃
𝑗𝑘

𝑖
. It will sometimes

be helpful to think of a function 𝑢 : V→ R defined on vertices as a |V|-dimensional vector—in
this case, we will also write 𝑢 ∈ RV. In general for any set 𝑆 , we use R𝑆 to denote the space of
functions 𝑆 → R (so, e.g., we write a function defined on edges as ℓ ∈ RE or a function defined
on faces as 𝐴 ∈ RF).

Δ-complexes. We allow meshes to feature multiple edges between the same pair of vertices.
Formally, our meshes are general Δ-complexes (see Section 2.3.1 for more discussion of the
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details). Consequently, our edge notation 𝑖𝑗 may not specify a unique edge from the mesh—it is
merely used to indicate a particular edge that happense to go from vertex 𝑖 to vertex 𝑗 (where 𝑖
may equal 𝑗 ). Similar caveats apply to the notation for faces.

Defining the degree of a vertex in a Δ-complex also requires some care, as the same
edge may be incident on a vertex more than once. We define the degree deg(𝑖) as the
number of incident edges counted with multiplicity, i.e., +2 for a self-edge from 𝑖 back
to 𝑖 , and +1 for any other edge 𝑖𝑗 with 𝑗 ≠ 𝑖 . For instance, in the inset figure vertex
𝑖 has degree four, even though it is contained in only three distinct edges; vertices 𝑗
and 𝑘 both have degree one.

Time-evolving meshes. When our mesh changes over times, we denote the original mesh by
𝑀 = (𝑉 , 𝐸, 𝐹 ) and the modified mesh by 𝑀 = (𝑉 , 𝐸, 𝐹 ). Quantities on the modified mesh
are indicated in the same way, so e.g. the edge lengths on the modified mesh are denoted by
ℓ̃ : 𝐸 → R≥0.

2.2 Manifolds
p

p

UpInformally speaking, a manifold is a space which “looks like R𝑛
everywhere”. More formally, a manifold𝑀 is a topological space
where every point 𝑝 ∈ 𝑀 is contained in some open set𝑈𝑝 which
is in continuous bijection with an open set in R𝑛. So a sphere
is a manifold, since every point on the sphere is contained in a
disk which can be mapped continuously to the unit disk in the
plane. By contrast, a double-knapped cone is not a manifold,
because no neighborhood of the tip can be mapped to the plane
by a continuous bijection. Each mapping to the plane is called a chart, as it describes the “terrain”
around a point 𝑝 , and the collection of all of these charts is referred to as an atlas.

So far, our notion of a manifold is purely topological—since our charts are continuous maps,
we have defined manifolds as spaces which look like R𝑛 everywhere as topological spaces. To
move from the world of topology to geometry, we have to equip our manifolds with additional
structure. The twomost important examples in this thesis will be smooth structure ( Section 2.2.1)—
allowing us to talk about differentiability of functions in addition to continuity—and Riemannian

structure (Section 2.2.2)—allowing us to measure lengths and angles along the surface.

2.2.1 Smooth Structure
A smooth structure on a manifold 𝑀 determines which functions 𝑓 : 𝑀 → R are smooth (i.e.
infinitely differentiable). Traditionally, this is expressed using a special atlas of charts which
is declared to be smooth: then a function 𝑓 is smooth on𝑀 if its expression in each chart is a
smooth function on R𝑛 . As long as the charts satisfy some simple compatibility conditions on
their overlaps, then this definition is independent of which particular charts we select from the
atlas to check 𝑓 ’s smoothness [Lee 2012, Chapter 1].
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p
Tangent Spaces A smooth structure on𝑀 allows one to define tangent spaces
associated to points on 𝑀 . Conceptually, the tangent space 𝑇𝑝𝑀 represents
the plane tangent to𝑀 at point 𝑝 , giving a linear approximation of the domain
around this point. Somewhat counterintuitively, these tangent spaces can be
defined purely intrinsically, without any embedding to provide the position of
𝑀 in R𝑛 . The key idea is that tangent vectors can be thought of as derivatives of curves lying on
𝑀 . Since the smooth structure allows us to talk about derivatives of curves, this is enough to
define tangent vectors, and hence tangent spaces. The tangent bundle 𝑇𝑀 is the collection of all
tangent spaces:

𝑇𝑀 :=
⊔
𝑝∈𝑀

𝑇𝑝𝑀. (2.1)

Any smooth mapping 𝑓 : 𝑀 → 𝑁 between manifolds 𝑀 and 𝑁 has a linear approximation
𝑑 𝑓 : 𝑇𝑀 → 𝑇𝑁 which sends tangent vectors on𝑀 to tangent vectors on 𝑁 . This map is often
called the differential, or push-forward, since it pushes vectors from𝑀 to 𝑁 .

It is important to note that these tangent spaces are defined only as abstract vector spaces,
without any canonical choice of basis or inner product. So we can do arithmetic with tangent
vectors—we can add them together or scale them up and down—but we cannot yet measure the
lengths of vectors or angles between them. In the next section we will equip our surfaces with a
Riemannian metric which will provide us with an inner product on our tangent spaces.

Similarly, since tangent vectors based at different points on the surface live in different
tangent spaces, we cannot compare vectors which live at different points—e.g. we cannot ask
whether two vectors point in the “same” direction, since they are elements of different vector
spaces. Later on, we will see how a Riemannian metric also allows us to relate vectors in different
tangent spaces through parallel transport.

Uniqueness of Smooth Structure Topological manifolds of dimension 𝑛 ≤ 3 have a unique
smooth structure (up to diffeomorphism). Interestingly, the standard proof begins by showing
that these manifolds can be triangulated piecewise-linearly [Moise 1952], and then proceeding
to show that such triangulations can be smoothed to obtain a smooth structure [Hirsch & Mazur
1974]. Triangulations, which we use to encode polyhedral surfaces in Section 2.3.1 are also
an essential tool in the continuous setting. On the other hand, higher-dimensional manifolds
may have different smooth structures; for instance, Milnor [1956] famously constructed smooth
structures on the 7-sphere inequivalent to the standard one.

2.2.2 Riemannian Structure

A Riemannian structure on𝑀 allows us to start doing geometry, measuring lengths and angles
and so forth for curves running along 𝑀 . Formally, this structure is usually encoded via a
Riemannian metric 𝑔, which provides an inner product on each tangent space of𝑀 . That is to
say, at each point 𝑝 we have a symmetric, bilinear, positive-definite form 𝑔𝑝 : 𝑇𝑝𝑀 ×𝑇𝑝𝑀 → R.
To emphasize that 𝑔𝑝 is an inner product on 𝑇𝑝𝑀 , we will sometimes write 𝑔𝑝 (𝑋,𝑌 ) as ⟨𝑋,𝑌 ⟩𝑔
for vectors 𝑋,𝑌 ∈ 𝑇𝑝𝑀 , and similarly, we will write 𝑔𝑝 (𝑋,𝑋 ) as ∥𝑋 ∥2𝑝 for vectors 𝑋 ∈ 𝑇𝑝𝑀 .
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Isometries An isometry is a smooth mapping 𝑓 : 𝑀 → 𝑁 between manifolds𝑀 and 𝑁 which
preserves the metric. So, for instance, if 𝛾 is a curve on 𝑀 , then 𝑓 ◦ 𝛾 is a curve of the same
length on 𝑁 . Similarly, if two curves 𝛾1 and 𝛾2 meet at an angle 𝜃 on𝑀 , then the curves 𝑓 ◦ 𝛾1
and 𝑓 ◦ 𝛾1 must meet at the same angle 𝜃 on 𝑁 .

Geodesics To measure the length of a curve 𝛾 : [0,𝑇 ] → 𝑀 , we add up the size of its velocity
at all times from 0 to 𝑇 . More formally, the length of 𝛾 can be expressed as the integral

𝐿(𝛾) :=
∫ 𝑇

0
∥ ¤𝛾 (𝑡)∥𝑔 𝑑𝑡, (2.2)

where ¤𝛾 : [0,𝑇 ] → 𝑇𝑀 is the derivative of 𝛾 . Now that we can measure the lengths of curves
along𝑀 , we can also define distances between points in𝑀 : the distance between points 𝑥 and 𝑦
on𝑀 is simply the length of the shortest path from 𝑥 to 𝑦. If𝑀 is equal to R𝑛 with the standard
metric, then the shortest line between two points will be a straight line connecting them. On
general Riemannian manifolds, then, we thing of shortest paths as generalizations of straight
lines.

A geodesic is a (unit-speed) curve 𝛾 which is a locally shortest path, in the sense that for
sufficiently close times 𝑠 and 𝑡 , 𝛾 follows the shortest path between 𝛾 (𝑠) and 𝛾 (𝑡). However,
𝛾 itself may not be the shortest path between its endpoints. A classic example of a geodesic
which is not a shortest path is a curve wrapping around the equator of the sphere. This is locally
shortest, since over any short time interval it follows a shortest path, but of course walking all
of the way around the sphere is longer than not moving at all.

p

q

γ1

γ2

Parallel Transport If 𝑀 is merely a smooth surface with no
metric, then vectors in different tangent spaces live in totally
separate worlds. It does not even make sense to ask questions like
“do vectors 𝑣 ∈ 𝑇𝑝𝑀 and𝑤 ∈ 𝑇𝑞𝑀 point in the same direction?” or
“which vector𝑤 ∈ 𝑇𝑞𝑀 is most similar to 𝑣 ∈ 𝑇𝑝𝑀?” But if𝑀 has
a Riemannian metric, we can start to relate the different tangent
spaces together. In particular, parallel transport allows us to pick
some curve 𝛾 starting at a point 𝑝 and ending at 𝑞, and allows us
to take a vector 𝑣 ∈ 𝑇𝑝𝑀 and “transport” 𝑣 along the curve 𝛾 to obtain a resulting vector in 𝑇𝑞𝑀 .
Indeed, we can transport our starting vector to any point along the curve 𝛾 , yielding a collection
of vectors which are as “parallel” as possible, according to our metric. However, the result of
parallel transport depends in an essential way on the curve 𝛾—as depicted in the inset, parallel
transporting 𝑣 along different paths 𝛾1 and 𝛾2 will generally result in different vectors in 𝑇𝑞𝑀 .

If 𝛾 is a geodesic, then parallel transport is quite simple. Starting from a vector 𝑣 ∈ 𝑇𝑝𝑀 ,
we use the metric to measure its length ∥𝑣 ∥𝑔, as well as the angle 𝜃 ∈ [0, 2𝜋) between 𝑣 and
the derivative vector 𝛾 ′ at 𝑝 . The result of transporting 𝑣 along 𝛾 to another point 𝑞 ∈ 𝑀 is the
vector 𝑤 ∈ 𝑇𝑞𝑀 with the same magnitude which makes the same angle with 𝛾 ′ at 𝑞. Parallel
transport along general curves, or on manifolds of higher dimension, is more complicated—we
will not use such general parallel transport in this thesis, but the curious reader can find an
introduction in do Carmo [1992, Chapter 2].
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pp
p

Curvature At any point 𝑝 of a Riemannian
manifold𝑀 , theGaussian curvature𝐾𝑝 measures
how “non-flat”𝑀 is around point 𝑝 . Intuitively,
points where 𝐾𝑝 is positive are “round” like the
sphere, points where 𝐾𝑝 is negative are “saddle-
shaped”, and points where𝐾𝑝 is exactly equal to zero are “intrinsically-flat”—they can be unfolded
and laid out in the plane without stretching out the surface. Even though these descriptions
sound extrinsic, as they refer to the shape of the surface in space, one can compute the Gaussian
curvature purely intrinsically, using only the Riemannian metric on𝑀 .

2.2.3 Embeddings

smooth
embedding

not an
embedding

So far, all of our treatment of manifold has been intrin-

sic—we have discussed measurements of lengths, angles,
and curvatures, independent of any ambient space. If we
want work extrinsically—to think about quantities like
positions in space, or surface normals—we can equip our
surface with an embedding 𝑓 : 𝑀 → R3 defining where in
space each point of our surface is situated. An embedding
must satisfy two conditions to define meaningful geom-
etry on our surface: (i) it must be smooth and bijective1
and (ii) its derivative must have full rank everywhere, in define valid normal vectors along the
surface. The inset depicts two mappings from the unit disk into R3. The top map is a smooth
embedding, while the bottom is not, as there are no well-defined normal vectors for points on
the “crease” lying along the center of the surface.

p

f(p)
f

M f(M)

Figure 2.1: An embedding of a sur-
face into R3 allows us to realize tan-
gent vectors as vectors in R3 point-
ing tangent to the surface.

An embedding of a smooth surface𝑀 into R3 also gives
us a notion of geometry on𝑀 . For instance, we can measure
the length of any curve on𝑀 by viewing it as a space curve in
R3 and measuring its length there. Formally, an embedding
𝑓 : 𝑀 → R3 allows us to view any tangent vector 𝑣 ∈ 𝑇𝑝𝑀
as a vector pointing away from the position 𝑓 (𝑝) ∈ R3. So
we can define a Riemannian metric on𝑀 by saying that the
inner product of two tangent vectors is given by mapping
them into R3 and taking the dot product of the resulting
vectors in R3. The mapping of tangent vectors into R3 is

given precisely by the differential 𝑑 𝑓 , so we can write the induced Riemannian metric on𝑀 as
𝑔(𝑋,𝑌 ) = ⟨𝑑 𝑓 (𝑋 ), 𝑑 𝑓 (𝑌 )⟩R3 .

Isometric Embeddings If𝑀 already has a Riemannian metric 𝑔, then we often want to find
isometric embeddings 𝑓 : 𝑀 → R3 where the inner product defined by the embedding coincides
with the existing metric 𝑔. Not every surface has a smooth isometric embedding into R3—for

1technically, one must also require the inverse be smooth. Unlike the case of, say, linear maps (where any
invertible linear map has a linear inverse), the inverse of a smooth bijective function is not necessarily smooth
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instance, the hyperbolic plane has no such embedding (Appendix A). However, it is always
possible to construct an isometric embedding of any orientable surface into R𝑛 for a sufficiently
large dimension 𝑛 [Nash 1956]. Additionally, if we relax our smoothness assumption, we can
find 𝐶1 isometric embeddings of surfaces into R3 [Kuiper 1955; Nash 1954].

2.3 Polyhedral Surfaces

Up

p

p

Informally speaking, a polyhedral surface is a collection of trian-
gles which have been glued together to form a manifold. Just as in
the smooth setting, a triangulated sphere is a manifold, whereas
a double-knapped pyramid is not. And like in the smooth set-
ting, we can consider different structures on a polyhedral surface:
we can consider a triangulation, which yields topological infor-
mation about the surface (Section 2.3.1), and we can consider a
metric (Section 2.3.2), which yields geometric information about
the surface.

2.3.1 Triangulations

Figure 2.2: In a Δ-complex, the vertices of an
edge or triangle may not to be distinct. One
can build a cone by gluing together two edges
of the same triangle (top), or a torus out of two
triangles and just a single vertex (bottom).

In this thesis, we will represent the connectivity of
a polyhedral surfaces using a triangulation. More
precisely, we use a Δ-complex, which consists of
a collection of disjoint triangles along with a pre-
scribed gluing which attaches their vertices and
edges together. Explicitly, this amounts to a col-
lection of triangles 𝑖0 𝑗0𝑘0, . . . 𝑖 |𝐹 | 𝑗 |𝐹 |𝑘 |𝐹 | , alongside
a list of vertex gluings 𝑎 ∼ 𝑏 and a list of edge
gluings (𝑎, 𝑏) ∼ (𝑐, 𝑑), where 𝑎, 𝑏, 𝑐, 𝑑 are vertices
from the disjoint triangles. Figure 2.2 shows some
examples; a more formal definition is provided by
Hatcher [2002, Section 2.1]. Finally, throughout
this thesis we consider only pure 2-complexes, i.e.,
we require that every vertex and edge is contained
in some triangle (and triangles are the cells of great-
est dimension).

Existence Radó [1925] showed that every surface can be triangulated, which is to say that
every topological 2-manifold is homeomorphic to some Δ-complex [Moise 2013, Chapter 8].
Perhaps the more surprising fact is that this theorem is not true in higher dimensions: Kirby &
Siebenmann [1969] showed that topological manifolds of dimension ≥ 6 are triangulable if and
only if a certain cohomology class𝜅 (𝑀) ∈ 𝐻 4(𝑀 ;Z/2Z) vanishes. On the other hand, Whitehead
[1940] showed that every smooth (or even just 𝐶1) manifold can be triangulated—meaning that
the non-triangulable manifolds must be quite pathological. In any case, this thesis only considers
surfaces, where working with triangulations is much more straightforward.
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Equivalence Two triangulations of a manifold are said to be combinatorially equivalent if
they have a common subdivision, i.e. if there is a finer triangulation which can express all faces
of both triangulations as unions of its finer faces. In 1908, Steinitz [1908] and Tietze [1908]
conjectured that any two triangulations of a topological manifold are combinatorially equivalent,
which came to be known as the Hauptvermutung (main conjecture) of geometric topology. This
conjecture holds true in dimensions two [Radó 1925] and three [Moise 1952], but again fails in
higher dimensions [Kirby & Siebenmann 1969].

Although any two triangulations of a given surface are combinatorially equivalent, the
choice of triangulation can have dramatic impacts in practice.

Data Structures Perhaps the most common mesh data structure is the vertex-face adjacency list,
which simply stores the three three vertices associated with each triangle. This representation is
simple and easy to use, as it requires only an |𝐹 | ×3matrix. However, a vertex-face adjacency list
alone does not provide enough information to encode a general Δ-complex: it provides a vertex
gluing map, but leaves the edge gluing map implicit. When working with extrinsic triangle
meshes in R3 this information is sufficient to recover the triangulation, but when working
intrinsically one must store more information.

Fortunately, many of the other standard mesh data structures can be used out of the box to
represent general Δ-complexes. For instance one can use winged-edge or halfedge structures
[Baumgart 1975; Weiler 1985; Kettner 1999]; Botsch et al. [2010] provide an accessible introduc-
tion to these data structures. Alternatively, Sharp & Crane [2020a] observe that one can simply
augment the vertex-face adjacency list with an additional array storing the edge gluing map to
fully encode a general Δ-complex.

Tangent Spaces Away from vertices, tangent vectors on a manifold triangulation are straight-
forward to reason about, especially in our setting of interest where the triangles are given flat
Euclidean metrics (Section 2.3.2). But even at vertices, there are still well-defined tangent spaces.
After all, a manifold 2-dimensional Δ-complex is in particular a topological surface, which has
a unique smooth structure. In the next section, we will use a metric on the triangulation to
construct a convenient parameterization for these tangent spaces.

2.3.2 Polyhedral Geometry

A polyhedral cone metric on a surface𝑀 with vertex set V is a smooth Riemannian metric on the
punctured surface𝑀 \V which is intrinsically flat everywhere. Such a metric can be encoded by
fixing a triangulation T = (V, E, F) of𝑀 (with the same vertex set V) and picking set of positive
edge lengths ℓ : E→ R>0 satisfying the triangle inequality ℓ𝑖𝑗 + ℓ𝑗𝑘 > ℓ𝑘𝑖 at each triangle corner;
conversely, any such set of lengths determines a valid intrinsic metric. Under this metric, each
triangle is isometric to a standard Euclidean triangle with the presecribed edge lengths. One
typically obtains initial edge lengths ℓ𝑖𝑗 = ∥𝑝𝑖 − 𝑝 𝑗 ∥ from input vertex positions 𝑝 : 𝑉 → R3,
but in principle this could be any abstract metric (e.g., coming from a cone flattening [Bobenko
& Springborn 2004]). As usual, this metric allows us to measure lengths and angles along the
surface. For instance, triangle corner angles 𝜃 𝑗𝑘

𝑖
∈ (0, 𝜋) can be determined from the edge

10
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lengths via the law of cosines. Sharp et al. [2021, Appendix A] provide a detailed explanation of
how to compute many geometric quantities of interest from edge lengths.

Curvature Although a polyhedral conemetric is flat almost everywhere, it still has ameaningful
notion of curvature: each interior vertex 𝑖 has an associated discrete Gaussian curvature

Ω𝑖 := 2𝜋 −
∑︁
𝑖𝑗𝑘∋𝑖

𝜃
𝑗𝑘

𝑖
. (2.3)

This angle defect measures the deviation of vertex 𝑖 from being flat, and can be interpreted as
the integral of Gaussian curvature over a small surface patch containing vertex 𝑖 . Similarly, each
boundary vertex has an associate discrete geodesic curvature

𝜅𝑖 := 𝜋 −
∑︁
𝑖𝑗𝑘∋𝑖

𝜃
𝑗𝑘

𝑖
, (2.4)

measuring the deviation of the boundary from a straight line around 𝑖 .

normalize angle

isometric

cu
t

Vertex Tangent Spaces Even though the smooth polyhedral
metric is not technically defined at a vertex 𝑖 , it still provides us
with a convenient parameterization of the tangent space 𝑇𝑖𝑀 .
Any sufficiently small neighborhood of vertex 𝑖 is isometric a
cone of total angle Θ𝑖 . Following Knöppel et al. [2013, Section
6], we express the direction of any tangent vector 𝑣 ∈ 𝑇𝑖𝑀 as a
normalized angle 𝜑 := 2𝜋𝜃/Θ ∈ [0, 2𝜋), where 𝜃 is the angle of
𝑣 relative to an arbitrary but fixed reference edge 𝑖𝑗0, and Θ is
the total angle sum at vertex 𝑖 . The vector itself is then encoded
as a complex number 𝑟𝑒 i𝜑 ∈ C, where i is the imaginary unit
and 𝑟 is the vector’s magnitude. Note that although we have
used the metric to define a particular coordinate system on 𝑇𝑖𝑀 , the tangent space itself is
well-defined independent of our choice of metric.

Discrete Parallel Transport The tangent spaces at adjacent vertices 𝑖 and 𝑗 are a priori just a
pair of abstract vector spaces which are entirely unrelated to each other. However, once we have
equipped our surface with a polyhedral metric we can use parallel transport to map vectors
between the two tangent spaces. Concretely, we let the angular coordinate 𝜑𝑖𝑗 ∈ [0, 2𝜋) encode
the outgoing direction of an oriented edge 𝑖𝑗 from vertex 𝑖; we use 𝑒𝑖𝑗 ∈ 𝑇𝑖𝑀 to denote the
vector with direction 𝜑𝑖𝑗 and magnitude ℓ𝑖𝑗 . The corresponding direction at vertex 𝑗 is given by
𝜑 𝑗𝑖 + 𝜋 . Hence, we can parallel transport vectors from 𝑇𝑖𝑀 to 𝑇𝑗𝑀 following edge 𝑖𝑗 by applying
a rotation 𝑅𝑖𝑗 := 𝑒 i((𝜑 𝑗𝑖+𝜋)−𝜑𝑖𝑗 ) (encoded as a unit complex number). See Sharp et al. [2019, §3.3 &
§5.2] for further discussion.

Barycentric Coordinates Barycentric coordinates provide a convenient coordinate system for
performing calculations on points within a triangle, or defining functions on a triangle. Given a
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triangle 𝑖𝑗𝑘 with vertex positions 𝑝𝑖, 𝑝 𝑗 , 𝑝𝑘 ∈ R2, the three barycentric coordinates 𝑏𝑖, 𝑏 𝑗 , 𝑏𝑘 ∈ R
describe the point 𝑥 = 𝑏𝑖𝑝𝑖 + 𝑏 𝑗𝑝 𝑗 + 𝑏𝑘𝑝𝑘 . This point lies within triangle 𝑖𝑗𝑘 precisely when the
𝑏𝑖 describe a convex combination, i.e. when:

1. 𝑏𝑖 ≥ 0 for all 𝑖 , and

2. 𝑏𝑖 + 𝑏 𝑗 + 𝑏𝑘 = 1.

The barycentric coordinates for a point 𝑥 =
∑
𝑖 𝑏𝑖𝑝𝑖 are invariant under linear maps. That is

to say, if we have some linear function 𝑓 : R2 → R2, then the barycentric coordinates for 𝑥 in
terms of 𝑝𝑖, 𝑝 𝑗 and 𝑝𝑘 are precisely the same as the barycentric coordinates for 𝑓 (𝑥) in terms of
𝑓 (𝑝𝑖), 𝑓 (𝑝 𝑗 ) and 𝑓 (𝑝𝑘). This equivalence follows directly from the linearity of 𝑓 , just using the
fact that 𝑓 (∑𝑖 𝑏𝑖𝑝𝑖) =

∑
𝑖 𝑏𝑖 𝑓 (𝑝𝑖), but has the important consequence that we can use barycentric

coordinates to refer to points in a triangle independent of its vertex positions. For instance, the
coordinates (1, 0, 0) always refer to vertex 𝑖 , and the coordinates

( 1
3 ,

1
3 ,

1
3
)
always refer to the

center of mass, no matter where the vertices of the triangle are located. Consequently, we will
often use barycentric coordinates to refer to points on an intrinsic triangulation, even when the
triangles have no canonically-defined vertex positions.

Homogeneous barycentric coordinates. When working with conformal maps, it will often be
convenient to use barycentric coordinates which are not normalized to have unit sum. Given
three vertex positions 𝑝𝑖, 𝑝 𝑗 , 𝑝𝑘 ∈ R2 we say that a triple of coordinates 𝑏𝑖, 𝑏 𝑗 , 𝑏𝑘 ∈ R (which does
not necessarily sum to 1) corresponds to the point

𝑥 = 1
𝑏𝑖+𝑏 𝑗+𝑏𝑘

(
𝑏𝑖𝑝𝑖 + 𝑏 𝑗𝑝 𝑗 + 𝑏𝑘𝑝𝑘

)
. (2.5)

These non-normalized barycentric coordinates can be viewed as homogeneous coordinates on
R2, so we will also refer to them as homogeneous barycentric coordinates.

Barycentric coordinates on edges. In addition to using barycentric coordinates on triangles, we
will often use barycentric coordinates to refer to points lying along edges of our mesh. The
coordinates (𝑏𝑖, 𝑏 𝑗 ) correspond to the point 𝑥 = 𝑏𝑖𝑝𝑖 + 𝑏 𝑗𝑝 𝑗 along edge 𝑖𝑗 . If we also require that
the coordinates sum to 1, then one of these values is redundant. We use the convention that the
scalar barycentric coordinate 𝑡𝑖𝑗 ∈ R corresponds to the point 𝑥 = (1 − 𝑡𝑖𝑗 )𝑝𝑖 + 𝑡𝑖𝑗𝑝 𝑗 , so that 𝑡 = 0
corresponds to the starting vertex 𝑖 and 𝑡 = 1 corresponds to the ending vertex 𝑗 .

Of course, if we wish to use homogeneous barycentric coordinates along edge 𝑖𝑗 , then there
is no redundancy and we need to store the values of both 𝑏𝑖 and 𝑏 𝑗 explicitly.

Exponential and Logarithmic Map The exponential map
exp𝑥 (𝑢) of a tangent vector 𝑢 at point 𝑥 computes the point 𝑝
reached by starting at point 𝑥 and walking straight (i.e., along a
geodesic) with initial direction 𝑢 for a distance ∥𝑢∥ (inset, left).
Concretely, this can be evaluated by laying out the relevant se-
quence of triangles in the plane and drawing a straight line (inset,
right). Note that for any oriented edge 𝑖𝑗 we have exp𝑖 (𝑒𝑖𝑗 ) = 𝑗 . Conversely, the logarithmic
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map log𝑥 (𝑝) of a given point 𝑝 ∈ 𝑀 taken at point 𝑥 gives the smallest tangent vector 𝑢 at 𝑥
such that exp𝑥 (𝑢) = 𝑝 . Hence, for any point 𝑝 and veretx 𝑖 , we have that exp𝑥 (log𝑥 (𝑝)) = 𝑝 .
However, it is not necessarily the case that for any tangent vector 𝑣 we have log𝑥 (exp𝑥 (𝑣)) = 𝑣 ,
since there may be a shorter path leading to the same destination. In particular, log𝑖 ( 𝑗) may not
always yield the edge vector 𝑒𝑖𝑗 .

2.3.3 Retriangulation
We can represent the intrinsic geometry of a polyhedral surface by recording the edge lengths
for any triangulation of its vertices. However, not all triangulations serve equally well when we
start trying to do computations on the surface. For instance, when considering scalar functions
defined on the surface, we often work with piecewise-linear functions which are linear on each
triangle. So even if two triangulations may encode the exact same geometry, they might still
provide us with different function spaces—and as we will see in Section 3.6, some function spaces
work much better than others. The most basic way of improving the quality of a triangulation is
to perform intrinsic edge flips, which modify the triangulation while preserving the vertex set.

edge flip

not flippable

Intrinsic Edge Flip Consider an edge 𝑖𝑗 contained in triangles
𝑖𝑗𝑘, 𝑗𝑖𝑙 . An edge flip replaces 𝑖𝑗 with the opposite diagonal 𝑘𝑙 . An
edge 𝑖𝑗 is flippable if and only if

(i) deg 𝑖, deg 𝑗 ≥ 2 and

(ii) triangles 𝑖𝑗𝑘, 𝑗𝑖𝑙 form a convex quadrilateral,

i.e., if both 𝜃 𝑗𝑘
𝑖
+ 𝜃 𝑙 𝑗

𝑖
and 𝜃𝑘𝑖𝑗 + 𝜃 𝑖𝑙𝑗 are less than 𝜋 [Sharp & Crane

2020c, §3.1.3]. Note that these conditions are considerably easier
to check than in the extrinsic case [Liu et al. 2020, Appendix C].
One can write down explicit formulas to compute the new lengthℓ𝑙𝑘 , as well as the angular
coordinates 𝜑⇀

𝑙𝑘 and 𝜑⇀
𝑘𝑙 if desired (see e.g. Section 3.4.2 and Appendix A of Sharp et al. [2021]).

Intrinsic Delaunay Triangulations A planar triangulation is Delau-
nay if there are no vertices inside any triangle circumcircle. Equivalently,
we can ask that every interior edge 𝑖𝑗 satisfy the local Delaunay condition

𝜃
𝑖𝑗

𝑘
+ 𝜃 𝑗𝑖

𝑙
≤ 𝜋. (2.6)

Note that if both triangles are inscribed in a common circle, then either diagonal satisfies
Equation (2.6). This characterization generalizes to Euclidean polyhedra, since the edge lengths
ℓ are sufficient to determine the angles 𝜃 . Such intrinsic Delaunay triangulations extend many
useful properties of 2D Delaunay triangulations to surface meshes—[Sharp et al. 2021, §4.1.1]
gives a detailed list. Intrinsic delaunay triangulations can be found via a simple greedy algorithm:
flip any non-Delaunay edge (i.e. any edge violating Equation (2.6)) until none remain [Bobenko
& Springborn 2007]. This algorithm terminates after finitely many flips [Indermitte et al. 2001;
Bobenko & Springborn 2007], and in practice takes about |E| flips on real-world meshes [Sharp
et al. 2019, Figure 10].
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2.3.4 Polyhedral Embeddings
We can describe the extrinsic geometry of a polyhedral surface 𝑀 by picking a triangulation
T = (V, E, F) and equipping it with a set of vertex positions 𝑝 : V → R3. We often think
of intrinsic geometry as a generalization of this kind of extrinsic geometry because—as in
the smooth setting—an embedding into R3 immediately defines the intrinsic geometry of our
polyhedron as well: we can easily read off the edge lengths ℓ𝑖𝑗 := ∥𝑝𝑖 − 𝑝 𝑗 ∥R3 . However, the
reverse direction is far harder.

i

i i

i
i

i
j j

k
k

must refine
before embedding

easy to
embed

nonconvex
metric

convex
metric

l

i

i

i
j

kl

l

i

j
k

l

Figure 2.3: Top: Any convex polyhedral
surface can be isometrically embedded
into R3, possibly after performing intrin-
sic edge flips. Bottom: A nonconvex poly-
hedron (with negative angle defect at 𝑖)
cannot be isometrically embedded with-
out refining the triangulation.

Alexandrov [1942] showed that any convex intrinsic
polyhedron 𝑀 (i.e. any polyhedral cone metric whose
angle defects are all nonnegative) has a unique isometric
embedding into R3 as a convex polyhedron. Bobenko &
Izmestiev [2008] provide a constructive proof by lever-
aging a surprising connection to weighted Delaunay tri-

angulations. One challenging aspect of the problem is
the choice of triangulation—although the theorem guar-
antees that some triangulation of our polyhedron𝑀 can
be embedded into R3, not every triangulation can be
isometrically embedded. Consequently, in order to con-
struct an isometric embedding one must also identify
which triangulation of𝑀 may be embedded. However,
if the polyhedral surface is convex, then one can always
find an embeddable triangulation simply by performing
edge flips—adding additional vertices is never necessary.

In the general, nonconvex case isometric embeddings
are still guaranteed to exist, but our triangulation may
need to be refined. Burago & Zalgaller [1960, 1995]
showed that after subdividing the triangulation finitely many times, one can always construct
a piecewise-linear isometric embedding of any polyhedral surface 𝑀 into R3. However, their
construction produces highly corrugated surfaces which can feature wrinkles of arbitrarily high
frequency—constructing smoother isometric embeddings of triangle meshes is still an active
area of research (see, e.g., [Chern et al. 2018] or [Sassen et al. 2024]).
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Chapter 3

Integer Coordinates for
Intrinsic Triangulations

God made the integers, all else is the work of man.

Leopold Kronecker [1886]

B
efore diving in to time-evolving intrinsic triangulations, we start with a simpler
problem: how should you encode an ordinary intrinsic triangulation? If you
only care about the intrinsic geometry itself, the answer is easy: the geometry
is determined by the edge lengths ℓ : E → R>0. But often, we care not only
about the geometry of the intrinsic triangulation, but also about its relationship

to some input mesh. For instance, we often start with an extrinsic triangle mesh and compute
an alternative triangulation of the same surface by performing intrinsic edge flips. In this case
we might want to know how to map points between the two triangulations: given some point 𝑝
lying in face 𝑖𝑗𝑘 of the input triangulation, where does 𝑝 lie on the intrinsic triangulation? Or
we might want to map functions between the triangulations: given a piecewise-linear function 𝑓
computed on the intrinsic triangulation, how can we plot this function over the input triangles?
These questions concern not just the intrinsic triangulation, but its correspondence with the input
mesh. In this chapter we describe a data structure for encoding the correspondence between
two triangulations. While we specialize to the traditional case of two triangulations sharing the
same geometry, ideas developed here will play important roles in our treatment of time-evolving
geometries in the following chapters.

Problem Statement
Explicitly, suppose we have two manifold triangulations T1 = (V1, E1, F1) and T2 = (V2, E2, F2),
each equipped with a set of edge lengths ℓ𝑖 : E𝑖 → R>0 defining an intrinsic metric on each
surface. We additionally assume that the two surfaces are isometric—i.e. that there is a
bijective mapping between the two surfaces which preserves distances. Our goal in this
chapter is to develop a data structure which can efficiently encode this mapping, and can
be efficiently updated as the triangulations are modified (e.g. by flipping edges or inserting
vertices).
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We begin by considering the special case where both triangulations share the same vertex
set. This case already allows us to compute intrinsic Delaunay triangulations (Section 2.3.3),
which have a wide variety of applications and play a key role in Chapter 4. In Section 3.5.1
we describe how the data structure can be adapted to support the insertion of new vertices
into T2, opening the doors to more advanced retriangulations schemes like intrinsic Delaunay
refinement (Section 3.6). The ideas discussed in this chapter were published in Gillespie et al.
[2021b] and Gillespie et al. [2021a]—note that the two works used slightly different conventions1;
this chapter follows the latter, which supports a wider variety of mesh operations.

3.1 Correspondence Data
Our data structure consists of two pieces types data. We maintain

(1) normal coordinates 𝑛 : E2 → Z, which count how many times T1 crosses each edge of T2
(Section 3.1.1),

(2) roundabouts 𝑟 : H2 → Z, which give the circular ordering of halfedges from both T1 and
T2 around each vertex (Section 3.1.2),

which amounts to 3|E2 | integer values, a small fraction of the cost already required to store
triangulations T1 and T2. The normal coordinates can be used to trace geodesic curves from
each vertex 𝑖 to all vertices 𝑗 adjacent to 𝑖 in T1, yielding a collection of curves lying along
T2. However, they provide only the unordered set of curves, but do not identify which curve
corresponds to which logical edge of T1. Determining which curve corresponds to which edge
can be surprisingly difficult since our meshes may have multiple edges between the same pair
of vertices—we use the roundabouts to identify traced curves along T2 with logical edges of T1.

3.1.1 Normal Coordinates

2
2

2

2
11111

1
1

1 1
12

2

2

2
11111

1
1

1 1
1

Figure 3.1: Traditionally, normal coordi-
nates encode a curve on a triangulated
surface by counting how many times the
curve crosses each edge.

Normal coordinates represent a curve sitting atop a tri-
angulated surface by recording the number of times that
the curve crosses each edge2 (Figure 3.1). They were
originally developed one dimension higher, to study
surfaces embedded in 3-manifolds [Kneser 1929; Haken
1961; Hass & Trnkova 2020], but have spread through-
out topology—e.g., providing a key tool for studying
the “mapping class group” of a surface [Farb & Mar-
galit 2011; Bell 2015; 2013; Schaefer et al. 2008]. Normal
coordinates have also found use as an efficient curve
encoding for computational geometry [Erickson & Nayyeri 2013], since storing the number of
intersections requires exponentially less space than recording each intersection individually.

1In particular, Gillespie et al. [2021b] set 𝑛𝑖𝑗 = 0 for edges 𝑖𝑗 shared by both triangulations, whereas Gillespie
et al. [2021a] set 𝑛𝑖𝑗 = −1 for edges shared by both triangulations and reserve 𝑛𝑖𝑗 = 0 to mark edges of E2 which are
not present in T1 but also intersect no edges from T1. This situation is impossible if T1 and T2 share the same vertex
set, but is important to handle correctly if one wants to insert new vertices into T2.

2Not to be confused with geodesic normal coordinates from Riemannian geometry, which are entirely unrelated.
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intersection U-turn

normal
curveThere are just two normality conditions that the curve must satisfy

in each face in order to be encoded via normal coordinates:

(1) it cannot intersect itself, and

(2) it cannot make a “U-turn”—i.e. it cannot enter a face and then
exit through the same edge.

If these two conditions are satisfied then the normal coordinates are sufficient to determine
the curve, modulo homotopies which do not pass through vertices. Equivalently, normal
coordinates determine the sequence of triangles that the curve passes through. And in addition
to representing a single curve, normal coordinates can simultaneously encode several curves
sitting on the same surface. No matter how many curves are present, one still stores a single
integer per edge of the triangulation counting how many times any curve crosses that edge.

Our use of normal coordinates deviates from the standard treatment in several. First, rather
than working in the topological setting of curves on smooth surfaces, we consider geodesic
curves on Riemannian manifolds with Euclidean metrics. Using geodesics allows us to recover
the exact path of the curve along the surface without having to work modulo homotopy.

U-turn valid

Second, rather than working with closed curves, we assume that
our normal coordinates encode the edges of a second triangulation of
the surface. In particular, each curve is topologically equivalent to a
line segment connecting two vertices. Such curves must obey the two
ordinary normality conditions, and we additionally require that curves which enter a triangle
through a vertex must exit via the opposite edge (see inset). These assumptions allow us to
introduce a new edge flip formula, given in Section 3.1.1.

Finally, we need to decide which triangulation to store normal coordinates on. In the setting
of intrinsic triangulations, where we think of T2 as sitting atop T1, it may feel more natural
to store normal coordinates on the edges of T1 to encode the paths taken by the edges of T2.
However, the situation is symmetric and we can also store normal coordinates on T2 to encode the
paths taken by the edges of T1. And indeed, this second option allows us to implement intrinsic
edge flips more efficiently: if we wish to flip an edge 𝑖𝑗 of T2, but store normal coordinates on
edges of T1, then we must update the normal coordinates on every edge of T1 which 𝑖𝑗 crosses
(Figure 3.2, left). Since 𝑖𝑗 could cross arbitrarily many edges of T1, this update could be quite

Figure 3.2: We could represent the correspon-
dence between triangulations T1 and T2 using
normal coordinates on the edges of T1 (left),
or on edges of T2 (right). The latter is easier
to update following an edge flip: if we flip
the highlighted edge, we need to update the
three highlighted normal coordinates in the
former case, but we only need to update the
normal coordinate on the flipped edge in the
latter case.
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expensive. However, if we store normal coordinates on the edges of T2, then when flipping 𝑖𝑗 we
only have to update the normal coordinate on 𝑖𝑗 itself, so our update will always run in constant
time (Figure 3.2, right). In addition, storing normal coordinates on edges of T2 is essential when
the adding new vertices into triangulation T2 (Section 3.5.1).
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Figure 3.3: The normal coordinates 𝑛𝑖𝑗 count
the number of times each edge 𝑖𝑗 ∈ E2
crosses any edge of the other triangulation
T1. These counts can be used to determine
other quantities, e.g. how many edges of T1
cross or leave a corner of a triangle from T2.

Formal Definition We store normal coordinates on
the edges of T2 which count intersections with edges
of T1. In particular, for each edge 𝑖𝑗 of T2, we store the
number of times 𝑛𝑖𝑗 ∈ Z that any edge of T1 crosses 𝑖𝑗
transversally (Figure 3.3, left); if 𝑖𝑗 is shared between
T2 and T1, we assign it a special value of 𝑛𝑖𝑗 = −1.
The value 𝑛+𝑖𝑗 := max(𝑛𝑖𝑗 , 0) hence gives the number
of transversal crossings; the value 𝑛−𝑖𝑗 := −min(𝑛𝑖𝑗 , 0)
is 1 on shared edges and 0 otherwise3.

From these numbers we can determine howmany
edges in T1 emanate from corner 𝑖𝑗

𝑘
in T2 (excluding

those along edges of T2) :

𝑒
𝑖𝑗

𝑘
:= max(0, 𝑛+𝑖𝑗 − 𝑛+𝑗𝑘 − 𝑛

+
𝑘𝑖
). (3.1)

Likewise, the number of edges crossing corner 𝑖𝑗
𝑘
is

𝑐
𝑖𝑗

𝑘
:= 1

2

(
max

(
0, 𝑛+

𝑗𝑘
+ 𝑛+

𝑘𝑖
− 𝑛+𝑖𝑗

)
− 𝑒 𝑗𝑘

𝑖
− 𝑒𝑘𝑖𝑗

)
. (3.2)

See Figure 3.3, right for examples. For curves that do not touch vertices, the corner coordinates
𝑐 are essentially dual to the normal coordinates 𝑛—see Erickson & Nayyeri [2013, Section 2.3].

Validity Not every assignment of integers to edges of T2 form a valid set of
normal coordinates: for instance, it is impossible for a closed curve to intersect
each edge in a given face exactly once. The normal coordinates used in our
data structure are always valid by construction, so an explicit treatment of
the validity conditions for normal coordinates is not necessary to use them
to encode intrinsic triangulations, but it may nonetheless be illuminating to consider which
assignments of integers to edges serve as valid normal coordinates.

In the traditional setting, when the normal coordinates encode a collection of closed curves,
there are two validity conditions on the normal coordinates on the edges of for each triangle:

1. their sum must be even, and

2. they must obey the triangle inequality.

(see e.g. Thurston & Yuan [2012, Lecture 2]). The first condition must hold, since every curve
which enters the triangle via one crossing must then exit through another, leaving an even
number of crossings on the triangle’s boundary. The second condition must hold since a normal
curve which enters the triangle through one edge must exit through a different edge.

3Note that we follow the convention of Gillespie et al. [2021a], rather than Gillespie et al. [2021b] who set
𝑛𝑖𝑗 = 0 for parallel edges.
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i

j

k

In our setting, where we use normal coordinates to encode edges of a geodesic
triangulation, the validity conditions become slightly more complicated. Of
course, if the values 𝑛𝑖𝑗 , 𝑛 𝑗𝑘 , 𝑛𝑘𝑖 satisfy the two original conditions then they are
valid. But we now have other valid normal coordinates as well. For instance,
the inset depicts a triangle where the normal coordinates have odd sum, and
fail to obey the triangle inequality, but still correspond to a valid set of curves
passing through the triangle. The validity conditions for our normal coordinates may be stated
as follows: if the values 𝑛+𝑖𝑗 , 𝑛

+
𝑗𝑘
, 𝑛+
𝑘𝑖
obey the triangle inequality, then they must have even sum.

If they violate the triangle inequality, then any values are valid.

i

j

l
k

Normal Coordinate Edge Flip Consider two triangles 𝑖𝑗𝑘, 𝑗𝑖𝑙 from T2. In
the simple case where no edge from T1 terminates in a corner of either triangle
(see inset), there is an edge flip update that resembles the Ptolemy relation for
inscribed quadrilaterals [Mosher 1988; Thurston & Yuan 2012, Equation 1]:

𝑛𝑘𝑙 = max(𝑛𝑘𝑖 + 𝑛𝑙 𝑗 , 𝑛 𝑗𝑘 + 𝑛𝑙𝑖) − 𝑛𝑖𝑗 . (3.3)

In the general case, we must derive a more complicated formula:

𝑛𝑘𝑙 = 𝑐
𝑗𝑘

𝑙
+ 𝑐𝑖𝑗

𝑘
+ 1

2

���𝑐𝑖𝑙𝑗 − 𝑐𝑘𝑖𝑗 ��� + 1
2

���𝑐𝑙 𝑗𝑖 − 𝑐 𝑗𝑘𝑖 ��� − 1
2𝑒

𝑗𝑖

𝑙
− 1

2𝑒
𝑖𝑗

𝑘
+ 𝑒𝑙 𝑗

𝑖
+ 𝑒 𝑗𝑘

𝑖
+ 𝑒𝑖𝑙𝑗 + 𝑒𝑘𝑖𝑗 + 𝑛−𝑖𝑗 . (3.4)
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Figure 3.4: Edges of quadri-
lateral 𝑖𝑘𝑗𝑙 come in 6 types.
The first four each intersect
edge 𝑙𝑘 , contributing to Equa-
tion (3.4), while the last two do
not.

To understand Equation (3.4) of Section 3.1.1, consider first the
case that 𝑙𝑘 is not an edge of T1. Then the edges of T1 intersect the
interior of the quadrilateral in segments of the following types
(Figure 3.4):

1. crossing corner 𝑙 of 𝑗𝑖𝑙 or crossing corner 𝑘 of 𝑖𝑗𝑘

2. crossing corners 𝑖 of 𝑗𝑖𝑙 and 𝑗 of 𝑖𝑗𝑘 , or crossing corners
𝑗 of 𝑗𝑖𝑙 and 𝑖 of 𝑖𝑗𝑘

3. emanating in corner 𝑖 or 𝑗 of 𝑗𝑖𝑙 or 𝑖𝑗𝑘

4. the edge 𝑖𝑗

5. crossing both corners 𝑖 of 𝑖𝑗𝑘 and 𝑗𝑖𝑙 or both corners 𝑗 of
𝑖𝑗𝑘 and 𝑗𝑖𝑙

6. emanating in corner 𝑙 of 𝑗𝑖𝑙 or emanating in corner 𝑘 of 𝑖𝑗𝑘

Segments of types 1–4 are counted by

1. 𝑐𝑖𝑗
𝑙
+ 𝑐𝑖𝑗

𝑘

2. 1
2
��𝑐𝑖𝑙𝑗 − 𝑐𝑘𝑖𝑗 �� + 1

2
��𝑐𝑙 𝑗
𝑖
− 𝑐 𝑗𝑘

𝑖

�� − 1
2𝑒

𝑗𝑖

𝑙
− 1

2𝑒
𝑖𝑗

𝑘

3. 𝑒𝑙 𝑗
𝑖
+ 𝑒 𝑗𝑘

𝑖
+ 𝑒𝑖𝑙𝑗 + 𝑒𝑘𝑖𝑗

4. 𝑛−𝑖𝑗
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and each contributes 1 to 𝑛 𝑗𝑘 , while segments of types 5–6 contribute 0. To see the counting
formulas for cases 2 and 4, note that 1

2
��𝑐𝑖𝑙𝑗 − 𝑐𝑘𝑖𝑗 �� + 1

2
��𝑐𝑙 𝑗
𝑖
− 𝑐 𝑗𝑘

𝑖

�� counts #{type 2} + 1
2 #{type 6}, and

that 𝑛−𝑖𝑗 = 1 if and only if 𝑖𝑗 is also an edge of T1.
Finally, if 𝑙𝑘 is an edge of T1, then term 2 above is −1 and terms 1, 3, and 4 are zero (since 𝑙𝑘

cannot intersect other edges of T1). So Equation (3.4) is satisfied with both sides equal to −1.

3.1.2 Roundabouts

i
j

k

lAlthough normal coordinates completely describe a triangulation sitting
on top of T2, they do not tell us how the edges of this triangulation
correspond to the edges of T1: as noted in Section 2.1, two endpoints may
not uniquely identify an edge. For instance, the two highlighted edges on
the tetrahedron drawn in the inset both connect vertex 𝑖 to vertex 𝑗 , so
if we obtain a path from 𝑖 to 𝑗 from our normal coordinates, it is hard to
tell a priori which edge the path describes.

i

0

12

3

4

halfedge of T1

halfedge of T2

both T1 and T2

roundabout

33
44 44

00
00

00
11

Figure 3.5: For each halfedge of T2, the
roundabout gives the next halfedge of T1.

We therefore augment our normal coordinates with
what we call roundabouts, in analogy with roundabouts
or traffic circles found on roadways. At each vertex
𝑖 ∈ V, these roundabouts describe how the outgoing
halfedges of the two triangulations are interleaved.

Conceptually, for each halfedge⇀𝑖𝑗 ∈ H2, the round-
about tells us the first halfedge from T1 counterclock-
wise from ⇀

𝑖𝑗 around vertex 𝑖 . In practice, we encode
the halfedge from T1 as in index 𝑟⇀

𝑖𝑗 ∈ Z≥0 local to
vertex 𝑖 (Figure 3.5), which allows us to update the

roundabout values in constant time when flipping an edge of T2 (Section 3.1.2). These indices
start at zero, and enumerate the halfedges of T1 which emanate from 𝑖 in counter-clockwise
order, starting at some arbitrary but fixed halfedge. Note that if a halfedge from T2 coincides
with a halfedge from T1, the roundabout points to this halfedge, as indicated by self-arrows.

Roundabout Edge Flip To update our roundabouts after flipping an edge 𝑖𝑗 with opposite
vertices 𝑘, 𝑙 , we first update the normal coordinates as described in Section 3.1.1. We then set

𝑟⇀
𝑘𝑙 = mod(𝑟⇀

𝑘𝑖 + 𝑒𝑖𝑙𝑘 + 𝑛
−
𝑘𝑖
, deg1(𝑘)),

𝑟⇀
𝑙𝑘 = mod(𝑟⇀

𝑙 𝑗 + 𝑒 𝑗𝑘𝑙 + 𝑛
−
𝑙 𝑗
, deg1(𝑙)),

(3.5)

l

j

i

k

where deg1(𝑖) is the degree of vertex 𝑖 in the triangulation T1. In other
words, to find the first outgoing halfedge of T1 following ⇀

𝑘𝑙 ∈ H2,
we start at ⇀𝑘𝑖 and add the number of edges 𝑒𝑖𝑙

𝑘
of T1 that emanate

from corner 𝑘 of triangle 𝑘𝑖𝑙 . Also, if ⇀𝑘𝑖 is coincident with a halfedge
from T1, we add 1 to advance past this halfedge. The mod operation
accounts for wraparound. See inset for an example. This update
resembles a combinatorial version of the signpost update from Sharp
et al. [2019, p. 3.2.1]: integer indices 𝑟⇀

𝑖𝑗 play the role of real-valued
directions; the integer counts 𝑒 𝑗𝑘

𝑖
play the role of real-valued angles.
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3.2 Tracing Edges
Using normal coordinates and roundabouts, we can pick any edge in T1 and trace out the
sequence of triangles in T2 that it passes through (Section 3.2.1). To get the curve geometry, we
lay out this triangle strip in the plane and draw a straight line between endpoints (Section 3.2.2).
The final curve is encoded by 1D barycentric coordinates 𝑠, 𝑡 ∈ [0, 1] on each intersected edge.

3.2.1 Topological Tracing

Case 1 Case 2 Case 3

Figure 3.6: A curve entering triangle 𝑗𝑖𝑙 along edge 𝑖𝑗
can proceed in 3 ways: the left-most 𝑐𝑖𝑘𝑗 crossings go
left (left), the rightmost 𝑐𝑘 𝑗

𝑖
crossings go right (right),

and the rest terminate at vertex 𝑘 (center).

To identify the sequence of edges in T2
crossed by some edge in T1, we start at one
crossing and repeatedly identify the next
edge crossed until the edge of T1 terminates
at a vertex. We can determine the next edge
crossed purely from the stored normal co-
ordinates, by considering the three cases
illustrated in Figure 3.6.

Now we just need to find the first crossing, which we do using the roundabouts. Suppose
we want to trace edge 𝑖𝑙 of T1, starting from vertex 𝑖 . Since T1 and T2 share the same vertex set,
we know that the curve also starts at vertex 𝑖 in T2. And for every corner 𝑗𝑘𝑖 of T2 incident on 𝑖 ,
we can use the roundabouts 𝑟𝑖𝑗 and 𝑟𝑖𝑘 to determine which edges of T1 start in 𝑗𝑘

𝑖 . Once we find
the corner containing 𝑖𝑙 , we use the normal coordinates and roundabouts to work out the index
of that first crossing along 𝑗𝑘 , from which we can trace out the rest of the curve.

Algorithm 1 GetFirstCrossing(T2, 𝑛, 𝑟, 𝑖𝑙)
Input: A triangulation T2 = (V2, E2, F2), equipped with

normal coordinates 𝑛 : E2 → Z and roundabouts
𝑟 : H2 → Z encoding a second triangulation T1 of the
same vertex set, along with an edge 𝑖𝑙 ∈ E1 from the
second triangulation.

Output: The first intersection between 𝑖𝑙 and an edge of T2,
encoded as a pair (⇀𝑘𝑙 , 𝑝) where⇀𝑘𝑙 ∈ H2 and 𝑝 is the
index of the crossing along halfedge⇀𝑘𝑙 . If 𝑖𝑙 coincides
with an edge of T2, returns (𝑖𝑙,−1) instead.

1: for 𝑖𝑗𝑘 ∈ F2 incident on 𝑖 do
2: 𝑖𝐻 ← LocalIndex(⇀𝑖𝑙 )
3: 𝑒

𝑗𝑘
𝑖
← max(0, 𝑛+

𝑗𝑘
− 𝑛+

𝑘𝑖
− 𝑛+

𝑖𝑗
) ⊲Equation (3.1)

⊲ #curves emanating from
𝑗𝑘
𝑖
, including along 𝑖𝑗 or 𝑘𝑖

4: width← 𝑒
𝑗𝑘
𝑖
+ 𝑛−

𝑖𝑗
+ 𝑛−

𝑘𝑖5: if 𝑟𝑖𝑗 ≤ 𝑖𝐻 < 𝑟𝑖𝑗 + width then
⊲ If 𝑖𝐻 lies in this range, it emanates from

𝑗𝑘
𝑖
.

6: if 𝑖𝐻 = 𝑟𝑖𝑗 + width − 𝑛−𝑘𝑖 then ⊲runs along 𝑖𝑘

7: return (⇀𝑖𝑘 ,−1)
8: else if 𝑖𝐻 < 𝑟𝑖𝑗 + 𝑛−𝑖𝑗 then ⊲runs along 𝑖𝑘

9: return (⇀𝑖𝑗 ,−1)
10: else ⊲crosses 𝑗𝑘

11: return (⇀𝑗𝑘, 𝑖𝐻 − 𝑟𝑖𝑗 − 𝑛−𝑖𝑗 )

Algorithm 2 TraceEdge(T2, 𝑛, 𝑟, 𝑙𝑚)
Input: A triangulation T2 = (V2, E2, F2), equipped with

normal coordinates 𝑛 : E2 → Z and roundabouts
𝑟 : H2 → Z encoding a second triangulation T1 of the
same vertex set, along with an edge 𝑙𝑚 ∈ E1 from the
second triangulation.

Output: The path of 𝑙𝑚 as a sequence of crossings
(𝑙, 𝜁1, . . . , 𝜁𝑛,𝑚), where 𝜁𝑖 = (⇀𝑖𝑗 , 𝑝) is a crossings en-
coded as a halfedge ⇀𝑖𝑗 ∈ H2 and an index 𝑝 for the
crossing along the halfedge.

1: (currHalfedge, 𝑝) ← GetFirstCrossing(T2, 𝑛, 𝑟, 𝑙𝑚)
2: if 𝑝 < 0 then ⊲Shared halfedge, exit early

3: return [𝑙,𝑚]
4: 𝛾 ← [𝑙] ⊲Start path at vertex 𝑙

5: while True do ⊲Walk until 𝛾 terminates at a vertex

6: ⇀
𝑖𝑗 ← currHalfedge

7: 𝑘 ← OppVertex(Twin(currHalfedge))
8: if 𝑝 < 𝑐

𝑘 𝑗
𝑖

then ⊲turn right (Figure 3.6, right)

9: currHalfedge←⇀
𝑖𝑘 ⊲Move to

⇀
𝑖𝑘

10: 𝑝 ← 𝑝

11: Append(𝛾, (currHalfedge, 𝑝))
12: else if 𝑝 ≥ 𝑛𝑖𝑗 − 𝑐𝑖𝑘𝑗 then ⊲turn left (Figure 3.6, left)

13: currHalfedge←⇀
𝑘𝑗 ⊲Move to

⇀
𝑘𝑗

14: 𝑝 ← 𝑛𝑘 𝑗 + 𝑝 − 𝑛𝑖𝑗
15: Append(𝛾, (currHalfedge, 𝑝))
16: else ⊲terminate at 𝑘 (Figure 3.6, center)

17: return (𝛾, 𝑘)
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Note that the tracing procedure gives us each edge from T1 as a sequence of edge crossings
on T2. To express the edges from T2 as sequences of T1 edge crossings, we allocate an array of
size 𝑛𝑖𝑗 for each edge 𝑖𝑗 ∈ E2. Each time a traced edge 𝑎𝑏 ∈ T1 crosses 𝑖𝑗 , we store a reference to
𝑎𝑏 in entry 𝑝 of the array (using roundabouts to get the edge index).

3.2.2 Recovering Geodesics

Algorithm 3 RecoverGeodesic(T2, ℓ, 𝛾)
Input: A triangulation T2 = (V2, E2, F2) with edge lengths

ℓ : E2 → R>0, along with a path 𝛾 = (𝑙, 𝜁1, . . . , 𝜁𝑛,𝑚)
from vertex 𝑙 ∈ V2 to𝑚 ∈ V2. Each 𝜁 = (⇀𝑖𝑗 , 𝑝) is a
crossing encoded as a halfedge 𝑖𝑗 ∈ H2 and the index
𝑝 of the crossing along the halfedge.

Output: The trajectory of 𝛾 as a sequence of points
(𝑎, 𝑧1, . . . , 𝑧𝑛,𝑚) along T2. Intermediate crossings are
encoded as pairs 𝑧 = (⇀𝑖𝑗 , 𝑡) where 𝑖𝑗 ∈ H2 and 𝑡 is the
barycentric coordinate of point 𝑧 along halfedge 𝑖𝑗 .

⊲ Compute positions in R2 for triangle strip containing 𝛾
1: 𝜇 ← LayOutTriangleStrip(𝛾)
2: trajectory← [𝑙]
3: for 𝜁 = (⇀𝑖𝑗 , 𝑝) ∈ 𝛾 do

⊲ Intersection of 𝑎𝑏 and 𝑖𝑗 in the plane (see inset above)

4: 𝑠, 𝑡 ← IntersectionBarycentric(𝜇𝑎, 𝜇𝑏 , 𝜇𝑖 , 𝜇 𝑗 )
5: Append(trajectory, 𝑧 = (⇀𝑖𝑗, 𝑡))
6: Append(trajectory,𝑚)
7: return trajectory

To get the geometry of each traced edge 𝑎𝑏 ∈ E2,
we use the crossing sequences computed in Sec-
tion 3.2 and the edge lengths ℓ to incrementally
lay out a triangle strip in the plane. We then
intersect each interior edge 𝑖𝑗 of this strip with
the line from 𝑎 to 𝑏—by construction, this line
will be contained entirely inside the strip. In par-
ticular, if 𝑥𝑖 ∈ R2 are the vertices of a Euclidean
triangle strip, we can solve the equation

(1 − 𝑠)𝑥𝑎 + 𝑠𝑥𝑏 = (1 − 𝑡)𝑥𝑖 + 𝑡𝑥 𝑗 (3.6)

for the barycentric coordinates 𝑠, 𝑡 ∈ [0, 1] of
the intersection point. Algorithm 3 provides
pseudocode for a basic version of this procedure,
which recovers the path taken by a geodesic 𝛾
lying on T2, represented as a sequence of points
on T2 encoded in barycentric coordinates4. In
Section 4.2.1, we detail an analogous procedure
for recovering geodesic paths in the hyperbolic
plane which is used to compute discrete confor-
mal parameterizations.

3.3 Common Subdivision
The common subdivision

5 S of T1 and T2 is the polygon mesh obtained by “slicing up” the
underlying surface along the edges of both T1 and T2. The vertices of S are hence a superset of
V1 and V2, and every edge or face of T1 and T2 can be expressed as union of edges or faces of S
respectively. Moreover, when T1 is an extrinsic triangulation, the faces of S are always planar
and convex. They are planar since they are subsets of the faces of T1, which are planar. And they
are convex because each face is obtained by cutting a triangle along a collection of straight lines,
which always yields convex polygons (Figure 3.7). And most importantly, any piecewise-linear
function on T1 or T2 can be represented exactly as a piecewise-linear function on S.

4If more detailed correspondence information is required, one can use the algorithm described in Gillespie et al.
[2021a, Section 3.1], which computes the barycentric coordinates of each crossing point on T1 as well as on T2.

5Also known as the common subdivision, or even the supermesh (in FEM literature, e.g. Farrell et al. [2009,
Section 2]).
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The common subdivision serves as an essential “bridge” between an intrinsic triangulation
and the original extrinsic domain: it provides the minimal piecewise linear basis on which both
intrinsic data at vertices and extrinsic vertex positions can simultaneously be interpolated. S
can then be used to pull back functions from the abstract intrinsic setting to an ordinary mesh
sitting in space.

Note however that even if T1 and T2 have nice elements, S is not in general a high-quality
mesh, and may not itself be suitable for, e.g., solving PDEs. Rather, it plays a complementary
role in the geometry processing pipeline, enabling (for instance) transfer of data between
triangulations [Gillespie et al. 2021a, Section 4.3], or visualization of data downstream via
standard rendering tools.

Case 1 Case 2

Figure 3.7: We find the connectivity of common subdivi-
sion within each triangle using its normal coordinates.

Tracing out the edges allows us to con-
struct the common subdivision S of T1 and
T2. To determine the connectivity of S we
slice up each triangle 𝑖𝑗𝑘 ∈ F𝐵 indepen-
dently. First we extract the connectivity of
S, using only the normal coordinates 𝑛𝑖𝑗 .
Then we recover the intersection geometry,
allowing us to interpolate data stored at the
vertices of T1 or T2 to S—most commonly,
vertex positions on T1 along with any solu-
tion data on T2. Note that one can construct
pathological cases in which there are quadratically many intersections between T1 and T2 (or
worse—consider a triangulation with many Dehn twists, as pictured in [Sharp et al. 2019, Figure
4]). However, we do not observe such extreme behavior in practice.

Connectivity We subdivide T2 independently in each face 𝑖𝑗𝑘 (Figure 3.7). There two cases to
consider. In case 1, when no curves emanate from any corner, we simply connect the first 𝑐 𝑗𝑘

𝑖

crossings along edge 𝑖𝑗 to the first 𝑐 𝑗𝑘
𝑖

crossings along 𝑖𝑘 (in order), and likewise for corners 𝑗
and 𝑘 . In case 2 curves emanate from some corner; without loss of generality, let this corner be
𝑘 so that the number of emanating curves is 𝑒𝑖𝑗

𝑘
> 0. We walk from 𝑖 to 𝑗 , connecting the first 𝑐 𝑗𝑘

𝑖

crossings to those along 𝑖𝑘 , the next 𝑒 𝑗𝑘
𝑖

crossings to vertex 𝑘 , and the remaining 𝑐𝑘𝑖𝑗 crossings to
those along edge 𝑘𝑗 . Note that curves running along edges (𝑛𝑖𝑗 < 0) require no special treatment.

Intersection Geometry Next, we associate each vertex 𝑖 of the common subdivision with a
point in T1 and a point in T2, encoded in barycentric coordinates. Using these values, one can
linearly interpolate data from T1 or T2 to the vertices of S. Again, there are just two cases: each
vertex 𝑖 in S is either a vertex of T2 or the intersection of an edge of T1 with an edge of T2. In the
first case, the position on both triangulations is known. In the second case, we can compute the
desired barycentric coordinates using the tracing procedures described in Section 3.2.
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3.4 Flipping to a Given Triangulation
We primarily focus on modifying our triangulations by flipping edges. At first, one might worry
that this local operation could be too restrictive—if you start with one triangulation of a surface,
are there other triangulations (with the same vertex set) that you cannot reach merely by flipping
edges? Fortunately, this concern turns out to be false: any pair of triangulations are connected
by a finite sequence of edge flips. There are many proofs in the literature, but the most relevant
to us is a constructive proof by Mosher [1988], who presents a simple algorithm for finding
the sequence of edge flips to move from one triangulation to another. Unfortunately, Mosher’s
algorithm is embedded in a complicated analysis of its correctness and is moreover framed the
language of hyperbolic geometry:

Our proof has the advantage that it implicitly gives an algorithm for constructing

a sequence of elementary moves [ i.e. edge flips] connecting [triangulations] 𝛿 and 𝛿′,
when 𝛿′ is given in terms of certain intersection numbers with the arcs of 𝛿 . We shall

not explicitly describe this algorithm; we leave that to the interested reader.

Mosher [1988, pages 37–38]

In this section, we give a more detailed description of the algorithm for flipping from one
triangulation to another. In practice we generally modify triangulations by flipping to Delaunay
(Section 2.3.3) or applying adaptive retriangulation schemes (Section 3.6), rather than trying to
flip to a particular set of normal coordinates, but Mosher’s algorithm is nonetheless important
from a theoretical perspective and provides an interesting application of normal coordinates.

Algorithm 4 FlipTo(T2, 𝑛)
Input: A triangulation T2 = (V2, E2, F2), equipped with

normal coordinates 𝑛 : E2 → Z encoding a second
triangulation T1 of the same vertex set.

Output: Perform edge flips on T2 to transform it into T1,
i.e. all normal coordinates equal −1.

1: for𝑚 ∈ V2 do ⊲Iterate over edges of T1 incident on𝑚
2: for crossing (⇀𝑖𝑗 , 𝑝) emanating from𝑚 do
3: curveEnded← False

⊲ Flip each edge of T2 which this edge crosses

4: while not end do
5: 𝑘 ← OppVertex(Twin(⇀𝑖𝑗 ))

⊲ Before getting next crossing, record which

⊲ edge we mean to flip

6: edgeToFlip← 𝑖𝑗

⊲ Get next crossing on curve (à la Figure 3.6)
7: if 𝑝 < 𝑐

𝑘 𝑗
𝑖

then
8: (⇀𝑖𝑗 , 𝑝) ← (⇀𝑖𝑘 , 𝑝)
9: else if 𝑝 ≥ 𝑛𝑖𝑗 − 𝑐𝑖𝑘𝑗 then
10: (⇀𝑖𝑗 , 𝑝) ← (⇀𝑘𝑗 , 𝑛𝑘 𝑗 + 𝑝 − 𝑛𝑖𝑗 )
11: else
12: curveEnded← True ⊲curve ends at 𝑘

13: T2, 𝑛 ← Flip(T2, 𝑛, edgeToFlip)
14: return T2

Suppose we have a triangulation T2 equipped
with normal coordinates 𝑛 : E2 → Z encoding
another triangulation T1 sitting atop it. Our goal
is to flip a sequence of edges on T2 to transform it
into T1. The idea underlying the algorithm is quite
simple: we identify any edge 𝑖𝑗 of T1 (the target
triangulation) which is not already contained in
T2, and we flip the first edge of T2 intersecting
this edge. Then we check if any more edges of T2
intersect 𝑖𝑗 . If they do, we continue flipping the
first edge of T2 intersecting 𝑖𝑗 until none remain. At
this point, edge 𝑖𝑗 is shared by both triangulations.
We repeat for some other edge of T1 until all edges
are shared, and both triangulations are the same.

The one difficulty lies in identifying which
edges of T2 are crossed by some edge of T1—but
this is essentially the “tracing” problem discussed
in Section 3.2.1. Starting at any vertex of T2, we
can use our normal coordinates to identify how many edges of T1 emanate from this vertex, and
to locate their first crossings with other edges à la Equation (3.1). And once we have the first
crossing along an edge, we can find all subsequent crossings à la Algorithm 2. We just have to
flip each edge of T2 as we cross it. Algorithm 4 provides pseudocode for this procedure.
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An important caveat is that Mosher’s algorithm is formulated in the combinatorial setting6,
where one can flip any edge as long as it is not incident on a degree-1 vertex. In particular, the
edge flips performed in Algorithm 4 are often impossible if T2 is a Euclidean polyhedron, since
its edges also have to satisfy a convexity condition in order to be flipped. Analyzing the behavior
of this algorithm in the Euclidean setting, and determining whether a version can be used to flip
between any two Euclidean triangulations would make for interesting future work.
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Figure 3.8: Theoretically, we only know that
Mosher’s algorithm terminates in finite time. But
in practice, its cost seems to scale sublinearly with
the total number of intersection between the two
triangulations, i.e. with

∑
𝑖𝑗∈E2 𝑛𝑖𝑗 . Here we plot

the number of flips used by Algorithm 4 to flip
from a mesh of the bunny to a randomly-chosen
triangulation of the same surface.

Termination. Analyzing Algorithm 4 is tricky.
In order to prove that it terminates, Mosher
defines a particular quantity 𝜄 (E2, 𝑖𝑗) as the to-
tal number of intersections between some edge
𝑖𝑗 ∈ E1 and all edges of E2 except for the first
edge intersected by 𝑖𝑗 , and shows that 𝜄 (E2, 𝑖𝑗)
decreases with each flip made as we try to incor-
porate 𝑖𝑗 into triangulation T2. Note that 𝜄 (E2, 𝑖𝑗)
is at most the total number if intersections be-
tween 𝑖𝑗 and E2, so we can bound the number
of flips required by this total number of inter-
sections. However, each flip used to incorporate
𝑖𝑗 into E2 could create many more intersections
between E2 and other edges of T1, so this anal-
ysis does not directly yield a useful quantitative
bound on the number of flips required. In the
end, much like the case of flipping to Delaunay,
the flip algorithm is known to terminates in a finite amount of time, but not even guaranteed to
have polynomial complexity (although runtimes are quite reasonable in practice—see Figure 3.8).

3.5 Modifying the Vertex Set
We now extend the integer coordinates data structure to allow the addition of new vertices into
T2. The main idea remains the same—we still store normal coordinates and roundabouts on the
edges of T2—but we also explicitly track where the new vertices lie on T1. Letting V★ := V2 \ V1
denote the set of inserted vertices, our complete correspondence data structure consists of

(1) normal coordinates 𝑛 : E2 → Z, counting how many times T1 crosses each edge of T2.

(2) roundabouts 𝑟 : H2 → Z, giving the ordering of halfedges of T1 and T2 about each vertex7.

(3) locations 𝑞 : V★→ T1, recording where on T1 each new vertex of T2 is located.

Each location 𝑞𝑚 is encoded by storing the face 𝑖𝑗𝑘 ∈ F1 in which vertex𝑚 ∈ V★ lies, along
with the barycentric coordinates (𝑏𝑖, 𝑏 𝑗 , 𝑏𝑘) describing the exact location of𝑚 in face 𝑖𝑗𝑘 . And
of course, as we modify T2, we also update the edge lengths used to encode its intrinsic metric.

6or equivalently, in the setting of hyperbolic geometry
7for halfedges 𝑖𝑗 emanating from inserted vertices 𝑖 ∈ V★, we set 𝑟𝑖𝑗 = 0.
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3.5.1 Vertex Insertion
Suppose we want to insert a new vertex at a point 𝑥 on T2 expressed as barycentric coordinates
𝑣 relative to a face 𝑖𝑗𝑘 ∈ F2. To do so, we insert a new vertex𝑚 into face 𝑖𝑗𝑘 , and must compute
edge lengths, normal coordinates, and roundabouts for the new edges𝑚𝑖,𝑚𝑗,𝑚𝑘 , as well as the
positions 𝑞𝑚 of𝑚 on triangulation T1. Note that similar operations have been described in the
topological setting (e.g. by Schaefer et al. [2002, Section 5.4]), but they do not provide the ability
to insert a point at a particular geometric location, which is essential in many applications (e.g.
Section 3.6).

Mesh Update We first insert𝑚 into T2, splitting 𝑖𝑗𝑘 into three new triangles. The new edge
lengths can be computed directly from the barycentric coordinates—in particular, any tangent
vector𝑤 expressed in barycentric coordinates has length

∥𝑤 ∥2 = −ℓ2𝑖𝑗𝑤𝑖𝑤 𝑗 − ℓ2𝑗𝑘𝑤 𝑗𝑤𝑘 − ℓ2𝑘𝑖𝑤𝑘𝑤𝑖 (3.7)

(see [Schindler & Chen 2012, Section 3.2] or [Sharp et al. 2021, Sections 2.3.2 and 2.3.7]). We can
hence compute ℓ𝑖𝑚 = ∥(𝑏𝑖, 𝑏 𝑗 , 𝑏𝑘) − (1, 0, 0)∥, and similarly for ℓ𝑗𝑚 , ℓ𝑘𝑚 .

2
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2
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1
1
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i mi
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k kNormal Coordinates & Roundabouts Unlike edge flips, where
the new normal coordinates depend solely on the old ones, normal
coordinates resulting from a vertex insertion depend on the particular
geometric region 𝑅 containing the inserted point𝑚 (see inset). We
hence compute geometric crossings for all curves passing through
face 𝑖 𝑗𝑘 , then determine the region 𝑅 via line-side tests (implemented
via a simple cross product). If 𝑚 is extremely close to a region
boundary we may pick the wrong region (due to floating-point error), but will still produce
valid connectivity for a nearly identical vertex location. Moreover, barycentric coordinates 𝑣
arising from, say, Delaunay refinement (Section 3.6) will not be exact anyway. New roundabouts
emanating from vertices in {𝑖, 𝑗, 𝑘} ∩ V1 are set via Equation (3.5).

Position on T1 The geometric crossings at 𝑅’s corners provide barycentric coordinates 𝑢 and 𝑣
relative to T1 and T2 resp. Hence, to get 𝑞𝑚 we simply express 𝑥 as a linear combination of the
corners’ 𝑣−coordinates (i.e. their barycentric coordinates in face 𝑖𝑗𝑘), then take the same linear
combination of the corners’ 𝑢-coordinates.

Explicitly, each corner of the region 𝑅 is either a vertex 𝑖 of T2 (in which case we know its
location 𝑞𝑖 on T1), or it is an intersection between an edge of T1 and an edge of T2, in which
case we can work out its position on T1 during the geodesic tracing routine. And by definition,
𝑅 is the intersection of 𝑖𝑗𝑘 with some face 𝑎𝑏𝑐 ∈ F1, so we can write all of these positions in
barycentric coordinates on 𝑎𝑏𝑐 .

Then we recover barycentric coordinates 𝑢 for 𝑥 within face 𝑎𝑏𝑐 by solving a small linear
system. In principle one could use any 3 corners of 𝑅 to determine the desired barycentric
coordinates, but we make use of all corners of 𝑅 for numerical stability. To be precise, let
3 ≤ 𝜌 ≤ 6 denote the number of corners of 𝑅. Let the 𝑚th corner of 𝑅 have barycentric
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coordinates 𝑢 (𝑚)𝑎 , 𝑢
(𝑚)
𝑏
, 𝑢
(𝑚)
𝑐 on 𝑎𝑏𝑐 ∈ F1 and barycentric coordinates 𝑣 (𝑚)

𝑖
, 𝑣
(𝑚)
𝑗
, 𝑣
(𝑚)
𝑘

on 𝑖 𝑗𝑘 ∈ F2,
all of which are know. We also know the barycentric coordinates 𝑣𝑖 for 𝑥 in 𝑖𝑗𝑘 . We then want
to solve for the corresponding 𝑢𝑎 on 𝑎𝑏𝑐 . We proceed in two steps: first, we express 𝑣 as a linear
combination 𝜉 of the 𝑣 (𝑚) . Then, we apply this same linear combination to the 𝑢 (𝑚) to obtain 𝑢.
Concretely, we first solve for the minimum-norm solution of the underdetermined system

©«
𝑣
(0)
𝑖

𝑣
(1)
𝑖
· · · 𝑣

(𝜌)
𝑖

𝑣
(0)
𝑗
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𝑗
· · · 𝑣

(𝜌)
𝑗

𝑣
(0)
𝑘

𝑣
(1)
𝑘
· · · 𝑣

(𝜌)
𝑘

ª®®¬
©«
𝜉0
𝜉1
...

𝜉𝜌

ª®®®®¬
=

©«
𝑣𝑖
𝑣 𝑗
𝑣𝑘

ª®¬ , (3.8)

and then set
𝑢𝑎 :=

∑︁
𝑚

𝑢
(𝑚)
𝑎 𝜉𝑚, 𝑢𝑏 :=

∑︁
𝑚

𝑢
(𝑚)
𝑏
𝜉𝑚, 𝑢𝑐 :=

∑︁
𝑚

𝑢
(𝑚)
𝑐 𝜉𝑚 . (3.9)

Note that while one often seeks a nonnegative 𝜉 , any solution will suffice here: we only use 𝜉 to
interpolate in Equation (3.9).

3.5.2 Flat Vertex Removal

Generally, a vertex of the original triangulation cannot be removed without distorting the
intrinsic metric: any curvature at that vertex would be lost. However, inserted vertices are
intrinsically flat (i.e. have no Gaussian curvature), and can hence be removed safely. In fact this
operation is necessary for Delaunay refinement of domains with boundary (Section 3.6).

interior

flip
rem

ove

boundaryTo remove an interior vertex 𝑖 with zero Gaussian curvature, we
perform edge flips until 𝑖 has degree 3 and then replace the three
triangles 𝑖𝑎𝑏, 𝑖𝑏𝑐, 𝑖𝑐𝑎 incident on 𝑖 with the single triangle 𝑎𝑏𝑐 (inset,
left). Since the vertex is intrinsically flat, this change preserves the
surface geometry. And we do not have to update any edge lengths,
normal coordinates, or roundabouts beyond the updates required to
perform the edge flips. We can remove a boundary vertex 𝑖 with zero
geodesic curvature by an analogous procedure: we perform edge flips
until deg 𝑖 = 3 and replace the two resulting triangles 𝑖𝑎𝑏, 𝑖𝑐𝑎 with the
single triangle 𝑎𝑏𝑐 (inset, right). Note that when 𝑖 is an ear vertex (i.e.
a degree-2 boundary vertex), its degree can easily be increased to 3
by flipping the opposite edge. Again, the surface geometry remains
unchanged, since 𝑖 has no geodesic curvature. Theorem 1 and Theorem 2 prove the correctness
of this procedure for removing interior and boundary vertices respectively, under the assumption
that the neighborhood of 𝑖 remains a simplicial complex throughout. We hence find that a useful
heuristic is to first flip any self-edges (𝑖 = 𝑗 ); if there are none, we flip the edge 𝑖𝑗 with largest
angle sum 𝜃

𝑖𝑗

𝑘
+ 𝜃 𝑗𝑖

𝑙
(which are, in some sense, the “most convex”). Schaefer et al. [2002, Section

5.4] also suggest a similar flipping procedure for removing interior vertices, but do so in the
topological setting where the necessary edge flips are always valid—they do not consider the
convexity condition (Section 2.3.3).
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Theorem 1. If an intrinsically-flat vertex 𝑖 in the interior of a simplicial complex has degree 𝑑 > 3,
then some incident edge can be flipped to decrease the degree of 𝑖 .

Proof. Recall that an edge can be flipped if both endpoints will have degree at least 1 after the
flip, and the edge is contained in a convex quadrilateral (Section 2.3.3). As always, the convex
quadrilateral is defined in the sense of the intrinsic geometry determined by edge lengths. The
endpoint degree constraint is automatically satisfied on a simplicial complex, so we only need
to show that the geometric convexity constraint is satisfied, which is equivalent to showing that
all angles of the edge’s quadrilateral are at most 𝜋 .

We denote the neighboring vertices of 𝑖 by 𝑗𝑘 (with 𝑗𝑘+1 etc.
implicitly indexed modulo the vertex degree 𝑑), as depicted in the
inset. The outer angles ∠𝑖 𝑗𝑘−1 𝑗𝑘 and ∠𝑖 𝑗𝑘+1𝑘 are corners of Euclidean
triangles, and thus are necessarily at most 𝜋 , so we need to find
an edge 𝑖𝑗𝑘 for which the angles ∠ 𝑗𝑘−1𝑖 𝑗𝑘+1 and ∠ 𝑗𝑘+1 𝑗𝑘 𝑗𝑘−1 are also at
most 𝜋 . First we consider the inner corners ∠ 𝑗𝑘−1𝑖 𝑗𝑘+1 .

At most two of these angles can be greater than 𝜋 . To see why, suppose there were three
∠ 𝑗𝑘−1𝑖 𝑗𝑘+1 > 𝜋 . Since the degree of 𝑖 is 𝑑 > 3, then some pair of those three large angles would
correspond to disjoint angular sectors around the vertex, and summing their angles yields a
value greater than 2𝜋 , which is impossible because the angle sum of 𝑖 is 2𝜋 . Thus all but at most
two of the edges incident on 𝑖 have inner corners with angle at most 𝜋 . Likewise, at least three
of the outer corners ∠ 𝑗𝑘+1 𝑗𝑘 𝑗𝑘−1 are at most 𝜋 . This is because the sum of all 𝑑 outer corners must
be (𝑑 − 2)𝜋 . Since they are nonnegative, at most 𝑑 − 3 of them can be strictly greater than 𝜋 ,
implying that at least 3 will be less than or equal to 𝜋 .

Thus at least three outer corners are at most 𝜋 , and at most two of the inner corners are not
at most 𝜋 , so there must be at least one edge for which both the inner and outer corners are at
most 𝜋 . This edge can then be flipped, reducing the vertex degree. □

Theorem 2. If a vertex 𝑖 in the boundary of a simplicial complex has cone angle 𝜋 and degree

𝑑 > 3, then some edge 𝑖𝑗 incident on 𝑖 can be flipped to decrease the degree of 𝑖 .

candidate cornerscandidate cornersProof. Again, our goal is to find a neighboring quadrilateral whose
angles are all at most 𝜋 . Since none of the inner angles ∠ 𝑗𝑘−1𝑖 𝑗𝑘+1
can exceed 𝜋 (after all, the sum of all angles incident on 𝑖 is only
𝜋 ), the only difficulty is showing that one of the 𝑑 − 2 “candidate
corners” around the outside of the neighborhood must be at most 𝜋 .
Since 𝑖 has angle sum 𝜋 , we can view this neighborhood as a 𝑑-sided
polygon—as noted above, such a polygon must have at least 3 corners
with angle less than or equal to 𝜋 . Since there are 𝑑 − 2 candidate corners, we conclude that at
least one candidate corner must have angle at most 𝜋 , and hence we can find a flippable edge
incident on 𝑖 . as desired. □

Importantly, these proofs do not handle the full general case of a Δ-complex, where there
may exist self-edges which cause flips to not make progress. However, we note that Sharp &
Crane [2020b, Appendix A] proves that a similar flip-removal strategy works in the case of a
Δ-complex, and we conjecture that an analogous technique could be applied to generalize the
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Figure 3.9: Intrinsic Delaunay
refinement inserts new vertices
intrinsically into a mesh to im-
prove the triangle quality. We
show that (under a few assump-
tions), intrinsic Delaunay re-
finement is guaranteed to pro-
duce a mesh whose triangles all
have corner angles of at least
30◦.

above theorems. Also, note that the “equality” case of Theorem 1 is a possibility, such as a degree
four cross configuration where all angles = 𝜋/2. Fortunately the resulting skinny triangle after
the edge is a non-issue, because the center vertex is about to be removed.

3.6 Intrinsic Delaunay Refinement
Algorithm 5 DelaunayRefinement(T2, ℓ, 𝜃min )
Input: An intrinsic triangulation T2 = (V2, E2, F2),

equipped with edge lengths ℓ : E2 → R>0, along
with a minimum allowed angle 𝜃min .

Output: An intrinsic triangulation T2 whose corner angles
are all at least 𝜃𝑚𝑖𝑛

1: T2, ℓ ← FlipToDelaunay(T2, ℓ)
2: while T2 has triangles with angles less than 𝜃min do
3: 𝑖𝑗𝑘 ← any triangle with an angle less than 𝜃min

⊲ Find the circumcenter of 𝑖𝑗𝑘 using Equation (3.10)
⊲ and Equation (3.11)

4: 𝑣𝑖 ← ℓ2
𝑗𝑘
(ℓ2
𝑖𝑗
+ ℓ2

𝑘𝑖
− ℓ2

𝑗𝑘
)

5: 𝑣 𝑗 ← ℓ2
𝑘𝑖
(ℓ2
𝑖𝑗
+ ℓ2

𝑗𝑘
− ℓ2

𝑘𝑖
)

6: 𝑣𝑘 ← ℓ2
𝑖𝑗
(ℓ2
𝑗𝑘
+ ℓ2

𝑘𝑖
− ℓ2

𝑖𝑗
)

7: 𝑣 ← 1
𝑣𝑖+𝑣𝑗+𝑣𝑘 (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 )

⊲ Barycentric offset from barycenter to circumcenter

8: 𝛿𝑣 ← 𝑣 − (1/3, 1/3, 1/3)
⊲ Evaluate exponential map from face barycenter

9: 𝑐 ← Exp(Barycenter(𝑖𝑗𝑘), 𝛿𝑣)
10: if 𝑐 lies inside the mesh then
11: T2, ℓ ← InsertVertex(T2, ℓ, 𝑐)
12: else
13: 𝑙𝑚 ← boundary edge separating 𝑐 from 𝑖𝑗𝑘

14: 𝑚 ← SplitEdge(𝑙𝑚, 0.5)
⊲ Flip to Delaunay before getting Dijkstra ball

15: T2, ℓ ← FlipToDelaunay(T2, ℓ)
⊲ Remove inserted vertices in 𝑙𝑚’s diametral ball

16: B = {𝑖 ∈V2 : DijkstraDist(E2, 𝑖,𝑚) < ℓ𝑙𝑚}
17: for 𝑖 ∈ B do
18: T2, ℓ ← RemoveVertex(T2, ℓ, 𝑖)
19: T2, ℓ ← FlipToDelaunay(T2, ℓ)

Delaunay refinement inserts vertices in order to
produce a Delaunay mesh whose triangles all sat-
isfy a minimum angle bound (Figure 3.9). Here we
modify Chew’s second algorithm to perform intrin-
sic Delaunay refinement [Chew 1993; Shewchuk
1997]. This problem has been extensively studied
in the plane, but an intrinsic (i.e. geodesic) scheme
was only recently proposed by Sharp et al. [2019,
Section 4.2]. However, they did not handle meshes
with boundary—here we resolve the essential diffi-
culties of the boundary case, and show how refine-
ment can be implemented using our integer-based
data structure.

In the plane, the basic algorithm is to greed-
ily pick any triangle which violates the minimum
angle bound, insert a vertex at its circumcenter,
then flip to Delaunay. This process continues until
all triangles satisfy the angle bound. If a trian-
gle’s circumcenter is outside the domain, then the
boundary edge 𝑖𝑗 separating the triangle from its
circumcenter is split at its midpoint; subsequently,
all interior vertices within at least a distance of
ℓ𝑖𝑗/2 are removed—though removing additional in-
terior vertices causes no issues (Section 3.6). One
can prove that this process succeeds for minimum angle bounds up to 25.65 degrees on planar
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domains with boundary angles at least 60◦ [Shewchuk 1997, Section 3.4.2]. More advanced
versions of this procedure can achieve better angle bounds, e.g. [Rand 2011], but here we restrict
our attention to the basic algorithm for simplicity.

Figure 3.10: Triangles in Delaunay meshes have
empty circumdisks, and thus well-defined cir-
cumcenters (left). When necessary, we locate
a triangle’s circumcenter by walking outwards
from its barycenter (right).

There are two difficulties in adapting this al-
gorithm to the intrinsic setting: locating circum-
centers and computing (geodesic) distances. As
mentioned earlier, intrinsic Delaunay triangula-
tions obey the empty circumcircle property; hence
each triangle has an intrinsically-flat circumdisk
with a well-defined center (Figure 3.10, left). So
long as this center corresponds to a point on the
surface, it can be found by walking from the tri-
angle’s barycenter (Figure 3.10, right). In practice,
we compute triangle 𝑖𝑗𝑘’s circumcenter in homoge-
neous (i.e., unnormalized) barycentric coordinates
𝑣𝑖 via the following formula [Schindler & Chen
2012, Section 2.3]:

𝑣𝑖 := ℓ2𝑗𝑘 (ℓ
2
𝑖𝑗 + ℓ2𝑘𝑖 − ℓ

2
𝑗𝑘
), (3.10)

and then normalize to obtain barycentric coordinates

𝑣𝑖 := 𝑣𝑖
𝑣𝑖+𝑣 𝑗+𝑣𝑘 . (3.11)

To locate the circumcenter on the surface, we then evaluate the exponential map (Section 2.3.2)
starting at the barycenter 𝑤𝑖 = 𝑤 𝑗 = 𝑤𝑘 = 1/3, along the vector 𝑣 −𝑤 . If we hit a boundary
edge 𝑖𝑗 while tracing out this path, then the circumcenter is not contained in the surface, so
we split 𝑖𝑗 at its midpoint and flip to Delaunay. We must then remove all inserted interior
vertices within a geodesic ball of radius ℓ𝑖𝑗/2 centered at the inserted point. Computing geodesic
distance on a surface mesh is nontrivial, but Xia [2013, Corollary 1] shows that on a Delaunay
triangulation any vertex inside a geodesic ball of radius 𝑟 will also be inside the Dijkstra ball of
radius 2𝑟 (i.e. points whose distance along the edge graph are at most 2𝑟 ). We hence remove
all interior inserted vertices within a Dijkstra distance of ℓ𝑖𝑗 . While Xia considers only the
planar setting, their proof (which is based on triangle strips) applies without modification to
intrinsic Delaunay triangulations of surfaces. Observe also that, as in the planar case, Delaunay
refinement only ever removes previously-inserted vertices. Hence, as assumed in Section 3.5.2,
the original extrinsic vertex set V1 is still preserved.

60On meshes with narrow cone vertices or boundary angles, it may be impossible
to find any triangulation satisfying a given angle bound. In such cases, we do not
insert circumcenters of intrinsic triangles incident on exactly one narrow vertex, or
are entirely contained in a triangle of T1 incident on a narrow vertex, and ignore such
triangles when computing the minimum corner angle of the output mesh. While the
final output may violate the angle bound, violations occur only near narrow vertices.
In analogy with the planar case, we set 60◦ as the minimum allowed angle sum (see
inset); in practice the vast majority of meshes obey this constraint at all vertices
(97.2% of Thingi10k), and we can obtain high-quality triangulations even on those which do not.
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Removing Extra Vertices When Chew’s second algorithm splits an edge, it removes all
inserted circumcenters within a geodesic ball centered at the edge’s midpoint. These vertices
must be removed, but it is okay to removes additional interior inserted vertices. Shewchuk [1997,
Section 3.4.2] observes that the algorithm can only perform finitely many edge splits. As long as
one removes all interior inserted vertices within the geodesic ball—and never removes vertices
along the boundary—the algorithm will still perform only finitely many edge splits. Hence, it
must terminate as usual following the final edge split, even if one removes extra circumcenters
during edge splits.

3.6.1 Refinement Results

As a stress test, we successfully compute an intrinsic Delaunay refinement and associated
subdivision for all manifold meshes in the Thingi10k dataset of Zhou & Jacobson [2016]; in turn,
these high-quality intrinsic triangulations allow users compute reliable and highly accurate
solutions to partial differential equations even on extremely low-quality meshes. In particular, we
usedMeshLab to convert each mesh to the PLY file format [Cignoni et al. 2008], resulting in 7696
valid manifold meshes. We begin by mollifying each mesh to a tolerance of 10−5 (Section 3.7).
For each model we compute the intrinsic Delaunay triangulation (Section 2.3.3), as well as an
intrinsic Delaunay refinement (Section 3.6) with a 25◦ angle bound. We verify that the algorithms
terminate with the expected conditions. Additionally, we successfully extract an explicit mesh
of the common subdivision in both cases, except for 1 model in the case of refinement whose
common subdivision contains around 30 million vertices (Figure 3.12, left).

signposts
[Sharp+ 2019]

integer
coordinates

common
subdivision 

Figure 3.11: Signposts may fail to re-
cover the common subdivision on near-
degenerate inputs. By contrast, integer
coordinates always yield a valid com-
mon subdivision.

We compare against the explicit overlay representa-
tion of Fisher et al. [2006] and the signpost representation
of Sharp et al. [2019] (Table 3.1). The overlay represen-
tation similarly offers a guarantee of valid connectivity,
but does not provide a constant-time edge flip operation
(like normal coordinates do). More importantly it does
not support operations beyond edge flips and thus cannot
perform Delaunay refinement. Signposts support a wide
range of operations, but may not successfully recover the
common subdivision on degenerate inputs (Figure 3.11).
The statistic reported here differs from the result in Sharp
et al. [2019], because no preprocessing of meshes is per-

Method

Intrinsic
Delaunay

Triangulation

Intrinsic
Delaunay
Refinement

Explicit Overlay 100 % not supported
Signpost Tracing 96.0 % 69.1 %

Integer Coordinates 100 % 100 %

Table 3.1: Success rate of integer coor-
dinates compared to other approaches
on the Thingi10k dataset. We construct
a Delaunay triangulation and Delaunay
refinement on each model, and attempt
to recover the connectivity of the com-
mon subdivision.
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|V|=871,434

|V|=707,148

successfully computed
 common subdivision

ThingiID 719790

|V|≈27,000,000

ThingiID
 719791

27,000,000 vertices

ran out of memory computing 
common subdivision

Figure 3.12: We fail to compute an explicit mesh of the common subdivision following Delaunay refine-
ment on one Thingi10k model (left). Its common subdivision would contain 34 million vertices and our
program runs out of memory. We succeed on a nearly identical model (right), whose common subdivision
contains merely 27 million vertices.

formed. For refinement Sharp et al. [2019] do not treat the boundary case, so we compare only
on models without boundary.

Performance and Complexity Our data structure is able to compute Delaunay refinements
for complex meshes in seconds8. For example, computing the Delaunay refinement in Figure 15
of Gillespie et al. [2021a] took 0.2s on a mesh with 3000 vertices, and the Delaunay refinement in
Figure 16 of the same paper took 0.6s on a mesh with 10,000 vertices. Because we lazily recover
intersection geometry from our integer coordinates when inserting vertices, routines such as
Delaunay refinement which perform many insertions may become moderately expensive on
large near-degenerate inputs. For instance we take 4 minutes to perform Delaunay refinement on
719791 (Figure 3.12, left) whereas signposts take only 1.5 minutes—but on such meshes signposts
generally fail to compute a valid common subdivision.

Our data structure is carefully constructed to ensure that edge flips can be performed in
constant time; each edge flip simply amounts to a few arithmetic operations. Removing a
vertex of degree 𝑑 takes time𝑂 (𝑑), since one must perform𝑂 (𝑑) edge flips before removing the
resulting degree-3 vertex. On the other hand, inserting a new vertex into face 𝑖𝑗𝑘 of T2 requires
tracing geodesics for each edge of T1 which intersects face 𝑖𝑗𝑘 , and takes time proportional to
the number of intersections between those geodesics and the edges of T2.

Similarly, the time and memory cost of computing the common subdivision scales linearly
with the number of intersections between edges of T1 and edges of T2—or equivalently, with
the size of the common subdivision. For most meshes, this does not pose an issue, but on one
model (depicted in Figure 3.12, left) we ran out of memory while trying to extract the common
subdivision. In such cases, it may be helpful to simplify the input mesh before running intrinsic
Delaunay refinement (Chapter 5).

8Timings are measured on a single core of an Intel i9-9980XE with 32 GB of RAM.
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3.6.2 Proof of Correctness on Manifold Meshes without Boundary
Here we seek to prove that DelaunayRefinement (Algorithm 5) succeeds, in the basic case of
a closed surface with bounded cone angles. We will not prove the more general boundary case
here, but experimentally we observe success on a large dataset (Section 3.6.1).

Theorem 3. On meshes without boundary, with vertex angle sums at least 60◦, Algorithm 5

produces a Delaunay mesh with triangle corner angles at least 30◦.

Proof. By definition, DelaunayRefinement only terminates when the triangulation is
a Delaunay triangulation which satisfies the angle bound, so we just need to prove that ter-
mination occurs after a finite number of iterations. We will show this by establishing that
DelaunayRefinement maintains a minimum spacing between all vertices in the mesh, so the
number of insertions is bounded by surface area. Our argument will generally follow the planar
proof of Shewchuk [1997, Section 3.2.1], though extra care is needed in the intrinsic case, where
self edges may connect a vertex to itself.

In particular, we consider the length of the shortest edge in the initial mesh’s intrinsic
Delaunay triangulation, 𝛿 := min𝑖𝑗 ℓ𝑖𝑗 . We will show that the minimum edge length in each
subsequent Delaunay triangulations is at least 𝛿 . Then all vertices must be separated by a
distance at least 𝛿 , since Lemma 2, each vertex is connected to its geodesic nearest neighbor.
Hence, each vertex is contained in an open disk of radius 1

2𝛿 which is disjoint from all other
disks. As the input mesh has finite surface area, we conclude that Algorithm 5 can only insert
finitely many vertices, and thus must terminate.

It remains to show that DelaunayRefinement never creates an edge of length less than
𝛿 . First, we convert angle bound 𝛼 to a circumradius-to-shortest-edge ratio bound 𝐵 = 1

2 sin𝛼
[Shewchuk 1997, Section 3.1]: a triangle has corner angles at least 𝛼 = 30◦ whenever 𝐵 ≤ 1.
Note that we insert circumcenters for triangles with 𝐵 > 1.

We proceed by induction. First, all initial edges have length at least 𝛿 by definition. Now
consider inserting vertex 𝑖 at the circumcenter of triangle 𝑗𝑘𝑙 with circumradius 𝑅. Since we
only split triangles with 𝐵 > 1, and 𝑗𝑘𝑙 ’s edges have length at least 𝛿 , we must have 𝑅 > 𝛿 . All
of the new edges that we create must be incident on 𝑖 (Lemma 3), and since 𝑗𝑘𝑙 had an empty
circumcircle, there can be no other vertices within distance 𝑅 > 𝛿 . So any new edges to other
vertices have length at least 𝛿 . But we must also consider self edges connecting 𝑖 to itself.

Gluing together the two ends of a self edge yields a loop; we will split into cases based on
the homotopy class of this loop on the punctured surface (before the insertion of 𝑖). First, note
that the loop cannot be contractible to a point, since the original edge is geodesic. We split into
two cases: either the loop contracts around a single vertex, or it does not.

If the loop contracts around a single vertex, then the self edge
encloses a degree-1 vertex. The degree-1 vertex must have distance
at least 𝑅 to the inserted vertex, and has angle sum at least 60◦.
Thus, by the law of cosines, the length of the self edge is at least

√
𝑅2 + 𝑅2 − 2𝑅2 cos𝜃 = 𝑅

√︁
2(1 − cos𝜃 ).

Since cos 60◦ = 1
2 , and 1 − cos𝜃 is increasing with 𝜃 , this shows that the self edge has length at

least 𝑅 whenever 𝜃 is at least 60◦.
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If the loop is not in a homotopy class contractible about a single vertex, then the shortest
loop 𝛾min in the homotopy class has nonzero length. By Lemma 4, we can take 𝛾min to touch
some vertex 𝑎, and note that since 𝛾min is the shortest loop our original self edge must be at least
as long as 𝛾min . Then by Lemma 2 𝑎 has an edge at least a long as 𝛾min , and thus the self edge
has length ≥ |𝛾min | ≥ 𝛿 .

Thus, we conclude that Algorithm 5 never introduces an edge of length less than 𝛿 , which
means that it must terminate after inserting finitely many vertices. □

Lemma 1. For any pair of vertices 𝑖, 𝑗 ∈ 𝑉 , let Γ𝑖𝑗 be the set of non-constant geodesics connecting 𝑖
to 𝑗 . Then

𝑑𝑖𝑗 := inf
𝛾∈Γ𝑖𝑗

length(𝛾) > 0.

Proof. This follows directly from [Indermitte et al. 2001, Proposition 1], which states that for any
𝐿 > 0, the number of geodesic arcs from 𝑖 to 𝑗 of length at most 𝐿 is finite. Since any geodesic of
length 0 is constant, and thus not in Γ𝑖𝑗 , this implies that 𝑑𝑖𝑗 > 0. □

Lemma 2. For any vertex 𝑖 ∈ 𝑉 , the intrinsic Delaunay triangulation contains an edge to 𝑖’s

nearest neighbor.

Proof. This is a standard result, which we include for completeness. Let 𝑗 be 𝑖’s nearest neighbor,
i.e. 𝑗 := argmin 𝑗𝑑𝑖𝑗 . Note that 𝑗 may equal 𝑖 , and 𝑑𝑖𝑗 > 0 by Lemma 1. Consider the disk 𝐷
of radius 𝑑𝑖𝑗 centered at 𝑖 . Since 𝑗 is 𝑖’s nearest neighbor, 𝐷 contains no vertex other than 𝑖 .
Thus, the circle which goes through 𝑖 and 𝑗 and is tangent to 𝐷 at 𝑗 has empty interior, and
its boundary contains no vertices other than 𝑖 and 𝑗 . We conclude that 𝑖𝑗 is in the Delaunay
triangulation [Bobenko & Springborn 2007, Definition 3]. □

Lemma 3. All edges created in DelaunayRefinement following the insertion of a vertex 𝑖 and

flipping to Delaunay are incident on 𝑖 .

Proof. Again, we follow the planar proof of Shewchuk [1997, Lemma 12]. We wish to prove
that all Delaunay edges which are not incident on 𝑖 were Delaunay before inserting 𝑖 . This
follows from the fact that edges of a Delaunay triangulation satisfy an empty circumcircle
condition [Bobenko & Springborn 2007, Definition 3]. If an edge’s circumcircle is empty after
inserting vertex 𝑖 , it must have been empty before too, so the edge was already Delaunay. □

Lemma 4. Any geodesic loop 𝛾 is isotopic to a geodesic loop 𝛾 ′ of the same length which touches a

vertex.

Proof. 𝛾 can “slide” until it touches a vertex without changing its length. Precisely, consider
a unit-speed motion of 𝛾 within the surface along its outward normal direction. During the
motion, 𝑑

𝑑𝑡
|𝛾 | =

∫
𝛾
𝜅 (𝑠) 𝑑𝑠 , where 𝜅 is the geodesic curvature of 𝛾 . Since 𝛾 is a geodesic, 𝜅 = 0: its

length does not change. Thus we can construct 𝛾 ′ by sliding 𝛾 along the surface until it touches
a vertex. □

As an aside, we note that geodesic loops which do not touch a vertex only occur in non-
generic configurations.
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3.7 Robust Implementation
Our integer coordinates are guaranteed to encode a triangulation sitting atop T2. The geometric
accuracy of this triangulation, of course, depends on floating point arithmetic, which can become
inaccurate in near-degenerate configurations. Exact predicates have been applied with great
success to similar problems [Devillers & Pion 2003]. Unfortunately they do not directly apply to
intrinsic triangulations, as the predicates that we evaluate are not fixed functions of the input
data; an intrinsic edge length can depend upon arbitrarily many input edge lengths. Hence, we
focus on fast and robust implementations using ordinary floating point arithmetic.

One essential tool for manipulating intrinsic triangulations on near-degenerate input meshes
is intrinsic mollification, introduced by Sharp & Crane [2020a]. Mollification provably ameliorates
near-degenerate meshes by adding a small value 𝛿 to every edge length, ensuring that every
triangle satisfies the triangle inequality with slack at least 𝜖 . This operation only changes the
geometry if some triangle is within 𝜖 of being degenerate, and even then changes the geometry
by a negligible amount. Intrinsic mollification works particularly well with our data structure
compared to past approaches: the signpost data structure of Sharp et al. [2019] relies on tracing
edges along the surface, which become less accurate when mollification is applied. Integer
coordinates have no such problem. In our experiments we mollify with 𝜖 = 10−5ℎ, where ℎ is
the mean edge length, and find that it resolves almost all numerical difficulties.

Even after mollification, it is still beneficial to use care when working with floating point. For
example, there are well-conditioned triangles on which the Delaunay condition (Equation (2.6))
is difficult to evaluate; in practice, we only enforce Equation (2.6) up to some 𝜖 tolerance. As

m

i

j

k

1

3 4

a further example, when computing new normal coordinates in
SplitFace, one could lay out the face in the plane, and indepen-
dently count intersections along the new edges. However, this can
produce invalid normal coordinates when computed in floating
point. In order to understand the validity conditions for normal
coordinates in a split face, consider the triangle 𝑖𝑗𝑘 with inserted ver-
tex𝑚 depicted in the inset. First, note that the new edges𝑚𝑖 and𝑚𝑗
intersect all of the curves which cross corners 𝑖 and 𝑗 respectively—
only𝑚𝑘 fails to intersect all of the curves at its corner 𝑘 . Formally, of the three new normal
coordinates 𝑛𝑚𝑖, 𝑛𝑚𝑗 , 𝑛𝑚𝑘 , at most one can be less than the corresponding corner crossing number
𝑐
𝑗𝑘

𝑖
, 𝑐𝑘𝑖𝑗 , 𝑐

𝑖𝑗

𝑘
respectively. And furthermore, in the inset we see that the one curve of corner 𝑘 not

crossed by edge𝑚𝑘 is crossed by both other edges𝑚𝑖 and𝑚𝑗 . So if 𝑛𝑚𝑘 < 𝑐
𝑖𝑗

𝑘
, then it must be

the case that
𝑛𝑚𝑖 = 𝑐

𝑗𝑘

𝑖
+

(
𝑐
𝑖𝑗

𝑘
− 𝑛𝑚𝑘

)
and 𝑛𝑚𝑗 = 𝑐

𝑘𝑖
𝑗 +

(
𝑐
𝑖𝑗

𝑘
− 𝑛𝑚𝑘

)
. (3.12)

Consequently, once we know the normal coordinate 𝑛𝑚𝑘 which is less than the corresponding
corner count 𝑐𝑖𝑗

𝑘
, this information already determines the other two normal coordinates 𝑛𝑚𝑖 and

𝑛𝑚𝑗 . In our implementation, we first compute preliminary normal coordinates on each of the
three new edges by counting intersections computed in floating point. If the computed normal
coordinates violate these conditions, we identify the corner 𝑘 whose new edge misses the most
curves in that corner—i.e. the corner where the difference 𝑐𝑖𝑗

𝑘
− 𝑛𝑚𝑘 is largest—and obtain the

other two normal coordinates using Equation (3.12).
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Chapter 4

Surface Parameterization

The famous uniformization theorem of Koebe is perhaps the single most important theorem in

the whole theory of analytic functions of one variable. . . . As soon as the uniformization theorem

is proved, it is not necessary to consider Riemann surfaces more general than the disk, the plane,

and the sphere. It must be admitted, of course, that the reduction to these cases does not always

simplify matters.

Lars Ahlfors [1973]

T
he first instance of dynamic surfaces that we will consider arises from surface
parameterization. We describe a numerical method which computes maps from
that are locally injective and discretely conformal in an exact sense. Unlike previ-
ous methods for discrete conformal parameterization, the method is guaranteed
to work for any manifold triangle mesh, with no restrictions on triangulation

quality or cone singularities. In particular we consider maps from surfaces to the plane, and
globally bijective maps from genus zero surfaces to the sphere. Recent theoretical developments
have shown that each task can be formulated as a convex problem where the triangulation is
allowed to change—we complete the picture by introducing the machinery needed to actually
construct a discrete conformal map. A key challenge lies in tracking the correspondence between
our evolving intrinsic triangulation and the original mesh.

Problem Statement
We start with a manifold triangulation T = (V, E, F) equipped with edge lengths ℓ : E→ R>0.
The triangulation T may have any genus, and may have a nonempty boundary. Our goal
in this chapter is to construct a discrete conformal parameterization, i.e. a map 𝜑 : T→ R2
which is discretely conformal in the exact sense defined in Section 4.1. The parameterization
𝜑 is locally-injective, meaning that it does not flip any triangles of T. Unlike many common
parameterizations, 𝜑 is not linear on the faces of T, rather it is defined to be projective on the
faces of a refined triangulation T̃.

When T has genus zero, we also describe an algorithm for computing globally bijective maps
𝜑 : T→ 𝑆2 to the sphere, which are also discretely conformal in an exact sense.
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Figure 4.1: Steps of our algorithm. Throughout we color the input mesh T𝐴 red, its intrinsic Delaunay
triangulation T𝐵 yellow, the uniformized triangulation T𝐶 blue, and the common subdivision S of all
three green. (Note: triangulations in dashed boxes are purely intrinsic and never actually embedded in
R𝑛 .)

In the smooth setting, existence of conformal maps is guaranteed by the uniformization

theorem [Abikoff 1981]. Very recently, Gu et al. [2018b,a] and Springborn [2019] established
an analogous discrete uniformization theorem for triangle meshes. However, these theoretical
results fall short of providing practical algorithms, since they do not describe how to construct
the mapping between the input and target domain. We present the first end-to-end algorithm
for computing and evaluating this map—in particular, we provide:

• a combinatorial data structure for correspondences between triangulations (Section 4.2.1),

• a scheme for evaluating discrete conformal maps based on the light cone (Section 4.2.3),
and

• critical details needed to implement discrete uniformization including a careful treatment
of numerics and boundary conditions (Section 4.3), and subtleties of the spherical case
(Section 4.4).

Our optimization procedure is a simple modification of the CETM algorithm (from Springborn
et al. [2008], Conformal Equivalence of Triangle Meshes): we minimize the same energy, but
evaluate it on a triangulation that changes according to the current scale factors. However, since
the triangulation may now change, this procedure does not yield an explicit parameterization
of the input. To improve the quality of the map, we also need to flip the input to an intrinsic

Delaunay triangulation before starting the optimization. The main difficulty in developing a
practical algorithm is therefore tracking and evaluating the correspondence between these three
triangulations—Figure 4.1 gives an overview of the whole process. Importantly, even though the
Euclidean geometry of our polyhedron changes during optimization, it can always be seen as
different reflections of the same underlying hyperbolic polyhedron, which greatly simplifies
the problem of correspondence. This perspective lets we can adapt the integer coordinates data
structure from Chapter 3 to store the correspondence between two hyperbolic polyhedra, which
are guaranteed to be isometric, even if the Euclidean polyhedra which they represent are not.
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4.1 Discrete Conformal Equivalence
In the smooth setting, conformal maps preserve angles—naïvely, one might
therefore require that for triangle meshes, discrete conformal maps preserve
the angles at all corners. However, this condition is far too rigid: since
each triangle can only scale and rotate, its neighbors—and in turn, the entire
surface—may only scale by a constant amount. As a result, many other notions of discrete
conformal maps have been explored; Crane [2020] gives a detailed account.

A particularly successful approach is the notion of discrete conformal equivalence. In the
smooth setting, two Riemannian metrics 𝑔,𝑔 are conformally equivalent if they are related by
a positive scaling 𝑔 = 𝑒2𝑢𝑔 for some real-valued function 𝑢. On a triangle mesh two discrete
metrics (i.e. sets of edge lengths) ℓ, ℓ̃ are called discretely conformally equivalent if

ℓ̃𝑖𝑗 = 𝑒
(𝑢𝑖+𝑢 𝑗 )/2ℓ𝑖𝑗 (4.1)

scalefor some assignment of scale factors 𝑢𝑖 ∈ R to vertices 𝑖 [Roček &
Williams 1984; Luo 2004]. This innocent-looking definition leads
to a rich discrete theory which is just as flexible as the smooth
one [Bobenko et al. 2015]. Bücking [2016, 2018] and Gu et al. [2019]
consider convergence under refinement.

Two sets of edge lengths are discretely conformally equivalent
if and only if they induce the same length cross ratios [Springborn et al. 2008, Section 2]

𝔠𝑖𝑗 =
ℓ𝑖𝑙 ℓ𝑗𝑘

ℓ𝑙 𝑗 ℓ𝑘𝑖
. (4.2)

We will give a definition of conformal equivalence for Euclidean polyhedra with different

connectivity while discussing the variable triangulation setting below.

4.1.1 Discrete Uniformization

map to cone metric cut & unfold
into plane

Figure 4.2: Conformal parameterization with cones.

Conformal equivalence offers an appeal-
ing strategy for parameterization: rather
than solve directly for a map to the plane,
first find scale factors that describe a dis-
cretely conformally equivalent flat surface—
perhaps with target angle defects Ω∗𝑖 pre-
scribed at just a few isolated cone points

(Figure 4.2, center). This new surface is
then cut open and unfolded into the plane
(Figure 4.2, right). In the smooth setting,
existence of such scale factors is guaranteed by the uniformization theorem [Abikoff 1981] and
its generalization to cone metrics [Troyanov 1991]. In the discrete setting, however, there is a
critical problem: for a fixed triangulation, there may be no scale factors that achieve the target
angle defects. One must therefore adopt an expanded notion of discrete conformal equivalence
that allows the triangulation to change (Section 4.1.1).
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flip when triangles degenerate (Euclidean)
flip to Delaunay triangulation (Ptolemy)

Figure 4.3: Flipping edges when triangles degenerate causes the energy E to jump discontinuously—
voiding any guarantee of convergence (top). In contrast, flipping to Delaunay via Ptolemy flips before
evaluating the energy ensures that we always reach the correct solution (bottom). Here we consider
a coarse double torus with target angle defects +3𝜋/4 at all but one vertex, which has large negative
curvature. We take small steps to clearly plot the energy; vertical lines indicate flip times.

To actually compute the scale factors, Luo [2004] proposed the discrete Yamabe flow

𝑑
𝑑𝑡
𝑢𝑖 (𝑡) = Ω∗𝑖 − Ω̃𝑖 (𝑡). (4.3)

Here Ω̃𝑖 (𝑡) are the angle defects induced by the scale factors 𝑢 (𝑡). However, since there may be
no scale factors that achieve the target angle defects, this flow can fail to reach a critical point
𝑑
𝑑𝑡
𝑢𝑖 = 0, where Ω̃𝑖 = Ω∗𝑖 . In this case, the scaled edge lengths ℓ̃ will eventually violate the triangle

inequality—at which point the flow becomes ill-defined and cannot continue. Springborn et al.
[2008] and Bobenko et al. [2015] describe this flow as gradient descent on an explicit convex
energy E , leading to the more efficient, 2nd-order CETM algorithm. CETM extends E to be
well-defined even for invalid edge lengths—but if the minimizer is found in this extended region,
it fails to describe a valid parameterization (Figure 4.20).
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un-flip
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∞ ∞

Figure 4.4: Performing Euclidean edge flips at arbitrary
moments in the flow can badly distort the conformal
structure. Here, we flip edge 𝑖𝑗 , scale edges incident
on 𝑘 by a factor 𝑒𝑢𝑘/2, and undo the flip. The cross
ratio 𝔠𝑘𝑖 of edge 𝑘𝑖 (Equation (4.2)) is not preserved,
and in fact can take almost any value.

Flipping Edges. Luo [2004] conjectured that
degenerate triangles might be avoided by
applying Euclidean edge flips at the exact
moment when triangles degenerate, as im-
plemented by Campen & Zorin [2017b, Sec-
tion 7.3.1], but this idea has two fatal flaws.
First, mixing flips with vertex scaling can
yield lengths that are not conformally equiv-
alent to the original ones (Figure 4.4). Sec-
ond, it can cause discontinuities in the value
of E , voiding any guarantee that the flowwill
converge (Figure 4.3). This lack of guaran-
tees is a problem even for methods that care
only about injectivity, and not conformal
maps [Chien et al. 2016; Campen & Zorin
2017b; a; Campen et al. 2019]. Likewise, the generalized method of Chen et al. [2016, Algorithm
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Figure 4.6: Top: Triangle meshes with different connectivity (but the same vertices) are considered
discretely conformally equivalent if they are the same up to a conformal rescaling of edge lengths,
followed by Ptolemy edge flips to a Delaunay triangulation. Bottom: This definition, and the use of
Ptolemy (rather than Euclidean) edge flips, arises from a hyperbolic perspective, where we simply
retriangulate a hyperbolic polyhedron without changing its geometry.

1] takes a step of arbitrary size before performing power Delaunay flips, and Yu et al. [2017,
Algorithm 1] take an arbitrary step before performing Euclidean flips. Both algorithms can
hence distort conformal structure, or even violate the triangle inequality—at which point the
flow is undefined and cannot continue. Our use of Ptolemy flips ensures the flow is always
well-defined and exactly preserves the conformal structure (see Appendix A.2.2).

=

input (polyhedral)

Figure 4.5: We adopt a notion of conformal equivalence
that yields the same discrete conformal map, no matter
how the input polyhedral surface is triangulated. Here
a mesh with planar faces is triangulated two different
ways, yielding identical results.

Variable Triangulations A recent theo-
retical breakthrough is a notion of discrete
conformal equivalence that does not de-
pend on how a polyhedral surface is trian-
gulated (Figure 4.5), along with associated
discrete uniformization theorems for the Eu-
clidean [Gu et al. 2018b], hyperbolic [Gu et
al. 2018a], and spherical [Springborn 2019]
cases. This work is intimately linked to real-
ization results for ideal hyperbolic polyhe-
dra [Rivin 1994b; Fillastre 2008; Prosanov
2020]. The theorems guarantee one can
always find a conformally equivalent trian-
gulation with prescribed angle defects Ω∗,
so long as they satisfy Gauss-Bonnet. This solution is unique up to scale (Euclidean case) or
Möbius transformations (spherical case).
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concyclic flips
[Sun et al 2015]

Ptolemy flips
[our method]

Figure 4.8: A slice of the energy land-
scape for a tetrahedron. Each con-
formal scaling 𝑢 induces a Delaunay
triangulation—white curves delineate
regions with a common triangulation.
Previous algorithms must stop and flip
at each region boundary (where trian-
gles become concyclic), whereas we
can flip at any moment—since Ptolemy
flips commute with scaling.

There are two equivalent definitions of discrete conformal equivalence—a key idea introduced
by Gu et al. [2018b] is to consider an intrinsic Delaunay triangulation of the input (Section 2.3.3).
Note that Delaunay triangulations are used not because they are “nice” in a numerical sense,
but because their properties are essential to establishing the discrete uniformization theorem.

Figure 4.7: Both of
the triangulations of
a circular quad obey
the local Delaunay
condition 𝛼 + 𝛽 ≤ 𝜋 .

One definition is that two Delaunay triangulations are conformally
equivalent if they are related by a sequence of vertex scalings (Equa-
tion (4.1)) and concyclic Euclidean edge flips (Figure 4.7), which maintain
the Delaunay property [Gu et al. 2018b, Definition 1.1]. Algorithms that
adopt this definition must stop and flip whenever two triangles become
concylic. Wu [2014] shows that only finitely many flips are needed, ensur-
ing that computation terminates. Sun et al. [2015] present an implemen-
tation of such a scheme, but do not evaluate the pointwise map between
the domain and target (as needed for, e.g., texture mapping or remeshing).

We adopt an alternative definition which is theoretically equivalent—
though this is far from obvious: the two intrinsic Delaunay triangulations
are discretely conformally equivalent if they describe the same ideal hy-
perbolic polyhedron [Bobenko et al. 2015, Definition 5.1.4]. As observed
by Springborn [2019], a discretely conformally equivalent triangulation can be obtained by
applying a vertex scaling, then flipping to a Delanuay triangulation via Ptolemy flips, rather than
ordinary Euclidean flips (Figure 4.6, top). Ptolemy flips are well-defined even when edge lengths
violate the triangle inequality, so one need not worry about maintaining a valid Euclidean metric,
nor about triangles being concyclic: one can scale to any invalid metric, then flip to a valid one,
which effectively retriangulates an associated ideal hyperbolic polyhedron (Figure 4.6, bottom).

By adopting this definition, we cast discrete conformal parameterization as an unconstrained
convex optimization problemwhere the only variables are the scale factors𝑢𝑖 . The optimizer need
not worry about edge flips, which can be encapsulated in a routine to evaluate the energy and its
derivatives. Moreover, we can use a 2nd-order Newton method to achieve fast convergence, since
the energy we minimize is twice continuously differentiable even across different triangulations.
Overall this approach is generally faster than stopping to perform flips, and also accommodates
the more difficult spherical case, via bounds constraints (Section 4.4).
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input Delaunay
optimize optimize

Delaunaynon-Delaunay

Figure 4.9: Top: uniformization should leave a flat region un-
changed, but unless one first flips to an intrinsic Delaunay
triangulation, Ptolemy flips performed during optimization
will distort the given shape. Bottom: in general, flipping to
intrinsic Delaunay first yields a better map.

Note that discrete conformal equiv-
alence is defined not between triangle
meshes themselves, but between intrin-
sic polyhedral metrics. As a result, our
parameterizations are canonical—they
depend only on the intrinsic metric of
the input surface, independent of the
particular triangulation used to repre-
sent it (Figure 4.5). The key to this
independence is that we start by tak-
ing the input mesh T𝐴 and flipping to
its intrinsic Delaunay triangulation T𝐵

before computing a parameterization.
This first step is essential for comput-
ing high-quality parameterizations—if
we skip this step then we could work
with just two triangulations, and get a
map that is still locally injective, but
may exhibit significant conformal dis-
tortion (see Figures 4.9 and 4.19).

Concurrent work by Campen et al. [2021] also takes the hyperbolic approach to conformal
parameterization, with several significant differences: first, they focus entirely on the question
of planar parameterization, whereas we also consider discrete conformal maps to the sphere—a
key tool in applications from computational biology to generative modeling [Koehl & Hass
2015; Dorobantu et al. 2023]. Furthermore, our new hyperbolic correspondence data structure
and projective interpolation scheme (described in Section 4.2) provide us with the common
subdivision of the extrinsic and intrinsic triangulations, allowing us to efficiently evaluate the
exact discrete conformal map between the two surfaces directly, even in a per-pixel fragment
shader. By contrast, Campen et al. evaluate the correspondence by mapping each point of interest
through every edge flip performed during optimization à la Section 5.2.1. Their evaluation
focused on computing parameterizations with challenging cone configurations for models with
high-quality triangles, where the robustness of the correspondence scheme is less of a concern.
They also neglect to flip the original mesh to its Euclidean intrinsic Delaunay triangulation,
which—as detailed above—is essential for computing high-quality parameterizations on near-
degenerate input meshes, but makes correspondence tracking significantly more difficult. On
the other hand, Campen et al. develop a clever scheme for efficiently handling meshes with
boundary without doubling the size of the mesh as we do in Section 4.3.4—incorporating their
techniques for meshes with boundary with our data structures for hyperbolic polyhedra is an
interesting problem for future work.
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4.1.2 Working with Hyperbolic Polyhedra

Figure 4.10: An ordinary triangle mesh
(left) can always be viewed as an ideal
hyperbolic polyhedron (right), i.e., surface
made from triangles of constant negative
curvature and all three vertices lying on
the ideal boundary of hyperbolic space.

While the name ideal hyperbolic polyhedron may sound
intimidating, these objects are closely connected to or-
dinary triangle meshes, and from a computational per-
spective they are—if anything—simpler to work with.
An introduction to the theory can be found in Ap-
pendix A, but in this section we give a brief overview
of the details required to implement our parameteriza-
tion algorithm. Just as a (Euclidean) triangle mesh can
be encoded by a triangulation T = (V, E, F) along with
edge lengths ℓ : E→ R>0, an ideal hyperbolic polyhe-
dron can be encoded by a triangulation equipped with
Penner coordinates 𝜆 : E→ R. And unlike the Euclidean
case, where the edge lengths must satisfy some validity
conditions, these Penner coordinates can be arbitrary.
Any assignment of a real number to each edge of the mesh defines a valid ideal polyhedron.

Correspondence with Euclidean Meshes Given a Euclidean triangle mesh with lengths
ℓ , we obtain a corresponding ideal polyhedron by taking Penner coordinates 𝜆𝑖𝑗 = 2 log ℓ𝑖𝑗 . A
standard mesh and its associated ideal polyhedron are illustrated in Figure 4.10.

Ptolemy Flips Penner coordinates are easily updated during edge flips via Ptolemy’s relation

[Penner 2012, Corollary 4.16, p. 40]. Letting ℓ𝑖𝑗 = 𝑒𝜆𝑖𝑗/2 for each edge 𝑖𝑗 , we compute

ℓ𝑘𝑙 = (ℓ𝑘𝑖ℓ𝑙 𝑗 + ℓ𝑗𝑘ℓ𝑙𝑖)/ℓ𝑖𝑗 . (4.4)

The new Penner coordinate is then 𝜆𝑘𝑙 = 2 log(ℓ𝑘𝑙 ). Since Equation (4.4) is a rational expression
in ℓ , it is often simplest to just store and manipulate the edge lengths ℓ rather than the Penner
coordinates 𝜆.

Importantly, this so-called Ptolemy flip is the same as a Euclidean edge flip whenever the two
Euclidean triangles are concyclic. In general, Euclidean flips may distort the discrete conformal
structure even though they preserve the Euclidean geometry, while Ptolemy flips always preserve
the hyperbolic metric, hence the conformal structure. Moreover, Euclidean flips are well-defined
only when the triangle inequalities are satisfied, whereas Ptolemy flips are always well-defined.

Ideal Delaunay Triangulations The hyperbolic analogue of Euclidean Delaunay triangula-
tions are ideal Delaunay triangulations (Appendix A.2.3): if ℓ = 𝑒𝜆/2 are edge lengths associated
with given Penner coordinates 𝜆, then every edge must satisfy the local ideal Delaunay condition

ℓ2𝑖𝑗 (ℓ𝑗𝑘ℓ𝑘𝑖 + ℓ𝑖𝑙 ℓ𝑙 𝑗 ) < (ℓ𝑖𝑙 ℓ𝑘𝑖 + ℓ𝑗𝑘ℓ𝑙 𝑗 ) (ℓ𝑖𝑙 ℓ𝑗𝑘 + ℓ𝑘𝑖ℓ𝑙 𝑗 ) . (4.5)

We can find such a triangulation by greedily flipping edges, this time using Ptolemy flips.
Remarkably, if Equation (4.5) is satisfied globally, then the lengths ℓ always describe a valid
Euclidean intrinsic Delaunay triangulation [Springborn 2019, p. 4.14]. Yet working in the ideal
setting enables us to start with an invalid Euclidean metric and flip to a valid one (Figure 4.6).
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4.2 Correspondence
The triangulation produced by uniformization cannot be used in most applications without
mapping data back to the input mesh. Two basic strategies have been developed for this
purpose. Fisher et al. [2007] and Sun et al. [2015] maintain a mesh of the common subdivision,
ensuring correct connectivity at the cost of implementation complexity. Sharp et al. [2019]

signposts integer
coordinates

Figure 4.11: Left: The signpost data structure
suffers from numerical error in extreme situ-
ations, like the “peacock triangulation” from
Section 4.4.3. Right: integer coordinates al-
ways provide the correct connectivity.

instead represent correspondence implicitly using
signpost vectors at vertices. This floating-point en-
coding is more efficient, but suffers from errors in
extreme situations (Figure 4.11). We opt for integer
coordinates (Chapter 3), which provide the best of
both worlds: an implicit encoding that can be updated
easily, yet guarantees the right connectivity. But in
order to do so, we have to solve two problems: first,
we need to adapt the data structure to encode hy-
perbolic polyhedra, in addition to standard Euclidan
polyhedra. And second, we need to encode the corre-
spondence between three distinct triangulations, not
just two (Figure 4.1). We detail the necessary adjust-
ments in Section 4.2.1 and Section 4.2.2 respectively.

Another basic question is how to interpolate data across triangulations, such as vertex or
texture coordinates. The natural choice for discrete conformal maps is to use piecewise projective
interpolation [Bobenko et al. 2015], which can be implemented via standard homogeneous
coordinates [Springborn et al. 2008, Section 3.4]. We extend this idea to variable triangulations
by laying out triangles in the light cone rather than the Euclidean plane (see Section 4.2.1).

Our approach to correspondence depends critically on the hyperbolic picture: our use
of integer coordinates depends on hyperbolic straightening, and our interpolation scheme
(Figure 4.13) likewise relies crucially on the hyperboloid model of hyperbolic space.

4.2.1 Integer Coordinates for Ideal Hyperbolic Polyhedra

With a small tweak, we can use the integer coordinates data structure described in Chapter 3 to
encode the correspondence between two triangulations T1 and T2 of the same ideal hyperbolic
polyhedron. We still use normal coordinates and roundabouts to encode the sequence of triangles
in T2 that each edge of T1 passes through. The only difference arises when we compute the exact
path taken by an edge through this sequence of triangles (Section 3.2.2). Rather than laying
out the sequence of triangles in the Euclidean plane and connecting the endpoints by a straight
Euclidean line, we now lay the triangles out in the hyperbolic plane and connect the endpoints
by a hyperbolic geodesic. In particular, we found that this calculation was easiest to do in the
hyperboloid model of the hyperbolic plane, where vertices live on the so-called light cone.

Layout in the Light Cone The hyperboloid model of the hyperbolic plane identifies the
hyperbolic plane with the unit hyperboloid {(𝑥,𝑦, 𝑧) : 𝑥2 + 𝑦2 − 𝑧2 = −1}. This hyperboloid
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asymptotically approaches the light cone
1 {(𝑥,𝑦, 𝑧) : 𝑥2 + 𝑦2 = 𝑧2}, whose rays represent

ideal points of the hyperboloic plane. In this model, we can identify ideal hyperbolic triangles
with secant triangles whose vertices lie on the light cone (Figure 4.12). So once we have used
Algorithm 2 to determine the sequence of triangles in T2 than some edge 𝑎𝑏 of T1 passes through,
our next task is to embed those triangles as secant triangles in the light cone.

As derived in Appendix A.3, the first triangle 𝑎𝑖𝑗 has vertices

𝑞𝑎 = 2√
3
ℓ𝑎𝑖ℓ𝑎 𝑗 ℓ

−1
𝑖𝑗 (1, 0, 1),

𝑞𝑖 = 2√
3
ℓ𝑎𝑖ℓ𝑖𝑗 ℓ

−1
𝑎 𝑗 (cos(2𝜋/3), sin(2𝜋/3), 1),

𝑞 𝑗 = 2√
3
ℓ𝑎 𝑗 ℓ𝑖𝑗 ℓ

−1
𝑎𝑖 (cos(4𝜋/3), sin(4𝜋/3), 1).

(4.6)

For any triangle 𝑘𝑗𝑙 following a known triangle 𝑖𝑗𝑘 , we use the Ptolemy relation to get ℓ𝑖𝑙 , then
solve for the unknown position

𝑞𝑙 =
ℓ𝑖𝑙

ℓ𝑖𝑘ℓ𝑖𝑗

(
−
ℓ𝑗𝑙 ℓ𝑘𝑙

ℓ𝑖𝑙
𝑞𝑖 +

ℓ𝑖𝑘ℓ𝑘𝑙

ℓ𝑗𝑘
𝑞 𝑗 +

ℓ𝑗𝑙 ℓ𝑖𝑗

ℓ𝑗𝑘
𝑞𝑘

)
. (4.7)

This process repeats until we have laid out the whole strip, including the endpoints 𝑞𝑎 and 𝑞𝑏 . To
account for conformal scaling, we also scale just these endpoints by 𝑒−𝑢𝑎 and 𝑒−𝑢𝑏 , respectively.
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uv
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We think of the embedded points 𝑞𝑖 ∈ R3 as ho-
mogeneous coordinates representing points in the two-
dimensional hyperbolic plane. So, for each edge 𝑖𝑗 crossed
by edge 𝑎𝑏, we can compute the intersection of 𝑎𝑏 with 𝑖𝑗
by computing the intersection between segment 𝑞𝑎𝑞𝑏 and
segment 𝑞𝑖𝑞 𝑗 in homogeneous coordinates. Explicitly, we
solve for values 𝑠, 𝑡, 𝑢 ∈ R such that

(1 − 𝑡)𝑞𝑎 + 𝑡𝑞𝑏 = 𝑒𝑢
(
(1 − 𝑠)𝑞𝑖 + 𝑠𝑞 𝑗

)
. (4.8)

Letting 𝑣 := 𝑞𝑎 × 𝑞𝑏 and𝑤 := 𝑞𝑖 × 𝑞 𝑗 , we can write the solution explicitly as

𝑡 =
⟨𝑤,𝑞𝑎⟩
⟨𝑤,𝑞𝑎 − 𝑞𝑏⟩

, 𝑠 =
⟨𝑣, 𝑞𝑖⟩
⟨𝑣, 𝑞𝑖 − 𝑞 𝑗 ⟩

, 𝑢 = log
( ⟨𝑣, 𝑞 𝑗 − 𝑞𝑖⟩
⟨𝑤,𝑞𝑎 − 𝑞𝑏⟩

)
. (4.9)

The barycentric coordinates 𝑠, 𝑡 and scale factors 𝑢 computed at each intersection are used to
construct the common subdivision in Section 4.2.2 and for texture interpolation in Section 4.2.3.

1so-named because rays of the light cone represent directions that light can travel in spacetime in the study of
special relativity.

lig
ht

 co
ne

hyperboloid Figure 4.12: By drawing triangles in the
light cone (left), the map between sur-
faces can be found by drawing a straight
line through the origin (center), which
also works for two different triangulations
(right).
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4.2.2 Common Subdivision of Three Triangulations

Following uniformization (Section 4.3), we end up with three triangulations: the input T𝐴 with
vertex positions 𝑓 , its intrinsic Delaunay triangulation T𝐵 , and the parameterized mesh T𝐶 with
texture coordinates 𝑧 (Figure 4.1). We separately use one set of integer coordinates to track the
correspondence between T𝐴 and T𝐵 (as Euclidean triangle meshes), and another set of integer
coordinates to track the correspondence between T𝐵 and T𝐶 (as ideal hyperbolic polyhedra).

For most tasks, we need an explicit map between T𝐴 and T𝐶 . To construct one, we first use the
integer coordinates to identify where the edges of T𝐴 and T𝐶 intersect edges of T𝐵 (Section 3.2);
these intersections are used to construct the common subdivision S of all three meshes, similar to
Section 3.3. After constructing S, we interpolate 𝑓 and 𝑧 across its faces (Section 4.2.3), obtaining
an extrinsic polygon mesh with positions 𝑓𝑖 at vertices and texture coordinates 𝑧 𝑗𝑘

𝑖
at corners.

4.2.3 Interpolation

b

The vertex coordinates 𝑓𝑖 and texture coordinates 𝑧 𝑗𝑘
𝑖

define piecewise-
linear and piecewise-projective functions over the faces of T𝐴 and T𝐶 resp.;
we now sample these functions onto S. To do so, we also use the scale
factors 𝑢 obtained while tracing hyperbolic geodesics. We process each
triangle 𝑖𝑗𝑘 ∈ T𝐵 independently. First, we interpolate data onto each edge
𝑖𝑗 of the triangle. For each edge point 𝑝 along an edge 𝑎𝑏 ∈ E𝐴, let 𝑠𝑝, 𝑡𝑝 be
the barycentric coordinates along𝑎𝑏 and 𝑖𝑗 , resp. Then 𝑓𝑝 = (1−𝑠𝑝) 𝑓𝑎+𝑠𝑝 𝑓𝑏 .
Similarly, for a point 𝑞 along 𝑐𝑑 ∈ E𝐶 we have homogeneous texture coordinates

𝑧𝑞 = 𝑒
−𝑢𝑞 (
(1 − 𝑠𝑞) (𝑧𝑐, 1) + 𝑠𝑞 (𝑧𝑑 , 1)

)
∈ R3, (4.10)

where (𝑧, 1) indicates that a 1 has been appended to 𝑧. The scale factors 𝑒𝑢 arise from projective
rather than linear interpolation, as discussed in Section 4.2.1. To get values of 𝑓 at edge points 𝑞,
and values of 𝑧 at edge points 𝑝 , we linearly interpolate between adjacent known values along 𝑖𝑗 .
Finally, to get the values at each face point, we write the endpoints of the two incident fragments
in 2D barycentric coordinates relative to 𝑖𝑗𝑘 , and compute the intersection point in homogeneous
coordinates via Equation (4.9). The resulting 𝑠, 𝑡 values are then used to linearly interpolate
𝑓 and 𝑧 from the segment endpoints. Note that since texture coordinates are discontinuous
across cuts, we store 𝑧 at corners rather than vertices. The final surface can be visualized by
tessellating polygons into triangles; just as in [Springborn et al. 2008, Section 3.4] we perform a
homogeneous divide on texture coordinates 𝑧 at each sample point (e.g., each pixel).

Thing ID 500096

Linear Projective

Mesh

Figure 4.13: For meshes with low-
quality triangles, standard linear inter-
polation yields a poor conformal map
(left). We describe how to perform pro-
jective interpolation across triangula-
tions, yielding a dramatically smoother
map (right).
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4.3 Planar Parameterization
Now we describe our procedure for planar parameterization (Figure 4.1)—see Section 4.4 for the
spherical case. Given an input mesh T𝐴, we first flip to an intrinsic Delaunay triangulation T𝐵 (à
la Section 2.3.3), which preserves the Euclidean geometry and defines the discrete conformal
structure. We then solve an optimization problem for scale factors 𝑢 that transform T𝐵 into a
triangulation T𝐶 with the prescribed angle defects (Section 4.3.3). After optimization, we obtain
the final parameterization as described in Section 4.2.

4.3.1 Variational Formulation

The input to our discrete uniformization procedure is the intrinsic Delaunay triangulation T𝐵 ,
and target angle defects Ω∗ : V→ R which must satisfy a discrete Gauss-Bonnet condition:

1
2𝜋

∑︁
𝑖∈V

Ω∗𝑖 = |V| − |E𝐵 | + |F𝐵 | (4.11)

(see Section 4.3.4 for a generalization to surfaces with boundary). Note that target defects Ω∗𝑖
must be smaller than 2𝜋 , since the sum of angles around a vertex is always positive. Minimizing
a convex energy E then yields scale factors 𝑢 relative to T𝐵 . Unlike CETM we flip to Delaunay
whenever we need to evaluate the energy or its derivatives (see Section 4.3.2). This process is
completely hidden inside a callback routine—from the perspective of the optimizer, one simply
has to solve an unconstrained problem that is convex and twice continuously differentiable (𝐶2).

4.3.2 Energy Evaluation

To evaluate our energy for any given 𝑢, we first compute the edge lengths ℓ̃𝑖𝑗 = 𝑒 (𝑢𝑖+𝑢 𝑗 )/2ℓ𝐵𝑖𝑗 , and
flip to the corresponding ideal Delaunay triangulation𝑇 = (V, Ẽ, F̃) via Ptolemy flips. These flips
change the Euclidean geometry but preserve the discrete conformal structure. We use �̃�, 𝜃 , and
Ω̃ to denote the corresponding Penner coordinates, interior angles, and angle defects, resp.

Energy The discrete conformal energy is then given by

E (𝑢) =
∑︁
𝑖∈V
(2𝜋 − Ω∗𝑖 ) 𝑢𝑖 −

∑︁
𝑖 𝑗∈Ẽ

𝜋�̃�𝑖𝑗 +
∑︁
𝑖 𝑗𝑘∈F̃

2𝑓 (�̃�𝑖𝑗 , �̃� 𝑗𝑘 , �̃�𝑘𝑖), (4.12)

where 𝑓 (�̃�𝑖𝑗 , �̃� 𝑗𝑘 , �̃�𝑘𝑖) := 1
2

(
𝜃
𝑗𝑘

𝑖
�̃� 𝑗𝑘 + 𝜃𝑘𝑖𝑗 �̃�𝑘𝑖 + 𝜃

𝑖𝑗

𝑘
�̃�𝑖𝑗

)
+ Л(𝜃 𝑗𝑘

𝑖
) + Л(𝜃𝑘𝑖𝑗 ) + Л(𝜃

𝑖𝑗

𝑘
). Here Л denotes

Milnor’s Lobachevsky function Л(𝜃 ) := −
∫ 𝜃

0 log |2 sin𝑢 | 𝑑𝑢, and is related to Clausen’s integral

via Л(𝜃 ) = 1
2Cl2(2𝜃 ), which is implemented in standard numerical packages [Galassi et al. 1994].

Gradient At each vertex 𝑖 ∈ V, the gradient of the energy is

𝜕𝑢𝑖E = Ω̃𝑖 − Ω∗𝑖 (4.13)

Note, then, that any stationary point 𝜕𝑢E = 0 achieves the desired angle defects Ω̃ = Ω∗.
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Hessian The Hessian is given by the positive-semidefinite cotan Laplacian

𝐿 ∈ RV×V [MacNeal 1949, Section 3.2; Crane et al. 2013a, Chapter 6]. Since
a Δ complex may contain more than one edge with the same endpoints,
the off-diagonal entries 𝐿𝑖𝑗 and 𝐿 𝑗𝑖 are obtained by summing the values
1
2 (cot𝜃

𝑖𝑗

𝑘
+ cot𝜃 𝑗𝑖

𝑙
) over all edges 𝑖𝑗 ∈ Ẽ with endpoints 𝑖 and 𝑗 , where 𝑘, 𝑙

are the vertices opposite the edge. For each vertex 𝑖 ∈ V, we then have a diagonal entry
𝐿𝑖𝑖 = −

∑
𝑖 𝑗∈Ẽ 𝐿𝑖𝑗 , where the sum is taken over all edges incident on 𝑖 . Note that self-edges (where

𝑖 = 𝑗 ) make no contribution.

4.3.3 Optimization

Since the energy E is convex and globally 𝐶2, it can be minimized using any standard method
for convex optimization. We use Newton’s method with backtracking line search, as described
in Algorithms 9.5 and 9.2 of Boyd & Vandenberghe [2004], resp. In particular, we use the descent
direction 𝑣 ∈ RV obtained by solving the linear system

𝐿𝑣 = 𝜕𝑢E, (4.14)

where 𝜕𝑢E ∈ RV encodes the gradient defined in Section 4.3.2. Note that the matrix 𝐿 has
a one-dimensional kernel of constant vectors—corresponding to global scaling. We use the
solution 𝑣 with mean zero. Although 𝐿 is rank deficient, the system is solvable: Gauss-Bonnet
ensures that the right-hand side sums to zero. And since the energy is convex, initialization
does not affect the final result (apart from a global scale)—we initialize each vertex with 𝑢𝑖 = 0.

4.3.4 Surfaces with Boundary
circular disk

convex

orthogonal

scale control

minimal area
distortion

polygonal

Figure 4.14: Our algorithm guarantees existence
of a locally injective discrete conformal map for
any prescribed boundary lengths or angles, which
can be used to achieve a rich variety of behavior.

For a smooth surface𝑀 with boundary 𝜕𝑀 , the
space of conformal maps to the plane is pa-
rameterized by a real-valued function along the
boundary—geometrically, this function can be
determined by prescribing either the scale fac-
tors 𝑢 or the curvature density 𝜅 𝑑𝑠 along 𝜕𝑀
(see [Sawhney & Crane 2017, Section 4.2] for
further discussion). We can specify such condi-
tions by either a scale factor𝑢𝑖 or target exterior
angle 𝜅∗𝑖 at each boundary vertex 𝑖 ∈ 𝜕V. To
enforce these conditions, we glue together two
copies of the input mesh along the boundary
(as in Jin et al. [2004]), reducing the problem to
the no-boundary case. Unlike CETM, we can
hence always find a solution with the prescribed
boundary data. Note that this construction ex-
tends Springborn [2019], which does not consider surfaces with boundary; Sun et al. [2015]
describe a similar scheme in the case of prescribed boundary curvature. Maps to the circular
disk are handled in a similar fashion, but using spherical uniformization.
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doubleFixed Boundary Curvature Suppose we want our flattened do-
main to have an exterior angle 𝜅∗𝑖 at a boundary vertex 𝑖 , corre-
sponding to an angle sum of 𝜋 − 𝜅∗𝑖 . On the doubled domain, we
thus prescribe an angle defect Ω∗𝑖 = 2𝜋 − 2(𝜋 − 𝜅∗) = 2𝜅∗𝑖 . The
intrinsic parameterization which we compute is unique, so in par-
ticular it must be symmetric across the two copies of the original
mesh. Hence, if we cut the uniformized surface along the original
boundary curve, each half will exhibit the desired angles 𝜅∗. The
only requirement is that the angle defects and exterior angles satisfy a Gauss-Bonnet condition∑
𝑖∈V Ω

∗
𝑖 +

∑
𝑖∈𝜕V 𝜅

∗
𝑖 = |V| − |E| + |F|. In Figure 4.14 we assign target angles that yield convex

(𝜅∗𝑖 > 0), orthogonal (𝜅∗𝑖 ∈ 𝜋
2Z), or polygonal boundaries (𝜅

∗
𝑖 = 0 almost everywhere).

Fixed Boundary Scale Factors To prescribe boundary scale factors, we fix the values 𝑢𝑖 at
vertices 𝑖 of the doubled domain corresponding to the original boundary. For instance, setting
𝑢𝑖 = 0 at all boundary vertices yields minimal area distortion [Chebyshev 1899, p. 242] in the
sense that it minimizes the variation in scale factors [Springborn et al. 2008, Appendix E]—see
Figure 4.14. Fixing these values restricts the convex energy E to a linear subspace; hence we
are still solving a convex problem. To compute the descent direction, we now solve the same
system (Equation (4.14)), except that we set zero Dirichlet boundary conditions at the boundary
vertices, since we do not want these values to change. The minimizer will exhibit the target
angle defects at interior vertices, since the gradient still only vanishes when Ω̃ = Ω∗.

4.3.5 Planar Layout

The final scale factors 𝑢 intrinsically describe a flattened surface, which we can lay out in the
plane. We first scale the edge lengths and flip to Delaunay with Ptolemy edge flips to get the final
triangulation (T𝐶, ℓ𝐶). This triangulation is flat away from cone points, so we can in principle
lay the triangles out in the plane one at a time to get a parameterization with no flipped triangles.
We store texture coordinates 𝑧 𝑗𝑘

𝑖
∈ R2 at corners to allow for discontinuities across cuts.

In practice, we found it more robust to use the spectral layout of Mullen et al. [2008], which
we use in all examples. On large meshes, the incremental layout described above can accumulate
error as more and more triangles are laid out, whereas this procedure solves a global linear
system and distributes error more evenly. This algorithm requires only the cotan-Laplace and
mass matrices, which can be built directly from the final edge lengths ℓ𝐶 . Since lengths describe
a flat metric, spectral layout incurs no further distortion.

4.4 Spherical Parameterization
We now consider conformal maps to the sphere 𝑆2. Given a genus-0 Delaunay triangulation
T = (V, E, F) with edge lengths ℓ : E𝐵 → R>0, we give an algorithm to compute vertex positions
𝑓 : V → 𝑆2 ⊂ R3 describing a discretely conformally equivalent convex sphere-inscribed
polyhedron. The solution is guaranteed to exist, and be unique up to Möbius transformations of
the sphere—the same existence and uniqueness exhibited by the smooth uniformization theorem.
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Figure 4.15: Left: a convex
polyhedron inscribed in the
sphere can also be viewed, via
stereographic projection, as
a planar Delaunay triangula-
tion with all boundary ver-
tices connected to a vertex
𝑖∗ at infinity. Right: in the
Poincaré model, the horocy-
cle at 𝑖∗ shrinks to a point,
and the incident Penner coor-
dinates 𝜆𝑖∗𝑗 go to infinity.

The strategy used by CETM is essentially to delete the neighborhood of a special vertex 𝑖∗,
conformally map this modified surface to a flat disk, and apply stereographic projection to the
sphere, where the removed vertex 𝑖∗ is re-inserted (Figure 4.15, left). For a fixed triangulation,
there are several problems. First, as discussed previously, a discretely conformally equivalent flat
disk with this particular triangulation may not exist. And even if we try to allow the triangulation
to vary, it is not immediately clear what to do about boundary edges (which cannot be flipped).
Second, the final polyhedron may not be convex. In fact, many combinatorial triangulations do
not admit any convex embedding in the sphere—conformal or otherwise [Rivin 1996]. Third,
the map may become non-injective when vertex 𝑖∗ is re-inserted.

Imagine that we instead start with the object we want: a convex sphere-inscribed polyhedron
P conformally equivalent to the input surface. If we stereographically project this polyhedron
to the plane from a vertex 𝑖∗, we get a planar disk whose boundary vertices are all connected
to the same vertex 𝑖∗ at infinity (Figure 4.15, left). Stereographic projection preserves discrete
conformal equivalence, and since the polyhedron is convex, its stereographic projection will be
a planar Delaunay triangulation with convex boundary [Brown 1979]. So if we can find such a
triangulation, we can obtain the desired spherical conformal map via stereographic projection.

To solve this problem, Springborn [2019] reformulates it in the hyperbolic setting where one
can freely flip edges without invalidating the hyperbolic metric. Here, the Penner coordinates
𝜆𝑖∗𝑗 = 2 log ℓ𝑖∗𝑗 incident on the special vertex 𝑖∗ are now infinite—effectively pushing the horocycle
at 𝑖∗ off to infinity (Figure 4.15, right). This decorated polyhedron can be found via the same
uniformization procedure as in Section 4.3, but with a few important modifications. For one,
it uses a modified Delaunay flipping procedure which accounts for edges of infinite length
(Section 4.4.1), and a modified energy which accounts for the boundary vertices 𝑗 adjacent to
𝑖∗ (Section 4.4.2). Linear inequality constraints on 𝑢 ensure that the edges 𝑖∗𝑗 are convex and
have the right cross ratios (Section 4.4.3). Solving a bounds-constrained optimization problem
(Section 4.3.3) yields scale factors 𝑢 that describe the desired planar disk, which we can then
stereographically project back onto the sphere.
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4.4.1 Modified Delaunay Flips

Since some Penner coordinates are now infinite (Figure 4.15, right), we can no longer check
the Delaunay condition using Equation (4.5). However, we can still express the ideal Delaunay
condition in terms of the horocyclic arc lengths 𝛼 𝑗𝑘

𝑖
(Appendix A.2.3). Initially, all edge lengths

ℓ are well-defined and we have

𝛼
𝑗𝑘

𝑖
=

ℓ𝑗𝑘

ℓ𝑘𝑖ℓ𝑖𝑗
. (4.15)

Scaling lengths à la Equation (4.1) then gives new arc lengths

𝛼
𝑗𝑘

𝑖
= 𝑒−𝑢𝑖𝛼 𝑗𝑘

𝑖
.

At the special vertex 𝑖∗, where 𝑢𝑖∗ = ∞, we hence get 𝛼 𝑗𝑘𝑖 = 0 as expected. An edge 𝑖𝑗 then
satisfies the ideal Delaunay condition if

𝛼
𝑗𝑖

𝑘
+ 𝛼𝑖𝑗

𝑙
< 𝛼

𝑗𝑘

𝑖
+ 𝛼𝑙 𝑗

𝑖
+ 𝛼𝑖𝑘𝑗 + 𝛼𝑙𝑖𝑗 . (4.16)

If this condition is not satisfied, we perform a Ptolemy flip (Equation (4.4)). However, rather
than compute ℓ̃𝑘𝑙 directly (which may be infinite), we first compute ℓ𝑘𝑙 via the Ptolemy relation
and then scale to get ℓ̃𝑘𝑙 . Importantly, if Equation (4.16) is satisfied with equality for an edge 𝑘𝑙
opposite the special vertex 𝑖∗, we also flip 𝑘𝑙—since for any sequence of finite horocycles around
𝑖∗ approaching infinity, this edge that would belong to the ideal Delaunay triangulation.

4.4.2 Spherical Variational Principle

As in the Euclidean case, the energy and its derivatives are always evaluated on the triangulation
𝑇 obtained by updating the Penner coordinates of T𝐵 (à la Equation (A.3)) and flipping to an
ideal Delaunay triangulation (à la Section 4.4.1). In particular, let T◦ := (V◦, E◦, F◦) be the mesh
obtained by removing the special vertex 𝑖∗ together with its incident edges and faces from T̃.
The energy for spherical uniformization is then

E𝑆2 (𝑢) = 2𝜋
∑︁
𝑖∈V◦

𝑢𝑖 − 𝜋
∑︁
𝑖 𝑗∈E◦

�̃�𝑖𝑗 +
∑︁
𝑖 𝑗𝑘∈F◦

2𝑓 (�̃�𝑖𝑗 , �̃� 𝑗𝑘 , �̃�𝑘𝑖)

(see Springborn [2019, Equation 56 and Theorem 7.18], which differs by a constant that does not
affect minimizers). For each vertex 𝑖 ∈ V◦, its gradient is

𝜕𝑢 𝑗E𝑆2 = Ω̃ 𝑗 + 𝜋 (degF◦ ( 𝑗) − degE◦ ( 𝑗)),

where degE◦ ( 𝑗) and degF◦ ( 𝑗) are the number of edges and faces of T◦ containing 𝑗 , resp.; this
degree difference will be −1 for vertices adjacent to V◦ (and zero otherwise). Ω∗ does not appear
because we do not consider cone singularities in the spherical case. The Hessian is again the
cotan-Laplacian, where cotangents from any removed face are set to zero.
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…

�ip (more �ips)

Figure 4.16: To find a triangulation connecting vertex 𝑖∗ to all other vertices 𝑗 , we put a finite horocycle at
𝑖∗ and send all other horocycles to infinity. Modified Delaunay flips then yield the desired triangulation.

4.4.3 Constraints

In the fixed triangulation case, Bobenko et al. [2015, Proposition 3.2.1] observe that setting
𝑢 𝑗 = −𝜆𝑖∗𝑗 ensures that the boundary edges 𝑖∗𝑗 exhibit the right length cross ratio. However, in
the variable triangulation case we do not know a priori which vertices 𝑗 will end up adjacent
to the removed vertex 𝑖∗ (since this set may change due to edge flips). Instead, as proposed by
Springborn [2019], we impose the inequality constraint 𝑢 𝑗 ≥ −𝜆𝑖∗𝑗 for all vertices 𝑗 ∈ V◦, where
𝜆𝑖∗𝑗 is the geodesic distance between horocycles in the input triangulation. At a minimizer, these
inequalities will be satisfied with equality for vertices 𝑗 adjacent to 𝑖∗.

Figure 4.17: Peacock
triangulation.

To compute the geodesic distances, we first construct a triangulation
that connects 𝑖∗ to all other vertices 𝑗 ∈ V◦ by minimal geodesics. To
do so, we send all the horocycles except the one at 𝑖∗ to infinity—in
the Poincaré model, the representative circles shrink down to points
(Figure 4.16, left). In general, an edge connecting two vertices 𝑗1, 𝑗2 ≠ 𝑖∗
cannot be Delaunay, since the horocyclic arc length 𝛼 at both vertices
will be zero—hence smaller than the arc length of the complementary
vertices (see Figure 4.16 and Equation (A.10)). By flipping to a Delaunay
triangulation, we ensure that any edge leaving a vertex 𝑗 ≠ 𝑖∗ connects
only to 𝑖∗ (Figure 4.16, right). Moreover one can show that, due to the
global Delaunay property, every such edge is a minimal geodesic [Springborn 2019, Proposition
5.16]. All other edges go from 𝑖∗ back to 𝑖∗, resulting in what we call a peacock triangulation

(Figure 4.17). To get the values 𝜆𝑖∗𝑗 , we then read off the distances between the original horocycles
(rather than those that have been scaled down to points).

4.4.4 Optimization

Once we know 𝜆𝑖∗𝑗 for each 𝑗 , we can solve the following convex optimization problem to find
our desired scale factors:

min
𝑢:V◦→R

E𝑆2 (𝑢)
s.t. 𝑢 𝑗 ≥ −𝜆𝑖∗𝑗 , ∀𝑗 ∈ V◦.
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This problem can be solved via bounds-constrained Newton’s method with backtracking line
search. We use the implementation found in the PETsc/TAO library [Balay et al. 2019; 1997;
Munson et al. 2014]—specifically, the TAOBNLS solver [Benson et al. 2003, Section 4.2.1].

4.4.5 Spherical Layout
After optimization, we have scale factors𝑢 at vertices that describe a flat metric on the topological
disk T◦. We lay this disk out in the plane à la Section 4.3.5, then stereographically project to
get coordinates 𝑧 on the unit sphere 𝑆2 ⊂ R3 (re-inserting the special vertex 𝑖∗ at the center of
stereographic projection). This final map is unique only up to Möbius transformations of the
sphere; we compute a canonical Möbius transformation via Baden et al. [2018, Algorithm 1],
using vertex rather than face areas to express the center of mass.

4.4.6 Spherical Interpolation
Interpolation is done as in Section 4.2.3, but we now interpolate positions on the sphere using
homogeneous coordinates 𝑧 ∈ R4, and we must account for both uniformization and stereo-
graphic projection in our scale factors. If we let ℓ̃𝑖𝑗 be the edge lengths of P , and ℓ𝑖𝑗 be the lengths
from T𝐵 after applying the same sequence of Ptolemy flips used for uniformization, then solving
Equation (4.1) within each triangle 𝑖𝑗𝑘 yields

𝑢𝑖 = log

(
ℓ̃𝑖𝑗

ℓ𝑖𝑗

ℓ𝑗𝑘

ℓ̃𝑗𝑘

ℓ̃𝑘𝑖

ℓ𝑘𝑖

)
(and similarly for𝑢 𝑗 , 𝑢𝑘 ). Since stereographic projection preserves discrete conformal equivalence,
these values agree across triangles. Also, sinceP is convex, normalizing interpolated coordinates
gives an injective map to the unit sphere (for, e.g., texture mapping).

4.5 Parameterization Results
CETM CEPS

Figure 4.19: Even when CETM succeeds,
the quality of themapmay be lower since
it uses a different notion of conformal
equivalence (based on the input rather
than Delaunay triangulation).

This section evaluates the empirical behavior of our
method, here referred to as conformal equivalence of

polyhedral surfaces (CEPS). Our main points of compar-
ison is the CETM algorithm of Springborn et al. [2008],
which does not use flips. All methods use identical code
for tracking correspondence, à la Section 3.1. The overall
observation is that CEPS succeeds on far more models
than CETM. Even when CETM does succeed, it may
not provide as good of an approximation of a smooth
conformal map (Figure 4.19).
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Figure 4.18: Our method computes locally injective, discretely conformal maps even for near-degenerate
triangulations (turquoise meshes) and extremely difficult configurations of cone singularities (magenta
meshes). We also compute globally bijective conformal maps to the sphere (yellow meshes).

4.5.1 Planar Parameterization Results
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Figure 4.20: Timings for our method (CEPS) on two
datasets. Note that CETM fails on a large percent-
age of models where we succeed (highlighted in
red).

Difficult Cone Configurations. We ran our
method on the standard MPZ benchmark of
Myles et al. [2014], containing challenging
cone configurations. CEPS succeeds on all
114 models, including extraction of the com-
mon subdivision. Maps were discretely confor-
mal up to floating point error, with an average
length cross ratio error of about 10−9, and no
worse than about 10−4. In contrast, CETM suc-
ceeded on only 73 models (Figure 4.20, top).

Many injective but non-conformal meth-
ods do not do as well on this difficult bench-
mark: as reported by Bright et al. [2017, Sec-
tion 8.1], their method and the methods of
Chien et al. [2016], Aigerman et al. [2014], Levi
& Zorin [2014], and Lipman [2012] succeed on
104, 102, 97, 93, and 90 models, resp.Many of
these methods have running times on the or-
der of minutes or (on the most difficult examples) hours, versus seconds for our method. On
the other hand, we must change/refine the triangulation, whereas these methods keep the
triangulation fixed. Like CEPS, the combinatorial method of Zhou et al. [2020] succeeds on all
MPZ models, but can yield highly distorted maps that are expensive to optimize; cost is again
on the order of minutes to hours.
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Figure 4.23: In the genus-0
case, ourmethod guarantees
a bijective discrete confor-
mal map to a convex poly-
hedron with vertices on the
sphere.

Thing ID: 662115Thing ID: 112917

Figure 4.21: Our implementation robustly handles
extremely poor triangulations (left) failing only on
the most pathological inputs (right).

Difficult Triangulations. As a stress test of
floating-point behavior, we parameterized all
manifoldmeshes fromThingi10k, splitting dis-
connected meshes into their connected com-
ponents (32,744 examples in total), and using
a time out of 2000 seconds. Note that previ-
ous work on cone parameterization does not
even attempt this benchmark, which has dra-
matically worse element quality than MPZ.
For these examples we apply the greedy cone
placement strategy from Springborn et al.
[2008, Section 5.1], stopping when all log scale
factors 𝑢𝑖 are in the range [−5, 5] (i.e., a max scale factor of about 150). CEPS successfully com-
putes a parameterization on 98.6% of models, yielding an injective map on 97.7%. Examples
where we fail are quite pathological (e.g., Figure 4.21, right). Overall about 68% and 15% of failures
were due to failure of iterative straightening or optimization (resp.) to converge within the time
limit, and for about 13% Delaunay flipping failed due to floating point error. The worst cross
ratio error was typically around 10−5. CETM fails on almost half of these examples (Figure 4.20).

4.5.2 Spherical Parameterization Results

Figure 4.22: Existing
spherical methods often
exhibit foldover, and do
not guarantee convexity.

We ran our spherical algorithm on two other datasets: the Spherical
Demon brain scan dataset of Yeo et al. [2009], and the anatomical
surface dataset of Boyer et al. [2011] (Figure 4.23). On the brain
dataset, where each model has about 230k faces, we obtained injective
discrete conformal maps to the sphere on all 78 brain hemispheres,
taking an average of 493 seconds per hemisphere. The anatomical
surface models are topological disks, so we compute conformal maps
to a hemisphere. We succeed in computing these maps on all 187 of
the manifold meshes without handles in the dataset. One of our maps
contains degenerate triangles, but none have flipped triangles. The
models take an average of 14.4 seconds to uniformize.

Past methods for spherical conformal parameterization largely
compute maps to the sphere that are harmonic with respect to piecewise linear Dirichlet
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energy [Gu et al. 2004]. However, unless the input mesh is already Delaunay, such maps
can have flipped triangles (Figure 4.22, right). More fundamentally, it is impossible for any
method using a fixed triangulation to guarantee convexity—no matter what algorithm is used,
or where the vertices are placed—since not all combinatorial triangulations admit a convex
embedding in the sphere [Rivin 1996]. In practice, flipped triangles and nonconvex edges are
quite common in past methods: on the brain dataset we observed, on average, foldover at
about 100 edges and nonconvexity at about 20k edges when using the method of Kazhdan et al.
[2012] (see Figure 4.22). Other techniques for spherical conformal mapping gave very similar
results [Crane et al. 2013b; Dym et al. 2019].

4.5.3 Performance & Complexity

Our implementation2 runs in a matter of seconds on high-quality input meshes, and can take a
few minutes to parameterize near-degenerate input triangulations (Figure 4.20). However, we
optimized mostly for robustness rather than performance, so there are still several parts of the
algorithm whose performance has room for asymptotic improvement.

optimization

layout

flipping

common
subdivision

common
subdivision

tracing

MPZ

layout

flipping

tracing

Thingi10k

optimization

Figure 4.24: Average breakdown of costs in
CEPS on different datasets; layout and opti-
mization steps are shared by CETM.

On reasonably-triangulated meshes, the cost of
computing discrete conformal parameterizations is
dominated by the convex optimization problem used
to compute the uniformizing scale factors 𝑢𝑖 (Fig-
ure 4.24, left). Solving a convex optimization prob-
lem using Newton’s method with line search almost
always converges with five or six iterations, so the
cost essentially reduces to the cost of a single step
of optimization [Boyd & Vandenberghe 2004, Sec-
tion 9.5]. Each step of optimization requires us to
construct and solve a sparse |V| × |V| linear system.
Since our matrix is a Laplacian, one can—in theory—
solve such systems in time near 𝑂 ( |E| log2 |V|) [Koutis et al. 2014], although in practice we use
a sparse Cholesky factorization. The exact complexity of sparse Cholesky factorization on a
general triangle mesh is hard to analyze, but it is known to require requires 𝑂 ( |V|3/2) time and
𝑂 ( |V| log |V|) space on regular grids [George 1973].

On poorly-triangulated meshes, the cost of our algorithm is dominated
by the cost of tracing geodesics (Figure 4.24, right). At the moment, we
use a naïve scheme which scales linearly with the number of intersections
between the two triangulations, which can become quadratic—or worse—in
some cases, such as the polygon depicted in the inset. One could instead
use asymptotically-faster tracing schemes, such as the normal-coordinate-
based algorithm of Erickson & Nayyeri [2013], but we leave such explorations to future work.
And more basically, even the current tracing and refinement steps of CEPS could be trivially
parallelized over edges and faces, resp.

2timings measured on an Intel i9-9980XE with 32 GB of RAM, using a single thread.
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Chapter 5

Surface Simplification

I would have written a shorter letter, but I did not have the time.

Blaise Pascal, Les Provinciales [1657]

W
e now turn our attention to another instance of time-evolving surfaces: surface
simplification. We seek to take in a surface mesh, and produce progressively
simpler approximationswhich capture its geometry. Whereas past simplification
methods focus on visual appearance, our goal is to solve equations on the surface.
Hence, rather than approximate the extrinsic geometry, we construct a coarse

intrinsic triangulation which approximates the input domain. In the spirit of the quadric error
metric (QEM) of Garland & Heckbert [1997], we perform greedy decimation while agglomerating
global information about approximation error. In lieu of extrinsic quadrics, however, we store
intrinsic tangent vectors that track how far curvature “drifts” as the surface evolves during
simplification. This process also yields a bijective map between the fine and coarse mesh, and
prolongation operators for both scalar- and vector-valued data. Moreover, we obtain hard
guarantees on element quality via intrinsic retriangulation—a feature unique to the intrinsic
setting. The overall payoff is a “black box” approach to geometry processing, which decouples
mesh resolution from the size of matrices used to solve equations.

Problem Statement
Suppose we start with a high-resolution manifold triangulation T = (V, E, F) equipped with
edge lengths ℓ : E→ R>0. Our goal in this chapter is to construct a small intrinsic approxi-
mation to T. Explicitly, we seek to construct a second intrinsic triangulation T̃ =

(
Ṽ, Ẽ, F̃

)
and

edge lengths ℓ̃ : Ẽ→ R>0, along with a bijective correspondence function 𝑓 : T̃→ Tmapping
points from T̃ to T (and vice versa). T̃ should be small, in the sense that that

��Ṽ�� ≪ |V|, but it
should also be a good approximation, in the sense that 𝑓 should have low distortion (e.g. not
significantly changing the distances between points).
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Chapter 5 Surface Simplification Intrinsic Vertex Removal

We break the problem of intrinsic simplification into two pieces: we have an atomic sim-
plification operation (vertex removal), which we can use to reduce the size of the mesh, and
we have an estimate of distortion (intrinsic curvature error), which we build up over time and
use to decide where to simplify the mesh. We first describe our procedure for intrinsic vertex
removal in Section 5.1, and discuss the work required to track the correspondence between this
evolving surface and our original mesh in Section 5.2, before describing our intrinsic curvature
error metric in Section 5.3 and showing some results in Section 5.5.

5.1 Intrinsic Vertex Removal
Extrinsic simplification methods reduce vertex count by making local changes to the mesh
connectivity [Schroeder et al. 1992; Hoppe 1996; Garland & Heckbert 1997]. We extend local
simplification to the intrinsic setting, using vertex removal as our atomic simplification operation.

In the extrinsic setting, simplification algorithms often use other atomic operations such
as edge collapses instead of plain vertex removal. Edge collapses, which merge two adjacent
vertices into a single new vertex, have the advantage of offering continuous degrees of freedom,
which can be optimized to decrease distortion: one can often find a good location for the new
vertex which well-approximates the original mesh. By contrast, there are very few degrees of
freedom available when removing a vertex extrinsically: the only choice is how to triangulate
the hole left behind by deleting the vertex.

But in the intrinsic setting, even vertex removal offers plenty of degrees of freedom. The
key idea behind our intrinsic removal operation is that intrinsically, removing a vertex amounts
to a small parameterization problem—we wish to take an intrinsically-curved vertex, and re-
place it with an intrinsically-flat patch instead. And we have good algorithms for computing
parameterizations with low distortion .

Our method removes a vertex 𝑖 in three steps:

1. Intrinsically flatten 𝑖 (Section 5.1.1).

2. Remove 𝑖 from the triangulation (Section 5.1.2).

3. Flip to an intrinsic Delaunay triangulation (Section 2.3.3).

Note that all changes to the geometry occur in the first step, redistributing the curvature at 𝑖 to
neighboring vertices 𝑗 . The second step merely retriangulates a flat region, and the third step
performs only intrinsic edge flips. Hence, when measuring distortion in Section 5.3 will need
only consider the first (flattening) step to prioritize vertex removals. Maintaining a Delaunay
triangulation at each step helps ensure numerical robustness throughout simplification.

flip

removefla�en

flip
Figure 5.1: We remove an interior
vertex by intrinsically flattening it,
flipping to degree 3, removing it
from the mesh, then flipping back
to intrinsic Delaunay.
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Correspondence Tracking Chapter 5 Surface Simplification

5.1.1 Vertex Flattening
We first eliminate all curvature at vertex 𝑖 . For this operation to remain local and valid we must
bijectively flatten the one-ring of vertex 𝑖 , while keeping edge lengths along the boundary of
this region fixed. Extrinsic flattening schemes can fix boundary vertices, but it is unclear how to
construct the least-distorting boundary polygon with prescribed lengths. In contrast, the CETM
algorithm of Springborn et al. [2008] supports edge length constraints, and operates directly on
an intrinsic triangulation. More details on CETM can be found in Chapter 4.

For some vertices, this procedure may fail to find a valid parameterization. In this case, we
simply skip removing this vertex and move on to remove another vertex instead.

5.1.2 Flat Vertex Removal
To remove an intrinsically-flat vertex 𝑖 from the mesh, we follow the strategy described in
Section 3.5.2: we perform edge flips until 𝑖 has degree three, at which point it can be removed
from the mesh and replace by a new face. In the rare case where our flipping heuristic gets
stuck, producing a vertex with deg(𝑖) ≠ 3 while no flippable edges remain, we skip this vertex
removal and revert the mesh to its previous state.

After removal, we must also update the angular coordinates 𝜑 𝑗𝑘 and corresponding edge
vectors 𝑒 𝑗𝑘 for each edge 𝑗𝑘 with endpoints adjacent to 𝑖 (Section 2.3.2). We then flip the mesh
to an intrinsic Delaunay triangulation, à la Section 2.3.3.

Special cases. We cannot remove vertices 𝑖 incident on a boundary self-edge, since every
boundary loop must contain at least one vertex. Likewise, vertices 𝑖 of self-faces (i.e., triangles
with only a single distinct vertex) can cause trouble for flipping, and are skipped.

5.2 Correspondence Tracking
As usual, we often want to track the correspondence between our intrinsic triangulation and the
input mesh while performing simplification. However, since we change the intrinsic geometry
by removing intrinsically-curved vertices, we can no longer use any existing data structures to
encode this correspondence. But rather than trying to these data structures to our new setting,
we opt for a simpler strategy: we maintain a list of all of the local operations performed during
simplification (namely: edge flips, vertex flattenings, and vertex removals), and describe how
each operation maps points on one mesh to points on the other. Then, given any point 𝑝 on the
fine mesh, we can “re-play” these operations until we obtain the corresponding point 𝑝 on the
simplified mesh, or vice versa, à la Liu et al. [2020]. Once we can map points back and forth, it
is simple to extend the procedure to map edges or functions between the two triangulations.

5.2.1 Mapping Points
To map any point 𝑝 on the fine mesh to a point 𝑝 on the coarse mesh, we track its barycentric
coordinates through each local simplification operation. This map is trivially bijective, since
at each step we simply re-write the given barycentric coordinates with respect to a different
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Chapter 5 Surface Simplification Correspondence Tracking

triangulation of the same planar region. The only way to violate bijectivity would be to perform
a non-bijective vertex flattening—which we explicitly forbid.

1. Edge flips: To track a point 𝑝 through an intrinsic
edge flip, we unfold the two adjacent triangles
into the plane using the formulas provided by
Sharp et al. [2021, Section 2.3.7], and compute the
barycentric coordinates of 𝑝 in the new triangle. �ip

p p

pp

2. Vertex flattening: We must also compute new barycentric coordinates 𝑏 after each vertex
flattening (Section 5.1.1). Here we use the projective interpolation scheme of Springborn
et al. [2008, §3.4]. Since our parameterization is a discrete conformal equivalence, this
scheme defines a continuous (𝐶0) bijective map. Let 𝑏𝑖, 𝑏 𝑗 , 𝑏𝑘 be barycentric coordinates
for a point in face 𝑖𝑗𝑘 , and let 𝑢𝑖 be the scale factor at 𝑖 . Then

(𝑏𝑖, 𝑏 𝑗 , 𝑏𝑘) =
(𝑒𝑢𝑖𝑏𝑖, 𝑏 𝑗 , 𝑏𝑘)
𝑒𝑢𝑖𝑏𝑖 + 𝑏 𝑗 + 𝑏𝑘

, (5.1)

where the denominator ensures our updated values still sum to 1.

3. Vertex removal: Once vertex 𝑖 is flattened and flipped
to degree three, its neighborhood can be laid out in
the plane without distortion. Here we apply standard
formulas to compute barycentric coordinates for ver-
tex 𝑖 in the new triangle, along with coordinates for
any points located in the three removed triangles.

i

i

i

remove

i

5.2.2 Mapping Edges
In addition to mapping points between the fine and coarse meshes, we can also map an edge on
one mesh to the corresponding polygonal curve on the other. The key is to determine how each
local operation modifies a polygonal curve. In our case, edge flips and vertex insertion/removal
may add vertices to the polygonal curve, but leave its geometry the same, while vertex flattening
distortions the curve geometry but leaves its combinatorics the same. Mapping edges allows us
to draw the intrinsic triangulation sitting atop the extrinsic mesh, and to compute the common
subdivision of the two triangulations.

Note, however, that unlike the situation in Chapter 3, the mapping between our original and
simplified triangulations is not necessarily linear on each face of the common subdivision. Since
we are now allowed to change the underlying geometry of our surface, the correspondences
that we obtain via Section 5.2.1 are often more complicated.

5.2.3 Mapping Functions
Algorithms such as multigrid often require not only pointwise correspondences, but also pro-

longation operators which transfer functions from a coarse mesh to a finer one. We define a
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mass before removal mass a�er removal error vectors
Figure 5.2: The local cost of removing any
vertex 𝑖 is the optimal transport cost of trans-
porting its mass 𝑚𝑖 to its neighbors 𝑗 . We
can also calculate this cost as the sum of new
masses �̃� 𝑗 times the length of error vectors 𝑡 𝑗 ,
which point to the new centers of mass 𝑐 𝑗 .

prolongation operator via an approach similar to Lee et al. [1998] and Liu et al. [2021a]. In
particular, we track the barycentric coordinates of all fine vertices à la Section 5.2.1. A function
on the coarse mesh is then mapped to the fine mesh via barycentric linear interpolation. Ex-
plicitly, suppose each fine vertex 𝑖 ∈ V has barycentric coordinates 𝑏1, 𝑏2, 𝑏3 in coarse triangle
𝑛1𝑛2𝑛3 ∈ F̃. We then build a sparse matrix P ∈ RV×Ṽ where row 𝑖 has three nonzeros P𝑖,𝑛 𝑗 = 𝑏𝑛 𝑗 ,
for 𝑗 = 1, 2, 3. We can then prolong a function 𝑓 ∈ RṼ on the coarse mesh to obtain a function
𝑓 ∈ RV on the fine mesh by evaluating the matrix-vector product 𝑓 = P𝑓 .

5.3 Measuring Distortion
To prioritize vertex removals, we must quantify the cost of removing a vertex. Standard extrinsic
metrics, such as QEM, are not appropriate: even if they could be evaluated intrinsically, they
focus on irrelevant aspects of the geometry. Likewise, metrics focusing on finite element
equality (e.g. [Shewchuk 2002]) are not appropriate, since the triangulation used to encode the
intrinsic geometry is transient and subject to change. Our ICE metric is instead based on two
intrinsic and triangulation-independent concepts: optimal transport [Santambrogio 2015], and
the Karcher mean [Karcher 2014]. Optimal transport helps quantify the effort of redistributing
mass, providing the local cost for our metric. Karcher means encode the center of mass of all
fine vertices contributing to a coarse vertex 𝑖 , providing a way of accumulating information.
These two pieces fit together in a natural way: after a single vertex removal, the mass-weighted
norm of all error vectors 𝑡𝑖 encoding Karcher means is exactly equal to the optimal transport
cost. Hence, after many vertex removals this norm approximates the cost of transporting the
initial fine mass distribution to the coarsened vertices. Vertex removals that keep cost small
should hence be prioritized, since they better preserve the initial mass distribution. Just as in
QEM, this information is captured by a fixed-size representation (masses and tangent vectors at
each vertex) that is easily agglomerated during coarsening.

5.3.1 Flat Error Metric

For clarity of exposition we start by working in the plane, before generalizing to surfaces and
incorporating data like curvature. Consider a mass distribution𝑚 : 𝑉 → R≥0 at mesh vertices,
representing any nonnegative user-defined quantity (for signed quantities see Section 5.3.2).
Suppose we remove vertex 𝑖 , redistributing its mass𝑚𝑖 to its immediate neighbors 𝑗 . In particular,
let 𝛼𝑖𝑗 ∈ [0, 1] be the fraction of𝑚𝑖 sent to vertex 𝑗 (hence

∑
𝑗∼𝑖 𝛼𝑖𝑗 = 1), so the new mass at 𝑗 is

�̃� 𝑗 =𝑚 𝑗 + 𝛼𝑖𝑗𝑚𝑖 . (5.2)
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Chapter 5 Surface Simplification Measuring Distortion

To measure how mass is transported across the surface, we need to track not only the mass
distribution, but also where mass came from. Hence, at each vertex 𝑖 we store an error vector

𝑡𝑖 (initially set to zero) pointing to the center of mass 𝑐𝑖 of all vertices that contributed to the
current value of𝑚𝑖 . Explicitly, after removing 𝑖 , the center of mass at vertex 𝑗 is

𝑐 𝑗 =
𝛼𝑖𝑗𝑚𝑖𝑥𝑖 +𝑚 𝑗𝑥 𝑗

𝛼𝑖𝑗𝑚𝑖 +𝑚 𝑗

, (5.3)

where 𝑥𝑖 ∈ R2 denotes the location of vertex 𝑖 . The vector pointing from 𝑥 𝑗 to 𝑐 𝑗 is thus

𝑡 𝑗 = 𝑐 𝑗 − 𝑥 𝑗 =
𝛼𝑖𝑗𝑚𝑖𝑒 𝑗𝑖

𝛼𝑖𝑗𝑚𝑖 +𝑚 𝑗

, (5.4)

where 𝑒 𝑗𝑖 = 𝑥𝑖 −𝑥 𝑗 is the vector along edge 𝑗𝑖 . The total cost of removing 𝑖 can then be measured
by summing up the mass-weighted norms of these vectors. Noting that ∥𝑒 𝑗𝑖 ∥ = ℓ𝑖𝑗 , we get a cost

𝐶𝑖 =
∑︁
𝑗∼𝑖
�̃� 𝑗 ∥𝑡 𝑗 ∥ =

∑︁
𝑗∼𝑖
𝛼𝑖𝑗𝑚𝑖ℓ𝑖𝑗 . (5.5)

This cost coincides with the 1-Wasserstein distance between the old and new mass distribution
[Santambrogio 2015, Chapter 5]. Intuitively, it captures the total “effort” of moving mass from 𝑖

to neighbors 𝑗 , measuring not only the amount of mass moved, but also the distance traveled.
Rather than assign a cost to each vertex removal in isolation, we can accumulate information

about how mass has been redistributed across all prior removals. At each step, we update the
mass distribution via Equation (5.2), but also update vectors encoding the centers of mass via

𝑡 𝑗 =
𝛼𝑖𝑗𝑚𝑖 (𝑡𝑖 + 𝑒 𝑗𝑖) +𝑚 𝑗𝑡 𝑗

𝛼𝑖𝑗𝑚𝑖 +𝑚 𝑗

. (5.6)

In other words, we re-express 𝑡𝑖 relative to 𝑥 𝑗 by adding the edge
vector 𝑒 𝑗𝑖 , then take the mass-weighted average of the old error
vector 𝑡 𝑗 with this new vector. The overall cost is still evaluated via
Equation (5.5), but now approximates the effort of moving the initial
mass distribution to the current one—rather than just penalizing
the most recent change. This cost is only approximate since the
1-Wasserstein distance to the center of mass is not in general equal to the distance to the original
fine distribution—but it is usually quite close. Thus, our error metric favors decimation sequences
which keep each coarse vertex close to the center of all fine vertices that contribute to its mass.

5.3.2 Intrinsic Curvature Error Metric
Due to the Gauss-Bonnet theorem, flattening a vertex 𝑖 conservatively redistributes curvature to
neighboring vertices 𝑗 , making curvature a natural “mass” distribution to guide simplification. A
challenge here is that the old and new curvatures 𝐾 and �̃� are not in general positive quantities.
One possibility might be to use a transport cost for signed measures such as [Mainini 2012], but
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curvature
before removal

fla�en vertex i

curvature
a�er removal

Figure 5.3: Flattening a vertex 𝑖 changes the angle sums Θ at neighboring vertices 𝑗 , effectively redis-
tributing the discrete curvature 𝐾 = 2𝜋 − Θ. We use the change in curvature from 𝐾 to �̃� to guide
simplification.

doing so would require us to solve a small optimal transport problem for each vertex removal.
We instead adopt a cheap alternative. In particular, we define convex weights

𝛼𝑖𝑗 :=
|�̃� 𝑗 − 𝐾 𝑗 |∑
𝑙∼𝑖 |�̃�𝑙 − 𝐾𝑙 |

. (5.7)

For boundary vertices we use the same formula, but replace Gaussian curvature 𝐾 with geodesic
curvature 𝜅. If vertex 𝑖 is already flat prior to removal, then there is no change in curvature
and we simply distribute mass equally to all neighbors. We then split the initial fine curvature
function 𝐾 (or 𝜅) into two positive mass functions 𝐾+𝑖 := max(𝐾𝑖, 0) and 𝐾−𝑖 := −min(𝐾𝑖, 0).
Each of these quantities is tracked throughout simplification like𝑚𝑖 above, using two separate
vectors 𝑡+𝑖 and 𝑡−𝑖 (respectively), and weights 𝛼 from Equation (5.7):

𝑡±𝑗 =
𝛼𝑖𝑗𝑚𝑖 (𝑅𝑖𝑗𝑡±𝑖 + 𝑒 𝑗𝑖) +𝑚 𝑗𝑡

±
𝑗

𝛼𝑖𝑗𝑚𝑖 +𝑚 𝑗

. (5.8)

The parallel transport term 𝑅𝑖𝑗 to account for the surface curvature (Section 2.3.2). The overall
error, which defines the ICE metric, is then the sum of the errors in the two curvature functions
(à la Equation (5.5)). If a vertex 𝑖 cannot be flattened or removed, we assign it an infinite cost
(which may later get updated to a finite value when its neighbors are removed).

Note that in order to manipulate tangent vectors at vertices, and to perform parallel transport,
we must store angular coordinates 𝜑⇀

𝑖𝑗 on each halfedge⇀𝑖𝑗 ∈ H (Section 2.3.2). These angular
coordinates can be updated in constant time after flipping an edge or flattening a vertex.

Auxiliary Data Similar to Garland & Heckbert [1998], we can use other quantities at vertices
(areas, colors, etc.) to drive simplification in an analogous fashion: each signed quantity is split
into two positive mass functions, and a list of all “channels”𝑚1, . . . ,𝑚𝑘 is tracked along with
associated tangent vectors 𝑡1, . . . , 𝑡𝑘 . The cost is then given by

𝐶𝑖 =
∑︁
𝑗∈N𝑖

𝑘∑︁
𝑝=1

𝑤𝑝𝑚
𝑝

𝑖
∥𝑡𝑝
𝑗
∥, (5.9)
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input

100/0 80/20 60/40 40/60 20/80 0/100
% curvature/% area

Figure 5.4: We can mix and match different quantities to guide coarsening. Here, for instance, strongly
weighting Gaussian curvature emphasizes preservation of intrinsic geometry, whereas strongly weighting
area prioritizes uniform triangle size.

where a choice of weights𝑤1, . . . ,𝑤𝑘 ∈ R≥0 puts an emphasis on different features. For instance,
Figure 5.4 shows the impact of different weightings on curvature versus area.

Units. The masses𝑚1, . . . ,𝑚𝑘 may be measured in different units, in which case the sum in
Equation (5.9) will not have consistent units. For instance, if we naïvely add together curvature
error and area error in Figure 5.4, the resulting error is neither scale-invariant (like discrete
Gaussian curvature), nor scales quadratically (like area). Instead, the balance between the errors
changes as the input mesh is scaled up and down. An easy solution is to work with unitless mass
fractions �̃�𝑖 := 1∑

𝑗𝑚 𝑗
𝑚𝑖 . In this case, the total cost in Equation (5.9) always has units of distance.

5.4 Simplification Algorithm
Algorithm 6 SimplifyIntrinsic(T, ℓ, 𝜑, 𝑛)
Input: A triangulation T = (V, E, F) equipped with edge

lengths ℓ : E → R>0 and angular coordinates 𝜑 :
H→ R, along with a target vertex count 𝑛

Output: A coarsened mesh T̃ equipped with coarsened edge
lengths ℓ̃ : Ẽ → R>0, and a list 𝐻 of all operations
done to simplify T̃.

1: 𝑄 ← EmptyPriorityQueue() ⊲initialize vertex queue

2: 𝐻 ← [] ⊲initialize operation history

3: T̃, ℓ̃, �̃�, 𝐻 ← FlipToDelaunay(T, ℓ, 𝜑, 𝐻 ) ⊲§2.3.3

4: for each vertex 𝑖 ∈ Ṽ do ⊲initialize mass & error

5: 𝑚𝑖 , 𝑡𝑖 ← (𝐾−𝑖 , 𝐾
+
𝑖
), 0

6: for each vertex 𝑖 ∈ Ṽ do
7: 𝑐𝑖 ← ICError(T̃, ℓ̃, �̃�,𝑚, 𝑡, 𝑖) ⊲§5.3.2

8: 𝑄 ← Enqeue(𝑄, 𝑖, 𝑐𝑖 )
⊲ coarsening

9: while VertexCount(T̃) > 𝑛 and not Empty(𝑄) do
10: 𝑖 ← Pop(𝑄) ⊲extract minimum-cost vertex

11: T̃, ℓ̃, �̃� ← Flatten(T̃, ℓ̃, �̃�, 𝑖) ⊲§5.1.1

12: 𝐻 ← Append(𝐻, “flatten 𝑖”) ⊲record operation

13: T̃, ℓ̃, �̃�,𝑚, 𝑡 ← RemoveVertex(T̃, ℓ̃, �̃�, 𝑖,𝑚, 𝑡) ⊲§3.5.2

14: 𝐻 ← Append(𝐻, “remove 𝑖”) ⊲record operation

15: T̃, ℓ̃, �̃�, 𝐻 ← FlipToDelaunay(T̃, ℓ̃, �̃�, 𝐻 )
16: for each adjacent vertex 𝑗 ∼ 𝑖 do
17: 𝑐 𝑗 ← ICError(T̃, ℓ̃, �̃�,𝑚, 𝑡, 𝑗)
18: 𝑄 ← UpdatePriority(𝑄, 𝑗, 𝑐 𝑗 )
19: return (T̃, ℓ̃, 𝐻 )

We now have all the ingredients required for
intrinsic simplification. Just as in QEM, we first
initialize a priority queue by evaluating the ICE
metric at all vertices, then greedily remove the
cheapest vertex from the queue until reaching
the target vertex count, or no more vertices can
be removed. Algorithm 6 provides pseudocode.

Initialization For each vertex 𝑖 ∈ 𝑉 we com-
pute the initial masses𝑚𝑖 (e.g., the curvatures
𝐾+ and 𝐾− from Section 5.3.2) and an initial
error vector 𝑡𝑖 = 0. To measure the cost of re-
moving 𝑖 we perform a tentative flattening à

la Section 5.1.1 and use the resulting weights
𝛼𝑖𝑗 from Equation (5.7) to evaluate the cost 𝐶𝑖
via Equation (5.5). If flattening yields invalid
edge lengths, or vertex 𝑖 cannot be flipped to
degree 3, we let 𝐶𝑖 = ∞. After evaluating the
cost function, we “undo” the tentative removal,
i.e., we restore the previous connectivity and
revert any changes to edge lengths.
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Simplification At each iteration, we pick the vertex 𝑖 with the minimum cost 𝐶𝑖 from our
priority queue. If 𝐶𝑖 = ∞, then no more vertices can be removed and we terminate. Otherwise,
we apply the removal procedure from Section 3.5.2. The resulting weights 𝛼𝑖𝑗 (Equation (5.7)) are
used to compute new masses �̃� 𝑗 (Equation (5.2)) and updated transport vectors 𝑡 𝑗 (Equation (5.8))
for each neighbor 𝑗 ∼ 𝑖 . We record this vertex flattening and removal in our history 𝐻 listing the
local mesh operations performed during simplification. We then flip the mesh back to intrinsic
Delaunay à la Section 2.3.3—note that to initialize the greedy flipping algorithm we need only
enqueue edges incident to vertex 𝑖 , since the mesh was already Delaunay prior to removing
𝑖 . We ensure that our Delaunay flipping routine also records all edge flips in the history list
𝐻 . Finally, we must also update the priority queue with new costs 𝑐 𝑗 , computed by tentatively
flattening each neighbor 𝑗 and evaluating the first sum in Equation (5.5) (this time over neighbors
𝑘 ∼ 𝑗 ). Here, finite costs may become infinite (or vice versa), since vertices that were previously
removable may no longer be removable.

5.5 Simplification Results

5.5.1 Comparison with Extrinsic Methods

anisotropic distortion area distortion (log)

0

0

max max

min

Liu et al. 2021
(mean error: 9.6%)

ICE
(mean error 8.1%)

Liu et al. 2021
(mean error: 1.19)

ICE
(mean error: 1.12)

Figure 5.5: Even on an extremely nice triangulation of a
highly regular surface we see a reduction in distortion
relative to past methods—owing to the much larger space
of intrinsic triangulations.

The flexibility gained by working in the
larger space of intrinsic triangulations
leads to lower geometric distortion than
extrinsic meshes exhibit on meshes of
equivalent size. In Figure 5.5 we coarsen
a 28k bunny mesh down to 200 vertices
with both the method of Liu et al. [2021b]
and our method. Even on this highly
regular geometry we observe a modest
reduction of both area distortion and
anisotropic distortion. For more difficult
triangulations, or surfaces with lower in-
trinsic curvature, we observe more signif-
icant gains.

input

% error

QEM

ICE

0% 0.1% 9.5% 81.7%

0% 0.1% 0.2% 3.4%

Figure 5.6: On surfaces with small extrinsic curvature,
we achieve dramatically lower error in surface area com-
pared to extrinsic methods like QEM.

As an extreme case, Figure 5.6
coarsens a developable surface from [Ver-
hoeven et al. 2022] via both QEM and ICE.
Since coarse extrinsic edges are shortest
paths in R𝑛 , they underestimate intrinsic
distances (hence areas); in contrast, intrin-
sic edges are essentially embedded in the
original surface, providing better approx-
imation of the original geometry.
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speedup/error:
ground
truth
ground
truth

3x / 2x10-4% 76x / 0.01% 840x / 0.2% 4880x / 1.5%

|V |=20k 50% 5% 0.5% 0.05%

Figure 5.8: Intrinsic coarsening offers an attractive approach to approximating single-source geodesic
distance, here providing a three orders of magnitude speedup for a fraction of a percent relative error.

5.5.2 Geometric Algorithms input QEM

[Liu et al 2021]

ICE

ground
truth

di�erencedi�erence di�erencedi�erence

Figure 5.7: For the same vertex budget as extrinsic methods
like QEM, ICE provides more accurate solutions for basic
problems like solving a Poisson equation—seen here via
smoother isolines that better approximate the ground truth.

Partial Differential Equations Bet-
ter domain approximation in turn im-
proves the quality of solutions com-
puted on coarse meshes. For example,
in Figure 5.7 we coarsen a cloth simu-
lation mesh down to 500 vertices with
an extrinsic method ([Liu et al. 2021b]
using QEM simplification) and our in-
trinsic method. We then solve a Pois-
son problem on the coarse meshes and
apply prolongation, yielding more ac-
curate results in the intrinsic case.

Lee et al. 1998 ICEground truth
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Figure 5.9: As geodesic distance is an intrinsic quantity, it
ismore accurately approximated via intrinsic coarsening—
here providing a 4x reduction in relative error.

Single-SourceGeodesicDistance Geodesic
distance is an intrinsic quantity, making
it a natural fit for intrinsic coarsening. In
Figure 5.9 we compare ICE to the extrinsic
method of Lee et al. [1998] by measuring
the difference between the exact distance
on the fine input, and prolongated dis-
tances from the coarse meshes (both com-
puted via [Mitchell et al. 1987]); here ICE
achieves a roughly 4x reduction in rela-
tive error. Figure 5.8 illustrates the speed-
accuracy trade off of using ICE, here re-
ducing cost by three orders of magnitude
while introducing only ∼ 1% relative ap-
proximation error.

66



Simplification Results Chapter 5 Surface Simplification

gr
ou

nd
 t

ru
th

co
ar

se
ne

d

660.2 s

0.4 s
(1650x)

…

…

Figure 5.10: For a mesh with 6k vertices we obtain
an all-pairs geodesic distance matrix 1650x faster,
while incurring only 1.4% relative error.

All-Pairs Geodesic Distance The benefits
of an accurate intrinsic approximation become
even more pronounced when approximating the
dense matrix𝐷 ∈ 𝑅 |𝑉 |×|𝑉 | of all pairs of geodesic
distances—a shape descriptor often used in cor-
respondence and learning methods [Shamai &
Kimmel 2017]. We can compute a low-rank ap-
proximation of 𝐷 via

𝐷 := 𝑃𝐷𝑃⊤,

where𝐷 is the coarse all-pairs matrix (computed
again via [Mitchell et al. 1987]). See for instance Figure 5.10—here again we achieve several
orders of magnitude speedup, with only 1.4% relative error.

5.5.3 Performance & Complexity

In practice, we find that the cost of performing intrinsic simplification and building the pro-
longation matrix (Section 5.2.3) scales approximately linearly as the size of the input mesh
increases, or as the desired size of the output decreases (Figure 5.11). In this section, we discuss
the computational complexity of the various steps involved and note what theoretical guarantees
are available.

Intrinsic Curvature Error. While performing simplification we maintain a priority queue of all
remaining vertices, sorted by the cost required to remove them. Each time we remove a vertex
we pop the cheapest vertex 𝑖 from this queue, incurring a cost of𝑂 (log𝑛). We then remove 𝑖 and
update the error vectors for all neighbors of 𝑖 , which requires𝑂 (deg(𝑖)) arithmetic operations in
addition to flipping to Delaunay. Finally, we compute the new cost of flattening those neighbors
and update their keys in the priority queue, which has a cost of 𝑂

(∑
𝑗∼𝑖 deg( 𝑗)

)
to flatten them

all, a cost of 𝑂 (deg(𝑖) log(𝑛)) to update the priority queue, and required flipping to Delaunay
𝑂 (deg(𝑖)) additional times.
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Figure 5.11: In practice, the to-
tal cost of simplification and
building the prolongation matrix
scales approximately linearly in
both input mesh size and per-
cent reduction. Left: increasingly
high-resolution meshes are sim-
plified. Right: a subdivision with
750k vertices is simplified to vari-
ous resolutions.
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Simplification. If we suppose that the maximum degree of any vertex encountered during
simplification is some constant 𝐷 = 𝑂 (log𝑛), then the total cost of removing 𝑘 vertices is
𝑂 (𝑘𝐷 log𝑛) = 𝑂 (𝑘 log2 𝑛) operations to manage the priority queue and perform the vertex
removals, tracking correspondence through 𝑂 (𝑘𝐷) vertex flattening and removal operations,
and flipping to Delaunay 𝑂 (𝑘𝐷) times. In practice, flipping to Delaunay almost always requires
𝑂 (1) edge flips, since we start with a triangulation which is “close to” Delaunay. One might be
able to perform a careful analysis similar to the work of Guibas et al. [1992] on planar Delaunay
triangulations, but we leave such questions to future work.

Correspondence Tracking. Mapping a point through any of the simplification operations de-
scribed in Section 5.2.1 requires a constant amount of work—edge flips and vertex removals
both act on a fixed-sized neighborhood, so one can work out explicit formulas describing how a
point should be mapped, and vertex flattening simply modifies a point’s barycentric coordinates
by the formula given in Equation (5.1).

In order to build the prolongation matrix P to map functions between the coarse and fine
triangulations, we must map each vertex of the fine mesh onto the coarse mesh (Section 5.2.3). In
theory, this operation requires at least quadratic complexity—after removing 𝑘 vertices, we must
map 𝑘 points through Ω(𝑘) simplification operations. In practice, our performance scaling seems
closer to linear, as building the prolongation matrix is not the bottleneck cost (Figure 5.11). But
it could be interesting to investigate constructions which provide better asymptotic guarantees
in future.

Storage Cost The data structures used to perform intrinsic simplification require𝑂 ( |F|) storage
space. On top of the underlying mesh data structure, which requires 𝑂 ( |F|) space, our intrinsic
triangulation data structure stores a constant amount of information per edge of the mesh (edge
lengths and angular coordinates ). In order to perform simplification, we store a constant amount
of information at each vertex to track the intrinsic curvature error, and we also maintain a
priority queue of mesh vertices sorted by the cost required to remove them, which also requires
𝑂 ( |V|) space. Note that in a triangle mesh, we know that |E| ≤ 3|F| and also that |V| ≤ 3|F|, so
all of this information can be stored in 𝑂 ( |F|) space.

If we also maintain correspondence by storing the list of simplification operations which
were performed, we require an additional array whose size is linear in the number of operations
performed. Each operation can be recorded in a fixed amount of space (e.g. “Flip edge 𝑖𝑗 , which
lies between faces 𝑖𝑗𝑘 and 𝑗𝑖𝑙”, or “Scale vertex 𝑖 by 𝑢𝑖 = 3”). However, as discussed above,
we do not have an asymptotic bound on the number of local operations performed during
simplification—such a bound would require, for instance, a bound on the complexity of flipping
to Delaunay, which is currently unknown. Nonetheless, we find in practice that the number of
operations required to simplify a mesh seems to scale linearly with the input (Figure 5.11), and
thus the space required to track correspondence scales linearly as well.
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OpenQuestions

There are still many open questions about intrinsic triangulations. We conclude by listing several
questions related to the work in this thesis.

Evolving both triangulations. In most existing work on intrinsic triangulations, one
considers the correspondence between two triangulations T1 and T2 which share the same
geometry. In this thesis, we considered several problems where the geometry of T2 varies
while the original triangulation T1 stays fixed. But are there cases where we want to vary
the geometry of both triangulations simultaneously? In such cases, one could try to track
the correspondence between T1 and T2 with some fixed reference triangulation T0. But
can we track the correspondence directly while allowing both triangulations to evolve?

Discrete conformal mesh simplification. The surface simplifications which we com-
pute in Chapter 5 are constructed via of a sequence of parameterizations which are each
exactly discretely conformal in the sense of Section 4.1. But the composition is not a
discrete conformal equivalence, because the theory of discrete conformal equivalence only
applies to meshes with the same number of vertices. Is there a more general theory which
allows us the change the number of vertices?

Hyperbolic parameterization. In Chapter 4, we describe how to compute discrete
conformal maps to the Euclidean plane, and to the sphere. Bobenko et al. [2015, Section
6] also provide an analogous procedure for computing discrete conformal maps to the
hyperbolic plane (in the fixed-triangulation case), but to our knowledge it has never been
implemented, and the algorithm has not even been described in the variable-triangulation
case.

Simplifying the topological class. In Chapter 5, we simplify the geometry of an intrinsic
triangulation, but we always preserve its topological class. Our simplified surface is always
homeomorphic to the original surface. However, meshes arising from 3d scans often have
toplogical noise, such as spurious gaps or handles. How can you intrinsically simplify the
topological class of a surface in addition to its geometry?

Asymptotic complexity of Delaunay flipping. In theory, one can construct intrinsic
triangulations with a fixed number of vertices which nonetheless take an arbitrarily long
time to flip flip to Delaunay. Starting from real-world extrinsic triangulations, however,
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Delaunay flipping seems to run in essentially linear time [Sharp et al. 2019, Figure 10].
Can one bound the work required to flip an extrinsic triangulation to Delaunay? Are there
special classes of triangulations on which the algorithm is guaranteed to be fast, or better
general asymptotic bounds on the runtime of the algorithm?

Exact predicates. The Delaunay flipping algorithm is only guaranteed to terminate in
real arithmetic. In floating point, one often uses various epsilon tolerances to make the
algorithm terminate on difficult inputs. Exact predicates have been successfully applied to
similar problems [Devillers & Pion 2003], but have proved difficult to apply in the setting
of intrinsic triangulations, as the necessary predicates are not functions of a fixed amount
of input data. For example, the length of an intrinsic edge can depend on the lengths of
arbitrarily many original edges. Can exact predicates, or similar ideas, help to compute
the exact Delaunay triangulation in floating point?

Analysis of intrinsic Delaunay refinement. In Section 3.6 we showed that intrinsic
Delaunay refinement must successfully on meshes without boundary, but did not consider
meshes with boundary, or more fine-grained analysis of the spatial grading. Can one
adapt more sophisticated analysis of planar Delaunay refinement (e.g. Section 3.4.2 of
Shewchuk [1997]) to work in the intrinsic setting?

Other algorithms for Delaunay triangulation. The flip algorithm is rarely used to
construct Delaunay triangulations in the plane. There are a variety of techniques with
faster worst-case complexity: for instance, there are incremental constructions which
iteratively add vertices into the triangulation [Bowyer 1981; Watson 1981], reductions
to convex hull construction [Brown 1979], and divide and conquer algorithms which
recursively compute Delaunay triangulations of subsets of the vertices [Shamos & Hoey
1975; Guibas & Stolfi 1985]. Do any of these generalize to the intrinsic setting? Is it any
easier if one wants to construct the intrinsic Delaunay triangulation of a given extrinsic
triangle mesh?
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AppendixA

A Brief Introduction
to Hyperbolic Geometry

Outside there is “absolute nothingness”. And yet this round world cannot exist without the

emptiness around it, not only because “inside” presupposes “outside”, but also because it is out

there in the “nothingness” that the scaffolding lies, determining with geometric precision the

centres of the circular arcs which form the skeleton.

M.C. Escher [1958]

A.1 Models of Hyperbolic Geometry
Just as the sphere 𝑆2 is a surface of constant curvature 𝐾 = +1, the hyperbolic plane 𝐻 2 is a
surface of constant negative curvature 𝐾 = −1. Unlike 𝑆2, there is no way to smoothly embed
𝐻 2 in Euclidean R3 isometrically, i.e., without distorting its geometry [Hilbert 1901]. Instead,
we must visualize it through one of several models, each of which faithfully represents only
some of its geometric features. A good analogy is the Mercator projection of the globe, which

hyperboloid

H 2

ideal point

horocycle

geodesic
idealtriangle

geodesic

Poincaré diskideal
point
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horocycle

ideal
triangle

geodesic

ideal
point
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Klein disk
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triangle
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Poincaré half-space

ideal
point
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Figure A.1: Since the hyperbolic plane 𝐻 2 cannot be isometrically embedded in R3, it must be understood
through the use of several “models”—here we illustrate how several key quantities are realized in each
model.
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preserves angles but distorts the size of land masses. Figure A.1 depicts three models that are
useful for our purposes. For further background on hyperbolic geometry, see Cannon et al.
[1997], Alekseevskij et al. [1993], and Thurston [1997].

In the Poincaré disk model, points in 𝐻 2 are identified with points in the open unit disk
𝐷2 := {𝑝 ∈ R2 : |𝑝 | < 1}. Although this disk looks like a finite piece of the Euclidean plane,
lengths at a point 𝑝 ∈ 𝐷2 get scaled by 2/(1− |𝑝 |2) so that short distances near the boundary 𝜕𝐷2

represent large distances in 𝐻 2. One can hence travel any distance along a straightest curve or
geodesic without ever reaching the boundary—limit points on 𝜕𝐷2 are called ideal points. Though
geodesics are straight in 𝐻 2, in the Poincaré model they appear as circular arcs orthogonal to
𝜕𝐷2. The Poincaré model is conformal: angles between circular arcs give the true angle between
geodesics in𝐻 2. Finally, just as a straight line in R2 can be viewed as a circle of “infinite radius,” a
horocycle is the limit of a family of increasingly large circles tangent at a common point—drawn
in the Poincaré model as a circle tangent to the boundary.

The Beltrami-Klein model is much like the Poincaré model, but with a different metric.
Geodesics appear as straight lines, but Euclidean angles no longer give the true angles in 𝐻 2, i.e.,
the Beltrami-Klein model is not conformal. Horocycles in the Beltrami-Klein model appear as
ellipses. This model helps explain the relationship between Euclidean and hyperbolic polyhedra
(Appendix A.2.1).

ideal point
at ∞

horocycle

ideal
triangle

In the Poincaré half-space model, the hyperbolic plane 𝐻 2 is identified with
the upper half-space {(𝑥,𝑦) ∈ R2 : 𝑦 > 0}. As in the disk models, distances
get increasingly distorted as you approach the boundary—lengths around the
point (𝑥,𝑦) get scaled by 1

𝑦
. And just like in the Poincaré disk, geodesics

appear as circular arcs orthogonal to the boundary, and horocycles appear
as circles tangent to the boundary. The resemblance to the Poincaré model
is no coincidence: the conformal map 𝑓 (𝑧) = 𝑧−𝑖

𝑧+𝑖 is an isometry between the
Poincaré half space and disk models (viewed as subsets of the complex plane
C). This mapping identifies the point 𝑝 = 1 of the Poincaré disk model with a
point at infinity in the half-space model, which we also identify as an ideal point of 𝐻 2. Ideal
triangles with a vertex at this ideal point at infinity appear as vertical strips, and horocycles
touching this ideal point appear as horizontal lines (see inset).
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hyper boloidThe hyperboloid model represents 𝐻 2 as the upper sheet of the two-sheeted
hyperboloid. Just as the sphere is the set of all points 𝑝 ∈ R3 such that ⟨𝑝, 𝑝⟩ = 1,
this hyperboloid is the set of all points satisfying ⟨𝑝, 𝑝⟩2,1 = −1, where ⟨𝑝, 𝑞⟩2,1 :=
𝑝𝑥𝑞𝑥 + 𝑝𝑦𝑞𝑦 − 𝑝𝑧𝑞𝑧 is the Lorentz inner product; this inner product is also used to
measure the angles and lengths of vectors tangent to the hyperboloid. Geodesics
in 𝐻 2 correspond to intersections of the hyperboloid with planes through the origin, and ideal
points are identified with lines in the light cone L := {𝑝 ∈ R3 : ⟨𝑝, 𝑝⟩2,1 = 0}. Horocycles are
obtained by taking a plane tangent to L, shifting it in the positive 𝑧-direction, and intersecting
with the hyperboloid. Thus, we can identify horocycles with points in the positive light cone
L+ := {𝑝 ∈ L : 𝑝𝑧 > 0}; each point 𝑝 ∈ L+ also corresponds to the plane {𝑞 ∈ R3 : ⟨𝑝, 𝑞⟩2,1 = −1}.
The hyperboloid model is essential for developing our interpolation scheme—see Section 4.2.3.
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A.2 Ideal Polyhedra
An ideal hyperbolic polyhedron is a surface of constant negative curvature, and a finite collection of
cusps analogous to Euclidean cone points (Figure 4.10, right). We can construct ideal polyhedra
by gluing together ideal triangles: regions of 𝐻 2 bounded by three geodesics approaching
three ideal points at infinity (Figure A.1). A strange fact about ideal triangles is that they
are all congruent, i.e., they are identical up to isometries of 𝐻 2.
Hence, the geometry of an ideal polyhedron is determined entirely
by how neighboring triangles 𝑖𝑗𝑘, 𝑗𝑖𝑙 are glued together—namely,
how far we slide them along the shared geodesic 𝑖𝑗 . One way to
quantify gluings is to use shear coordinates, which for each edge
𝑖𝑗 give the distance 𝑍𝑖𝑗 ∈ R between the altitudes dropped from
opposite vertices 𝑘 and 𝑙 (see inset). Alternatively, we can pick
an arbitrary horocycle at each vertex, yielding a decorated ideal

polyhedron. Though edges of an ideal triangle do not have finite
length, there is now a finite distance 𝜆𝑖𝑗 ∈ R between the horocycles
at 𝑖 and 𝑗—these values are called the Penner coordinates. Shear and
Penner coordinates are related by

𝑍𝑖𝑗 =
1
2 (𝜆𝑖𝑙 − 𝜆𝑙 𝑗 + 𝜆 𝑗𝑘 − 𝜆𝑘𝑖) (A.1)

(see [Penner 2012, Corollary 4.16, p. 40]). Note that if the horocycles at 𝑖 and 𝑗 overlap, 𝜆𝑖𝑗
will be negative. Yet unlike negative Euclidean lengths, negative Penner coordinates will cause
no trouble for discrete uniformization. Likewise, whereas Euclidean lengths must satisfy the
triangle inequality, any three Penner coordinates 𝜆𝑖𝑗 , 𝜆 𝑗𝑘 , 𝜆𝑘𝑖 ∈ R (whether positive or negative)
can be realized by some choice of horocycles.

A.2.1 Euclidean-Ideal Correspondence
Every Euclidean polyhedron gives rise to an ideal polyhedron, in the following way. Any
triangle 𝑖𝑗𝑘 ∈ F drawn in its Euclidean circumdisk can be interpreted as an ideal triangle in the
Beltrami-Klein model. To glue two ideal triangles 𝑖𝑗𝑘, 𝑗𝑖𝑙 together along an edge 𝑖𝑗 , we simply
identify the same points as in the Euclidean polyhedron. An ideal polyhedron constructed this
way will have shear coordinates 𝑍𝑖𝑗 = log 𝔠𝑖𝑗 , and if we assign Penner coordinates

𝜆𝑖𝑗 = 2 log ℓ𝑖𝑗 (A.2)

we get a decorated version of the same polyhedron. In general, we can move from Euclidean to
hyperbolic polyhedra by “taking a logarithm”—for example, Equation (A.1) now just becomes
the logarithm of the length cross ratio. More importantly, for a fixed triangulation, a conformal
scaling of edge lengths corresponds to a shift in horocycles of the form

�̃�𝑖𝑗 = 𝜆𝑖𝑗 + 𝑢𝑖 + 𝑢 𝑗 . (A.3)

In other words, conformally equivalent edge lengths ℓ, ℓ̃ describe the same ideal polyhedron,
just decorated with different horocycles.

We can also view this correspondence through other models of hyperbolic space, which can
be useful when performing calculations with Euclidean and ideal polyhedra.
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hyperboloidCorrespondence in the Hyperboloid Model In the hyper-
boloid model of 𝐻 2, three points 𝑞𝑖, 𝑞 𝑗 , 𝑞𝑘 on different rays in the
positive light cone L+ determine an ideal hyperbolic triangle dec-
orated with horocycles at the vertices (Appendix A.1, Figure A.1).
If we connect 𝑞𝑖, 𝑞 𝑗 , 𝑞𝑘 by straight lines in R3, we obtain a secant
triangle in the affine plane spanned by the three points, whose
sides are chords of the light cone (see inset). This secant triangle
can be identified with an ideal hyperbolic triangle on the hyper-
boloid model by central projection: given any point on the secant
triangle, we can scale it to lie on the unit hyperboloid, and the collection of all such points
defines a corresponding ideal hyperbolic triangle.

There is one subtlety involved here: we should not view the secant triangle as a Euclidean
triangle in R3, but as a triangle in Lorentz space R2,1, equipped with the Lorentz inner product
⟨·, ·⟩2,1. The restriction of the Lorentz inner product to the affine plane spanned by 𝑞𝑖, 𝑞 𝑗 , 𝑞𝐾 is
positive definite so long as the Euclidean slope is less than 45◦. In this case, the affine plane
is called spacelike because the Lorentz inner product provides a Euclidean metric, turning the
chord triangle in Lorentz space into a genuine Euclidean triangle with side lengths

ℓ𝑖𝑗 =
1
2

√︃
⟨𝑞𝑖 − 𝑞 𝑗 , 𝑞𝑖 − 𝑞 𝑗 ⟩2,1. (A.4)

(See the Remark below for an explanation of the factor 1
2 ). Since 𝑞𝑖, 𝑞 𝑗 are light-like (i.e., ⟨𝑞, 𝑞⟩2,1 =

0), we have
⟨𝑞𝑖 − 𝑞 𝑗 , 𝑞𝑖 − 𝑞 𝑗 ⟩2,1 = −2⟨𝑞𝑖, 𝑞 𝑗 ⟩2,1,

and therefore
⟨𝑞𝑖, 𝑞 𝑗 ⟩2,1 = −2ℓ2𝑖𝑗 . (A.5)

The affine plane spanned by 𝑞𝑖, 𝑞 𝑗 , 𝑞𝑘 is spacelike if and only if the chord lengths ℓ𝑖𝑗 , ℓ𝑗𝑘 , ℓ𝑘𝑖
obtained from Equation (A.4) satisfy the triangle inequalities. This gives us a direct mapping
between any Euclidean triangle and its ideal hyperbolic counterpart: take the Euclidean triangle,
and find points 𝑞𝑖 on the light cone such that ∥𝑞𝑖 − 𝑞 𝑗 ∥2,1 = 2ℓ𝑖𝑗 , yielding a copy of the Euclidean
triangle sitting in R2,1. Each point 𝑥 in the Euclidean triangle (except the vertices, which are
light-like) can be normalized to obtain a point 𝑥′ = 𝑥/

√︁
−⟨𝑥, 𝑥⟩2,1 on the unit hyperboloid, which

we identify with the hyperbolic plane (see the inset at the beginning of this section).
We can express the determinant of the three light-like vectors 𝑞𝑖, 𝑞 𝑗 , 𝑞𝑘 up to sign using terms

of the Euclidean edge lengths as follows:

| det(𝑞𝑖 𝑞 𝑗 𝑞𝑘) | = 4 ℓ𝑖𝑗 ℓ𝑗𝑘ℓ𝑖𝑘 . (A.6)

To derive this equation, note that

−2
(

0 ℓ2𝑖𝑗 ℓ
2
𝑖𝑘

ℓ2𝑖𝑗 0 ℓ2
𝑗𝑘

ℓ2
𝑖𝑘
ℓ𝑗𝑘 0

)
=

©«
⟨𝑞𝑖, 𝑞𝑖⟩2,1 ⟨𝑞𝑖, 𝑞 𝑗 ⟩2,1 ⟨𝑞𝑖, 𝑞𝑘⟩2,1
⟨𝑞 𝑗 , 𝑞𝑖⟩2,1 ⟨𝑞 𝑗 , 𝑞 𝑗 ⟩2,1 ⟨𝑞 𝑗 , 𝑞𝑘⟩2,1
⟨𝑞𝑘 , 𝑞𝑖⟩2,1 ⟨𝑞𝑘 , 𝑞 𝑗 ⟩2,1 ⟨𝑞𝑘 , 𝑞𝑘⟩2,1

ª®¬ = (𝑞𝑖 𝑞 𝑗 𝑞𝑘)𝑇
( 1 0 0
0 1 0
0 0 −1

)
(𝑞𝑖 𝑞 𝑗 𝑞𝑘) (A.7)

and take determinants.
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Remark. In Equation (A.4) measuring length in Lorentz space, we insert the global scale factor 1
2

to be consistent with Equation (A.2) describing the relation between truncated hyperbolic lengths
𝜆 and Euclidean lengths ℓ . This relation was originally derived by Bobenko et al. [2015] (and
used in this form by Springborn et al. [2008]) via the construction involving the half-space model
described below. Both constructions provide the same correspondence between Euclidean and
decorated ideal triangles, up to scale. The natural scale for Euclidean lengths in the construction
of Bobenko et al. [2015] happens to differ from the natural scale in the light cone by a factor of 2.

Correspondence in the Half-space Model We can also understand the correspondence
between Euclidean and ideal hyperbolic polyhedra by working in the half-space model of three-
dimensional hyperbolic space 𝐻 3. This model identifies 𝐻 3 with the half-space {(𝑥,𝑦, 𝑧) : 𝑧 > 0}.
Again, distances about point (𝑥,𝑦, 𝑧) are scaled by a factor of 1

𝑧
, and geodesics appear as circles

orthogonal to the ideal boundary. Hemispheres orthogonal to the boundary provide copies of
the two-dimensional hyperbolic plane 𝐻 2 embedded in three-dimensional hyperbolic space1.

H2

ideal triangle

i

j

k

Any three ideal points 𝑖, 𝑗, 𝑘 on the boundary plane {(𝑥,𝑦, 𝑧) : 𝑧 =

0} can be connected to form an ideal triangle embedded in 𝐻 3. If we
take the circumcircle of the points in the plane, the hemisphere which
orthogonally intersects the boundary along this circle is then a copy of the
two-dimensional hyperbolic plane containing these three points in its ideal
boundary, so the three points define an ideal triangle in this copy of 𝐻 2.

ideal tetrahedron

i

j

k

Euclideantriangle

One can also obtain the horocycles decorating the ver-
tices of this ideal triangle by considering the ideal hyperbolic
tetrahedron with vertices 𝑖, 𝑗, 𝑘 and the point at infinity. The
key idea is that a horosphere at the vertex at infinity looks
like a horizontal plane in the half space model, and the in-
tersection of this plane with the ideal tetrahedron turns out
to be a Euclidean triangle. We can pick our horosphere so
that this triangle is congruent to the Euclidean triangle that
we started with, and then we take horospheres at the other
vertices tangent to this distinguished horosphere at the point
at infinity—see Springborn [2019, Section 2] for more details.

k

1This hemisphere model of the hyperbolic plane 𝐻 2 is another widely-used model, but we will not go into the
details here.
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A.2.2 Ptolemy Flip

Euclidean lengths

i

j

k
l

Penner coordinates

i

j

lk

Figure A.2: An edge flip in an ideal hyperbolic poly-
hedron can be viewed in terms of Euclidean edge
lengths (left), or Penner coordinates (right).

As mentioned in Section 4.1.2, we can update
an ideal polyhedron’s Penner coordinates after
an edge flip using Ptolemy’s relation [Penner
2012, Corollary 4.16, p. 40]. It turns out that
the formula is easiest to express in terms of
the Euclidean edge lengths ℓ𝑖𝑗 = 𝑒𝜆𝑖𝑗/2. We first
evaluate

ℓ𝑘𝑙 = (ℓ𝑘𝑖ℓ𝑙 𝑗 + ℓ𝑗𝑘ℓ𝑙𝑖)/ℓ𝑖𝑗 , (A.8)

and then the new Penner coordinate is given
by 𝜆𝑘𝑙 = 2 log(ℓ𝑘𝑙 ) (Figure A.2, top right).

A.2.3 Ideal Delaunay Triangula-
tions

i

j

kIdeal Delaunay triangulation provide the natural hyperbolic analogue of
Euclidean Delaunay triangulations[Springborn 2019, Section 4]. Ideal
Delaunay triangulations can be characterized by a local condition almost
identical to the Euclidean Delaunay condition given in Section 2.3.3, except
we replace the angles with horocyclic arc lengths. Given a horocycle at
vertex 𝑖 of an ideal triangle 𝑖𝑗𝑘 , we can measure the length 𝛼 𝑗𝑘

𝑖
of the

segment of the horocycle contained inside of the ideal triangle 𝑖𝑗𝑘 . One
can show that the length is given by

𝛼
𝑗𝑘

𝑖
= 𝑒2𝜆 𝑗𝑘−𝜆𝑘𝑖−𝜆𝑖𝑗 =

ℓ𝑗𝑘

ℓ𝑘𝑖ℓ𝑖𝑗
. (A.9)

Although this formula uses the values 𝜆𝑖𝑗 and 𝜆𝑘𝑖—which depend on the horocycles at 𝑗 and 𝑘 in
addition to the horocycle at 𝑖—the final result depends only on the choice of horocycle at 𝑖 . If we
modify the Euclidean edge lengths by any discrete conformal scale factor 𝑢 : V→ R (i.e. change
the choice of horocycles at all vertices), then this horocyclic arc length simply gets scaled by a
factor of 𝑒−𝑢𝑖 , which depends only on the change of horocycle at vertex 𝑖 itself.

i

j

l
k

We say that an edge 𝑖𝑗 then satisfies the local ideal Delaunay con-
dition if

𝛼
𝑗𝑖

𝑘
+ 𝛼𝑖𝑗

𝑙
< 𝛼

𝑗𝑘

𝑖
+ 𝛼𝑙 𝑗

𝑖
+ 𝛼𝑖𝑘𝑗 + 𝛼𝑙𝑖𝑗 . (A.10)

Note that if we replace the horocyclic arc lengths 𝛼 𝑗𝑘
𝑖

with the Euclidean
corner angles 𝜃 𝑗𝑘

𝑖
of a Euclidean triangle pair, then Equation (A.10)

reduces to the standard Euclidean Delaunay condition. We can also
substitute Equation (A.9) into Equation (A.10) to obtain the expression
given in Equation (4.5) for the ideal Delaunay condition in terms of the
Euclidean lengths ℓ𝑖𝑗 :

ℓ2𝑖𝑗 (ℓ𝑗𝑘ℓ𝑘𝑖 + ℓ𝑖𝑙 ℓ𝑙 𝑗 ) < (ℓ𝑖𝑙 ℓ𝑘𝑖 + ℓ𝑗𝑘ℓ𝑙 𝑗 ) (ℓ𝑖𝑙 ℓ𝑗𝑘 + ℓ𝑘𝑖ℓ𝑙 𝑗 ). (A.11)
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Just as we can find Euclidean Delaunay triangulations by repeatedly flipping any edge violating
the local Euclidean condition, we can find ideal Delaunay triangulations by repeatedly flipping
any edge violating the ideal Delaunay condition. And as discussed in Section 4.1.2, the lengths
ℓ𝑖𝑗 = 𝑒𝜆𝑖𝑗/2 arising from an ideal Delaunay triangulation are guaranteed to describe a valid
Euclidean intrinsic Delaunay triangulation [Springborn 2019, p. 4.14].

Weighted Delaunay triangulations. At first glance, ideal Delaunay triangulations sound related
to weighted Delaunay triangulations, as both provide Delaunay-like triangulations which depend
on scalar values associated to the vertices of the triangulation. However, the two are distinct—the
ideal Delaunay triangulation associated to a set of scale factors 𝑢 : V→ R is generally not the
same as the weighted Delaunay triangulation associated to those weights. Weighted Delaunay
triangulations are instead closely related to triangulations of more general objects hyperideal
hyperbolic polyhedra: for more exploration of hyperideal polyhedra and discrete conformal maps,
see the work of Bobenko & Lutz [2023] or Chen et al. [2016]

A.3 Light Cone Formulas
A.3.1 Vertex Scaling and Projective Interpolation
Now consider the points 𝑞𝑖 = 𝑒𝑢𝑖𝑞𝑖 , 𝑞 𝑗 = 𝑒𝑢 𝑗𝑞 𝑗 , 𝑞𝑘 = 𝑒𝑢𝑘𝑞𝑘 on the same rays
in the light cone, describing the same ideal triangle but decorated with
different horocycles. By Equation (A.5), their chordal distances ℓ̃ are related
to the chordal distances ℓ by Equation (4.1). Moreover, if the scaled lengths
ℓ̃ satisfy the triangle inequalities, then the second triangle is also Euclidean
and the circumcircle preserving projective map between them [Springborn
et al. 2008, Section 3.4] is just central projection mapping a point 𝑥 to the point 𝑥 in the same
ray from the origin (see inset).

More explicitly, suppose we have a linear function on triangle 𝑖𝑗𝑘 defined by values 𝑓𝑖, 𝑓 𝑗 , 𝑓𝑘 at
the vertices. We want to pull this function back to the lower triangle 𝑖𝑗𝑘 by defining 𝑓 (𝑥) = 𝑓 (𝑥).
Suppose

𝑥 = 𝛼𝑖𝑞𝑖 + 𝛼 𝑗𝑞 𝑗 + 𝛼𝑘𝑞𝑘 .

Since 𝑞𝑖 = 𝑒𝑢𝑖𝑞𝑖 , we can also write

𝑥 = 𝛼𝑖𝑒
−𝑢𝑖𝑞𝑖 + 𝛼 𝑗𝑒−𝑢 𝑗𝑞 𝑗 + 𝛼𝑘𝑒−𝑢𝑘𝑞𝑘 .

To scale 𝑥 to lie in the triangle spanned by 𝑞𝑖, 𝑞 𝑗 , 𝑞𝑘 , we just have to normalize its coefficients to
sum to 1:

𝑥 =
𝛼𝑖𝑒
−𝑢𝑖𝑞𝑖 + 𝛼 𝑗𝑒−𝑢 𝑗𝑞 𝑗 + 𝛼𝑘𝑒−𝑢𝑘𝑞𝑘
𝛼𝑖𝑒
−𝑢𝑖 + 𝛼 𝑗𝑒−𝑢 𝑗 + 𝛼𝑘𝑒−𝑢𝑘

.

Finally, we can evaluate our function 𝑓 . Since 𝑓 is linear, we find that

𝑓 (𝑥) = 𝑓 (𝑥) =
𝛼𝑖𝑒
−𝑢𝑖 𝑓𝑖 + 𝛼 𝑗𝑒−𝑢 𝑗 𝑓 𝑗 + 𝛼𝑘𝑒−𝑢𝑘 𝑓𝑘
𝛼𝑖𝑒
−𝑢𝑖 + 𝛼 𝑗𝑒−𝑢 𝑗 + 𝛼𝑘𝑒−𝑢𝑘

.
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This is precisely the circumcircle-preserving projective map between our two triangles. We can
write it more compactly by introducing homogeneous coordinates.

ℎ(𝑥) = 𝛼𝑖𝑒−𝑢𝑖 (𝑓𝑖, 1) + 𝛼 𝑗𝑒−𝑢 𝑗 (𝑓 𝑗 , 1) + 𝛼𝑘𝑒−𝑢𝑘 (𝑓𝑘 , 1), (A.12)

and we obtain 𝑓 (𝑥) by dividing the first component of ℎ(𝑥) by the second component. In the end,
our interpolation amounts to linearly interpolating the values 𝑒−𝑢𝑖 (𝑓𝑖, 1) and then performing
this homogeneous divide.

A.3.2 Edge Flips
The real power in the hyperboloid is that it allows us to interpolate between different triangula-
tions of the same vertex set using exactly the same procedure. Consider for example a pair of trian-
gles which have been flipped (by a Ptolemy flip) and rescaled.
In the hyperboloid model, the Ptolemy flip really does correspond to an
extrinsic flip, since the extrinsic Lorentz distance corresponds to the hy-
perbolic distance between horocycles. So if we take two triangles, perform
a Ptolemy flip, and then rescale the edge lengths, we end up with two
pairs of triangles with one hanging above the other. We can map between
the two triangle pairs by rescaling, exactly as in the 1-triangle case. The rescaling map is a
piecewise-projective map on the common refinement of the two meshes. Since the map is
piecewise-projective, we can specify the whole map by computing how much it scales by at each
vertex, and at each projective intersection of edges. In this case, we can find the intersection
point and the map’s scale factor at the intersection by applying Equation (4.9).

A.3.3 Piecewise-Projective Interpolation
Now, suppose the triangulations differ by more than just an edge flip.
As we observed above, the piecewise projective map depends only on
scale factors at vertices, and at the intersections between edges of the two
triangulations. We know the scale factors at vertices, so in order to compute
the piecewise-projective map, we need to determine where the edges of the
two triangulations intersect, and what the appropriate scale factor is at each intersection. In our
algorithm, we need to trace edges of T𝐵 over T𝐶 . For each edge 𝑎𝑏 ∈ E𝐵 , this amounts to laying
out the strip of triangles from T𝐶 which 𝑎𝑏 crosses in the light cone, drawing the edge from 𝑞𝑎 to
𝑞𝑏 above it, and computing barycentric coordinates and scale factors for each intersection. Since
𝑞𝑎 = 𝑒𝑢𝑎𝑞𝑎 , we simply place 𝑞𝑎 and 𝑞𝑏 by rescaling the triangle strip’s endpoints by 𝑒−𝑢𝑎 and
𝑒−𝑢𝑏 respectively in Section 4.2.1. Once we have computed these scale factors, we do projective
interpolation using Equation (A.12) on each triangle of the common refinement. The final
expression appears as Equation (4.10).

A.3.4 Discrete Uniformization: Hyperboloid Model POV

To understand mapping between the intrinsic Delaunay triangulation (T𝐵, ℓ) and the discretely
conformally equivalent intrinsic Delauny triangulation (T𝐶, ℓ̃) that is obtained by vertex scaling
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with logarithmic factors𝑢 and Ptolemy flips, it is useful to picture this process in the hyperboloid
model as follows.

First, imagine laying out the triangulation T𝐵 in the light cone. We will provide more detail
in the following two sections, but the idea is straightforward: Place the vertices 𝑞𝑖 , 𝑞 𝑗 , 𝑞𝑘 of a
first triangle 𝑖𝑗𝑘 on arbitrary rays in L+ so that the chordal distances are ℓ𝑖𝑗 , ℓ𝑗𝑘 , ℓ𝑘𝑖 . Then for a
neighboring triangle, say 𝑗𝑖𝑙 , the position 𝑞𝑙 ∈ L+ of the third vertex is determined by the side
lengths ℓ𝑖𝑙 , ℓ𝑗𝑙 . Note that as you layout the triangles around one vertex, this will never close up.
Instead, if you keep laying out, each triangle of T𝐵 will correspond to infinitely many chordal
triangles. The result is a polyhedral surface 𝑃1 with vertices in the light cone, all of which have
infinite degree. Yet, every ray from the origin contained in the light cone will intersect this
polyhedral surface exactly once. Moreover, the ideal Delaunay condition on (T𝐵, ℓ𝐵) is precisely
the condition that this polyhedral surface is convex [Penner 2012, Lemma 1.7, p. 128].

The next step, corresponding to the vertex scaling (Equation (4.1)), is to slide all the laid out
vertices along their rays in the light cone by applying the scale factors 𝑒𝑢 as in Appendix A.3.1.
The resulting polyhedral surface 𝑃2 will in general not be convex, nor will all its triangles span
spacelike planes.

The process of applying Ptolemy flips to obtain the ideal Delaunay triangulation (T𝐶, ℓ̃)
corresponds, in the hyperboloid model, to applying extrinsic edge flips to the polyhedral surface
𝑃2 to obtain a convex surface 𝑃3. All of its triangles will then automatically be in spacelike
planes. Finally, the map from 𝑃1 to 𝑃3 is just central projection from the origin.

A.3.5 Layout in the Light Cone I: Placing the First Triangle
We will now derive some practical equations for laying out a Euclidean triangulation in the
light cone. Note that in practice we only ever lay out triangle strips of one triangulation that are
crossed by an edge of another triangulation.

To lay out the first triangle 𝑖𝑗𝑘 we place the vertices at the points

𝑞𝑖 = 𝑤𝑖 (1, 0, 1),
𝑞 𝑗 = 𝑤 𝑗 (cos(2𝜋/3), sin(2𝜋/3), 1),
𝑞𝑘 = 𝑤𝑘 (cos(4𝜋/3), sin(4𝜋/3), 1),

in L+, where the positive scalar factors𝑤𝑖 ,𝑤𝑖 ,𝑤𝑖 are determined by the edge lengths via Equa-
tion (A.5):

ℓ2𝑖𝑗 = −1
2 ⟨𝑞𝑖, 𝑞 𝑗 ⟩2,1 =

3
4𝑤𝑖𝑤 𝑗

ℓ2
𝑗𝑘
= −1

2 ⟨𝑞 𝑗 , 𝑞𝑘⟩2,1 =
3
4𝑤 𝑗𝑤𝑘

ℓ2
𝑘𝑖
= −1

2 ⟨𝑞𝑘 , 𝑞𝑖⟩2,1 =
3
4𝑤𝑘𝑤𝑖

The solution of this system of equations is

𝑤𝑖 =
2 ℓ𝑖𝑗 ℓ𝑘𝑖√
3 ℓ𝑗𝑘

, 𝑤 𝑗 =
2 ℓ𝑗𝑘ℓ𝑖𝑗√
3 ℓ𝑘𝑖

, 𝑤𝑘 =
2 ℓ𝑘𝑖ℓ𝑗𝑘√
3 ℓ𝑖𝑗

.
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A.3.6 Layout in the Light Cone II: Placing the Next Triangle
Suppose we have already determined the vertex positions 𝑞𝑖, 𝑞 𝑗 , 𝑞𝑘 ∈ L+ of the triangle 𝑖𝑗𝑘 ,
and we want to determine the position 𝑞𝑙 of third vertex in the adjacent triangle 𝑗𝑖𝑙 . Note that
𝑞𝑖, 𝑞 𝑗 , 𝑞𝑘 form a basis of R3 so and we can write the unknown vertex position 𝑞𝑙 as a linear
combination. To obtain more symmetric expressions, we will determine coefficients 𝑐𝑖, 𝑐 𝑗 , 𝑐𝑘 , 𝑐𝑙
for which

𝑐𝑖𝑞𝑖 + 𝑐 𝑗𝑞 𝑗 + 𝑐𝑘𝑞𝑘 + 𝑐𝑙𝑞𝑙 = 0. (A.13)

By taking the inner product of Equation (A.13) with each of the four vertex positions 𝑞 and
using Equation (A.5), we get a system of linear equations

0 ℓ2𝑖𝑗 ℓ2
𝑖𝑘

ℓ2
𝑖𝑙

ℓ2𝑖𝑗 0 ℓ2
𝑗𝑘

ℓ2
𝑗𝑙

ℓ2
𝑖𝑘

ℓ2
𝑗𝑘

0 ℓ2
𝑘𝑙

ℓ2
𝑖𝑙

ℓ2
𝑗𝑙

ℓ2
𝑘𝑙

0



𝑐𝑖
𝑐 𝑗
𝑐𝑘
𝑐𝑙

 =


0
0
0
0

 ,
where ℓ𝑖𝑗 , ℓ𝑗𝑘 , ℓ𝑘𝑖, ℓ𝑖𝑙 , ℓ𝑙 𝑗 are the sides lengths of the triangles 𝑖𝑗𝑘 and 𝑗𝑖𝑙 , and ℓ𝑘𝑙 is determined by
Ptolemy’s formula (Equation (4.4)). A solution of this system is given by

𝑐𝑖 =
ℓ𝑗𝑙 ℓ𝑘𝑙
ℓ𝑖𝑙
, 𝑐 𝑗 = − ℓ𝑖𝑘 ℓ𝑘𝑙ℓ𝑗𝑘

, 𝑐𝑘 = −
ℓ𝑗𝑙 ℓ𝑖𝑗

ℓ𝑗𝑘
, 𝑐𝑙 =

ℓ𝑖𝑘 ℓ𝑖𝑗
ℓ𝑖𝑙
.

We can use these coefficients in Equation (A.13) to get the next vertex position 𝑞𝑙 .
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