
3D Reconstruction with Fast Dipole Sums

Hanyu Chen

CMU-CS-24-102

April 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Ioannis Gkioulekas (Chair)

Matthew O’Toole

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright © 2024 Hanyu Chen

Keywords: Computer graphics, computer vision, rendering, 3D reconstruction

Abstract
Reconstructing 3D scenes from multi-view images has always been a challeng-

ing problem in computer vision and computer graphics. Traditional methods like
structure from motion and multi-view stereo have been widely used for pose esti-
mation and dense point cloud reconstruction. However, these methods have limited
ability to reconstruct complex scenes with fine details. Recently, since the introduc-
tion of neural radiance fields (NeRF), volumetric neural rendering has shown great
promise in reconstructing complex scenes with high fidelity. To accurately recon-
struct scene geometry, other works have also proposed ways to directly model the
signed-distance function or occupancy of a scene. However, these methods are often
slow to train and cannot effectively leverage known scene information.

In this thesis, we propose a novel point-based representation that combines the
efficiency of point clouds with the expressiveness of neural rendering. Point clouds
are particularly appealing as a scene representation for rendering tasks, as they are
the natural output of many 3D sensing modalities, including structure from motion,
multi-view stereo, and lidar. They also come with a rich library of geometric queries.
In our work, we utilize point clouds to efficiently reconstruct 3D scenes by using the
generalized winding number as a proxy for the scene occupancy and by interpolating
per-point neural features with appropriate kernels. We leverage the Barnes-Hut ap-
proximation and fast dipole sums to perform fast winding number queries and feature
interpolation, as well as logarithmic complexity backpropagation for efficient differ-
entiable rendering. We empirically show that our method consistently outperforms
existing methods in both reconstruction quality and efficiency on a wide range of
real-world scenes.

iv

Acknowledgments
First and foremost, I would like to thank my advisor, Prof. Ioannis Gkioulekas.

His guidance and support throughout my time working with him have been invalu-
able to my research and academic growth. I would also like to thank his Ph.D.
student Bailey Miller for his help and insights on the project. Without them, the
project would not have been possible.

Furthermore, I am also grateful for Prof. Matthew O’Toole for being on the thesis
committee and his valuable feedback on the project.

vi

Contents

1 Related work 1
1.1 3D reconstruction . 1
1.2 Scene representation . 1
1.3 Point clouds . 2

2 Volumetric neural rendering 3
2.1 Volumetric light transport background . 3

2.1.1 Radiative transfer equation . 3
2.1.2 Volume rendering equation . 3
2.1.3 Discretization . 4

2.2 Neural rendering . 4
2.2.1 Neural fields . 4
2.2.2 Neural surface representations . 5

3 Winding number and dipole sums 7
3.1 The winding number . 7

3.1.1 Winding number for surfaces . 7
3.1.2 Winding number for point clouds . 8
3.1.3 Barnes-Hut approximation . 8
3.1.4 Rendering point clouds with winding numbers 9
3.1.5 Relationship to Poisson surface reconstruction 9

3.2 Fast dipole sums . 10
3.2.1 General Dirichlet conditions . 10
3.2.2 Regularized Poisson kernel . 10
3.2.3 Regularized dipole sum . 11
3.2.4 Rendering with regularized dipole sums 12

3.3 Logarithmic complexity backpropagation . 13
3.3.1 Gradient accumulation . 13
3.3.2 Gradient computation for nodes . 14
3.3.3 Propogating gradient to points . 14
3.3.4 Optimization . 14

vii

4 Experimental evaluation 17
4.1 Implementation details . 17

4.1.1 Neural rendering . 17
4.1.2 Point cloud queries . 18
4.1.3 Training Setup . 18

4.2 3D reconstruction . 18
4.2.1 DTU . 19
4.2.2 Blended MVS . 19

4.3 Multi-bounce rendering . 21
4.3.1 Experimental setup . 21
4.3.2 Results . 22

5 Conclusion 25
5.1 Contributions . 25

5.1.1 Efficient 3D Reconstruction . 25
5.1.2 Multi-bounce Rendering . 25

5.2 Limitations . 26
5.2.1 Fine Details . 26
5.2.2 Noisy Point Clouds . 26

Bibliography 27

viii

List of Figures

4.1 Qualitative results on the Blended MVS dataset. The first column is the input
image, the second column is the Colmap reconstruction, the third column is the
Neuralangelo reconstruction, and fourth column is our reconstruction. 20

4.2 Qualitative results on the Blended MVS dataset (continued). 21
4.3 Qualitative comparison of the extracted meshes on the LEGO scene. The first

image shows the mesh reconstructed without shadow rays and the second image
show the mesh reconstructed with shadow rays. 22

4.4 Qualitative comparison of novel view synthesis on the LEGO scene. The first
image is the ground truth, the second image is rendered without shadow rays,
and the third image is rendered with shadow rays. 23

4.5 Demonstration of relighting on the LEGO scene. The images in each row are
rendered with the same camera pose but different light source locations, while
the images in each column are rendered with the same light source location but
different camera poses. 23

ix

x

List of Tables

4.1 Chamfer distance evaluations on the DTU dataset. 19

xi

xii

Chapter 1

Related work

In this chapter, we review the existing literature on 3D reconstruction, neural rendering, and
point-based representations, which are the key components of our work.

1.1 3D reconstruction
Traditionally, structure-from-motion (SfM) [29] and multi-view stereo (MVS) [30] have been
two widely used methods for 3D reconstruction from images. SfM estimates camera poses and
sparse 3D points from a set of images, while MVS estimates dense 3D points by triangulating
points from multiple known views. However, they are limited in their ability to reconstruct fine
details and handle complex scenes.

More recently, neural rendering has shown great promise in reconstructing complex scenes
with high fidelity. In particular, neural radiance fields (NeRF) [25] uses neural networks to map
spatial locations and viewing directions to the emitted radiance and the attenuation coefficient.
Instant-NGP [27] uses a multi-resolution hash grid to store neural features that can be efficiently
trained to model scene appearance. However, although these methods are able to render complex
scenes with high fidelity, they are not well-suited for surface extraction as they do not explicitly
model the geometry of the scene.

Other works following NeRF have proposed ways to directly model the geometry of the scene
and connect the geometry of the scene to the attenuation coefficient for volume rendering. For
example, NeuS [33] proposes directly modeling the occupancy of the scene, while VolSDF [38]
proposes modeling the signed-distance function of the scene. These methods allows for more
accurate surface extraction.

1.2 Scene representation
Building on top of these neural rendering works, other methods have proposed different ways to
represent the scene to either improve the efficiency or quality of 3D reconstruction.

For example, for novel view synthesis tasks, methods like ReLU fields [15] and Plenoxels
[28] model the scene using density values and spherical harmonics coefficients stored on a voxel
grid, while Point-NeRF [36] optimizes neural features stored on a point cloud. 3D Gaussian

1

splatting [18] also proposes a point-based representation that directly interpolates density and
spherical harmonics coefficients using Gaussian kernels.

For surface extraction, Neuralangelo [21] and NeuS2 [34] propose using multi-resolution
hash grids to model the scene geometry, which allows for representing varying levels of de-
tail. Geo-NeuS [9] and Neuralwarp [6] propose enforcing photo-consistency constraints on the
scene geometry based on a sparse point cloud obtained from structure-from-motion. Voxurf [35]
proposes modeling the scene with a sparse voxel grid to improve efficiency.

1.3 Point clouds
As the natural output of many 3D sensing modalities, point clouds are very commonly used
in traditional 3D reconstruction pipelines. For example, Poisson surface reconstruction [17] is
widely used for surface reconstruction from point clouds. The generalized winding number [12]
can also be used for robust inside-outside queries on point clouds.

In recent neural rendering based methods, point clouds are more often used to impose con-
straint on the scene geometry or as part of a regularization term. Examples of such work include
DS-NeRF [7], which uses depth information from point clouds as supervision for training neural
radiance fields, as well as Geo-NeuS and Neuralwarp, as mentioned above, which use sparse
point clouds to enforce photo-consistency constraints.

On the other hand, although works like Point-NeRF directly optimizes neural features stored
on a point cloud, the features are aggregated using multiple MLPs that limits both efficiency and
interpretability. Methods following 3D Gaussian splatting provide an intriguing alternative of
directly interpolating features using Gaussian kernels. However, such methods are rasterization-
based and are not well-suited for surface extraction and relighting tasks.

2

Chapter 2

Volumetric neural rendering

2.1 Volumetric light transport background
We first introduce the basic concepts of volumetric light transport using principles from classical
volume rendering [14], which will serve as the foundation for our rendering framework.

2.1.1 Radiative transfer equation
The radiative transfer equation (RTE) describes the propagation of light in a medium. It is a
partial differential equation that models the change in radiance along a ray as it travels through
the medium. Assuming an emissive medium with no scattering, the RTE can be written as:

dL(x, ~!) = ��(x, ~!)L(x, ~!)dz + �(x, ~!)Le(x, ~!)dz, (2.1)

where L(x, ~!) is the radiance at point x in direction ~!, Le(x, ~!) is the emitted radiance of the
medium, and �(x, ~!) is the (direction-dependent) attenuation coefficient.

2.1.2 Volume rendering equation
The solution to the RTE is given by the volume rendering equation:

L(x, ~!) = T(x,xz)L(xz, ~!) +

Z z

0

T(x,xt)�(xt, ~!)Le(xt, ~!)dt, (2.2)

where T(x,xt) is the transmittance from x to xt, given by:

T(x,xt) = exp

✓
�
Z t

0

�(xs, ~!)ds

◆
. (2.3)

Notably, we can also consider the probability distribution of the ray termination distance,
or the free-flight distribution, whose probability density function is given by the product of the
transmittance and the attenuation coefficient at the termination point:

px,~!(z) = �(xz, ~!)T(x,xz). (2.4)

3

Assuming no background light source and near and far bounds tn and tf , we can then write
the expected color of a camera ray r(t) = o+ t~! as

C(r) =

Z tf

tn

�(r(t), ~!)Le(r(t), ~!) exp

✓
�
Z t

tn

�(r(s), ~!)ds

◆
dt (2.5)

=

Z tf

tn

po,~!(t)Le(r(t), ~!)dt (2.6)

2.1.3 Discretization
In practice, as proposed by Max [23], when rendering a single ray, the volume rendering equation
is often discretized by sampling the ray at regular intervals and approximating the integral with
quadrature methods.

Given a ray r(t) = o + t~! and discrete samples t0, t1, . . . , tN along the ray, the color of the
ray is approximated as

C(r) ⇡
N�1X

i=0

piLe(r(ti), ~!), (2.7)

where the free-flight distribution is also approximated as

pi = ↵i

i�1X

j=0

(1� ↵j), ↵i = 1� exp (��(r(ti), ~!)�ti) . (2.8)

Notably, this reduces volume rendering to alpha compositing, where the color of the ray is
accumulated by blending the color of each sample with the accumulated color.

Rendering a scene with the volume rendering equation requires knowing the attenuation co-
efficient � and emitted radiance Le at every point in the scene. Traditionally, these quantities are
estimated using physical measurements and known material properties. However, more recently,
neural networks have been used as a tool to directly estimate these quantities from images of the
scene, as we will discuss in the next section.

2.2 Neural rendering
Recent works following the introduction of neural fields (NeRF) [25] have shown that neural
networks are capable of representing complex scenes and rendering them with high fidelity. We
briefly review the key concepts of neural rendering, which we will build upon in our work.

2.2.1 Neural fields
Neural fields are neural networks, or functions f⇥ : (x, ~!) ! (c, �), that map a 3D spatial
location x = (x, y, z) and a 2D viewing direction ~! = (✓,�) to the emitted radiance and the
attenuation coefficient at the given spatial location in the given viewing direction [25].

Neural fields are often trained to minimize the error between rendered pixels and ground
truth pixels, which are obtained by sampling from a dataset of captured images of the scene. The

4

trained neural field can then be used to render novel views of the scene by sampling camera rays
and evaluating the neural field at the desired spatial location and viewing directions.

Despite its success in rendering complex scenes, neural fields have limitations in extracting
surfaces from the scene, as they do not explicitly model the geometry of the scene. Naively,
one can also use neural fields to directly extract surfaces from the scene by thresholding the
attenuation coefficient � at a certain value. However, this approach is not ideal for extracting
surfaces, and often results in incorrect or noisy surfaces.

To address this limitation, other works have proposed ways to directly model the geometry
of the scene and connect the geometry of the scene to the attenuation coefficient for volume
rendering, as we will discuss in the next section.

2.2.2 Neural surface representations
To address the limitations of using the attenuation coefficient to extract surfaces, works includ-
ing [26, 33, 38] have proposed ways to directly model the signed-distance function (SDF) or
occupancy of a scene and convert them into attenuation coefficients for volume rendering. These
works have shown that neural surface representations can be used to both render high-quality
images of scenes and extract surfaces from the scene, by using marching cubes [22] to find the
0.5-crossing of the occupancy, for example.

Specifically, given the occupancy of a scene, we adopt the method proposed by Miller et al.
[26] and compute the attenuation coefficients by the formula

�(x, ~!) =
|~! ·ro(x)|
1� o(x)

, (2.9)

where o : R3 ! [0, 1] is the occupancy function that represents the probability of a point in space
being inside of an object. We further discuss how these concepts relate to our representation in
section 3.1.

The original discrete formulation makes the assumption that the attenuation coefficient is
constant within each discrete segment of the ray. As proposed by both Wang et al. [33] and Miller
et al. [26], we can relax this assumption to allow for non-constant but monotone attenuation
coefficients within each segment. Then, we can directly estimate ↵i from the occupancy as

↵i =
|o(r(ti))� o(r(ti+1))|

1�min{o(r(ti)), o(r(ti+1))}
. (2.10)

This alternative formulation also avoids the need to explicitly compute the attenuation coef-
ficient and thus the gradient of the occupancy function, which requires additional computation
and are often noisy.

5

6

Chapter 3

Winding number and dipole sums

3.1 The winding number
To lay the foundation for our point-based representation, we begin with an introduction on the
winding number for surfaces and point clouds, which we will generalize in 3.2 for our implicit
surface representation.

3.1.1 Winding number for surfaces
We first consider a continuous surface � ⇢ R3. There are many equivalent definitions of the
winding number [8]; we follow Barill et al. [1] and use its definition as a jump harmonic scalar
field. Then, the winding number w : R3 ! R is the scalar field solution to the Laplace boundary
value problem (BVP) with jump Dirichlet and Neumann boundary conditions:

4w(x) = 0 in R3 \ �, (3.1)
w+(x)� w�(x) = 1 on �, (3.2)

@ w+
/@n(x)� @ w�

/@n(x) = 0 on �. (3.3)

Here, n(x) is the normal at point x 2 �, and w±(x) ⌘ lim"!0 w(x± " · n(x)) are the winding
number values on either side of the surface � along the normal direction. Krutitskii [20] pro-
vide a detailed treatment of such BVPs, and in particular prove the following boundary integral
expression for their solution:

w(x) =

Z

�

P(x, y) · 1 d�(y), P(x, y) ⌘ 1

4⇡

hn(y),cxyi
kx� yk2

, (3.4)

where cxy ⌘ y�x/kyxk is the direction from x to y, and P : R3⇥R3 ! R is the free-space Poisson
kernel for the Laplacian partial differential equation (PDE). We make explicit the factor 1 in the
integral of 3.4, corresponding to the jump Dirichlet boundary condition 3.2, for reasons we will
explain in 3.2.

When the surface � is the watertight boundary of one or more three-dimensional objects,
then the winding number equals their binary indicator function—w(x) = 1 for points x at the
objects’ interior, w(x) = 0 otherwise.

7

3.1.2 Winding number for point clouds
We now consider an oriented point cloud P ⌘ {(pm, nm, Am)}Mm=1, where for each m we assume
that:

1. the point pm is a sample from an underlying surface �;
2. the vector nm is the normal of � at pm; and
3. the scalar Am is the geodesic Voronoi area on � of pm, i.e., the area of the subset of �

where points are closer (in the geodesic distance sense) to pm than any other point in the
point cloud.

In practice, if only the points pm are available, we can estimate the normals nm and area weights
Am using standard techniques (e.g., by fitting and Voronoi-tessellating a plane to each point’s
k-nearest neighbors [11, 31]).

As Barill et al. [1] explain, the boundary integral representation 3.4 directly suggests the
following generalization of the winding number for point clouds:

wpc(x) ⌘
MX

m=1

Am P(x, pm) · 1 =
MX

m=1

Am

4⇡

hnm, dxpmi
kx� pmk2

· 1. (3.5)

Barill et al. [1] show that wpc is a non-binary scalar field that approaches 1/2 at points near
the boundary of the continuous surface � underlying the point cloud P , increases towards its
interior, and decreases towards its exterior. Thus, the 1/2-level set of wpc is an implicit surface
that approximates �; this approximation becomes exact as point density converges to infinity,
and degrades gracefully as the number M of points decreases.

3.1.3 Barnes-Hut approximation
Evaluating the winding number wpc(x) at a query point x using 3.5 has linear complexity O(M)
with respect to the point cloud size M ; for large point clouds, doing so can be exceedingly
expensive, especially if we need to query wpc at multiple points (as we will later in this section).
Barill et al. [1] show how to compute wpc(x) with logarithmic complexity using the Barnes-Hut
fast summation method [2]. This method first creates a tree data structure (e.g., octree [24])
whose nodes hierarchically subdivide points in the point cloud into clusters, with leaf nodes
corresponding to individual points. Each tree node t has a centroidal location, area-weighted
normal, and radius

p̃t ⌘
P

m2L(t) AmpmP
m2L(t) Am

, ñt ⌘
X

m2L(t)

Amnm · 1, r̃t ⌘ max
m2L(t)

kpm � p̃tk. (3.6)

where L(t) is the set of leaf (i.e., single-point) nodes that are successors of t in the tree hierarchy.
We purposefully include an additional factor of 1 in the are-weighted normal computation, for
reasons we will explain in 3.2.3.

Then, for each query point x, the Barnes-Hut methods performs a depth-first tree traversal; at
each node t, if x is sufficiently far from its centroid (i.e., kx� p̃tk > �r̃t), the node’s successors

8

are not visited and the sum of contributions to wpc(x) from all leaves in L(t) is approximated as:

X

m2L(t)

Am P(x, pm) · 1 ⇡ eP(x, p̃t) ⌘
1

4⇡

hñt,
cxp̃ti

kx� p̃tk2
. (3.7)

This approximation expresses the fact that, due to the squared-distance falloff of the Poisson ker-
nel in 3.4, the far-field influence of a cluster of points can be represented by a single point at the
cluster’s centroid. We also note that the area weight is not included in the far-field approximation,
as it is already accounted for in the normal computation in 3.6.

3.1.4 Rendering point clouds with winding numbers
Barill et al. [1] show that efficient winding number queries facilitate several point cloud opera-
tions, e.g., meshing, inside-outside tests, and Boolean composition. Our goal in this paper is to
show that, with appropriate modifications (3.2), these queries facilitate also forward and inverse
rendering of geometry represented as point clouds.

Specifically, we can use the winding number wpc to define an implicit surface �pc

�pc ⌘
�
x 2 R3 : wpc(x) = 1/2

, (3.8)

and, by naturally viewing the winding number as an occupancy function and following Miller
et al. [26, Equation (12)], we can compute a volumetric attenuation coefficient �pc as:

�pc(x,!) ⌘
|! ·rwpc(x)|
1� wpc(x)

(3.9)

Then, for surface rendering, we can perform ray casting and visibility queries on the point cloud,
by intersecting the isosurface �pc using ray marching [10]. Likewise, for volumetric rendering,
we can compute free-flight distribution and transmittance queries through the point cloud, by
accumulating the coefficient �pc along a ray. All these ray operations use only the point cloud
attributes, and do not require meshing or using a proxy (e.g., grid or neural) for the point cloud.
Additionally, though each ray operation requires winding number queries at multiple ray points,
they remain efficient thanks to the Barnes-Hut method. Lastly, backpropagating through the
expressions for �pc, and wpc to update point cloud parameters is straightforward and efficient, as
we discuss in 3.3.

Unfortunately, despite these attractive properties, the winding number wpc—and associated
isosurface �pc and attenuation coefficient �pc—have a few critical shortcomings that make them
unsuitable for direct use in rendering applications. We explain these shortcomings, and how to
overcome them, in the next section.

3.1.5 Relationship to Poisson surface reconstruction
Before we continue, we remark on a relationship between the point cloud winding number wpc

and Poisson surface reconstruction [16, 17]. As Barill et al. [1] explain, both techniques com-
pute, from an oriented point cloud, a scalar field that approximates the true winding number,

9

corresponding to the solution of BVP (3.1, 3.2, 3.3) for the continuous surface underlying the
point cloud. The limit behaviors of the two scalar fields are equivalent. However, whereas the ap-
proximation of 3.5 can be efficiently computed directly from the point cloud, the approximation
by Poisson surface reconstruction requires solving an expensive Poisson integration problem,
making it impractical for forward and (especially) inverse rendering applications. Using wpc al-
lows us to efficiently render an approximation to the implicit surface output by Poisson surface
reconstruction, without the need for a Poisson solver.

3.2 Fast dipole sums
We introduce a generalization of 3.5 that will serve as our point-based representation for both
geometry and radiance in inverse rendering applications. We first derive our generalization, then
explain its advantages.

3.2.1 General Dirichlet conditions
We generalize the BVP (3.1, 3.2, 3.3) to use an arbitrary Dirichlet data function f : � ! R for
the jump Dirichlet boundary condition:

4 u(x) = 0 in R3 \ �, (3.10)
u+(x)� u�(x) = f(x) on �, (3.11)

@ u+/@n(x)� @ u�/@n(x) = 0 on �. (3.12)

We also augment the point cloud P := {(pm, nm, Am, fm)}Mm=1 to include the Dirichlet data as
a per-point attribute, fm ⌘ f(pm). We will use uf to denote the solution to this BVP for specific
Dirichlet data f. Then, we can modify (3.4, 3.5) to express uf and its point-based approximation
as [20]:

uf(x) ⌘
Z

�

P(x, y) · f(y) d�(y), uf
pc(x) ⌘

MX

m=1

Am P(x, pm) · fm . (3.13)

3.2.2 Regularized Poisson kernel
The Poisson kernel P(x, y) is singular as x ! y; this makes the value of uf

pc at locations x near
a point pm in the point cloud numerically unstable, and undefined at pm.

To overcome this issue, we use the method of regularized fundamental solutions developed
in PDE simulation [3, 4, 5] to address similar numerical issues from these singularities. Its
starting point is the definition of the Poisson kernel through the Green’s function (or fundamental
solution) G : R3 ⇥ R3 ! R of the Laplace PDE:

P(x, y) ⌘ n(y) ·rx G(x, y) where G satisfies 4G(x, y) = �(x� y), (3.14)

where � is the Dirac delta distribution in R3. The method of regularized fundamental solutions re-
places � with a nascent delta function, that is, a function �"(x� y) satisfying lim"!0 �"(x� y) =

10

�(x� y). Then, we can define the regularized Green’s function G" and Poisson kernel P" exactly
analogously to 3.14:

P"(x, y) ⌘ n(y) ·rx G"(x, y) where G" satisfies 4G"(x, y) = �"(x� y), (3.15)

where it follows that lim"!0 G" = G and lim"!0 P" = P. A common nascent delta function
is the Gaussian function �"(x� y) ⌘ 1/"

p
2⇡ · exp

�
�kx�yk2/2"2

�
. The corresponding regularized

Poisson kernel equals [3]:

P"(x, y) ⌘ P(x, y) · S
✓
kx� yk

"

◆
, where S(t) ⌘ erf(t)� 2p

⇡
· t · exp

�
�t

2
�
. (3.16)

The parameter " provides control between regularization (restricting how fast P" increases as it
approaches singularity) and bias (controlling the difference between P" and P).

3.2.3 Regularized dipole sum
As shown in 3.5 and 3.13, the point-cloud winding number is the solution to the BVP for con-
stant unit data, i.e., wpc(x) = u1

pc(x). However, as explained above, naively using the Poisson
kernel for the dipole sum in 3.17 leads to numerical instability during both optimization and
mesh extraction, as the kernel is singular near the surface. The regularized dipole sum in 3.17
overcomes this issue by using the regularized Poisson kernel, which is always finite and provides
a stable approximation to the true dipole sum. Moreover, in practice, using constant unit data
for the dipole sum is also not always ideal, as it is not robust to noisy point clouds and gaps and
holes in the point cloud.

Therefore, we instead use the regularized dipole sum with non-unit Dirichlet data,

uf
pc,"(x) ⌘

MX

m=1

Am P"(x, pm) · fm, (3.17)

where " is the regularization strength and fm is the per-point Dirichlet data, both of which are
learnable parameters. This allows us to accurately represent the underlying geometry of the point
cloud, while also providing a stable and robust representation for rendering applications.

We note that although this dipole sum is written as a sum over all points in the point cloud,
introducing the regularization term and non-unit Dirichlet data does not prevent us from using the
Barnes-Hut method to efficiently compute the dipole sum with logarithmic complexity. Indeed,
the regularized dipole sum can be computed using the same tree data structure but with a modified
area-weighted normal that also takes into account the non-unit Dirichlet data:

ñt ⌘
X

m2L(t)

Amnm · fm (3.18)

The contributions from the leaf nodes in the far-field approximation are approximated as:

X

m2L(t)

Am P"(x, pm) · fm ⇡ eP"(x, p̃t) ⌘
1

4⇡

hñt,
cxp̃ti

kx� p̃tk2
S

✓
kx� p̃tk

"

◆
. (3.19)

11

Again, both the area weights and the Dirichlet data are already accounted for when computing
the area-weighted normal in 3.18, and are not included in the far-field approximation in 3.19.
Crucially, this is not the same as separately aggregating area weights and Dirichlet data for the
node; instead, this correctly computes the summed contribution from the leaf nodes under the
approximation that they are concentrated at the centroid of the node.

3.2.4 Rendering with regularized dipole sums
Finally, we introduce two modifications that makes the regularized dipole sum suitable for ren-
dering applications.

First, although for watertight surfaces, the winding number is a binary indicator function, in
practice, when discretized on a potentially noisy point cloud, the winding number can easily take
on values greater than 1 or less than 0. To ensure that the occupancy function derived from the
winding number is well-defined, we apply a sigmoid function to the regularized dipole sum:

o(x) ⌘ �s

✓
uf
pc,"(x)�

1

2

◆
, �s(x) ⌘

1

1 + exp(�sx)
, (3.20)

where �s is the logistic sigmoid with an additional scale parameter s, which maps the regularized
dipole sum to the range [0, 1].

The point cloud winding number does not guarantee a sharp transition between the inside
and outside of the surface, which is crucial for representing sharp geometric features. The scale
parameter of the sigmoid function allows us to control the sharpness of the transition without
affecting the geometry of the underlying implicit surface, as the 1/2-level set remains unchanged.

Second, in addition to per-point Dirichlet data used to represent geometry, we can similarly
store per-point neural features to also model the appearance of the scene. However, unlike for
geometry, we do not want sharp discontinuity in the appearance of the scene near the surface.
To address this, we use a modified version of the Poisson kernel to interpolate d-dimensional
per-point neural features hm 2 Rd at query points x:

h(x) ⌘
MX

m=1

Am Pmod(x, pm) · hm, Pmod(x, y) ⌘ 1

4⇡kx� yk2
, (3.21)

We omit the regularized version of the modified kernel and the corresponding Barnes-Hut ap-
proximation for brevity, as they are analogous to the original Poisson kernel. The modified
kernel ensures that the neural features are smoothly interpolated across the scene without sharp
discontinuities.

With interpolated neural features, we follow Wang et al. [33] and use a neural network to
predict the radiance at a query point x with viewing direction ! and neural features h(x):

L(x,!) ⌘ N(x,!, h(x)), (3.22)

In particular, we also follow Verbin et al. [32] and use spherical harmonics to encode the
viewing direction instead of the positional encoding original proposed by Mildenhall et al. [25].

12

3.3 Logarithmic complexity backpropagation

In this section, we show how we can utilize the Barnes-Hut approximation to efficiently back-
propagate gradients through the octree data structure, and how this allows us to efficiently opti-
mize the point cloud parameters. For simplicity, we focus on deriving the gradient computation
for the per-point Dirichlet data, but the same principles apply to the per-point neural features.

3.3.1 Gradient accumulation

Denoting the rendered pixels as bCi and ground truth pixels as Ci, we can define the loss function
as the mean absolute error between the rendered and ground truth pixels:

loss =
1

N

NX

i=1

��� bCi � Ci

���
1
. (3.23)

Since we use the Barnes-Hut approximation during foward rendering, the loss can be viewed
as a function of both the per-point parameters of the point cloud and per-node parameters of the
octree structure.

Assuming we have a point cloud of n points and make m winding number queries during
rendering, naively using autograd to compute the gradients of the loss with respect to all of the
parameters would require O(n ·m) time at best: for each single query, backpropagation requires
computing the gradient at all octree nodes that are visited during forward rendering. This is iden-
tical to what happens during forward rendering and only takes O(log n) time. However, since
the per-node parameters are essentially functions of the per-point parameters of its leaves, this
means that for each node t we visit, we would also need to visit all of its leaves L(t) and accu-
mulate gradients at its leaves. This results in asympotically slower backpropagation compared to
forward rendering.

To address this, we introduce a two-stage backpropagation scheme:

1. In the first stage, we detach the per-node parameters from the per-point parameters and
compute the gradients of the loss with respect to only the per-node parameters. For m
winding number queries during rendering, this only requires O(m log n) time, identical to
forward rendering.

2. In the second stage, given the gradients of the per-node parameters, we can use the chain
rule to compute the gradient of the per-point parameters. Since each point can only be the
leaf of O(log n) many nodes, in the worst case, this step still only requires O(n log n) time.
Importantly, this is only a one-time cost for each iteration of training, and does not need to
be done for each individual query.

In summary, this two stage backpropagation scheme allows us to run backpropagation in
O((n + m) log n) time, compared to the naive O(n · m) time. In practice, n and m can be on
the order of thousands and millions, respectively, making this optimization crucial for efficient
training.

13

3.3.2 Gradient computation for nodes
Next, we elaborate on how the gradient of the loss with respect to the per-node parameters can
be computed efficiently, which is essential to the first stage of our backpropagation scheme. For
each point m, we denote its Dirichlet data as fm and the gradient of the per-point parameters as
r fm.

For each node t, we note that the per-node Dirichlet data is not explicitly stored but as part of
the area-weighted normal ñt as shown in 3.18. In other words, instead of computing the gradient
of the per-node Dirichlet data, we need to instead compute the gradient of area-weighted normal,
which we denote as rñt.

We consider a single node t and all queries Q(t) that visit this node during forward rendering.
For each query, we denote the corresponding regularized dipole sum as uf

pc,"(x) and the gradient
of the regularized dipole sum as r uf

pc,"(x). We can then compute the gradient of the area-
weighted normal as:

rñt =
X

x2Q(t)

r uf
pc,"(x) ·

1

4⇡

cxp̃t
kx� p̃tk2

S

✓
kx� p̃tk

"

◆
. (3.24)

In practice, we loop over all queries and traverse the octree to accumulate the gradients of
the area-weighted normal at each node. This allows us to compute the gradient of the loss with
respect to the per-node parameters in O(m log n) time.

3.3.3 Propogating gradient to points
Then, the second stage of backpropagation requires propogating gradients stored on the nodes of
the octree down to its leaves, i.e., the individual points of the point cloud. During the construction
of the octree structure, we computed the area-weighted normal for each node as shown in 3.18.
Given the gradient of the area-weighted normal rñt, we can compute the gradient of the per-
point Dirichlet data as:

r fm =
X

t2T (m)

hrñt · Amnmi, (3.25)

where T (m) is the set of nodes that are ancestors of point m in the octree. In practice, we
loop over all nodes of the octree and propogate gradients down to the leaves of each node.

The second stage can be done independently of the first stage, and only needs to be done once
for each iteration of training. This allows us to compute the gradient of the loss with respect to
the per-point parameters in an additional O(n log n) time.

3.3.4 Optimization
Finally, we can use the gradients computed in the two stages to optimize the per-point parameters
of the point cloud. We can use any optimization algorithm, such as Adam [19], to update the per-
point parameters.

14

After updating the per-point parameters, we can then recompute the new area-weighted nor-
mal for each node of the octree efficiently in O(n log n) time, according to the same equation as
in 3.18. This summarizes how we can efficiently optimize the learnable parameters of the point
cloud using the Barnes-Hut approximation in a differentiable rendering setting.

15

16

Chapter 4

Experimental evaluation

In this chapter, we discuss our implementation details and present the results of our method on
a variety of tasks, including 3D reconstruction of real-world scenes and multi-bounce rendering
in scenes with known lighting. We compare our method to existing methods and show that our
method consistently outperforms existing methods in both reconstruction quality and efficiency.

4.1 Implementation details
We first elaborate on our implementation details for both neural rendering and point cloud
queries, and how they are integrated during forward rendering and backpropagation.

4.1.1 Neural rendering
We implement our neural rendering pipeline in a simplified version of the NeuS [33] codebase.
In each iteration of training, the forward rendering pipeline consists of several stages:

1. Camera ray generation: We randomly choose a single image from the training dataset
and generate camera rays for randomly selected pixels in the image. A batch size of 4096
rays is used during training.

2. Intersection: We compute near and far planes by intersecting camera rays with the bound-
ing sphere of the point cloud. Then, we intersect camera rays with the scene by densely
querying the winding number at 1024 uniformly sampled points along each ray between
the near and far planes by finding the first 0.5-crossing.

3. Importance sampling: We place 16 sparse samples along the ray between the near plane
and the first crossing point, 32 dense samples near the first crossing point, and 16 sparse
samples between the first crossing point and the far plane.

4. Rendering: We query the winding number and neural features at each sample point from
the point cloud. The winding number is converted into the occupancy (3.20), while the neu-
ral features are passed into a color network to compute the radiance (3.22). The occupancy
along each ray is converted into opacity values (2.10) that are then used to accumulate the
radiance along the ray (2.7). A background network is used to model the scene background

17

outside of the bounding sphere, following Zhang et al. [39].
5. Backpropagation: We compute the loss between the rendered colors and the ground truth

colors using the mean absolute error loss. PyTorch autograd is used to directly compute
the gradients for the neural network parameters. Backpropogation for the point cloud
parameters is more complex and is discussed in the next section.

6. Optimization: We use the Adam optimizer with a learning rate of 3 · 10�3 for the neural
networks and 1 ·10�2 for the neural features and Dirichlet data of the point cloud. We train
the model for 50,000 iterations on a single NVIDIA RTX 4090 GPU.

4.1.2 Point cloud queries

A naive PyTorch implementation of the Barnes-Hut approximation and fast dipole sums for point
cloud queries is inhibitive for training due to the large number of point cloud queries required for
each ray. To address this, we implement the Barnes-Hut approximation and fast dipole sums in
C++ and CUDA and use PyTorch’s extension API to interface with the neural rendering pipeline
in Python.

We implement the Barnes-Hut approximation by building an octree structure in CUDA. The
centroids, weighted normals, radii, and leaves of each node are stored as tensors in GPU memory.
During forward rendering, we use custom CUDA kernels to traverse the octree and compute fast
dipole sums for large numbers of point cloud queries in parallel. The resulting dipole sums are
then passed back to the neural rendering pipeline in Python for further processing. In particular,
these dipole sums are treated as leaf nodes in the PyTorch computation graph and are effectively
detached from the per-point parameters of the point cloud. The gradients of the loss with respect
to the dipole sums are then directly computed using PyTorch autograd. These gradients are then
passed into a custom CUDA kernel to propogate the gradients to the per-point parameters of the
point cloud.

4.1.3 Training Setup

We evaluate our method against Neuralangelo [21] and Colmap [29, 30] on the DTU dataset [13]
and Blended MVS datasets [37]. We train our models on a single NVIDIA RTX4090 GPU. Each
scene takes around 3-4 hours to train to convergence.

For the DTU dataset, we filter the extracted mesh using object masks provided in the DTU
dataset, and evaluate the mesh quality using the Chamfer distance, computed using the official
evaluation script. For the Blended MVS dataset, since ground truth meshes are not provided, we
only present qualitative results.

4.2 3D reconstruction
In this section, we present quantitative and qualitative results of our method in comparison to
Neuralangelo [21] and Colmap [29, 30].

18

4.2.1 DTU

For the DTU dataset, the quantitative reults are summarized in Table 4.1. Due to inaccurate
object masks and ground truth point clouds for scans 63, 83, and 105, we exclude these scans
from the mean Chamfer distance calculation.

Scan Ours Neuralangelo Colmap
24 0.46 0.37 1.00
37 0.65 0.72 1.37
40 0.33 0.35 0.93
55 0.33 0.35 0.43
63 0.95 0.87 1.10
65 0.78 0.54 0.65
69 0.53 0.53 0.57
83 1.23 1.29 1.48
97 0.84 0.97 1.09
105 0.70 0.73 0.83
106 0.46 0.47 0.52
110 0.55 0.74 1.20
114 0.33 0.32 0.35
118 0.37 0.41 0.49
122 0.36 0.43 0.54
Mean† 0.50 0.52 0.76
†Mean calculation excludes scans 63, 83, and 105.

Table 4.1: Chamfer distance evaluations on the DTU dataset.

Our method consistently outperforms Neuralangelo and Colmap in terms of the mean Cham-
fer distance on the DTU dataset, aside from scans 24 and 65, which are challenging for our
method due to the presence of fine details and textureless regions. We will further discuss limi-
tations of our method in section 5.2.

Furthermore, the DTU dataset is challenging for our method due to having no views behind
the objects, leading to large gaps in the point cloud behind the objects and thus making it difficult
to represent a closed surface with the dipole sum. Having learnable Dirichlet data partially
addresses this issue, but to make our method more robust, we also implement a point growing
procedure that iteratively adds points to the point cloud by sampling rays in the scene and adding
points at the first 0.5-crossing. This allows us to fill in the gaps in the point cloud and produce
more accurate reconstructions.

4.2.2 Blended MVS

For the Blended MVS dataset, since there are no ground truth meshes or point clouds available,
we only present qualitative evaluation in Figures 4.1 and 4.2.

19

Figure 4.1: Qualitative results on the Blended MVS dataset. The first column is the input image,
the second column is the Colmap reconstruction, the third column is the Neuralangelo recon-
struction, and fourth column is our reconstruction.

20

Figure 4.2: Qualitative results on the Blended MVS dataset (continued).

In general, our method produces more detailed and accurate reconstructions compared to
Neuralangelo and Colmap with less noise. Notably, our method is able to perform well in cases
where the number of input images is limited, such as in the MAN and DOG scenes due to its
ability to leverage existing geometry information of the scenes via the point cloud. In contrast,
Neuralangelo completely fails to reconstruct those scenes.

4.3 Multi-bounce rendering
In this section, we present results of our method on multi-bounce rendering in scenes with known
lighting. We demonstrate that our method is able to accurately render complex scenes and lever-
age known lighting information through tracing shadow rays. This is an important advantage of
our method over rasterization-based methods, such as 3D Gaussian splatting [18].

4.3.1 Experimental setup
We evaluate our method on the LEGO scene from the synthetic NeRF dataset [25]. We set up
the scene in Blender with two point light sources that randomly vary across views. We use a
fully diffuse Lambertian material for the scene objects and render the scene from 200 views with
known camera poses.

During training, at each sample along the primary ray, we make direct connections to both
light sources and sample shadow rays to to the light sources. The normals and albedos at each
point are predicted from neural features interpolated from the point cloud. Assuming a fully
diffuse Lambertian material, we compute the direct illumination using the Lambertian reflectance
model. Then, we use a separate shallow neural network to model indirect illumination with the

21

light source direction as additional input. These two components are then combined to compute
the final radiance at each sample point.

For comparison, we also implement a baseline method that models both direct and indirect
illumination using a single neural network with the light source direction as additional input
without explicitly sampling shadow rays.

4.3.2 Results

We first present qualitative comparison of the extracted meshes on the LEGO scene in Figure 4.3.
The ability to explicitly model shadow rays allows our method to produce meshes with higher
accuracy in regions with fine details and less noise in flatter regions, compared to the baseline
method.

Figure 4.3: Qualitative comparison of the extracted meshes on the LEGO scene. The first image
shows the mesh reconstructed without shadow rays and the second image show the mesh recon-
structed with shadow rays.

Moreover, although novel view synthesis is not the focus of our work, we also demonstrate
that modeling shadow rays allows us to render novel views of the LEGO scene with high fidelity,
as shown in Figure 4.4. In particular, we note that the shadows on the ground are much more
accurate in the third image, which is rendered with shadow rays, compared to the baseline.

This is an important feature that allows us to easily relight scenes with arbitrary light source
locations and render novel views with high fidelity, which is not possible with rasterization-based
methods. For example, in Figure 4.5, we show that we can swap the light source locations in two
different views of the LEGO scene and render novel views with high fidelity.

22

Figure 4.4: Qualitative comparison of novel view synthesis on the LEGO scene. The first image
is the ground truth, the second image is rendered without shadow rays, and the third image is
rendered with shadow rays.

Figure 4.5: Demonstration of relighting on the LEGO scene. The images in each row are rendered
with the same camera pose but different light source locations, while the images in each column
are rendered with the same light source location but different camera poses.

23

24

Chapter 5

Conclusion

5.1 Contributions

In this section, we summarize the contributions of our work in relation to existing literature.

5.1.1 Efficient 3D Reconstruction

Our work introduces a novel point-based representation for efficient 3D reconstruction based on
the generalized winding number. We derive, from a principled approach, a further generalization
of the winding number that allows for arbitrary learnable boundary conditions, which we call
the “dipole sum”. We use the Barnes-Hut approximation to efficiently compute the dipole sum
in logarithmic time complexity, and we propose a novel two-stage backpropagation algorithm to
compute gradients efficiently.

We show that our method outperforms existing state-of-the-art methods, such as Neuralan-
gelo, in both reconstruction quality and efficiency on a wide range of real-world scenes, and
present qualitative and quantitative results on the DTU and BlendedMVS datasets. Unlike most
existing methods, by leverging known scene information derived from traditional structure from
motion and multi-view stereo pipelines, our method is able to produce high-quality reconstruc-
tions with minimal input data.

5.1.2 Multi-bounce Rendering

We demonstrate that our point-based representation can be used for efficient differentiable multi-
bounce rendering under known lighting conditions, which is not possible for rasterization-based
approaches like 3D Gaussian splatting. This allows us to produce more accurate rendering and
model complex scene geometry. We show that our method outperforms a baseline method that
does not explicitly account for shadow rays in terms of both mesh extraction and novel view
synthesis.

25

5.2 Limitations
Finally, we discuss the limitations of our work and potential directions for future research.

5.2.1 Fine Details
Our method is limited in its ability to reconstruct varying levels of detail in the scene, such as
thin structures and fine textures. This is due to the inherent limitations of point-based represen-
tations, which are unable to capture fine details without a large number of points, making them
computationally expensive to train and evaluate. Future work could potentially explore ways to
incorporate multi-resolution hash grids into the point-based representation to capture fine details
more effectively, or use the point-based representation as a pre-processing step for more complex
representations.

5.2.2 Noisy Point Clouds
While our method is reasonably robust to noisy point clouds due to having learnable boundary
conditions and our point growing procedure, it still inherits the same limitation of dense point
cloud reconstruction pipelines like Colmap. For example, in textureless regions or highly specu-
lar regions, Colmap may fail to produce any points, leading to incomplete reconstructions. This
means that our method may also struggle to accurately reconstruct a smooth surface in these
regions. Future work could potentially explore more robust ways to account for noise and holes
in the point cloud, such as implementing a more robust point growing procedure or allow point
locations to be optimizable during training.

26

Bibliography

[1] Gavin Barill, Neil G Dickson, Ryan Schmidt, David IW Levin, and Alec Jacobson. Fast
winding numbers for soups and clouds. ACM Transactions on Graphics (TOG), 37(4):
1–12, 2018. 3.1.1, 3.1.2, 3.1.2, 3.1.3, 3.1.4, 3.1.5

[2] Josh Barnes and Piet Hut. A hierarchical o (n log n) force-calculation algorithm. nature,
324(6096):446–449, 1986. 3.1.3

[3] J Thomas Beale, Wenjun Ying, and Jason R Wilson. A simple method for computing
singular or nearly singular integrals on closed surfaces. Communications in Computational
Physics, 20(3):733–753, 2016. 3.2.2, 3.2.2

[4] Ricardo Cortez. The method of regularized stokeslets. SIAM Journal on Scientific Com-
puting, 23(4):1204–1225, 2001. 3.2.2

[5] Ricardo Cortez, Lisa Fauci, and Alexei Medovikov. The method of regularized stokeslets
in three dimensions: analysis, validation, and application to helical swimming. Physics of
Fluids, 17(3), 2005. 3.2.2

[6] François Darmon, Bénédicte Bascle, Jean-Clément Devaux, Pascal Monasse, and Mathieu
Aubry. Improving neural implicit surfaces geometry with patch warping. In CVPR, 2022.
1.2

[7] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. Depth-supervised NeRF:
Fewer views and faster training for free. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2022. 1.3

[8] Nicole Feng, Mark Gillespie, and Keenan Crane. Winding numbers on discrete surfaces.
ACM Transactions on Graphics (TOG), 2023. 3.1.1

[9] Qiancheng Fu, Qingshan Xu, Yew-Soon Ong, and Wenbing Tao. Geo-neus: Geometry-
consistent neural implicit surfaces learning for multi-view reconstruction. Advances in
Neural Information Processing Systems (NeurIPS), 2022. 1.2

[10] John C Hart. Sphere tracing: A geometric method for the antialiased ray tracing of implicit
surfaces. The Visual Computer, 12(10):527–545, 1996. 3.1.4

[11] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Sur-
face reconstruction from unorganized points. In Proceedings of the 19th annual conference
on computer graphics and interactive techniques, pages 71–78, 1992. 3.1.2

[12] Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. Robust inside-outside seg-
mentation using generalized winding numbers. ACM Transactions on Graphics (TOG), 32

27

(4):1–12, 2013. 1.3
[13] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola, and Henrik Aanæs. Large

scale multi-view stereopsis evaluation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 406–413, 2014. 4.1.3

[14] James T. Kajiya and Brian P Von Herzen. Ray tracing volume densities. In Proceed-
ings of the 11th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’84, page 165–174, New York, NY, USA, 1984. Association for Comput-
ing Machinery. ISBN 0897911385. doi: 10.1145/800031.808594. URL https:
//doi.org/10.1145/800031.808594. 2.1

[15] Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy J. Mitra. Relu fields: The
little non-linearity that could. Transactions on Graphics (Proceedings of SIGGRAPH), 41
(4):13:1–13:8, 2022. doi: 10.1145/3528233.3530707. 1.2

[16] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM
Transactions on Graphics (ToG), 32(3):1–13, 2013. 3.1.5

[17] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction.
In Proceedings of the fourth Eurographics symposium on Geometry processing, volume 7,
page 0, 2006. 1.3, 3.1.5

[18] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d
gaussian splatting for real-time radiance field rendering. ACM Transactions on
Graphics, 42(4), July 2023. URL https://repo-sam.inria.fr/fungraph/
3d-gaussian-splatting/. 1.2, 4.3

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1412.6980. 3.3.4

[20] Pavel A Krutitskii. The jump problem for the laplace equation. Applied Mathematics
Letters, 14(3):353–358, 2001. 3.1.1, 3.2.1

[21] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Taylor, Mathias Unberath, Ming-Yu
Liu, and Chen-Hsuan Lin. Neuralangelo: High-fidelity neural surface reconstruction. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023. 1.2, 4.1.3,
4.2

[22] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d sur-
face construction algorithm. In Proceedings of the 14th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’87, page 163–169, New York,
NY, USA, 1987. Association for Computing Machinery. ISBN 0897912276. doi:
10.1145/37401.37422. URL https://doi.org/10.1145/37401.37422. 2.2.2

[23] Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualiza-
tion and Computer Graphics, 1(2):99–108, 1995. 2.1.3

[24] Donald Meagher. Geometric modeling using octree encoding. Computer graphics and
image processing, 19(2):129–147, 1982. 3.1.3

28

https://doi.org/10.1145/800031.808594
https://doi.org/10.1145/800031.808594
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/37401.37422

[25] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. In ECCV, 2020. 1.1, 2.2, 2.2.1, 3.2.4, 4.3.1

[26] Bailey Miller, Hanyu Chen, Alice Lai, and Ioannis Gkioulekas. A theory of volumetric
representations for opaque solids. arXiv preprint arXiv:2312.15406, 2023. 2.2.2, 2.2.2,
3.1.4

[27] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graph-
ics primitives with a multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. doi: 10.1145/3528223.3530127. URL https://doi.org/10.
1145/3528223.3530127. 1.1

[28] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. Plenoxels: Radiance fields without neural networks. In CVPR, 2022.
1.2

[29] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 1.1, 4.1.3, 4.2

[30] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pix-
elwise view selection for unstructured multi-view stereo. In European Conference on Com-
puter Vision (ECCV), 2016. 1.1, 4.1.3, 4.2

[31] Jonathan Richard Shewchuk. Triangle: Engineering a 2d quality mesh generator and de-
launay triangulator. In Workshop on applied computational geometry, pages 203–222.
Springer, 1996. 3.1.2

[32] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T. Barron, and Pratul P.
Srinivasan. Ref-NeRF: Structured view-dependent appearance for neural radiance fields.
CVPR, 2022. 3.2.4

[33] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang.
Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction.
arXiv preprint arXiv:2106.10689, 2021. 1.1, 2.2.2, 2.2.2, 3.2.4, 4.1.1

[34] Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt, and
Lingjie Liu. Neus2: Fast learning of neural implicit surfaces for multi-view reconstruction.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
2023. 1.2

[35] Tong Wu, Jiaqi Wang, Xingang Pan, Xudong Xu, Christian Theobalt, Ziwei Liu, and Dahua
Lin. Voxurf: Voxel-based efficient and accurate neural surface reconstruction. In Interna-
tional Conference on Learning Representations (ICLR), 2023. 1.2

[36] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich
Neumann. Point-nerf: Point-based neural radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5438–5448, June
2022. 1.2

[37] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and
Long Quan. Blendedmvs: A large-scale dataset for generalized multi-view stereo networks.

29

https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127

Computer Vision and Pattern Recognition (CVPR), 2020. 4.1.3
[38] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit

surfaces. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021. 1.1,
2.2.2

[39] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and
improving neural radiance fields. arXiv:2010.07492, 2020. 4

30

	1 Related work
	1.1 3D reconstruction
	1.2 Scene representation
	1.3 Point clouds

	2 Volumetric neural rendering
	2.1 Volumetric light transport background
	2.1.1 Radiative transfer equation
	2.1.2 Volume rendering equation
	2.1.3 Discretization

	2.2 Neural rendering
	2.2.1 Neural fields
	2.2.2 Neural surface representations

	3 Winding number and dipole sums
	3.1 The winding number
	3.1.1 Winding number for surfaces
	3.1.2 Winding number for point clouds
	3.1.3 Barnes-Hut approximation
	3.1.4 Rendering point clouds with winding numbers
	3.1.5 Relationship to Poisson surface reconstruction

	3.2 Fast dipole sums
	3.2.1 General Dirichlet conditions
	3.2.2 Regularized Poisson kernel
	3.2.3 Regularized dipole sum
	3.2.4 Rendering with regularized dipole sums

	3.3 Logarithmic complexity backpropagation
	3.3.1 Gradient accumulation
	3.3.2 Gradient computation for nodes
	3.3.3 Propogating gradient to points
	3.3.4 Optimization

	4 Experimental evaluation
	4.1 Implementation details
	4.1.1 Neural rendering
	4.1.2 Point cloud queries
	4.1.3 Training Setup

	4.2 3D reconstruction
	4.2.1 DTU
	4.2.2 Blended MVS

	4.3 Multi-bounce rendering
	4.3.1 Experimental setup
	4.3.2 Results

	5 Conclusion
	5.1 Contributions
	5.1.1 Efficient 3D Reconstruction
	5.1.2 Multi-bounce Rendering

	5.2 Limitations
	5.2.1 Fine Details
	5.2.2 Noisy Point Clouds

	Bibliography

