
Ecient and Scalable Parallel Functional

Programming Through Disentanglement

SamWestrick

CMU-CS-22-141

August 2022

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Umut A. Acar, Chair
Guy E. Blelloch
Jan Homann

Matthew Fluet (RIT)
Alex Aiken (Stanford)

Submitted in partial fulllment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Sam Westrick

This research was sponsored by the National Science Foundation under award numbers CCF-1314590, CCF-
1408940, CCF-1629444, CCF-1901381, CCF-2028921, CCF-2107241, CCF-2115104, and CCF-2119352. The views
and conclusions contained in this document are those of the author and should not be interpreted as representing
the ocial policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other
entity.

Keywords: parallel programming, functional programming, parallel algorithms, automatic
memorymanagement, garbage collection, disentanglement, hierarchical memorymanagement,
race conditions

For my parents

iv

Abstract

Researchers have argued for decades that functional programming simplies
parallel programming, in particular by helping programmers avoid dicult concur-
rency bugs arising from destructive in-place updates. However, parallel functional
programs have historically underperformed in comparison to parallel programs
written in lower-level languages. The diculty is that functional languages have
high demand for memory, and this demand only grows with parallelism, causing
traditional parallel memory management techniques to buckle under the increased
pressure.

In this thesis, we identify a memory property called disentanglement and de-
velop automatic memory management techniques which exploit disentanglement
for improved eciency and scalability. Disentanglement has broad applicability:
(1) it can be guaranteed by construction in functional programs; (2) it is implied
by determinacy-race-freedom, a classic correctness condition; and (3) it allows for
general reads and writes to memory as long as concurrent threads do not acquire
references to each other’s allocated data. Additionally, entanglement (i.e., viola-
tions of disentanglement) can be detected dynamically during program execution
with nearly zero overhead in practice. To exploit disentanglement for improved ef-
ciency, we partition memory into a tree of heaps, mirroring the dynamic nesting
of parallel tasks, which allows for allocations and garbage collections to proceed
independently and in parallel. We develop multiple garbage collection algorithms
in this setting.

There are two signicant implementation eorts presented in this thesis. The
rst is theMPL (“maple”) compiler for Parallel ML, which extends the Standard ML
functional programming language with support for (nested) fork-join parallelism.
InMPL, we implement all of our memory management techniques based on disen-
tanglement. The second is the Parallel ML Benchmark Suite, which provides imple-
mentations of sophisticated parallel algorithms for a variety of problem domains,
ported from state-of-the-art C/C++ benchmark suites. All of these benchmarks
are disentangled, which further evidences the wide applicability of our approach.
In multiple empirical evaluations, we show that MPL outperforms modern imple-
mentations of both functional and imperative languages. Additionally, we show
thatMPL is competitive with low-level, memory-unsafe languages such as C++, in
terms of both space and time. These results demonstrate that, through disentan-
glement, parallel functional programming can be ecient and scalable.

vi

Acknowledgments

In the nal year of my undergraduate education, Umut Acar asked me about
my plans after graduation. My honest answer was: “I don’t know.” In that moment,
I believe he realized that I was in need of a little guidance. Umut soon convinced
me to apply for the Ph.D. program, and later became my advisor. Without a doubt, I
would never have completed a Ph.D. without Umut’s encouragement and support.
Throughout the past six years, Umut and I have developed a rapport which blurs
the lines between work and fun; one minute we’re cracking jokes, the next we’re
lost in the weeds of a complicated proof. I look forward to every meeting, and could
not have asked for a more enjoyable Ph.D. experience. Umut, thank you.

I’d like to thank the members of my thesis committee: Guy Blelloch, Matthew
Fluet, Jan Homann, and Alex Aiken. Guy: thank you for being like a second
advisor to me; you have always been an advocate for my work, and I relish the
opportunity to soak up a bit of new knowledge at each of our meetings. Matthew:
thank you for constantly being available throughout this journey, and for support-
ing not only the theoretical aspects of my work, but also the practical aspects, by
getting your hands dirty helping me maintain a complex open-source project. Your
ability to quickly navigate even the most subtle technical details is inspiring. Jan
and Alex: the time and thought you have put into providing feedback for my thesis
has been invaluable, not to mention your support throughout the thesis process.
Thank you so much.

I have had so many mentors throughout my life that have helped guide me to
where I am today. Thank you Kim Ferrell, Paul Bakeman, Barry Flowe, Amy Bird-
song, Erin Freeman, Rich Serpa, Jake Nielsen, Matt Koon, Dave Tetlow, LeRoy Orie,
Cameron Ralston, Bryan Hooten, Stephen Neely, Lance LaDuke, Craig Knox, and
Doug Brown, for sharing the joy of music with me. Thank you Tom Harley, Carla
Keyes, QuincyWorthington, Emile Harley, Esta Jarrett, and Doug Brown, for show-
ing me the value of community. Thank you Bob Harper, Umut Acar, Guy Blelloch,
Phil Gibbons, Margaret Reid-Miller, Danny Sleator, Anupam Gupta, Mor Harchol-
Balter, Karl Crary, Frank Pfenning, Steve Brookes, and Rob Simmons, for giving me
the technical skills I needed to succeed and showing me how to navigate technical
topics with ease, both in teaching and in life. And thank you Daniel Bartels, for
inspiring me to pursue science in higher education, and for showing me that the
process of science can be endlessly rewarding.

I am fortunate to have so many friends, both old and new, who every day
make life a joy. Dane Orie, Michael Goolsby, Zack Verham, Marc Breidenbaugh,
Lance Brown, Ovander Bosher, Doug Tibbett, Bryn Davis, James Thompson, Jarrell
Raper, Daniel Lehman, and so many more friends from back home; Alek Kirch-
mann, Alan Chang, Christian Kasilag, Felicia Aleri, Greg Campbell, Roy Koganti,
Roberto Jaime, Ian Rosado, DeOnte Means, Austin Cheng, Craig Barretto, Lanya
Tseng, Shannon Lee, Shannon Horgan, Sarah Johnson, Sarah Horton, Elena Feld-
man, Brian Fischer, Xavi Villalta, Dylan Quintana, Won-Seong Kim, Kevin Louie,
Connor Hayes, Nicole Huang, Chris Addiego, and so many more friends from un-

dergrad: thank you all for the countless games, adventures, parties, and memories
that will last a lifetime. A shoutout to Alek Kirchmann in particular, who endured
me as a roommate for too many years. You’re the best, man. Thanks for the Pyrex.

As a former aspiring musician, I had an unusual entry into the world of com-
puter science. When I switched into computer science in my junior undergraduate
year, at rst, I felt that I did not belong. Soon enough, however, working with
other teaching assistants, I found a home. Thank you Naman Bharadwaj, Bill Du,
Isaac Lim, Chris Powell, Will Crichton, Terence An, and all of the other 15-210
TAs: you helped me nd my place. Thank you Shannon Lee, Roy Koganti, and Sam
Eisenhandler for tolerating me in group projects and helping me through that tran-
sition. Thank you Sam Eisenhandler, for helping me bridge the gap between the
two schools; I’ll always remember those all-nighters we pulled to make our way
through 15-411. And thank you to all of the 15-122 and 15-210 students throughout
the years, from whom I’ve learned so much.

During my graduate studies at Carnegie Mellon, I’ve met so many wonderful
people and made so many friends. Thank you Emily Black, Klas Leino, Pedro Pare-
des, Ryan Kavanagh, Aymeric Fromherz, Sydney Gibson, and Goran Zuzic, for all
of the backyard barbeques, drinks, pool parties, hikes, and beach trips. Thank you
Jatin Arora, Rohan Yadav, Stefan Muller, Ram Raghunathan, and Mike Rainey, for
all the hours we’ve spent together at the whiteboard. Thank you Laxman Dhuli-
pala, for sharing your endless enthusiasm about research and life. Thank you to
my oce mates Ellis Hershkowitz, Roie Levin, and of course the honorary Greg
Kehne, for creating and sharing a space lled with ideas and wit. Thank you El-
lis Hershkowitz, Roie Levin, Alex Wang, Anson Kahng, Mark Gillespie, Arjun Teh,
Kevin Pratt, Siva Somayyajula, Jalani Williams, Daniel Anderson, and David Kahn,
for all the games, hot pots, pot lucks, chanko, and barbeques. (David, I promise I
will make you a refrigerator cake one day.) Thank you Arjun and Aria for all of
your climbing tips; one day, I hope to be at least half as good as you two are!

There are so many friends who have made my experience at CMU a joy. I
wish I could name everyone; of course, I cannot, but I will try. Thank you Ju-
lian Shun, Yan Gu, Yihan Sun, Laxman Dhulipala, Charles McGuey, Naama Ben-
David, Daniel Anderson, Magdalen Dobson, Hao Wei, Jatin Arora, Ram Raghu-
nathan, Stefan Muller, Ziv Scully, Ben Berg, and everyone else who has been a part
of ParallelRG, for helping build a research community of shared interest and di-
verse experience. Thank you Carlo Angiuli, Evan Cavallo, Daniel Gratzer, Jon Ster-
ling, Favonia, and Joe Tassarotti, for helping me appreciate the depth and subleties
of PL research. And a big hearty thank you to Stephanie Balzer, Anna Gommer-
stadt, Nika Haghtalab, David Witmer, Noam Brown, David Wajc, Angela Jiang, Nic
Resch, Chris Fallin, Adrien Guatto, Yue Niu, Yue Yao, Yifan Qiao, Larry Wang, Rose
Bohrer, Sol Boucher, Christopher Canel, Priya Donti, Abhiram Kothapalli, Jonathan
Laurent, Klaas Pruiksma, Yong Kiam Tan, Jessie Grosen, Leslie Rice, Bailey Flani-
gan, Paul Gölz, Marina DiMarco, Nirav Atre, Ainesh Bakshi, Pallavi Koppol, Josh
Williams, Giulio Zhou, Vinni Bhatia, Matteo Bonvini, Holly Bossart, James Car-
zon, Meg Ellingwood, Anni Hong, Addison Hu, Victoria Lin, Terrance Liu, Tudor

viii

Manole, Mikaela Meyer, Kayla Scharfstein, Kyle Schindl, Konrad Urban, Galen Vin-
cent, Julia Walchessen, Catherine Wang, Ian Waudby-Smith, Neil Xu, Cindy Wang,
Elaine Fath, and so many more. I appreciate every single one of you, and I hope
that we will stay in touch.

Thank you to all of the folks at Five Points Bakery, for getting to know me
as I rapidly depleted your supply of chocolate croissants. I will never attempt to
calculate howmany dollars I’ve spent on these treats; instead, I will sit happily with
the knowledge that I had the opportunity to support the best bakery in Pittsburgh.
See you tomorrow, probably, for another croissant.

To my family: thank you Linda, Jane, Hector, Ted, Ashley, Nana, Papa, and my
many aunts, uncles, and cousins, for your love and support. I am so grateful that
our family has stayed close over the years. Many of you sawmy thesis defense over
Zoom; thank you for taking time out of your lives to come support me on such a
momentous occasion!

Thank you Maya, for your support, your thoughtfulness, your encouragement,
your laugh, and the smile you put on my face every day. It was a stroke of luck
to nd each other at the height of the Covid pandemic, and I am so glad we did. I
can’t imagine these past two years without you.

Finally, I thank my parents, who instilled in me an endless curiosity—an insa-
tiable desire to learn more. This is a quality which I cherish, and which denes
who I am. From my parents, I learned the value of going further, of asking the next
question, of not being satised until I could pass on my knowledge and expertise
to others. They taught me how to love the process, a skill which I rely on every day.
I dedicate this thesis to my parents, as a small way of saying thank you, for raising
me, and for shaping me into the person I am today. I could not not have done even a
fraction of this work without their support. Mom, Dad: your love means the world
to me. Thank you.

ix

x

Contents

1 Introduction 1

2 Parallel Functional Programming with Parallel ML 7

2.1 Purely Functional Algorithms . 8
2.1.1 Parallel Reduction . 8
2.1.2 Maximum Contiguous Subsequence Sum 8
2.1.3 Sparse Matrix-Vector Multiplication . 9
2.1.4 Tokenization . 10

2.2 Parallel Array Operations . 11
2.2.1 Tabulate . 12
2.2.2 Scan (Parallel Prex Sums) . 12
2.2.3 Filter . 13
2.2.4 Flatten . 15
2.2.5 Discussion: Fusion with Function Composition 16

2.3 Non-deterministic Parallel Algorithms . 17
2.3.1 Parallel BFS . 17
2.3.2 Parallel Deduplication by Concurrent Hashing 19

3 Disentanglement 23

3.1 Language and Graph Semantics . 23
3.1.1 Syntax . 24
3.1.2 Computation Graphs and Actions . 24
3.1.3 Open Computation Graphs . 25
3.1.4 Operational Semantics . 26

3.2 Example: Transposing Points in 2D . 28
3.3 Denition of Disentanglement . 30
3.4 Disentanglement and Race-Freedom . 31

3.4.1 Proof: Race-Freedom Preserves Disentanglement 35
3.5 Disentanglement Beyond Race-Freedom . 41

4 Disentangled Memory Management 45

4.1 Preliminaries: Heaps and Heap Objects . 46
4.2 Heap Hierarchy . 47

4.2.1 Pointer Directions . 47

xi

4.2.2 Guarantees of Disentanglement . 48
4.2.3 Relationship to Computation Graphs . 48

4.3 Subtree Collection . 49
4.3.1 Tracing Phase . 49
4.3.2 Optional Promotion Phase . 50
4.3.3 Example . 50
4.3.4 Correctness . 52
4.3.5 Independence of Subtree Collections . 52

4.4 Scheduling and Local Garbage Collection (LGC) 52
4.5 Concurrent Garbage Collection (CGC) . 54

4.5.1 Primary Heaps and CGC-heaps . 54
4.5.2 CGC Chaining . 55
4.5.3 Pointer Directions, Revisited . 56
4.5.4 CGC Snapshotting and Tracing . 57
4.5.5 CGC Scheduling . 58

4.6 Collection Policy . 58

5 Entanglement Detection 59

5.1 Overview . 60
5.2 Entanglement and Determinacy Races . 60
5.3 Language and Graph Semantics . 62

5.3.1 Parallelism, Task Trees, and Computation Graphs (Dags) 65
5.3.2 Entanglement Detection . 66
5.3.3 Example Revisited . 67

5.4 Soundness and Completeness . 67
5.4.1 Completeness Proof . 69
5.4.2 Soundness Proof . 69

5.5 Entanglement Detection Cost Analysis . 72
5.5.1 Utilizing Heap Chunks to Optimize Space 72

5.6 Entanglement Candidates . 73
5.6.1 Marking and Unmarking Candidates . 73
5.6.2 Cost Analysis of Tracking Candidates 74
5.6.3 Candidate Arrays . 75
5.6.4 Asymptotically Fewer Graph Queries . 75
5.6.5 Candidates in the Detection Semantics 75

6 The MPL Compiler for Parallel ML 79

6.1 Scheduler . 79
6.1.1 Thread and Heap Maintenance . 80
6.1.2 Scheduler Jobs and Synchronization . 83
6.1.3 Implementing the par Function . 85

6.2 Block Allocator . 85
6.3 Heaps and Heap Objects . 87
6.4 Parallel Initialization of Sequence Objects . 89

xii

6.5 Heap Queries . 90
6.5.1 Memory Reclamation for Union-Find Nodes 90
6.5.2 Allocation for Heap Records and Union-Find Nodes 91

6.6 Remembered Sets and Write Barriers . 91
6.7 Garbage Collection . 91

6.7.1 LGC . 92
6.7.2 CGC . 93
6.7.3 Amortization Policy for LGC and CGC 93

6.8 Entanglement Detection Implementation . 95
6.8.1 Vertex Identiers and SP-order maintenance 95
6.8.2 Read and Write Barriers for Detection 95
6.8.3 Memory Management for Detection . 96
6.8.4 Chunk Pinning: Handling the Possibility of Entanglement 97

7 The Parallel ML Benchmark Suite 101

7.1 Graph Algorithms . 101
7.2 Computational Geometry . 102
7.3 Images and Audio . 103
7.4 Text Processing . 104
7.5 Numerical Algorithms . 104
7.6 Other Algorithms . 105

8 Evaluation 107

8.1 Overview . 107
8.2 Methodology and Experimental Setup . 109
8.3 Overheads and Scalability . 110
8.4 Comparison with Multicore OCaml . 115
8.5 Comparison with Java and Go . 117
8.6 Comparison with C++ . 120
8.7 Evaluation of Entanglement Detection . 122

8.7.1 With and Without Entanglement Detection 123
8.7.2 Improvement Due To Entanglement Candidates 124
8.7.3 Entangled Tests . 126

9 Related Work 127

9.1 Parallel Memory Management . 127
9.2 Race Detection . 129
9.3 Parallel Programming Languages . 130

10 Concluding Remarks 133

10.1 Discussion . 133
10.2 Conclusion . 136

Bibliography 137

xiii

xiv

List of Figures

2.1 Sequential left-fold . 8
2.2 Divide-and-conquer parallel reduction in Parallel ML. 9
2.3 Maximum contiguous subsequence sum . 9
2.4 Sparse matrix-vector multiplication . 10
2.5 Tokenization . 11
2.6 Sequential and parallel for-loops. 12
2.7 Parallel array tabulation . 12
2.8 Three phases of scan . 13
2.9 Parallel scan (prex sums) . 14
2.10 Parallel lter . 15
2.11 Parallel atten . 16
2.12 BFS in Parallel ML. This algorithm is non-deterministic. 18
2.13 Alternative implementation of tryVisit for parallel BFS, based on priority up-

dates. The resulting parents computed for each vertex are deterministic. 19
2.14 Parallel deduplication by concurrent hashing . 20

3.1 Syntax . 24
3.2 A series-parallel computation graph is either the empty graph •, a single action

𝛼 , a sequential composition𝑔1⊕𝑔2, or a parallel composition𝑔1⊗𝑔2. The dashed
lines are control dependencies, implicitly pointing down. 25

3.3 Language dynamics (main computation steps). 27
3.4 Language dynamics (additional administrative rules). 28
3.5 The function transpose transposes each element in array 𝑃 of length 𝑛. 29
3.6 Computation graph for transpose on an input array of length 4. 29
3.7 Auxiliary Denitions: expression roots, and graph allocations and writes. 31
3.8 Denition of disentanglement. Variable 𝐴 denotes the set of known allocations. 32
3.9 Denition of determinacy-race-freedom. Variable 𝐹 denotes a “forbidden” set

of locations (that are allocated or updated by a concurrent task). 33
3.10 Strengthening of disentanglementwith the guarantees of simultaneous determinacy-

race-freedom. 34

4.1 Forks and joins. Active tasks are black circles, and suspended tasks are white
circles. Each task has a heap, drawn as a gray rectangle. 47

4.2 A disentangled heap hierarchy. Up, down, and internal pointers (solid) are per-
mitted. Cross-pointers (dotted) are disallowed. 47

xv

4.3 Before and after an example subtree collection of the bottom-most three heaps,
with and without the optional promotion phase. The large rectangles are heaps,
the squares are objects, and the diamonds are root objects. Highlighted groups
A and B are kept live due to down-pointers. The group C is garbage and is
reclaimed. 51

4.4 Example heap assignments for local collections, with two processors (P1 and
P2) and two corresponding active tasks. 54

4.5 Spawning a new CGC-task: processor P1 pushes heapA onto a CGC-chain and
continues with a fresh (primary) heap. 55

4.6 Two cases handling CGC-chains at joins. The rectangles are heaps, and the
ovals are chains containing one or more heaps. Primary heaps are shaded. . . . 56

5.1 Example disentangled program. 61
5.2 Syntax . 62
5.3 Execution with entanglement detection (main computation steps). 63
5.4 Execution with entanglement detection (administrative rules). 64
5.5 Functions fork and join on computation graphs. 65
5.6 Example dag and entanglement checks for the disentangled program in Figure 5.1. 65
5.7 Single-step disentanglement invariant, consisting of memory property for all

immutable locations, and disentanglement property for all program “roots”. . . 68
5.8 A partial dag on the left and its corresponding task tree on the right. Each node

of the tree corresponds to contracted sub-dags, shown delimited by boxes. In
the tree, disentangled pointers may point up, down, or internally to a node. An
example entangled pointer is shown in dotted blue. 76

6.1 Auxiliary functions used by the scheduler. The modules Thread and Heaps are
implemented in the run-time system and linked as foreign functions. 80

6.2 Example threads and heaps. Each thread has a list of associated heaps at various
depths, corresponding to a path of heaps in the heap hierarchy. 81

6.3 Simplied interface of the work-stealing scheduler. 82
6.4 Example usage of sync_vars, as provided byMPL’s scheduler. The call to leftSynchronize

blocks until the corresponding call to rightSynchronize completes. 82
6.5 Implementation of thread synchronization inMPL, using atomic fetch-and-add

operations and switching between rst-class threads. 82
6.6 Simplied presentation of the implementation of par inMPL. 84
6.7 Example of race between local GC and the entanglement check. Thread 𝐴 rst

acquires a pointer to 𝑦. Meanwhile, 𝐵 forwards 𝑦 to 𝑦′ and reclaims the old
memory. Thread 𝐴 then proceeds with the entanglement check on a dangling
pointer. 98

6.8 Example, before and after heaps C and D merge into B. Afterwards, the down-
pointer from B into D has become an internal pointer, and therefore the indi-
cated chunk may be unpinned. 98

8.1 Speedups in comparison to sequential baseline (group 1). 112

xvi

8.2 Speedups in comparison to sequential baseline (group 2). 113
8.3 Two examples of loop-based parallelism using Java Streams, both of which op-

erate on integers 𝑖 in the range 0 ≤ 𝑖 < 𝑁 . The former is a parallel for-loop, the
latter a parallel lter. 118

8.4 Example binary fork-join in Go. The expression pardo(f,g) runs the functions
f and g in parallel using goroutines (Go’s lightweight threads) and channel syn-
chronization. 118

xvii

xviii

List of Tables

8.1 Comparison with sequential baseline: times, max residencies, overheads (OV),
speedups (SU), and space blowups (BU). 111

8.2 MPL vs OCaml: Times (seconds) and max residencies (GB) of MPL (columnM)
and OCaml (column O). The ratios O

M are the performance of OCaml relative to
MPL. Larger ratios are better forMPL. 116

8.3 MPL vs Java: Times (seconds) and max residencies (GB) of MPL (column M)
and Java (column J). The ratios J

M are the performance of Java relative to MPL.
Larger ratios are better forMPL. 118

8.4 MPL vs Go: Times (seconds) and max residencies (GB) of MPL (columnM) and
Go (columnG). The ratios G

M are the performance of Go relative toMPL. Larger
ratios are better forMPL. 119

8.5 MPL vs C++: Times (seconds) and max residencies (GB) of MPL (column M)
and C++ (column C). The ratios M

C are the performance of MPL relative to C++.
Note: smaller ratios are better forMPL. 121

8.6 Times (seconds), max residencies (GB), and percent dierences of MPL relative
toMPLdd, which has detection disabled. The percentages in parentheses are the
overhead of entanglement detection. The “geomean” is the geometric mean of
the ratiosMPL/MPLdd. 123

8.7 Performance improvement ratio due to tracking candidates, including number
of graph queries performed both with and without candidate tracking. 125

xix

xx

Chapter 1

Introduction

Nearly every computing device available today is a parallel computer, ranging from smart-
phoneswith 10 cores, workstationswith dozens of cores [141], serverswith hundreds of cores [51],
and high-end machines with thousands of cores [125]. Given the mainstream availability of
multicore computers, parallel programming today is increasingly important and relevant. How-
ever, parallel programmers face a number of important challenges, making it dicult to write
software that is simultaneously correct, ecient, and scalable. Many of these challenges stem
from operations on shared memory, where data races can cause potentially disastrous race-
conditions, leading to complex and unpredicable bugs [10–12, 38, 40, 41, 61, 104, 113, 146].

Researchers have argued for decades that functional programming can make parallelism
simpler and safer by helping programmers avoid race conditions [20, 26, 28, 68, 77, 79, 99, 102,
116, 119, 120, 138, 143, 162]. Any program which is “purely functional” (free of side-eects) nat-
urally avoids all races and is deterministic by default. More generally, functional programming
languages and their characteristic strong type systems enable programmers to control memory
eects and isolate any potential bugs introduced by the use of in-place updates. Functional
programming also allows for expressing parallel algorithms elegantly and succinctly in terms
of implicitly-parallel higher-order functions (e.g. map, reduce, lter, scan, etc.) on collections of
data. Many parallel functional languages have been developed going back to the 1980s and 90s,
includingmultiLisp [77], Id [20], andNESL [26, 28], andmore recently several forms of both par-
allel Haskell [79, 90, 99, 102, 119], and parallel ML [68, 76, 81, 82, 116, 120, 138, 143, 144, 153, 162].
Some of these languages only support pure or mutation-free functional programs, but others
such as Parallel ML [18, 76, 153, 154] also allow for side eects.

Although functional programming has many benets for parallelism, an elephant in the
room remains: eciency. After decades of research, parallel functional programming languages
continue to underperform in comparison to their procedural/imperative counterparts. One of
the primary reasons for this is memory: by eschewing in-place updates, functional programs
allocate data at a high rate [16, 17, 21, 56, 57, 73, 74, 102]. Ecient memory management tech-
niques have been developed for sequential functional languages, but this remains an open prob-
lem in the parallel setting. The central problem is that parallelism increases demand for mem-
ory (by increasing allocation rates, as many processors can allocate simultaneously), causing
traditional memory management techniques to buckle under the increased pressure.

In this thesis, we tackle the problem of ecient automatic memory management for parallel

1

functional programs. The crux of our approach is identifying a memory property, called disen-
tanglement, which occurs naturally in parallel functional programs, and which is commonly
found in eectful parallel programs as well. We then design and implement automatic memory
management techniques which take advantage of the disentanglement property for improved
eciency and scalability. Our techniques allow for allocations and garbage collections to pro-
ceed independently and in parallel across a dynamic partitioning of memory into many disjoint
heaps, enabling provably ecient parallel GC [18].

Informally, disentanglement ensures that concurrent threads remain oblivious to each

other’s allocations. More specically, disentanglement restricts access tomemory objects that
are allocated in the “past”, as determined by sequential dependencies. This restriction prevents
entanglement—i.e., cross-pointers—between objects allocated by concurrent threads during
execution. That is, for any two threads 𝑡1 and 𝑡2 which execute concurrently, disentanglement
ensures that 𝑡1 will never acquire a pointer to data allocated by 𝑡2, and vice versa. Individual
threads are therefore able to manage their own memory independently (e.g., collect garbage
and compact), without needing to synchronize with other concurrent threads.

Disentanglement holds for a wide variety of parallel programs, including both functional
programs as well as programs with eects. In particular, purely functional programs (with
no in-place updates) are disentangled by construction. More generally, we prove (Theorem 1)
that disentanglement is implied by a classic correctness condition called determinacy-race-
freedom [63], which allows for in-place updates while still guaranteeing deterministic execu-
tion. Disentanglement therefore allows the programmer to utilize in-place updates in a disci-
plined (i.e., deterministic and race-free) manner.

The fact that disentanglement allows for in-place updates is important for practical e-
ciency. Although functional programming generally eschews in-place updates in favor of im-
mutability, we wish to allow for in-place updates if the programmer deems it protable. Along
these lines, a classic technique for improving performance in a functional setting is to hide
eects behind a pure interface. This oers the best of both worlds: functions which are both ef-
cient and pure (and therefore safe-for-parallelism by default, because the client of the interface
is incapable of observing any side-eects). For example, a sequence library can provide purely
functional data-parallel operations (map, scan, lter, reduce, etc.) and utilize mutable arrays
under-the-hood to improve performance (e.g., for constant-time random access and good data
locality). In this case, because typical implementations of these operations are determinacy-
race-free, this approach is naturally disentangled.

Moving beyond deterministic programming, we observe an interesting phenomenon: par-
allel programmers sometimes intentionally interleave atomic in-place updates and accesses in
sharedmemorywith the goal of improving performance. A couple examples include techniques
such as priority updates [134] and deterministic reservations [32], both of which utilize a “small
amount” of non-determinism to avoid unnecessary synchronization. This non-determinism is
desirable from a performance perspective, and safe if programmed with care. Perhaps surpris-
ingly, we show that disentanglement is permissive enough to express these non-deterministic
parallel programming techniques. Essentially, as long as concurrent threads only operate on
pre-allocated data (i.e., do not expose any fresh allocations), they may communicate freely in a
disentangled manner.

We wish to allow for programmers to utilize in-place updates freely, as long as the program

2

remains disentangled. This immediately raises a question: is it possible to violate disentangle-
ment? And, if so, what are the consequences? Indeed, unrestricted use of in-place updates can
lead to entanglement (i.e., violations of disentanglement). Furthermore, if our memory man-
agement system were to assume disentanglement but not enforce it, then this could result in
incorrect and unpredictable behavior. Specically, if an entangled program were executed, a
garbage collector which assumes disentanglement might incorrectly reclaim an object by miss-
ing a cross-pointer. This could cause the program to crash, or (worse) return an incorrect result.
To avoid this unsafe behavior and preserve memory safety for the programmer, disentangle-
ment must be enforced automatically.

To enforce disentanglement, we present a dynamic approach, where individual memory ac-
cesses are monitored during execution, and if entanglement is detected, then the program is
(safely) terminated. This allows for all disentangled programs to safely run to completion, in-
cluding those that are eectful and/or non-deterministic. Our approach therefore avoids ruling
out disentangled programs. We make these guarantees precise by formulating soundness and
completeness properties (Theorems 2 and 3). Roughly speaking, soundness (a.k.a. “no missed
alarms”) says that if entanglement is not detected, then the execution is disentangled; similarly,
completeness (a.k.a. “no false alarms”) says that if execution is disentangled, then entanglement
is not detected.

Because entanglement detection occurs dynamically and aects runtime performance, it is
essential that it can be made ecient and scalable. Our approach takes inspiration from a long
line of work on dynamic race detection for parallel programs [24, 50, 63, 64, 104, 122, 123, 151,
157]. While race detection remains expensive in practice (with overheads exceeding an order
of magnitude for sequential runs, e.g., [151, 157]), we show that entanglement can be detected
dynamically on-the-y with close to zero overhead in practice. Entanglement detection there-
fore can remain “turned on” without noticeably aecting performance, allowing us to rely upon
detection to ensure disentanglement.

With entanglement detection, we can safely turn our attention towards the implementation
of a memory manager which assumes disentanglement and exploits this property for improved
eciency and scalability. Here, we take advantage of a separation property aorded by disen-
tanglement: memory objects allocated by concurrently executing threads cannot point at each
other. We take advantage of this separation by assigning each thread its own heap, in which the
thread performs all of its allocations. We then organize memory as a (dynamic) tree of heaps
which mirrors the structure of parallelism in the program: the leaves of the tree correspond
to concurrently executing threads, and the internal nodes correspond to (suspended) parent
threads, waiting for their children to complete. The tree dynamically grows and collapses as
the computation proceeds, mirroring the dynamic nesting of parallel tasks, i.e., as new threads
are created at forks and as threads are destroyed at joins. This design allows concurrently exe-
cuting threads to allocate and reclaim memory with no synchronization. Furthermore, it allows
concurrent threads to update and access data allocated by shared ancestors without needing to
synchronize or promote (copy) data; instead, disentanglement makes it possible to delay promo-
tions until opportune moments, such as during garbage collections, or even avoid promotions
entirely, if desired for performance. In particular, we nd that it is generally more ecient to
not promote at all. Avoiding promotions also simplies the design of the entanglement detector,
which is coupled closely with memory management.

3

A signicant component of this thesis is the design and implementation of theMPL (“maple”)
compiler and run-time system for Parallel ML [9, 18, 153]. MPL extends the MLton [106] com-
piler for Standard ML with support for nested fork-join parallelism. In MPL, we implement
all of our proposed memory management techniques, including parallel garbage collection and
entanglement detection. The design of MPL is unique in many ways, especially in its close
coupling between scheduling and memory management, where a work-stealing scheduler is
simultaneously responsible for assigning both threads and heaps to dierent processors.

To evaluate MPL and our techniques, we develop a comprehensive benchmark suite for
Parallel ML by porting C/C++ implementations from state-of-the-art benchmark suites and li-
braries, including PBBS [14, 32, 133], ParlayLib [34], Ligra [131], GBBS [54], and PAM [148].
These benchmarks include sophisticated parallel algorithms from various problem domains,
including graphs, text processing, digital audio processing, image analysis and manipulation,
numerical algorithms, computational geometry, and others. All of these benchmarks are natu-
rally disentangled, which provides further evidence that disentanglement is widely applicable:
in C/C++, the original authors of these benchmarks had no knowledge of disentanglement, nor
any need to ensure it.

In multiple empirical evaluations, utilizingMPL and our benchmark suite, we show that our
techniques are highly ecient and scalable. On 72 processors, in comparison to a fast sequen-
tial baseline, MPL achieves between 14-60x speedup while on average using less space than
the baseline. We also show that MPL outperforms (in terms of both space and time) existing
industrial-strength functional and procedural languages, including multicore OCaml, Java, and
Go, often by a wide margin. Finally, we nd that MPL is competitive with low-level, memory-
unsafe languages such as C++. Specically, including the cost of automatic memory manage-
ment and GC,MPL is on average less than 2x slower than C++ on 72 processors, while having
approximately the same memory footprint.

Overview

The main chapters and contributions of this thesis are as follows:
• Examples of disentangled parallel algorithms written in Parallel ML (Chapter 2), includ-
ing (i) purely functional algorithms, (ii) eectful and race-free algorithms, and (iii) more
general eectful and non-deterministic algorithms. Regardless of their use of eects, all
of these examples are “mostly functional” in the sense of being expressed almost entirely
in terms of functions with pure functional specications.

• A formal theory of disentanglement (Chapter 3), including a denition in terms of a
graph-based semantics and a proof establishing the relationship between determinacy-
race-freedom and disentanglement properties.

• Ecient memorymanagement techniques for disentangled programs (Chapter 4), includ-
ing fully parallel GC algorithms.

• An entanglement detection algorithm (Chapter 5) which ensures disentanglement dynami-
cally during execution, including proofs of soundness (“nomissed alarms”) and complete-
ness (“no false alarms”), and ecient implementation techniques which ensure nearly
zero overhead in practice.

4

• The implementation of the MPL compiler for Parallel ML (Chapter 6). MPL provides a
robust implementation of the full StandardML language extendedwith support for nested
fork-join parallelism. In MPL, we implement all of our automatic memory management
techniques, including both entanglement detection and provably ecient parallel GC.

• The Parallel ML Benchmark Suite (Chapter 7), consisting of over 30 sophisticated parallel
benchmarks ported from state-of-the-art C/C++ benchmark suites and libraries, as well
as an accompanying library of key data structures and algorithms.

• A comprehensive empirical evaluation (Chapter 8), demonstrating that our memoryman-
agement techniques are practical, with low time overhead, good scalability, and lowmem-
ory footprint.

Peer-Reviewed Publications

This thesis contains work that also appeared in the following publications.
• Disentanglement in Nested-Parallel Programs [153], at POPL’20. The contributions of this
paper include the denition of disentanglement and its connection with determinacy-
race-freedom (Chapter 3), disentangledmemorymanagement techniques (Chapter 4, Sec-
tions 4.1-4.4), and the rst version of theMPL implementation (subsumed here by Chap-
ter 6). The paper also presents an empirical evaluation, using benchmarks and compar-
isons which have been incorporated into the Parallel ML Benchmark Suite (Chapter 7)
and our expanded evaluation (Chapter 8).

• Entanglement Detection with Near-Zero Cost [154], at ICFP’22. The contributions of this
paper include our entanglement detection algorithm (Chapter 5), proofs of its soundness,
completeness, and eciency (Sections 5.4 and 5.5), memory management techniques for
entanglement detection (Section 5.6), an ecient implementation in MPL (Section 6.8),
and an empirical evaluation (Section 8.7).

Thesis Statement

Altogether, our results in both theory and practice support the following thesis statement:
Through disentanglement—a common memory property—it is possible to

automatically manage the memory of parallel functional programs e-

ciently and with good scalability.

5

6

Chapter 2

Parallel Functional Programming with

Parallel ML

The setting for this work is a programming language we call Parallel ML, which is based on the
Standard ML (SML) functional programming language. Parallel ML extends SML with nested
fork-join parallelism by providing the programmer with a single construct called par. The ex-
pression par(𝑓 , 𝑔) evaluates 𝑓 () and 𝑔() in parallel and returns their results as a tuple. Through-
out this thesis, all parallelism (in our Parallel ML algorithms and benchmarks) is expressible in
terms of just par alone.

val par: (unit → 𝛼) × (unit → 𝛽) → 𝛼 × 𝛽

In this chapter, we present a number of examples of parallel algorithms written in Paral-
lel ML. These examples include purely functional codes (with no in-place updates), ecient
pure libraries which use eects under the hood for improved performance, as well as “mostly
functional” parallel algorithms that require atomic in-place updates (such as atomic compare-
and-swap operations) in specic situations, but otherwise are written in a functional style. We
use standard functional programming language features, including tuples, algebraic datatypes,
pattern matching, higher-order functions, mutable references and arrays, etc.

Note that all examples in this chapter are disentangled, but we do not discuss disentangle-
ment here, deferring instead to Chapter 3.

Parallel Tuples

The code examples in this chapter use the notation (𝑒1 ‖ 𝑒2), which resembles the normal ML
notation for a binary tuple, written (𝑒1, 𝑒2). That is, (− ‖ −) is the parallel equivalent of a normal
“sequential” tuple. It can be implemented in terms of the primitive par construct, dened as
follows.

(𝑒1 ‖ 𝑒2) , par(fn() ⇒ 𝑒1, fn() ⇒ 𝑒2)

Arrays

When operating on arrays, we write |𝑎 | for the length of the array, 𝑎[𝑖] for reading the 𝑖th

element, and 𝑎[𝑖] := 𝑣 for updating the 𝑖th element with value 𝑣 . In actual Parallel ML code,

7

1 // Sequential loop: fold−left, using "accumulator" variable 𝑎.
2 // Computes 𝑔(· · ·𝑔(𝑎, 𝑓 (𝑖)) · · · , 𝑓 (𝑗 − 1))
3 fun foldl (𝑔 : 𝛽 × 𝛼 → 𝛽) (𝑎 : 𝛽) (𝑖, 𝑗, 𝑓 : int → 𝛼) : 𝛽 =

4 if 𝑖 ≥ 𝑗 then

5 𝑎

6 else

7 foldl 𝑔 (𝑔(𝑎, 𝑓 (𝑖))) (𝑖 + 1, 𝑗, 𝑓)

Figure 2.1: Sequential left-fold

these are written respectively Array.length(𝑎), Array.sub(𝑎, 𝑖), and Array.update(𝑎, 𝑖, 𝑣).

Granularity control

To ensure that the cost of par (i.e., the cost of exposing parallelism) is well-amortized, we will
use manual granularity control in the form of constant thresholds, as is the standard approach
in many parallel languages. Solving the so-called granularity control problem is an on-going
area of active research [2, 7, 121], orthogonal to the issues of disentanglement and memory
management considered in this thesis.

2.1 Purely Functional Algorithms

2.1.1 Parallel Reduction

Many purely functional parallel algorithms are expressible using a single higher-order function
called reduce. The reduction primitive computes the “sum” of a collection of elements in paral-
lel. The “sum” here is relative to an associative (not necessarily commutative) binary function
𝑔 : 𝛼 × 𝛼 → 𝛼 together with a corresponding identity element 𝑧. The reduce function then
takes a triple (𝑖, 𝑗, 𝑓) representing the elements [𝑓 (𝑖), . . . , 𝑓 (𝑗 − 1)], and outputs the sum of
these elements.

An implementation in Parallel ML is shown in Figure 2.2, using a divide-and-conquer al-
gorithm, where the input range is split in two, the two halves are each individually summed
in parallel, and then nally the overall sum is computed. Below a threshold, for granularity
control, the algorithm switches to a sequential fold (Figure 2.1).

2.1.2 Maximum Contiguous Subsequence Sum

The maximum contiguous subsequence sum problem, also known as the maximum subarray
problem, is the problem of nding a contiguous subarraywhich has largest overall sum. A classic
parallel solution is based on divide-and-conquer, where contiguous segments of the input are
summarized by a four tuple (ℓ, 𝑟, 𝑏, 𝑡): the values ℓ and 𝑟 are respectively the maximum prex
and sux; the value 𝑏 is the best solution within the segment, and 𝑡 is the total sum of the
contiguous segment. A simple associative function, combine, can then be used to compute the
summary of a larger segment in terms of the summaries of its two halves. For example, the new

8

1 // parallel reduce, computes the "sum" of [𝑓 (𝑖), 𝑓 (𝑖 + 1), . . . , 𝑓 (𝑗 − 1)]
2 // with respect to associative function 𝑔 with identity element 𝑧
3 fun reduce (𝑔 : 𝛼 × 𝛼 → 𝛼) (𝑧 : 𝛼) (𝑖, 𝑗, 𝑓 : int → 𝛼) : 𝛼 =

4 if 𝑗 − 𝑖 ≤ GRAIN_THRESHOLD then

5 // if smaller than constant threshold, do sequential instead of parallel
6 foldl 𝑔 𝑧 (𝑖, 𝑗, 𝑓)
7 else

8 let

9 val mid = b(𝑖 + 𝑗)/2c
10 val (𝑙, 𝑟) = (reduce 𝑔 𝑧 (𝑖, mid, 𝑓) ‖ reduce 𝑔 𝑧 (mid, 𝑗, 𝑓))
11 in

12 𝑔(𝑙, 𝑟)
13 end

Figure 2.2: Divide-and-conquer parallel reduction in Parallel ML.

1 fun combine((ℓ1, 𝑟1, 𝑏1, 𝑡1), (ℓ2, 𝑟2, 𝑏2, 𝑡2)) =

2 (max(ℓ1, 𝑡1 + ℓ2),
3 max(𝑟2, 𝑟1 + 𝑡2),
4 max(𝑟1 + ℓ2, max(𝑏1, 𝑏2)),
5 𝑡1 + 𝑡2)
6
7 fun singleton 𝑣 = let val 𝑝 = max(𝑣, 0) in (𝑝, 𝑝, 𝑝, 𝑣) end

8
9 fun mcss (𝑎: real array) =

10 let

11 val (_,_,𝑏,_) = reduce combine (0, 0, 0, 0) (0,|𝑎 |,fn 𝑖 ⇒ singleton(𝑎[𝑖]))
12 in

13 𝑏

14 end

Figure 2.3: Maximum contiguous subsequence sum

best solution for the combined summary is max(𝑟1 + ℓ2,max(𝑏1, 𝑏2)), i.e., either one of the best
solutions 𝑏1 or 𝑏2 found so far, or a new best solution 𝑟1 + ℓ2 which crosses the halfway point,
consisting of the best sux on the left combined with the best prex on the right.

In Figure 2.3, we present an implementation of this classic parallel algorithm in Parallel
ML. The function mcss takes as input an array of real numbers, and outputs the maximum sum
amongst all contiguous subsequences. It is written in terms of a single call to reduce, which
“automates” the divide-and-conquer process. In this case, the function singleton is used to
summarize each individual element as a four-tuple (ℓ, 𝑟, 𝑏, 𝑡), which the reduce then combines
in parallel as described above.

2.1.3 Sparse Matrix-Vector Multiplication

The function sparseMxV in Figure 2.4 implements a purely functional sparse matrix-vector mul-
tiplication. It takes a sparse matrix 𝑀 and a dense vector 𝑉 as argument, and returns a dense

9

1 type sparse_row_vector = (int × real) array // (index, value) pairs
2 type sparse_matrix = sparse_row_vector array
3
4 type dense_vector = real array
5
6 fun sparseMxV(𝑀: sparse_matrix, 𝑉 : dense_vector) : dense_vector =

7 let

8 fun 𝑓 (𝑖, 𝑥) = 𝑉 [𝑖] * 𝑥

9 fun rowSum(𝑟: sparse_row_vector) = reduce (op+) 0 (0,|𝑟 |,fn 𝑗 ⇒ 𝑓 (𝑟 [𝑗]))
10 in

11 tabulate(0, |𝑀 |, fn 𝑖 ⇒ rowSum(𝑀 [𝑖]))
12 end

Figure 2.4: Sparse matrix-vector multiplication

vector as result.
In this code, sparse matrices are represented as arrays of sparse vectors. Each sparse vector

is encoded with the type (int × real) array, which is an array of index-value pairs. In par-
ticular, each (𝑖, 𝑥) in a sparse vector indicates that the 𝑖th index of the vector has the value 𝑥 .
Every unmentioned index takes the value 0.

The multiplication itself is implemented here in terms of a tabulate to construct the output
vector. The tabulate function is described in Section 2.2; at a high level, it simply allocates and
initializes an array in parallel by evaluating the function given as argument at each index. For
sparse matrix-vector multiplication, each index of the output is computed as the sum across
one sparse row of the matrix. This summation is succinctly expressed as a reduce operation on
a row 𝑟 , using oating-point addition as the combining function, where where each element
(𝑖, 𝑥) ∈ 𝑟 contributes 𝑉 [𝑖] · 𝑥 towards the sum.

2.1.4 Tokenization

Tokenization is the problem of splitting an input text into tokens, where tokens are separated
by a delimiter. For example, in a CSV (comma-separated-value) le, we can compute the elds
of one row by tokenizing using commas as delimiters. Alternatively, we can compute the lines
of a le by using newline characters as the delimiter.

In Figure 2.5, we implement a function tokens which takes two arguments: a function
isDelim : char→ bool and an input text 𝑡 : char array. The function isDelim is a predicate
which indicates whether or not a character should be considered a delimiter. The output of
tokens is a char array array, where the 𝑖th element of the output is the 𝑖th token. Delimiters
are omitted from the output.

The rst step of the tokens function is to determine where the boundaries between tokens
are. Specically, an index 𝑖 is a boundary if it is either the start or end of a token, dened as
follows. For the purposes of these denitions, we pretend there are delimiters at 𝑡 [−1] and 𝑡 [𝑛]
where 𝑛 = |𝑡 |; in the actual code, we handle these cases explicitly by checking for the cases
𝑖 = 0 and 𝑖 = 𝑛.

• Index 𝑖 is the start of a token if 𝑡 [𝑖 − 1] is a delimiter, and 𝑡 [𝑖] is not a delimiter.

10

1 fun tokens(isDelim: char → bool, 𝑡: char array) : char array array =

2 let

3 val 𝑛 = |𝑡 |
4
5 fun isBoundary(𝑖) =

6 if 𝑖 = 𝑛 then not (isDelim(𝑡 [𝑛 − 1]))
7 else if 𝑖 = 0 then not (isDelim(𝑡 [0]))
8 else

9 let

10 val 𝑑1 = isDelim(𝑡 [𝑖 − 1])
11 val 𝑑2 = isDelim(𝑡 [𝑖])
12 in

13 (𝑑1 andalso not 𝑑2) orelse (𝑑2 andalso not 𝑑1)
14 end

15
16 val 𝐵 = filter (0, 𝑛 + 1, fn 𝑖 ⇒ 𝑖) isBoundary // array of boundary indices
17 val 𝑚 = Array.length(𝐵)
18 val count = 𝑚/2 // note:𝑚 is even
19 in

20 // array of tokens
21 tabulate(0, count, fn 𝑖 ⇒

22 // the 𝑖th token starts at index 𝐵 [2𝑖] and ends at 𝐵 [2𝑖 + 1]
23 tabulate(𝐵 [2𝑖], 𝐵 [2𝑖 + 1], fn 𝑗 ⇒ 𝑡 [𝑗])
24)
25 end

Figure 2.5: Tokenization

• Index 𝑖 is the end of a token if 𝑡 [𝑖 − 1] is not a delimiter, and 𝑡 [𝑖] is a delimiter.
To compute boundary indices, we implement a function isBoundary which tests whether or
not index 𝑖 is a boundary, and then perform a parallel lter (the implementation of which is
described inmore detail in Section 2.2). The lter considers indices 𝑖 ∈ [0, . . . , 𝑛] (note: inclusive
of 𝑛) and outputs an array 𝐵 of all such indices 𝑖 satisfying isBoundary(𝑖).

There will always be an even number of boundary indices: for every start index of a token,
there will also be an end index for the same token. Furthermore, because the output of the lter
is stable, the start and end index of every token will be adjacent in the array of boundaries.
In particular, the elements of the 𝑖th token lie between indices 𝐵 [2𝑖] and 𝐵 [2𝑖 + 1] where 𝐵 is
the array of boundaries. Therefore, to construct the output array of tokens, we can perform
a nested tabulate. (The tabulate function, described in described in Section 2.2, allocates and
initializes an array in parallel by evaluating a function at each index.)

2.2 Parallel Array Operations

In this section we develop data-parallel operations on arrays, including tabulate, scan (parallel
prex sums), lter, and atten. These implementations utilize in-place updates for eciency,
but nevertheless have purely functional specications.

11

fun for(𝑖, 𝑗, 𝑓 : int → unit) =

if 𝑖 ≥ 𝑗 then () else (𝑓 (𝑖); for(𝑖 + 1, 𝑗, 𝑓))

fun parfor(𝑖, 𝑗, 𝑓 : int → unit) =

if 𝑗 − 𝑖 ≤ GRAIN_THRESHOLD then

for(𝑖, 𝑗, 𝑓)
else

let val mid = b(𝑖 + 𝑗)/2c
in (parfor(𝑖, mid, 𝑓) ‖ parfor(mid, 𝑗, 𝑓));
()

end

Figure 2.6: Sequential and parallel for-loops.

fun tabulate(𝑖, 𝑗, 𝑓 : int → 𝛼) : 𝛼 array =

let

val 𝑛 = 𝑗 − 𝑖
val 𝑎 = Array.allocate(𝑛)

in

parfor(0, 𝑛, fn 𝑘 ⇒ 𝑎[𝑘] := 𝑓 (𝑖 + 𝑘));
𝑎

end

Figure 2.7: Parallel array tabulation

2.2.1 Tabulate

We rst implement sequential and parallel for-loops (Figure 2.6), which take arguments (𝑖, 𝑗, 𝑓),
and evaluate the function 𝑓 on each index between 𝑖 and 𝑗 . The expected use of these functions
is to pass an eectful function 𝑓 : int → unit as argument. Note that the parallel for-loop,
parfor, reverts to a sequential loop below the granularity threshold.

Using a parallel for-loop, it is then straightforward to implement the tabulate function,
where tabulate(𝑖, 𝑗, 𝑓) produces the array [𝑓 (𝑖), 𝑓 (𝑖 + 1), . . . , 𝑓 (𝑗 − 1)]. This function simply
allocates and array and then, in parallel for each index, evaluates 𝑓 at that index and writes the
result into the array at the appropriate position, as shown in Figure 2.7.

2.2.2 Scan (Parallel Prex Sums)

We implement a block-based three-phase scan [47], which is illustrated in Figure 2.8. The rst
phase sums within the blocks. The second phase then does a scan on these partial sums. The
results of the second phase are used as “osets” for the third phase, which rereads the input
along with the osets to do a scan within each block, each starting from an oset.

An implementation in Parallel ML in shown in Figure 2.9. The function scan takes as argu-
ment an associative function 𝑔 : 𝛼 × 𝛼 → 𝛼 (such as binary addition, maximum, etc.) together
with an identity 𝑧 for that function. It then takes a triple (lo,hi,𝑓) which represents the data
[𝑓 (lo), . . . , 𝑓 (hi − 1)], and computes prex sums with respect to 𝑔, outputting an array of
length hi-lo+1 where the 𝑖th output element is the prex sum of the rst 𝑖 elements.

12

input

block
sums

block
prefix
sums

output

phase 1

phase 2

phase 3

Figure 2.8: Three phases of scan

This is implemented in terms of previously discussed functions, including parallel for-loops
(parfor), sequential folds (foldl), and array tabulations (tabulate). A constant BLOCK_SIZE is
used for granularity control, where the input is broken up into many blocks, and sums are
computed sequentially within each block, and in parallel across blocks.

2.2.3 Filter

The filter function takes a triple (lo,hi,𝑓) which represents the data [𝑓 (lo), . . . , 𝑓 (hi − 1)],
and an index-based predicate 𝑝 : int → bool which indicates whether or not the element
𝑓 (𝑖) should be kept. The output is an array containing elements at indices which satised the
predicate.

Similar to scan, our filter implementation (Figure 2.10) is block-based, and consists of three
phases. In the rst phase, it begins by counting (in parallel across the blocks) the number of
elements which satisfy the predicate within each block. Next, in a second phase, it computes
prex sums of the block-counts, which will be used as osets for writing blocks in the output.
Finally, in the third phase, the input is read again, and for each block starting at the appropriate
oset, elements which satisfy the predicate are written to the output.

Alternative approaches. There are many ways a filter could be implemented. The advan-
tage of this implementation is that has a low cost in terms of the amount of intermediate writes
to memory: excluding the cost of writing the output to memory, this lter implementation only
performs 𝑂 (𝑁 /𝐵) memory writes where 𝑁 is the number of input elements and 𝐵 is the block
size. In contrast, an alternative implementation might rst map the predicate across the input,
or might do a plus-scan across the entire input to calculate an oset for every input element
individually. These alternatives would require 𝑂 (𝑁) writes to memory, which is signicantly
larger than the 𝑂 (𝑁 /𝐵) writes incurred by the implementation presented in Figure 2.10.

Impure and/or expensive predicate functions. The lter presented in Figure 2.10 calls
the predicate 𝑝 twice for each input element: once in the rst phase, and again in the third
phase. However, if 𝑝 is an impure function (e.g., if it has a side-eect), then it could be unsafe

13

fun sequentialScan (𝑔: 𝛼 × 𝛼 → 𝛼) (𝑧: 𝛼) (lo, hi, 𝑓 : int → 𝛼) : 𝛼 array =

let

val 𝑛 = hi - lo
val 𝑅 = Array.allocate(𝑛 + 1)
fun bump((𝑗, 𝑎), 𝑥) = (𝑅 [𝑗] := 𝑎; (𝑗 + 1, 𝑔(𝑎, 𝑥)))
val (_, total) = foldl bump (0, 𝑧) (lo,hi,𝑓)

in

𝑅 [𝑛] := total;
𝑅

end

fun scan (𝑔: 𝛼 × 𝛼 → 𝛼) (𝑧: 𝛼) (lo, hi, 𝑓 : int → 𝛼) : 𝛼 array =

if hi - lo ≤ BLOCK_SIZE then

// base case: sequential below the block−size threshold
sequentialScan 𝑔 𝑧 (lo,hi,𝑓)

else

let

val 𝑛 = hi - lo
val 𝑚 = d𝑛/BLOCK_SIZEe // number of blocks
// Phase 1: compute block−sums in parallel
val blockSums =

tabulate(0, 𝑚, fn 𝑏 ⇒

let

val start = lo + (𝑏 * BLOCK_SIZE)
val stop = min(start + BLOCK_SIZE, hi)

in

foldl 𝑔 𝑧 (start,stop,𝑓)
end)

// Phase 2: recursively scan across block−sums
val blockPrefixSums = scan 𝑔 𝑧 (0, 𝑚, fn 𝑖 ⇒ blockSums[𝑖])
val 𝑅 = Array.allocate(𝑛 + 1) // output array

in

// Phase 3: pass over blocks again, computing a sequential scan within each
parfor(0, 𝑚, fn 𝑏 ⇒

let

val start = lo + (𝑏 * BLOCK_SIZE)
val stop = min(start + BLOCK_SIZE, hi)
fun bump((𝑗, 𝑎), 𝑥) = (𝑅 [𝑗] := 𝑎; (𝑗 + 1, 𝑔(𝑎, 𝑥)))

in

foldl bump (𝑏 * BLOCK_SIZE, blockPrefixSums[𝑏]) (start,stop,𝑓);
()

end);
𝑅 [𝑛] := blockPrefixSums[𝑚];
𝑅

end

Figure 2.9: Parallel scan (prex sums)

14

fun filter (lo, hi, 𝑓 : int → 𝛼) (𝑝: int → bool) : 𝛼 array =

let

val 𝑛 = hi - lo
val 𝑚 = d𝑛/BLOCK_SIZEe // number of blocks
// Phase 1: count the number of survivors in each block
val counts =

tabulate(0, 𝑚, fn 𝑏 ⇒

let

val start = lo + (𝑏 * BLOCK_SIZE)
val stop = min(start + BLOCK_SIZE, hi)

in

foldl (op+) 0 (start, stop, fn 𝑖 ⇒ if 𝑝 (𝑖) then 1 else 0)
end)

// Phase 2: compute the oset of each block
val offsets = scan (op+) 0 (0, 𝑚, fn 𝑖 ⇒ counts[𝑖])
val 𝑅 = Array.allocate(offsets[𝑚]) // output array

in

// Phase 3: output the survivors of each block, starting at the appropriate oset
parfor(0, 𝑚, fn 𝑏 ⇒

let

val start = lo + (𝑏 * BLOCK_SIZE)
val stop = min(start + BLOCK_SIZE, hi)
fun bump(𝑗, 𝑖) = if 𝑝 (𝑖) then (𝑅 [𝑗] := 𝑓 (𝑖); 𝑗 + 1) else 𝑗

in

foldl bump (offsets[𝑏]) (start, stop, fn 𝑖 ⇒ 𝑖)
end);

𝑅

end

Figure 2.10: Parallel lter

to call 𝑝 more than once per element. Alternatively, if 𝑝 is an expensive function, it could be
advantageous for performance to only call 𝑝 once per element.

In either case, an alternative ltering procedure can be usedwhich ensures that the predicate
is evaluated exactly once per element. The idea is, in the rst phase, instead of computing the
counts for each block, instead, we perform a full sequential lter on each block, producing
an intermediate state of type 𝛼 array array, where the elements in the 𝑖th array contain the
survivors of the 𝑖th block lter. This intermediate representation then needs to be “attened”
into an output array of type 𝛼 array. (See the implementation of flatten in Section 2.2.4,
below.) The number of intermediate writes performed by this alternative implementation of
filter is𝑂 (𝑁 /𝐵 + 𝑆) where 𝑁 is the number of input elements, 𝐵 is the block size, and 𝑆 is the
size of the output (i.e., the number of elements which satisfy the predicate).

2.2.4 Flatten

The flatten function takes as argument an 𝛼 array array and in parallel concatenates the
contents, producing an output of type 𝛼 array. An implementation of flatten is shown in

15

fun flatten(𝐴: 𝛼 array array) : 𝛼 array =

let

val 𝑛 = |𝐴| // number of arrays being attened
val offsets = scan (op+) 0 (0, 𝑛, fn 𝑖 ⇒ |𝐴[𝑖] |)
val 𝑅 = Array.allocate(offsets[𝑛])

in

parfor(0, 𝑛, fn 𝑖 ⇒

parfor(0, |𝐴[𝑖] |, fn 𝑗 ⇒

𝑅 [offsets[𝑖] + 𝑗] := 𝐴[𝑖] [𝑗]
)
);
𝑅

end

Figure 2.11: Parallel atten

Figure 2.11. This implementation uses a plus-scan to determine the osets for each array, and
then uses nested parallel for-loops to write arrays to the output.

In practice, note however that this implementation of flatten does not necessarily have
good load-balancing, as the arrays given as argument might dier wildly in size. To improve the
eciency of atten, we can use a block-based strategy, where the input is broken into (logical)
blocks of uniform size. In this approach, the start of each logical block can be computed by
binary searching on the osets.

2.2.5 Discussion: Fusion with Function Composition

The above examples operate on data of the form (𝑖, 𝑗, 𝑓): int × int × (int → 𝛼) which can
abstractly be thought of as representing a sequence [𝑓 (𝑖), 𝑓 (𝑖 + 1), . . . , 𝑓 (𝑗 − 1)] with elements
of type 𝛼 . In comparison to representing sequences with arrays directly, this approach is advan-
tageous because it allows us to achieve “fusion” automatically by relying on standard compiler
optimizations [87, 155]. For example, in the mcss algorithm (Figure 2.3), the call to reduce takes
a function (fn 𝑖 ⇒ singleton(𝑎[𝑖])) as argument which fuses the calls to singleton into the
reduce operation, avoiding the need to physically instantiate (in memory) the results of the
singleton calls.

This is an instance of a more general functional programming technique known as delayed
sequences, which eciently supports a wide variety of standard operations (including maps,
reduces, scans, lters, attens, etc.) without generating unnecessary intermediate results [155].
In contrast to many existing techniques for fusion (e.g. [48, 52, 53, 82, 88, 101, 103, 147]), the
delayed sequence technique is notable because it requires no special compiler support, and can
be implemented entirely as a library using standard functional programming features such as
higher-order functions and algebraic datatypes.

16

2.3 Non-deterministic Parallel Algorithms

Parallel programmers sometimes employ atomic operations such as compare-and-swap (and
test-and-set, fetch-and-add, etc.) to improve eciency. These techniques are typically non-
deterministic: by interleaving atomic accesses and updates in shared memory, dierent inter-
leavings in dierent executions (due to dierences in scheduling) may result in dierent out-
comes. Nevetheless, this non-determinism can be desirable from the programmer’s perspective
for improving performance.

2.3.1 Parallel BFS

As an example, consider a parallel breadth-rst-search (BFS) graph traversal which uses atomic
compare-and-swap operations, as shown in Figure 2.12.1 Here, we use an abstract “sequence”
library, provided by a module named Seq, supporting standard parallel operations such as tab-
ulate, map, atten, lter, reduce, etc. (whose implementations are discussed in Section 2.2).

The BFS consists of a series of rounds, where each round visits some of the vertices of the
graph. Vertices are visited by setting their “parent” in the array 𝑃 . In particular, when an edge
(𝑢, 𝑣) is traversed, we set 𝑃 [𝑣] to 𝑢. Initially, the parent of every vertex is set to −1 (meaning:
not yet visited).

The function bfsRound implements one round of BFS. It takes as input a “frontier” 𝐹 which
contains all vertices visited on the previous round. It then calls edgeMap, which is implemented
in terms of standard parallel functions on sequences.2 The call to edgeMap performs many calls
to tryVisit(𝑢, 𝑣) in parallel, one for each edge (𝑢, 𝑣) where 𝑢 ∈ 𝐹 . The function tryVisit(𝑢, 𝑣)
attempts to visit 𝑣 by atomically changing the value of 𝑃 [𝑣] from −1 to 𝑢. If this succeeds,
tryVisit returns true; if it fails (because 𝑣 has already been visited), it returns false. The
output of the edgeMap is the collection of vertices 𝑣 such that tryVisit(𝑢, 𝑣) succeeded. In this
way, the edgeMap simultaneously accomplishes two things: (1) it visits vertices in parallel by
setting their parents, and (2) it returns the set of vertices visited on this round (i.e., the next
frontier).

This code has a determinacy race: on a single round, there might be two edges (𝑢1, 𝑣) and
(𝑢2, 𝑣) that both have the same target vertex 𝑣 . The two corresponding calls tryVisit(𝑢1, 𝑣) and
tryVisit(𝑢2, 𝑣) will race to visit 𝑣 , and only one will succeed, resulting in a non-deterministic
choice between 𝑢1 and 𝑢2 as the parent of 𝑣 . This non-determinism is desirable from a per-
formance perspective, because it enables the algorithm to quickly “deduplicate” edges without
having to rst write all these edges out to an intermediate data structure.

Deterministic parent selection. If desired, the output of this BFS can be made deterministic
by utilizing priority updates [134]. The idea is to compute, for each visited vertex, some deter-
ministic selection of parent from amongst all possible parents. Here, we compute the maximum
vertex identier. To do so, the only function that needs to change is the tryVisit function. The
new function, called priorityTryVisit (Figure 2.13) updates the parent of a vertex in two cases:

1This code is inspired by the Ligra graph framework [131].
2Note that this call to edgeMap uses filter with an impure predicate, which requires a dierent implementa-

tion for filter than the one presented in Figure 2.10. This nuance is discussed in Section 2.2.3.

17

1 structure Seq:
2 sig

3 type 𝛼 t
4 type 𝛼 seq = 𝛼 t
5 val singleton: 𝛼 → 𝛼 seq
6 val map: (𝛼 → 𝛽) → 𝛼 seq → 𝛽 seq
7 val filter: (𝛼 → bool) → 𝛼 seq → 𝛼 seq
8 val flatten: 𝛼 seq seq → 𝛼 seq
9 ...
10 end

11
12 type graph
13 type vertex = int // vertices labeled 0 to N−1
14 val numberOfVertices: graph → int
15 val neighbors: graph × vertex → vertex Seq.t // out−neighbors of a vertex
16
17 // Do 𝑓 (𝑢, 𝑣) in parallel for every out−edge (𝑢, 𝑣) where 𝑢 ∈ 𝑆 .
18 // Returns all vertices 𝑣 where 𝑓 (𝑢, 𝑣) is true.
19 fun edgeMap(𝐺: graph,
20 𝑆: vertex Seq.t,
21 𝑓 : vertex × vertex → bool): vertex Seq.t =

22 Seq.flatten
23 (Seq.map (fn 𝑢 ⇒ Seq.filter (fn 𝑣 ⇒ f(𝑢, 𝑣)) (neighbors(𝐺,𝑢))) 𝑆)
24
25 // breadth−rst−search of 𝐺 starting at vertex 𝑠 , returning the array of parents
26 fun bfs(𝐺: graph, 𝑠: vertex) : vertex array =

27 let

28 val 𝑁 = numberOfVertices(𝐺)
29 val 𝑃: vertex array = tabulate(0, 𝑁, fn _ ⇒ -1) // ‘‘parents’’ array
30
31 // Try to visit 𝑣 by atomically changing 𝑃 [𝑣] from −1 to 𝑢.
32 // Returns true if success, or false if already visited.
33 fun tryVisit(𝑢, 𝑣): bool = Array.compareAndSwap(𝑃, 𝑣,−1, 𝑢)
34
35 fun bfsRound(𝐹: vertex Seq.t): vertex Seq.t = edgeMap(𝐺, 𝐹, tryVisit)
36
37 // main BFS loop, on current frontier 𝐹
38 fun loop(𝐹) = if Seq.length(𝐹) = 0 then () else loop(bfsRound(𝐺,𝐹))
39 in

40 tryVisit(𝑠, 𝑠); // mark 𝑠 as visited, using self as parent
41 loop(Seq.singleton(𝑠)); // BFS starting from 𝑠

42 𝑃 // return parents as result
43 end

Figure 2.12: BFS in Parallel ML. This algorithm is non-deterministic.

18

1 fun priorityTryVisit(𝑢, 𝑣): bool =

2 let

3 val 𝑝 = 𝑃 [𝑣] // read the current parent of 𝑝
4 val isFirstVisit = (𝑝 = −1)
5 in

6 if 𝑢 ≤ 𝑝 then

7 false
8 else if Array.compareAndSwap(𝑃, 𝑣, 𝑝,𝑢) then

9 isFirstVisit // even if the parent is updated many times, make sure
10 // to visit 𝑣 exactly once
11 else

12 priorityTryVisit(𝑢, 𝑣) // If 𝑢 > 𝑝 but the compareAndSwap fails, then some
13 // other call to tryVisit must have succeeded by updating
14 // the parent. Therefore, we need to try again.
15 end

Figure 2.13: Alternative implementation of tryVisit for parallel BFS, based on priority updates.
The resulting parents computed for each vertex are deterministic.

it it hasn’t been visited already, and also if a “larger” parent is found. To ensure that each visited
vertex is included exactly once in the output of the edgeMap, we only return true in the case of
a successful update which replaces an old parent value of −1.

By selecting parents deterministically, the nal output of the BFS (the nal parents array)
will be the same on every execution, regardless of scheduling. However, the algorithm is still
internally non-deterministic, in the sense that individual memory updates may be dierent on
dierent executions. In particular, the total number of calls to tryVisit may dier between
executions, depending on scheduling and the resulting contention between compareAndSwap

operations. (In contrast, with non-deterministic selection of parent as shown in Figure 2.12,
the number of calls to tryVisit is the same on every execution, but the nal result is non-
deterministic.)

2.3.2 Parallel Deduplication by Concurrent Hashing

Figure 2.14 implements a function dedup which deduplicates an input array 𝑋 containing el-
ements of type 𝛼 . The algorithm here is based on concurrent hashing; therefore, in order to
perform deduplication, we need additional inputs which specify how to hash an element of
type 𝛼 , how to test whether two elements are equal, etc. Specically, these additional argu-
ments are a hash function hash: 𝛼 → int, an equality test eq: 𝛼 × 𝛼 → bool, and an “empty
slot” value empty: 𝛼 .3 By passing these additional arguments, the dedup function is able to be
polymorphic over type 𝛼 .

3The advantage of the “empty slot” value (i.e., in comparison to using option types), is that it is typically more
ecient when an appropriate value can be chosen. For example, if deduplicating a set of non-negative integers,
the value −1 can be used to indicate an empty slot. More generally, any value of type 𝛼 which does not appear in
the input is a valid choice for the empty-slot value. If no suitable empty-slot value of type 𝛼 can be chosen, then
the input can be converted to use an option type: each element 𝑥 can be mapped to SOME(𝑥), allowing NONE to
be used as the empty slot.

19

1 // Deduplicate 𝑋 by concurrent hashing. The rst three arguments (hash, eq, and empty) are
2 // used to specify the hashing process:
3 // − hash: a hash function for elements of type 𝛼 .
4 // − eq: an equality test for elements of type 𝛼 .
5 // − empty: an "empty slot" value.
6 fun dedup {hash: 𝛼 → int, eq: 𝛼 × 𝛼 → bool, empty: 𝛼}
7 (𝑋: 𝛼 array) : 𝛼 array =

8 let

9 val capacity = d|𝑋 | · 10/9e // In worst case (no duplicates), ensures at most 90% load
10 val data = tabulate(0, capacity, fn _ ⇒ empty) // allocate hash−set
11
12 fun tryPut(𝑥, 𝑖) =

13 eq(data[𝑖],empty) andalso Array.compareAndSwap(data,𝑖,empty,𝑥)
14
15 fun insertLoop(𝑥, 𝑖) =

16 if tryPut(𝑥, 𝑖) then () // done: successful insert
17 else if eq(data[𝑖],𝑥) then () // done: 𝑥 is a duplicate
18 else insertLoop(𝑥, 𝑖 + 1 mod |data|) // try next slot; wrap around if needed
19
20 fun insert(𝑥) = insertLoop(𝑥, hash(𝑥) mod |data|)
21 in

22 parfor(0, |𝑋 |, fn 𝑖 ⇒ insert(𝑋 [𝑖])); // batch insert
23 // nally, compact to remove empty slots, and return deduplicated elems
24 filter (0, |data|, fn 𝑖 ⇒ data[𝑖]) (fn 𝑖 ⇒ not(eq(data[𝑖], empty)))
25 end

Figure 2.14: Parallel deduplication by concurrent hashing

20

At a high level, the dedup function has three phases. First, it allocates an empty hash-set
of sucient capacity. Next, it inserts individual elements in parallel. Finally, it compacts the
hash-set (using the filter function of Section 2.2.3) to remove any remaining empty slots.

The hashing process used here is a simple open addressing scheme with linear probing.
The hash-set is of type 𝛼 array, where initially, all slots of the hash-set contain the “empty slot”
value. To insert an element𝑥 , the function insertLoop begins at index 𝑖 = hash(𝑥) mod |data|,
and then walks left-to-right (with wrap-around) looking for an empty slot. When an empty slot
is found, we perform a compare-and-swap operation to attempt to atomically ll the slot with
𝑥 . If this succeeds, then the insertion is nished; otherwise, if it fails, then the slot has been
taken by another insertion, and the linear probing process must continue, to nd another slot.
Along the way, for every non-empty slot, we check if 𝑥 is a duplicate, i.e., we check if another
value 𝑥′ has already been inserted which satises eq(𝑥, 𝑥′).

The output of this function is non-deterministic, because the relative order of inserted el-
ements is not enforced. For example, if two distinct elements 𝑥 and 𝑦 both hash to the same
index, then in dierent executions, 𝑥 and 𝑦 may appear in dierent orders in the output. Fur-
thermore, amongst a group of equal elements, this function does not guarantee which one is
“chosen” by the deduplication.

Deterministic output. If desired, the output of this function can bemade deterministic using
the phase-concurrent hashing algorithm of Shun and Blelloch [132]. The high-level idea of their
algorithm is to specify a priority on elements,4 and the algorithm ensures that elements appear
in priority order in the output (essentially by performing a small “insertion sort” during the
hash-insertion loop). Internally, this algorithm is non-deterministic, because the relative timing
of insertions is not enforced. Nevertheless, the output is guaranteed to be deterministic: the
Shun-Blelloch algorithm produces the same elements, in the same order, on every execution.

4Specifying a priority on elements is straightforward: for example, the indices of elements in the input can
be used, with priority given to smaller indices. The output would then match the result of a sequential hashing
algorithm, which inserts input elements one-by-one, from left to right. In other situations, a dierent priority
function might be more ecient, or could be used to ensure specic properties on the output.

21

22

Chapter 3

Disentanglement

In this chapter, we formalize the disentanglement property, which informally is the observation
that concurrent tasks often remain oblivious to each other’s allocations. Our formaliza-
tion is based on a graph-based semantics embedded in a small ML-like core language. We
then prove that disentanglement emerges naturally due to determinism and race-freedom: in
particular, all determinacy-race-free programs are guaranteed to be disentangled (Theorem 1).
We also discuss how disentanglement is more general than race-freedom, allowing for non-
deterministic in-place updates and accesses in a variety of useful circumstances (including, for
example, the parallel BFS example of Section 2.3).

3.1 Language and Graph Semantics

We consider a simple fork-join (nested-parallel) language that fully accounts for all memory op-
erations by explicitly allocating memory for all data, mutable and immutable alike. To dene
disentanglement, during execution, the language constructs an execution trace called a com-
putation graph. A computation graph records the history of a computation in terms of actions
that are performed upon a shared memory and a partial order on these actions, which captures
the structure of parallelism. The generality of computation graphs makes them suitable for
dening both disentanglement and determinacy-race-freedom (Section 3.3).

Typically, a big-step semantics might be used to construct computation graphs. However,
since our computational model permits both parallelism and side-eects, the semantics must
account for ne-grained interleaving of (concurrent) computations. We therefore use a small-
step semantics, which, due to possible interleavings of parallel steps that can aect a shared
memory, is non-deterministic. In order to construct computation graphs in a small-stepmanner,
we dene open computation graphs (Section 3.1.3) which encode the structure of active parallel
tasks, allowing each small step to extend the computation graph “at the right place”.

Note that the small language considered here does not statically or dynamically enforce any
guarantees of disentanglement and/or race-freedom. This is intentional, allowing us to dene
these properties as behaviors of execution that are not necessarily exhibited by all programs.

23

Variables 𝑥, 𝑓

Numbers 𝑛 ∈ N
Memory Locations ℓ

Types 𝜏 ::= nat | 𝜏 × 𝜏 | 𝜏→𝜏 | 𝜏 ref
Storables 𝑠 ::= 𝑛 | fun 𝑓 𝑥 is 𝑒 | 〈ℓ, ℓ〉 | ref ℓ

Expressions 𝑒 ::= ℓ | 𝑠 | 𝑥 | 𝑒 𝑒 | 〈𝑒, 𝑒〉 | fst 𝑒 | snd 𝑒 | ref 𝑒 | ! 𝑒 | 𝑒 := 𝑒 | 〈𝑒 ‖ 𝑒〉
Memory 𝜇 ∈ Locations ⇀ Storables
Actions 𝛼 ::= Aℓ⇐𝑠 | Rℓ⇒𝑠 | Wℓ⇐𝑠

Computation Graphs 𝑔 ::= • | 𝛼 | 𝑔 ⊕ 𝑔 | 𝑔 ⊗ 𝑔
Open Computation Graphs 𝐺 ::= [𝑔] | 𝑔 ⊕ (𝐺 ⊗ 𝐺)

Figure 3.1: Syntax

3.1.1 Syntax

Figure 5.2 shows the syntax of the language.

Types. The types include a base type of natural numbers, as well as products (tuples/pairs),
functions, and mutable references.

Memory Locations and Storables. To account precisely for memory operations, the lan-
guage distinguishes between storables 𝑠 , which are stored in memory, and memory locations ℓ .
Storables consist of natural numbers, named recursive functions, pairs of memory locations,
and mutable references to other memory locations. Locations are the only irreducible form of
the language; that is, all terminating expressions eventually step to a memory location.

Expressions. Expressions consist of memory locations, storables, variables and applications,
pairs and their projections, mutable references with explicit lookup and update, and the parallel
pair 〈𝑒1 ‖ 𝑒2〉, which is used to execute 𝑒1 and 𝑒2 in parallel. For convenience we will use the
syntactic sugar (let 𝑥 = 𝑒1 in 𝑒2) to mean (fun 𝑓 𝑥 is 𝑒2) 𝑒1, where 𝑓 does not appear free in 𝑒2.

Memory. A separate memory 𝜇 is used to map locations to storables. We write dom(𝜇) for
the set of locations mapped by 𝜇, 𝜇 (ℓ) to look up the storable associated with ℓ , and 𝜇 [ℓ ↩→ 𝑠]
to extend 𝜇 with a new mapping (with the implicit requirement that ℓ ∉ dom(𝜇)).

3.1.2 Computation Graphs and Actions

Traditionally, a nested parallel computation is represented by using a directed acyclic graph,
or dag, that consists of vertices and edges. Each vertex represents an executed instruction and
each edge represents the control dependency between two instructions. We augment the dag by
annotating every vertex with the action it performed upon shared memory. Actions, denoted
𝛼 , can be one of the following:

24

g1

g2

g1 g2α

fork

join

Figure 3.2: A series-parallel computation graph is either the empty graph •, a single action 𝛼 , a
sequential composition 𝑔1 ⊕ 𝑔2, or a parallel composition 𝑔1 ⊗ 𝑔2. The dashed lines are control
dependencies, implicitly pointing down.

• Aℓ⇐𝑠 is the allocation of location ℓ , initialized with contents 𝑠 .
• Rℓ⇒𝑠 is a read (lookup) at ℓ which returned 𝑠 .
• Wℓ⇐𝑠 is a write (update) at ℓ which stored 𝑠 .
We call the dag augmented with actions a computation graph. Due to the structure of

nested (fork-join) parallelism, computation graphs have a series-parallel structure, as depicted
in Figure 3.2. In particular, a computation graph can be any one of the following.

• The empty (no-op) graph, denoted •.
• A single action 𝛼 .
• The sequential composition of graphs 𝑔1 and 𝑔2, denoted 𝑔1 ⊕ 𝑔2, where there is an edge
connecting the last vertex of 𝑔1 to the rst of 𝑔2, indicating that all of 𝑔1 happened before
𝑔2.

• The parallel composition of graphs 𝑔1 and 𝑔2, denoted 𝑔1 ⊗ 𝑔2, indicating that neither 𝑔1
nor 𝑔2 happened before the other. In this case there are two special vertices which arise:
a fork and a corresponding join. The fork, which has out-degree two, is connected to each
of the rst vertices of 𝑔1 and 𝑔2. The join has in-degree two, and its incoming neighbors
are the last vertices of 𝑔1 and 𝑔2.

3.1.3 Open Computation Graphs

As described thus far, computation graphs 𝑔 can be understood as representing the history of
“completed” computations. However, while a computation is in progress, we need a way of
constructing its computation graph one step at a time. To do so, we exploit a specic structure
dictated by the nesting of parallel tasks.

At every moment during execution, the tasks of a nested-parallel program can be organized
into a tree structure, called a task tree, where each node represents a task. Each task in the
tree has either exactly two children (its subtasks) or no children. A characteristic feature of
nested parallelism is that, when a task forks two subtasks, the task suspends its own execution

25

until both subtasks complete. Therefore in the task tree, each internal task is suspended, and
the leaves are “active” tasks that may step in parallel. When both children of an internal task
terminate, the corresponding leaves disappear from the tree and the internal task becomes a
leaf, resuming its execution.

Each time a leaf task takes a step, it may perform an action that needs to be recorded in
the computation graph. To locate where in the computation graph this new action should go,
we partition the computation graph into many smaller computation graphs and organize them
in a tree structure mirroring the task tree. We call this tree structure an open computation
graph, denoted 𝐺 . In an open computation graph, each node records the local history of its
corresponding task in the task tree.

There are two possible forms for an open computation graph 𝐺 , corresponding to leaves
and internal tasks, respectively.

𝐺 ::= [𝑔] leaf task
| 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) (suspended) internal task

Leaf tasks have the form [𝑔]: each leaf is a computation that may be extended with a new action
when the corresponding task takes a step (e.g., a step from [𝑔] to [𝑔 ⊕ (Aℓ⇐𝑠)]). The internal
nodes of an open computation graph have the form 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) where 𝑔 is the history of the
corresponding task up until the moment it forked two subtasks, and 𝐺1 and 𝐺2 are the open
computation graphs of its subtasks.

3.1.4 Operational Semantics

The operational semantics, dened in Figures 3.3 and 3.4, is a single-step relation

𝜇 ;𝐺 ; 𝑒 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′.

Each step takes a memory 𝜇, an open computation graph𝐺 , and an expression 𝑒 and produces a
new state consisting of 𝜇′, 𝐺′, and 𝑒′. Steps are non-deterministic due to possible interleavings
of rules ParL and ParR.

Allocation. The allocation rule Alloc is the only way to create new memory locations. It
steps a storable 𝑠 to a fresh location ℓ , extends the memory by mapping ℓ to 𝑠 , and records
Aℓ⇐𝑠 in the computation graph.

Reading fromMemory. There are four rules which read frommemory: function application
(ruleApp), pair projection (rules Fst and Snd), and reference lookup (rule Bang). The semantics
does not distinguish between reads of mutable and immutable data. In rule App, the function
at location ℓ1 is applied to the argument at location ℓ2. This is accomplished by reading from
ℓ1 (to acquire the source code of the function) and substituting both ℓ1 and ℓ2 into the function
body 𝑒𝑏 . Note that rule App performs a read at ℓ1 but not at ℓ2.

Writing to Memory. The rule Upd updates the storable at ℓ1 to refer to ℓ2. This is the only
way the contents of an existing memory location can change during execution.

26

Execution 𝜇 ;𝐺 ; 𝑒 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′

ℓ ∉ dom(𝜇)
𝜇 ; [𝑔] ; 𝑠 ↦−→ 𝜇 [ℓ ↩→𝑠] ; [𝑔 ⊕ (Aℓ⇐𝑠)] ; ℓ

Alloc

𝜇 (ℓ1) = fun 𝑓 𝑥 is 𝑒𝑏
𝜇 ; [𝑔] ; (ℓ1 ℓ2) ↦−→ 𝜇 ; [𝑔 ⊕ (Rℓ1⇒ fun 𝑓 𝑥 is 𝑒𝑏)] ; [ℓ1, ℓ2 / 𝑓 , 𝑥]𝑒𝑏

App

𝜇 (ℓ) = 〈ℓ1, ℓ2〉
𝜇 ; [𝑔] ; (fst ℓ) ↦−→ 𝜇 ; [𝑔 ⊕ (Rℓ⇒〈ℓ1, ℓ2〉)] ; ℓ1

Fst

𝜇 (ℓ) = 〈ℓ1, ℓ2〉
𝜇 ; [𝑔] ; (snd ℓ) ↦−→ 𝜇 ; [𝑔 ⊕ (Rℓ⇒〈ℓ1, ℓ2〉)] ; ℓ2

Snd

𝜇 (ℓ1) = ref ℓ2
𝜇 ; [𝑔] ; (! ℓ1) ↦−→ 𝜇 ; [𝑔 ⊕ (Rℓ1⇒ ref ℓ2)] ; ℓ2

Bang

𝜇 [ℓ1 ↩→ ref _] ; [𝑔] ; (ℓ1 := ℓ2) ↦−→ 𝜇 [ℓ1 ↩→ ref ℓ2] ; [𝑔 ⊕ (Wℓ1⇐ ref ℓ2)] ; ℓ2
Upd

𝜇 ; [𝑔] ; 〈𝑒1 ‖ 𝑒2〉 ↦−→ 𝜇 ; 𝑔 ⊕ ([•] ⊗ [•]) ; 〈𝑒1 ‖ 𝑒2〉
Fork

𝜇 ; 𝑔 ⊕ ([𝑔1] ⊗ [𝑔2]) ; 〈ℓ1 ‖ ℓ2〉 ↦−→ 𝜇 ; [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)] ; 〈ℓ1, ℓ2〉
Join

𝜇 ;𝐺1 ; 𝑒1 ↦−→ 𝜇′ ;𝐺′1 ; 𝑒
′
1

𝜇 ; 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; 〈𝑒1 ‖ 𝑒2〉 ↦−→ 𝜇′ ; 𝑔 ⊕ (𝐺′1 ⊗ 𝐺2) ; 〈𝑒′1 ‖ 𝑒2〉
ParL

𝜇 ;𝐺2 ; 𝑒2 ↦−→ 𝜇′ ;𝐺′2 ; 𝑒
′
2

𝜇 ; 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; 〈𝑒1 ‖ 𝑒2〉 ↦−→ 𝜇′ ; 𝑔 ⊕ (𝐺1 ⊗ 𝐺′2) ; 〈𝑒1 ‖ 𝑒′2〉
ParR

Figure 3.3: Language dynamics (main computation steps).

27

Execution (cont.) 𝜇 ;𝐺 ; 𝑒 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′

𝜇 ;𝐺 ; 𝑒1 ↦−→ 𝜇′ ;𝐺′ ; 𝑒1′

𝜇 ;𝐺 ; (𝑒1 𝑒2) ↦−→ 𝜇′ ;𝐺′ ; (𝑒′1 𝑒2)
AppSL

𝜇 ;𝐺 ; 𝑒2 ↦−→ 𝜇′ ;𝐺′ ; 𝑒2′

𝜇 ;𝐺 ; (ℓ1 𝑒2) ↦−→ 𝜇′ ;𝐺′ ; (ℓ1 𝑒′2)
AppSR

𝜇 ;𝐺 ; 𝑒1 ↦−→ 𝜇′ ;𝐺′ ; 𝑒1′

𝜇 ;𝐺 ; 〈𝑒1, 𝑒2〉 ↦−→ 𝜇′ ;𝐺′ ; 〈𝑒′1, 𝑒2〉
PairSL

𝜇 ;𝐺 ; 𝑒2 ↦−→ 𝜇′ ;𝐺′ ; 𝑒2′

𝜇 ;𝐺 ; 〈ℓ1, 𝑒2〉 ↦−→ 𝜇′ ;𝐺′ ; 〈ℓ1, 𝑒′2〉
PairSR

𝜇 ;𝐺 ; 𝑒 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′

𝜇 ;𝐺 ; (fst 𝑒) ↦−→ 𝜇′ ;𝐺′ ; (fst 𝑒′)
FstS

𝜇 ;𝐺 ; 𝑒 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′

𝜇 ;𝐺 ; (snd 𝑒) ↦−→ 𝜇′ ;𝐺′ ; (snd 𝑒′)
SndS

𝜇 ;𝐺 ; 𝑒 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′

𝜇 ;𝐺 ; (ref 𝑒) ↦−→ 𝜇′ ;𝐺′ ; (ref 𝑒′)
RefS

𝜇 ;𝐺 ; 𝑒 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′

𝜇 ;𝐺 ; (! 𝑒) ↦−→ 𝜇′ ;𝐺′ ; (! 𝑒′)
BangS

𝜇 ;𝐺 ; 𝑒1 ↦−→ 𝜇′ ;𝐺′ ; 𝑒1′

𝜇 ;𝐺 ; (𝑒1 := 𝑒2) ↦−→ 𝜇′ ;𝐺′ ; (𝑒′1 := 𝑒2)
UpdSL

𝜇 ;𝐺 ; 𝑒2 ↦−→ 𝜇′ ;𝐺′ ; 𝑒2′

𝜇 ;𝐺 ; (ℓ1 := 𝑒2) ↦−→ 𝜇′ ;𝐺′ ; (ℓ1 := 𝑒′2)
UpdSR

Figure 3.4: Language dynamics (additional administrative rules).

Parallelism. Parallelism is accomplished through four rules: forking new tasks (rule Fork),
joining completed tasks (rule Join), and subtask stepping (rules ParL and ParR). The Fork rule
records the beginning of two new parallel tasks in the computation graph. When two subtasks
have completed, rule Join assembles their results as a standard pair and records that the tasks
have completed in the computation graph. The ParL and ParR rules non-deterministically
interleave steps of the subtasks, recording their actions in the appropriate subgraph. Note that
the shape of the open computation graph determines whether a parallel pair forks, evaluates
the subtasks, or joins.

3.2 Example: Transposing Points in 2D

Consider a function transpose, shown in Figure 3.5 using anML-like syntax, that takes an array
of points in 2D space and transposes each point in parallel by swapping its x- and y-coordinates.
For this example, we assume that the language has arrays, which are natural extensions of mu-
table references (whereas a ref is a single mutable location, an array is a sequence of many
mutable locations). The function relies on a recursive function tr that takes two indices speci-
fying a segment of the input array. If the segment has size 1 then the function allocates a fresh
point whose coordinates are the derived from the x- and y-coordinates of the sole element in
the segment.1 Otherwise, the function splits the segment in the middle into two segments, and

1A more realistic implementation would control granularity by reverting to a sequential transpose below a
threshold size.

28

type point = int × int

fun transpose
(𝑃: point array)
(𝑛: int) =

let

fun tr 𝑖 𝑗 =

if 𝑗 − 𝑖 = 1 then

let val (𝑥,𝑦) = 𝑃 [𝑖]
in 𝑃 [𝑖] := (𝑦, 𝑥)
end

else

let

val mid = b(𝑖 + 𝑗)/2c
in

(tr 𝑖 mid ‖ tr mid 𝑗)
end

in

tr 0 𝑛

end

Figure 3.5: The function transpose

transposes each element in array 𝑃 of
length 𝑛.

Aa⟸ …
…
Af⟸0
Ag⟸1
Ae⟸⟨f,g⟩

Wa⟸e
…

T1

Ra⟹e
Re⟹⟨f,g⟩

Ah⟸⟨g,f⟩
Wa⟸h

T5 T6 T7

e

0f 1g

h

T2 T3

T8

T10

T9

T4

T0
… … …

a b c d

Figure 3.6: Computation graph for transpose on an
input array of length 4.

29

transposes them recursively in parallel. Because this function performs constant work for each
and every element of the array, the transpose function requires asymptotically linear work in
𝑛. Its span—the longest chain of dependencies—is logarithmic (in 𝑛). The function therefore
exposes signicant parallelism.

Figure 3.6 summarizes the computation graph for an execution of transpose with n = 4

elements. The diagram uses a single vertex to represent entire tasks (sequential regions), and
dashed lines to indicate control dependencies between tasks. All dashed lines implicitly point
down. The gray square boxes represent memory objects and are labeled with their memory
locations, and the solid arrows are pointers in memory. The input array consists of memory
locations {a, b, c, d}, each of which points to a pair of locations which in turn point to integers.
We assume that the root task T0 allocates and initializes the input array and calls transpose,
the root of which is the task T1. Task T1 then forks two subtasks T2 and T3, which in turn
each fork two more (T4-T7). The tasks T4, T5, T6, and T7 perform the steps of reading from
the array, allocating new tuples with x- and y-coordinates swapped, and writing these tuples
back into the array. We show the specic actions of T4 and omit the actions of tasks T5-T7,
which are all similar to T4. As depicted, the pointers show the state of memory before the write
in T4 occurs; after the write, location a should point to h. When the tasks T4, T5, T6, and T7
all complete, they join “back up” with tasks T8, T9, and T10, at which point the computation
is complete.

3.3 Denition of Disentanglement

To dene disentanglement, we look more closely at the actions in the computation graph and
dene two notions—knowledge and use—where we say that actions know locations and use
locations. An action knows a location ℓ if ℓ was allocated by the action itself or by an ancestor
in the computation graph. An action uses a location ℓ if ℓ is being accessed by the action or ℓ
is part of the storable being allocated, written, or read by the action. Specically, the actions
Aℓ⇐ 𝑠 , Wℓ⇐ 𝑠 , and Rℓ⇒ 𝑠 each use exactly the locations ℓ ∪ locs(𝑠). (The function locs(𝑒),
dened in Figure 3.7, is the set of locations mentioned by expression 𝑒 .) We can then dene
disentanglement as the property that every action uses only locations that it knows.

Denition. The formal denition of disentanglement is given in Figure 3.8 as a judgement
𝐴 ` 𝑔 de, which establishes that computation graph 𝑔 is disentangled with respect to known
allocations 𝐴. The judgement 𝐴 ` 𝐺 de similarly establishes disentanglement on open com-
putation graphs 𝐺 . Both judgements are given in terms of two auxiliary functions (dened
in Figure 3.7): A(𝑔) is the set of locations allocated by 𝑔, and locs(𝑒) is the set of locations
mentioned by expression 𝑒 .

The rules establish for every action that all locations used by that action are known. For
reads Rℓ ⇒ 𝑠 and writes Wℓ ⇐ 𝑠 , this is veried by checking that ℓ and locs(𝑠) are among
the known allocations 𝐴. For allocation actions Aℓ⇐ 𝑠 , the rules only need to establish that
locs(𝑠) are among the known allocations, since ℓ is allocated by this action and therefore is
certainly known. The set of known allocations𝐴 accumulates at sequential compositions𝑔1⊕𝑔2,
allowing𝑔2 to know all allocations of𝑔1. Similarly, in open computation graphs𝑔⊕(𝐺1 ⊗ 𝐺2), all

30

Expression Roots (Mentioned Locations)

locs(ℓ) , {ℓ}
locs(𝑛) , ∅

locs(fun 𝑓 𝑥 is 𝑒) , locs(fst 𝑒) , locs(snd 𝑒) , locs(ref 𝑒) , locs(! 𝑒) , locs(𝑒)
locs(𝑒1 𝑒2) , locs(〈𝑒1, 𝑒2〉) , locs(𝑒1 := 𝑒2) , locs(〈𝑒1 ‖ 𝑒2〉) , locs(𝑒1) ∪ locs(𝑒2)

Allocations

A(•) , ∅
A(Aℓ⇐𝑠) , {ℓ}
A(Rℓ⇒𝑠) , ∅
A(Wℓ⇐𝑠) , ∅
A(𝑔1 ⊕ 𝑔2) , A(𝑔1) ∪ A(𝑔2)
A(𝑔1 ⊗ 𝑔2) , A(𝑔1) ∪ A(𝑔2)

A([𝑔]) , A(𝑔)
A(𝑔 ⊕ (𝐺1 ⊗ 𝐺2)) , A(𝑔) ∪ A(𝐺1)

∪ A(𝐺2)

Allocations and Writes

AW(•) , ∅
AW(Aℓ⇐𝑠) , {ℓ}
AW(Rℓ⇒𝑠) , ∅
AW(Wℓ⇐𝑠) , {ℓ}
AW(𝑔1 ⊕ 𝑔2) , AW(𝑔1) ∪ AW(𝑔2)
AW(𝑔1 ⊗ 𝑔2) , AW(𝑔1) ∪ AW(𝑔2)

AW([𝑔]) , AW(𝑔)
AW(𝑔 ⊕ (𝐺1 ⊗ 𝐺2)) , AW(𝑔) ∪ AW(𝐺1)

∪ AW(𝐺2)

Figure 3.7: Auxiliary Denitions: expression roots, and graph allocations and writes.

allocations of 𝑔1 are known to𝐺1 and𝐺2. Crucially, in parallel compositions, the two subgraphs
do not know of each other’s allocations.

Example. Returning to the tranpose example of Section 3.2, we can see that this computation
is disentangled, as each action in Figure 3.6 only uses locations that were allocated by itself or
ancestors.

3.4 Disentanglement and Race-Freedom

In this section, we show that disentanglement is guaranteed when a computation is free of a
certain kind of race condition called a determinacy race. A determinacy race occurs when
two concurrent actions both atomically access the same location, and at least one of these ac-
cesses modies the location [63]. Determinacy races are race conditions on individual memory
locations which emerge due to concurrent interleaving of atomic operations such as compare-
and-swap, test-and-set, etc., as well as atomic loads and stores.2 As the name suggests, the lack

2Determinacy races are distinct from data races. Within the context of a language memory model, a data
race can be dened as two conicting concurrent accesses which are not properly synchronized (e.g. “ordinary”
loads and stores, which the semantics of a language may allow to be reordered), leading to incorrect behavior
due to problems such as miscompilation or lack of atomicity [10, 11, 41, 42]. In contrast, the determinacy races
we consider here are properly synchronized, i.e., well-dened within the language memory model. For example,

31

𝐴 ` 𝑔 de

𝐴 ` • de
locs(𝑠) ⊆ 𝐴

𝐴 ` (Aℓ⇐𝑠) de
ℓ ∈ 𝐴 locs(𝑠) ⊆ 𝐴

𝐴 ` (Rℓ⇒𝑠) de
ℓ ∈ 𝐴 locs(𝑠) ⊆ 𝐴

𝐴 ` (Wℓ⇐𝑠) de
𝐴 ` 𝑔1 de 𝐴] A(𝑔1) ` 𝑔2 de

𝐴 ` 𝑔1 ⊕ 𝑔2 de
𝐴 ` 𝑔1 de 𝐴 ` 𝑔2 de

𝐴 ` 𝑔1 ⊗ 𝑔2 de

𝐴 ` 𝐺 de

𝐴 ` 𝑔 de

𝐴 ` [𝑔] de
𝐴 ` 𝑔 de 𝐴] A(𝑔) ` 𝐺1 de 𝐴] A(𝑔) ` 𝐺2 de

𝐴 ` 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) de

Figure 3.8: Denition of disentanglement. Variable 𝐴 denotes the set of known allocations.

of determinacy races is sucient to guarantee determinism [60, 146].3

Determinacy-race-freedom. A computation with no determinacy races is determinacy-
race-free (DRF). We can determine whether or not a computation is DRF by inspecting its
computation graph. Specically, we need to verify that for every pair of concurrent actions 𝛼1
and 𝛼2, which access the same location, that they are both read actions. A location is accessed
when its contents are either inspected or modied. Specically, each of Aℓ⇐ 𝑠 , Rℓ⇒ 𝑠 , and
Wℓ⇐𝑠 are considered to access location ℓ . The actions which modify a location are writes and
allocations: both ofAℓ⇐𝑠 andWℓ⇐𝑠 modify location ℓ . We treat allocations as modications
because allocations also initialize the location, which in an implementation requires a write to
the location.

With this setup, we can formally dene determinacy-race-freedom on computation graphs
with a judgement 𝐹 ` 𝑔 drf which establishes that computation graph 𝑔 is DRF with respect to
a “forbidden” set of locations 𝐹 . The denition is given in Figure 3.9, together with a corre-
sponding judgement 𝐹 ` 𝐺 drf for open computation graphs 𝐺 . These are dened in terms of
another auxiliary function (dened in Figure 3.7): AW(𝑔) is the set of locations allocated and
written by 𝑔.

To see how the forbidden set 𝐹 is used in the denition, consider the case for parallel com-
position. In order for 𝑔1 ⊗ 𝑔2 to be DRF, we need to verify that every location modied by 𝑔2 is
not accessed by 𝑔1, and vice-versa. We capture this constraint by extending the set of forbidden
locations for 𝑔1 with the allocated and written locations of 𝑔2 (and vice-versa). Then at each
individual action, we only need to verify that the accessed location is not forbidden. Note that

two threads simultaneously attempting to acquire the same lock constitutes a determinacy race. Another example
is two concurrent threads racing to atomically test-and-set a shared ag. In both cases, the program may be
non-deterministic, but its behavior is nevertheless well-dened. The language semantics of Section 3.1 allows for
non-determinism in this manner, as all memory loads and stores are handled atomically. Our language semantics
could easily be extended with other atomic operations, including compare-and-swap, test-and-set, fetch-and-add,
etc.

3Assuming no other sources of non-determinism such as randomness.

32

𝐹 ` 𝑔 drf

𝐹 ` • drf
ℓ ∉ 𝐹

𝐹 ` (Aℓ⇐𝑠) drf
ℓ ∉ 𝐹

𝐹 ` (Wℓ⇐𝑠) drf
ℓ ∉ 𝐹

𝐹 ` (Rℓ⇒𝑠) drf
𝐹 ` 𝑔1 drf 𝐹 ` 𝑔2 drf

𝐹 ` 𝑔1 ⊕ 𝑔2 drf
𝐹 ∪ AW(𝑔2) ` 𝑔1 drf 𝐹 ∪ AW(𝑔1) ` 𝑔2 drf

𝐹 ` 𝑔1 ⊗ 𝑔2 drf

𝐹 ` 𝐺 drf

𝐹 ` 𝑔 drf

𝐹 ` [𝑔] drf
𝐹 ` 𝑔 drf 𝐹 ∪ AW(𝐺2) ` 𝐺1 drf 𝐹 ∪ AW(𝐺1) ` 𝐺2 drf

𝐹 ` 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) drf

Figure 3.9: Denition of determinacy-race-freedom. Variable 𝐹 denotes a “forbidden” set of
locations (that are allocated or updated by a concurrent task).

we do not accumulate forbidden locations in sequential compositions 𝑔1 ⊕ 𝑔2, because in these
cases we know that 𝑔1 and 𝑔2 did not happen concurrently.

Determinacy races can violate disentanglement. Intuitively, races can violate disentan-
glement, because two tasks can communicate by concurrently reading and writing at a shared
memory location. For example, consider the program ‘let 𝑥 = ref 0 in 〈𝑥 := 1 ‖ !𝑥〉’. This pro-
gram allocates a shared location ℓ for the ref, and then spawns two subtasks. In one possible
execution, the left-hand subtask gets to run completely before the right-hand subtask executes.
In this case, the left-hand task allocates a location ℓ′ for the value 1 and then writes a pointer
to ℓ′ at shared location ℓ . Next, the right-hand task executes, reading from ℓ and discovering ℓ′,
which violates disentanglement. In this situation, there was a determinacy race at ℓ .

Although races can violate disentanglement, it is possible to avoid this issue by preallocating
any data that might possibly be shared amongst concurrent tasks. That is, we could rewrite the
example program as ‘let 𝑥 = ref 0 in let 𝑦 = 1 in 〈𝑥 :=𝑦 ‖ !𝑥〉’, which is racy (non-deterministic)
and yet disentangled. For more details about how to utilize determinacy races in disentangled
programs, see Section 3.5.

Determinacy-race-freedompreserves disentanglement. When determinacy races are dis-
allowed, disentanglement is guaranteed, because shared memory locations cannot be used to
communicate pointers to freshly allocated locations. Theorem 1 establishes this result. The
theorem states that if at any moment we pause a program and observe that it has (so far) been
free of determinacy races, then the program also has been disentangled.
Theorem 1 (DRF ⇒ DE). For any ∅ ; [•] ; 𝑒0 ↦−→∗ 𝜇 ;𝐺 ; 𝑒 where locs(𝑒0) = ∅, if ∅ ` 𝐺 drf,
then ∅ ` 𝐺 de.

The full proof this theorem is presented below, in Section 3.4.1. At a high level, the proof
relies on a single-step invariant which (roughly speaking) captures the the following property:
“for every leaf task and for every location ℓ known by that task, if ℓ is not forbidden by DRF,

33

𝐴 ; 𝐹 `𝜇 𝐺 ; 𝑒 drfde

𝐹 ` 𝑔 drf
𝐴 ` 𝑔 de locs(𝑒) ⊆ 𝐴] A(𝑔) ∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹 . locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔)

𝐴 ; 𝐹 `𝜇 [𝑔] ; 𝑒 drfde

𝐹 ` 𝑔 drf 𝐴 ` 𝑔 de
𝐴] A(𝑔) ; 𝐹 ∪ AW(𝐺2) `𝜇 𝐺1 ; 𝑒1 drfde
𝐴] A(𝑔) ; 𝐹 ∪ AW(𝐺1) `𝜇 𝐺2 ; 𝑒2 drfde

𝐹 ;𝐴 `𝜇 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; 〈𝑒1 ‖ 𝑒2〉 drfde

𝐴 ; 𝐹 `𝜇 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; 𝑒 drfde
𝐴 ; 𝐹 `𝜇 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; (fst 𝑒) drfde

...similarly for (snd 𝑒), (ref 𝑒), and (! 𝑒)

¬(𝑒1 loc)
locs(𝑒2) ⊆ 𝐴] A(𝑔) 𝐴 ; 𝐹 `𝜇 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; 𝑒1 drfde

𝐴 ; 𝐹 `𝜇 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; (𝑒1 𝑒2) drfde

ℓ1 ∈ 𝐴] A(𝑔) 𝐴 ; 𝐹 `𝜇 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; 𝑒2 drfde
𝐴 ; 𝐹 `𝜇 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; (ℓ1 𝑒2) drfde

...similarly for 〈𝑒1, 𝑒2〉 and
(𝑒1 := 𝑒2)

Figure 3.10: Strengthening of disentanglement with the guarantees of simultaneous
determinacy-race-freedom.

34

then each ℓ′ ∈ locs(𝜇 (ℓ)) is known by that task.” We present a judgement 𝐴 ; 𝐹 `𝜇 𝐺 ; 𝑒 drfde,
dened in Figure 3.10, which states this property formally. The drfde judgement is also strong
enough to imply both 𝐹 ` 𝐺 drf and 𝐴 ` 𝐺 de. Initially, all of these properties hold of an initial
state (i.e., for 𝜇0 = ∅, 𝐺0 = [•], and 𝑒0). We prove Lemma 6, the single-step result that, given
𝐴 ; 𝐹 `𝜇 𝐺 ; 𝑒 drfde, if a step is taken to 𝜇′,𝐺′, and 𝑒′where 𝐹 ` 𝐺′ drf, then 𝐴 ; 𝐹 `𝜇 ′ 𝐺′ ; 𝑒′ drfde.
The theorem follows by induction on the derivation of the ↦−→∗ judgement.

Examples. All of the functions of Section 2.1 and Section 2.2 are determinacy-race-free and
therefore disentangled.

3.4.1 Proof: Race-Freedom Preserves Disentanglement

Lemma 1. If 𝜇 ;𝐺 ; 𝑒 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′, then either
• 𝐺 = [𝑔] and 𝐺′ = [𝑔′] or
• 𝐺 = [𝑔] and 𝐺′ = 𝑔 ⊕ ([•] ⊗ [•]) or
• 𝐺 = 𝑔 ⊕ ([𝑔1] ⊗ [𝑔2]) and 𝐺′ = [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)] or
• 𝐺 = 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) and 𝐺′ = 𝑔 ⊕ (𝐺′1 ⊗ 𝐺2) or
• 𝐺 = 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) and 𝐺′ = 𝑔 ⊕ (𝐺1 ⊗ 𝐺′2).

Proof. By induction on the derivation of 𝜇 ;𝐺 ; 𝑒 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′. �

Lemma 2. If 𝜇 ;𝐺 ; 𝑒 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′,
thenA(𝐺) ⊆ A(𝐺′) andAW(𝐺) ⊆ AW(𝐺′) and∀ℓ ∈ dom(𝜇) \ (AW(𝐺′) \ AW(𝐺)), 𝜇 (ℓ) = 𝜇′(ℓ).

Proof. By induction on the derivation of 𝜇 ;𝐺 ; 𝑒 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′. �

Lemma 3. If 𝐹 ` 𝐺 drf then 𝐹 ∩ AW(𝐺) = ∅.

Proof. By induction on the derivation of 𝐹 ` 𝐺 drf. �

Lemma 4. If 𝐴 ; 𝐹 `𝜇 𝐺 ; 𝑒 drfde then 𝐹 ` 𝐺 drf and 𝐴 ` 𝐺 de.

Proof. By induction on the derivation of 𝐴 ; 𝐹 `𝜇 𝐺 ; 𝑒 drfde. �

Lemma 5. If 𝐴 ; 𝐹 `𝜇 𝐺 ; 𝑒 drfde and 𝐹 ⊆ 𝐹 ′ and ∀ℓ ∈ dom(𝜇) \ 𝐹 ′, 𝜇 (ℓ) = 𝜇′(ℓ),
then 𝐴 ; 𝐹 ′ `𝜇 ′ 𝐺 ; 𝑒 drfde

Proof. By induction on the derivation of 𝐴 ; 𝐹 `𝜇 𝐺 ; 𝑒 drfde. �

Lemma 6. For any 𝜇 ;𝐺 ; 𝑒 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′, if 𝐴 ; 𝐹 `𝜇 𝐺 ; 𝑒 drfde and 𝐹 ` 𝐺′ drf,
then 𝐴 ; 𝐹 `𝜇 ′ 𝐺′ ; 𝑒′ drfde.

Proof. By induction on the derivation of 𝜇 ;𝐺 ; 𝑒 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′.
Case Fork. We have 𝐺 = [𝑔] and 𝑒 = 〈𝑒1 ‖ 𝑒2〉 and 𝜇′ = 𝜇 and 𝐺′ = 𝑔 ⊕ ([•] ⊗ [•]) and

𝑒′ = 〈𝑒1 ‖ 𝑒2〉. Assume 𝐴 ; 𝐹 `𝜇 [𝑔] ; 〈𝑒1 ‖ 𝑒2〉 drfde and 𝐹 ` 𝑔 ⊕ ([•] ⊗ [•]) drf. By inversion of
𝐴 ; 𝐹 `𝜇 [𝑔] ; 〈𝑒1 ‖ 𝑒2〉 drfde, we have 𝐹 ` 𝑔 drf and 𝐴 ` 𝑔 de and locs(〈𝑒1 ‖ 𝑒2〉) ⊆ 𝐴] A(𝑔) and
∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔). Note that 𝐴] A(𝑔)] A(•) is dened and equal to
𝐴] A(𝑔). We show 𝐴 ; 𝐹 `𝜇 𝑔 ⊕ ([•] ⊗ [•]) ; 〈𝑒1 ‖ 𝑒2〉 drfde, by showing:

35

• 𝐹 ` 𝑔 drf, which was established above
• 𝐴 ` 𝑔 de, which was established above
• 𝐴] A(𝑔) ; 𝐹 ∪ AW([•]) `𝜇 [•] ; 𝑒1 drfde, by showing:

𝐹 ∪ AW([•]) ` [•] drf, by [−] and • rules for drf
𝐴] A(𝑔) ` [•] de, by [−] and • rules for de
locs(𝑒1) ⊆ 𝐴]A(𝑔)]A(•), by locs(𝑒1) ⊆ locs(〈𝑒1 ‖𝑒2〉) and locs(〈𝑒1 ‖𝑒2〉) ⊆ 𝐴]A(𝑔)
(established above) and 𝐴] A(𝑔) = 𝐴] A(𝑔)] A(•)
∀ℓ ∈ (𝐴] A(𝑔)] A(•)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔)] •, by ∀ℓ ∈ (𝐴] A(𝑔)) \
𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔) (established above) and 𝐴] A(𝑔) = 𝐴] A(𝑔)] A(•)

• 𝐴] A(𝑔) ; 𝐹 ∪ AW([•]) `𝜇 [•] ; 𝑒2 drfde, which can be established similarly to
𝐴] A(𝑔) ; 𝐹 ∪ AW([•]) `𝜇 [•] ; 𝑒1 drfde.

Case Join. We have 𝐺 = 𝑔 ⊕ ([𝑔1] ⊗ [𝑔2]) and 𝑒 = 〈ℓ1 ‖ ℓ2〉
and 𝜇′ = 𝜇 and 𝐺′ = [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)] and 𝑒′ = 〈ℓ1, ℓ2〉. Assume
𝐴 ; 𝐹 `𝜇 𝑔 ⊕ ([𝑔1] ⊗ [𝑔2]) ; 〈ℓ1 ‖ ℓ2〉 drfde and 𝐹 ` [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)] drf. By inversion
of 𝐴 ; 𝐹 `𝜇 𝑔 ⊕ ([𝑔1] ⊗ [𝑔2]) ; 〈ℓ1 ‖ ℓ2〉 drfde, we have 𝐹 ` 𝑔 drf and 𝐴 ` 𝑔 de and
𝐴] A(𝑔) ; 𝐹 ∪ AW([𝑔2]) `𝜇 [𝑔1] ; ℓ1 drfde and 𝐴] A(𝑔) ; 𝐹 ∪ AW([𝑔1]) `𝜇 [𝑔2] ; ℓ2 drfde.
By inversion of 𝐴] A(𝑔) ; 𝐹 ∪ AW([𝑔2]) `𝜇 [𝑔1] ; ℓ1 drfde, we have 𝐹 ∪ AW([𝑔2]) ` [𝑔1] drf
and 𝐴] A(𝑔) ` [𝑔1] de and locs(ℓ1) ⊆ 𝐴]A(𝑔)]A([𝑔1]) and ∀ℓ ∈ (𝐴]A(𝑔)]A([𝑔1])) \ (𝐹 ∪
AW([𝑔2])), locs(𝜇 (ℓ)) ⊆ 𝐴]A(𝑔)]A([𝑔1]); note that𝐴, A(𝑔), and A(𝑔1) are mutually disjoint.
By Lemma 3 with 𝐹 ∪ AW([𝑔2]) ` [𝑔1] drf, we have (𝐹 ∪ AW([𝑔2])) ∩ AW([𝑔1]) = ∅, which
implies that AW(𝑔2) ∩ AW(𝑔1) = ∅ and A(𝑔2) ∩ A(𝑔1) = ∅. By inversion of 𝐴] A(𝑔) ` [𝑔1] de,
we have 𝐴] A(𝑔) ` 𝑔1 de. By inversion of 𝐴] A(𝑔) ; 𝐹 ∪ AW([𝑔1]) `𝜇 [𝑔2] ; ℓ2 drfde, we
have 𝐹 ∪ AW([𝑔1]) ` [𝑔2] drf and 𝐴] A(𝑔) ` [𝑔2] de and locs(ℓ2) ⊆ 𝐴] A(𝑔)] A([𝑔2])
and ∀ℓ ∈ (𝐴] A(𝑔)] A([𝑔2])) \ (𝐹 ∪ AW([𝑔1])), locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔)] A([𝑔2]); note
that 𝐴, A(𝑔), and A(𝑔2) are mutually disjoint. By Lemma 3 with 𝐹 ∪ AW([𝑔1]) ` [𝑔2] drf,
we have (𝐹 ∪ AW([𝑔1])) ∩ AW([𝑔2]) = ∅, which implies that AW(𝑔1) ∩ AW(𝑔2) = ∅ and
A(𝑔1) ∩A(𝑔2) = ∅. By inversion of𝐴] A(𝑔) ` [𝑔2] de, we have𝐴] A(𝑔) ` 𝑔2 de. Recall that𝐴,
A(𝑔), A(𝑔1), and A(𝑔2) are mutually disjoint. Therefore 𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]) is dened and
equal to𝐴]A(𝑔)]A(𝑔1)]A(𝑔2). We show𝐴 ; 𝐹 `𝜇 [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)] ; 〈ℓ1, ℓ2〉 drfde, by showing:

• 𝐹 ` 𝑔 ⊕ (𝑔1 ⊗ 𝑔2) drf, by inversion of 𝐹 ` [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)] drf (which was assumed)
• 𝐴 ` 𝑔 ⊕ (𝑔1 ⊗ 𝑔2) de, by − ⊕ − and − ⊗ − rules for de and by showing

𝐴 ` 𝑔 de, which was established above
𝐴] A(𝑔) ` 𝑔1 de, which was established above
𝐴] A(𝑔) ` 𝑔2 de, which was established above

• locs(〈ℓ1, ℓ2〉) ⊆ 𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]), by locs(ℓ1) ⊆ 𝐴] A(𝑔)] A([𝑔1]) (established
above) and𝐴]A(𝑔)]A([𝑔1]) ⊆ 𝐴]A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]) and locs(ℓ2) ⊆ 𝐴]A(𝑔)]A([𝑔2])
(established above) and 𝐴] A(𝑔)] A([𝑔2]) ⊆ 𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)])

• ∀ℓ ∈ (𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)])) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]): Let ℓ ∈ (𝐴]
A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)])) \ 𝐹 . Because 𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]) = 𝐴] A(𝑔)] A(𝑔1)] A(𝑔2), we
can consider three (mutually exclusive) cases:

36

ℓ ∈ (𝐴] A(𝑔)) \ 𝐹 : Recall that AW(𝑔1) and AW(𝑔2) are disjoint. Therefore, we can
consider two (not mutually exclusive) cases:
− ℓ ∉ AW(𝑔1): By ∀ℓ ∈ (𝐴] A(𝑔)] A([𝑔2])) \ (𝐹 ∪ AW([𝑔1])), locs(𝜇 (ℓ)) ⊆

𝐴]A(𝑔)]A([𝑔2]) (established above) with ℓ ∈ (𝐴]A(𝑔)) \ 𝐹 and ℓ ∉ AW(𝑔1),
we have locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔)] A([𝑔2]). Furthermore, 𝐴] A(𝑔)] A([𝑔2]) ⊆
𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]).

− ℓ ∉ AW(𝑔2): By ∀ℓ ∈ (𝐴] A(𝑔)] A([𝑔1])) \ (𝐹 ∪ AW([𝑔2])), locs(𝜇 (ℓ)) ⊆
𝐴]A(𝑔)]A([𝑔1]) (established above) with ℓ ∈ (𝐴]A(𝑔)) \ 𝐹 and ℓ ∉ AW(𝑔2),
we have locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔)] A([𝑔1]). Furthermore, 𝐴] A(𝑔)] A([𝑔1]) ⊆
𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]).

ℓ ∈ A(𝑔1) \𝐹 : By ∀ℓ ∈ (𝐴]A(𝑔)]A([𝑔1])) \ (𝐹 ∪AW([𝑔2])), locs(𝜇 (ℓ)) ⊆ 𝐴]A(𝑔)]
A([𝑔1]) (established above) with ℓ ∈ A(𝑔1) \ 𝐹 and AW(𝑔2) ∩ A(𝑔1) = ∅ (established
above), we have locs(𝜇 (ℓ)) ⊆ 𝐴]A(𝑔)]A([𝑔1]). Furthermore,𝐴]A(𝑔)]A([𝑔1]) ⊆
𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]).
ℓ ∈ A(𝑔2) \𝐹 : By ∀ℓ ∈ (𝐴]A(𝑔)]A([𝑔2])) \ (𝐹 ∪AW([𝑔1])), locs(𝜇 (ℓ)) ⊆ 𝐴]A(𝑔)]
A([𝑔2]) (established above) with ℓ ∈ A(𝑔2) \ 𝐹 and AW(𝑔1) ∩ A(𝑔2) = ∅ (established
above), we have locs(𝜇 (ℓ)) ⊆ 𝐴]A(𝑔)]A([𝑔2]). Furthermore,𝐴]A(𝑔)]A([𝑔2]) ⊆
𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]).

Case ParL. We have 𝐺 = 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) and 𝑒 = 〈𝑒1 ‖ 𝑒2〉 and 𝜇 ;𝐺1 ; 𝑒1 ↦−→ 𝜇′ ;𝐺′1 ; 𝑒
′
1 and

𝐺′ = 𝑔 ⊕ (𝐺′1 ⊗ 𝐺2) and 𝑒′ = 〈𝑒′1 ‖ 𝑒2〉. Assume 𝐴 ; 𝐹 `𝜇 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; 〈𝑒1 ‖ 𝑒2〉 drfde
and 𝐹 ` 𝑔 ⊕ (𝐺′1 ⊗ 𝐺2) drf. By inversion of 𝐴 ; 𝐹 `𝜇 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; 〈𝑒1 ‖ 𝑒2〉 drfde
we have 𝐹 ` 𝑔 drf and 𝐴 ` 𝑔 de and 𝐴] A(𝑔) ; 𝐹 ∪ AW(𝐺2) `𝜇 𝐺1 ; 𝑒1 drfde and
𝐴] A(𝑔) ; 𝐹 ∪ AW(𝐺1) `𝜇 𝐺2 ; 𝑒2 drfde. By inversion of 𝐹 ` 𝑔 ⊕ (𝐺′1 ⊗ 𝐺2) drf, we have
𝐹 ` 𝑔 drf and 𝐹 ∪ AW(𝐺2) ` 𝐺1 drf and 𝐹 ∪ AW(𝐺1) ` 𝐺2 drf. By the induction hy-
pothesis using 𝜇 ;𝐺1 ; 𝑒1 ↦−→ 𝜇′ ;𝐺′1 ; 𝑒

′
1 with 𝐴] A(𝑔) ; 𝐹 ∪ AW(𝐺2) `𝜇 𝐺1 ; 𝑒 drfde1 and

𝐹 ∪ AW(𝐺2) ` 𝐺1 drf (established above), we have 𝐴] A(𝑔) ; 𝐹 ∪ AW(𝐺2) `𝜇 ′ 𝐺′1 ; 𝑒′1 drfde. We
show 𝐴 ; 𝐹 `𝜇 ′ 𝑔 ⊕ (𝐺′1 ⊗ 𝐺2) ; 〈𝑒′1 ‖ 𝑒2〉 drfde by showing:

• 𝐹 ` 𝑔 drf, which was established above
• 𝐴 ` 𝑔 de, which was established above
• 𝐴] A(𝑔) ; 𝐹 ∪ AW(𝐺2) `𝜇 ′ 𝐺′1 ; 𝑒′1 drfde, which was established above
• 𝐴] A(𝑔) ; 𝐹 ∪ AW(𝐺′1) `𝜇 ′ 𝐺2 ; 𝑒2 drfde: By Lemma 2 with 𝜇 ;𝐺1 ; 𝑒1 ↦−→ 𝜇′ ;𝐺′1 ; 𝑒

′
1, we

have A(𝐺1) ⊆ A(𝐺′1) and AW(𝐺1) ⊆ AW(𝐺′1) and ∀ℓ ∈ dom(𝜇) \ (AW(𝐺′1) \
AW(𝐺1)), 𝜇 (ℓ) = 𝜇′(ℓ). By Lemma 5 with 𝐴] A(𝑔) ; 𝐹 ∪ AW(𝐺1) `𝜇 𝐺2 ; 𝑒2 drfde
and 𝐹 ∪ AW(𝐺1) ⊆ 𝐹 ∪ AW(𝐺′1) and ∀ℓ ∈ dom(𝜇) \ (𝐹 ∪ AW(𝐺′1)), 𝜇 (ℓ) =

𝜇′(ℓ) (noting dom(𝜇) \ (𝐹 ∪ AW(𝐺′1)) ⊆ dom(𝜇) \ (AW(𝐺′1) \ AW(𝐺1))) we have
𝐴] A(𝑔) ; 𝐹 ∪ AW(𝐺′1) `𝜇 ′ 𝐺2 ; 𝑒2 drfde.

Case ParR: Similar to ParL.
Case Alloc. We have 𝐺 = [𝑔] and 𝑒 = 𝑠 and ℓ′ ∉ dom(𝜇) and 𝜇′ = 𝜇 [ℓ′ ↩→𝑠] and

𝐺′ = [𝑔 ⊕ (Aℓ′⇐𝑠)] and 𝑒′ = ℓ′. Assume 𝐴 ; 𝐹 `𝜇 [𝑔] ; 𝑠 drfde and 𝐹 ` [𝑔 ⊕ (Aℓ′⇐𝑠)] drf.
By inversion of 𝐴 ; 𝐹 `𝜇 [𝑔] ; 𝑠 drfde, we have 𝐹 ` 𝑔 drf and 𝐴 ` 𝑔 de and locs(𝑠) ⊆ 𝐴] A(𝑔)
and ∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔). By Lemma 3 with 𝐹 ` 𝑔 ⊕ (Aℓ′⇐𝑠) drf, we

37

have 𝐹 ∩AW(𝑔 ⊕ (Aℓ′⇐𝑠)) = ∅, which implies that ℓ′ ∉ 𝐹 . Furthermore, ℓ′ ∉ 𝐴]A(𝑔), because
if ℓ ∈ 𝐴] A(𝑔), then by ∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔) (established above) with
ℓ ∈ 𝐴] A(𝑔), we would have 𝜇 (ℓ′) dened, but ℓ′ ∉ dom(𝜇). Therefore, 𝐴] A(𝑔 ⊕ (Aℓ′⇐𝑠))
is dened and equal to 𝐴] A(𝑔)] {ℓ′}. We show 𝐴 ; 𝐹 `𝜇 [ℓ ′↩→𝑠] [𝑔 ⊕ (Aℓ′⇐𝑠)] ; ℓ′ drfde, by
showing:

• 𝐹 ` 𝑔 ⊕ (Aℓ′⇐𝑠) drf, by inversion of 𝐹 ` [𝑔 ⊕ (Aℓ′⇐𝑠)] drf (which was assumed)
• 𝐴 ` 𝑔 ⊕ (Aℓ′⇐𝑠) de, by − ⊕ − and (A−⇐−) rules for de and by showing

𝐴 ` 𝑔 de, which was established above
locs(𝑠) ⊆ 𝐴] A(𝑔), which was established above

• locs(ℓ′) ⊆ 𝐴]A(𝑔 ⊕ (Aℓ′⇐𝑠)), by locs(ℓ′) = {ℓ′} and𝐴]A(𝑔 ⊕ (Aℓ′⇐𝑠)) = 𝐴]A(𝑔)]
{ℓ′}

• ∀ℓ ∈ (𝐴] A(𝑔 ⊕ (Aℓ′⇐𝑠))) \ 𝐹, locs(𝜇 [ℓ′ ↩→𝑠] (ℓ)) ⊆ 𝐴] A(𝑔 ⊕ (Aℓ′⇐𝑠)):
Let ℓ′ ∈ (𝐴] A(𝑔 ⊕ (Aℓ′⇐𝑠))) \ 𝐹 . We can consider two (mutually exclusive) cases:

ℓ = ℓ′: By locs(𝜇 [ℓ′ ↩→𝑠] (ℓ)) = 𝑠 (because ℓ = ℓ′) and locs(𝑠) ⊆ 𝐴]A(𝑔) (established
above), we have locs(𝜇 [ℓ′ ↩→𝑠] (ℓ)) ⊆ 𝐴] A(𝑔). Futhermore, 𝐴] A(𝑔) ⊆ 𝐴]
A(𝑔 ⊕ (Aℓ⇐ ′𝑠)).
ℓ ≠ ℓ′: By ∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔) (established above) with
ℓ ∈ (𝐴]A(𝑔 ⊕ (Aℓ⇐ ′𝑠)))\𝐹 = (𝐴]A(𝑔)]{ℓ′})\𝐹 and ℓ ≠ ℓ′, we have locs(𝜇 (ℓ)) ⊆
𝐴] A(𝑔). Futhermore, 𝐴] A(𝑔) ⊆ 𝐴] A(𝑔 ⊕ (Aℓ′⇐𝑠)).

Case Upd. We have 𝜇 = 𝜇0 [ℓ1 ↩→𝑠] and 𝐺 = [𝑔] and 𝑒 = ℓ1 := ℓ2 and 𝜇′ = 𝜇0 [ℓ1 ↩→ ref ℓ2]
and 𝐺′ = [𝑔 ⊕ (Wℓ1⇐ ref ℓ2)] and 𝑒′ = ℓ2. Assume 𝐴 ; 𝐹 `𝜇0 [ℓ1↩→𝑠] [𝑔] ; ℓ1 := ℓ2 drfde and
𝐹 ` [𝑔 ⊕ (Wℓ1⇐ ref ℓ2)] drf. By inversion of𝐴 ; 𝐹 `𝜇0 [ℓ1↩→𝑠] [𝑔] ; ℓ1 := ℓ2 drfde, we have 𝐹 ` 𝑔 drf
and 𝐴 ` 𝑔 de and locs(ℓ1 := ℓ2) ⊆ 𝐴] A(𝑔) and ∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹, locs(𝜇0 [ℓ1 ↩→𝑠] (ℓ)) ⊆
𝐴] A(𝑔). Note that 𝐴] A(𝑔 ⊕ (Wℓ1⇐ ref ℓ2)) is dened and equal to 𝐴] A(𝑔). We show
𝐴 ; 𝐹 `

𝜇0 [ℓ1↩→ref ℓ2] [𝑔 ⊕ (Wℓ1⇐ ref ℓ2)] ; ℓ2 drfde, by showing:

• 𝐹 ` 𝑔 ⊕ (Wℓ1⇐ ref ℓ2) drf, by inversion of 𝐹 ` [𝑔 ⊕ (Wℓ1⇐ ref ℓ2)] drf (which was as-
sumed)

• 𝐴 ` 𝑔 ⊕ (Wℓ1⇐ ref ℓ2) de, by − ⊕ − and (W−⇐−) rules for de and by showing
𝐴 ` 𝑔 de, which was established above
ℓ1 ∈ 𝐴] A(𝑔), by ℓ1 ∈ locs(ℓ1 := ℓ2) and locs(ℓ1 := ℓ2) ⊆ 𝐴] A(𝑔) (established above)
locs(ref ℓ2) ⊆ 𝐴] A(𝑔), by locs(ref ℓ2) ⊆ locs(ℓ1 := ℓ2) and locs(ℓ1 := ℓ2) ⊆ 𝐴] A(𝑔)
(established above)

• locs(ℓ2) ⊆ 𝐴] A(𝑔 ⊕ (Wℓ1⇐ ref ℓ2)), by locs(ℓ2) ⊆ locs(ℓ1 := ℓ2) and locs(ℓ1 := ℓ2) ⊆
𝐴] A(𝑔) (established above) and 𝐴] A(𝑔) = 𝐴] A(𝑔 ⊕ (Wℓ1⇐ ref ℓ2))

• ∀ℓ ∈ (𝐴]A(𝑔 ⊕ (Wℓ1⇐ ref ℓ2)))\𝐹, locs(𝜇0 [ℓ1 ↩→ ref ℓ2] (ℓ)) ⊆ 𝐴]A(𝑔 ⊕ (Wℓ1⇐ ref ℓ2)):
Let ℓ ∈ A(𝑔 ⊕ (Wℓ1⇐ ref ℓ2)) \ 𝐹 . We can consider two (mutually exclusive) cases:

ℓ = ℓ1: By locs(𝜇0 [ℓ1 ↩→ ref ℓ2] (ℓ)) = locs(ref ℓ2) (because ℓ = ℓ1) and
locs(ref ℓ2) ⊆ locs(ℓ1 := ℓ2) and locs(ℓ1 := ℓ2) ⊆ 𝐴] A(𝑔) (established above),
we have locs(𝜇0 [ℓ1 ↩→ ref ℓ2] (ℓ)) ⊆ 𝐴] A(𝑔). Futhermore, 𝐴] A(𝑔) = 𝐴]
A(𝑔 ⊕ (Wℓ1⇐ ref ℓ2)).

38

ℓ ≠ ℓ1: By ∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹, locs(𝜇0 [ℓ1 ↩→𝑠] (ℓ)) ⊆ 𝐴] A(𝑔) (established
above) with ℓ ∈ (𝐴] A(𝑔 ⊕ (Wℓ1⇐ ref ℓ2))) \ 𝐹 and 𝐴] A(𝑔 ⊕ (Wℓ1⇐ ref ℓ2)) =
𝐴] A(𝑔), we have locs(𝜇0 [ℓ1 ↩→𝑠] (ℓ)) ⊆ 𝐴] A(𝑔). From locs(𝜇0 [ℓ1 ↩→𝑠] (ℓ)) ⊆
𝐴] A(𝑔) and 𝜇0 [ℓ1 ↩→𝑠] (ℓ) = 𝜇0 [ℓ1 ↩→ ref ℓ2] (ℓ) (because ℓ ≠ ℓ1), we
have locs(𝜇0 [ℓ1 ↩→ ref ℓ2] (ℓ)) ⊆ 𝐴] A(𝑔). Futhermore, 𝐴] A(𝑔) = 𝐴]
A(𝑔 ⊕ (Wℓ1⇐ ref ℓ2)).

Case Bang. We have 𝐺 = [𝑔] and 𝑒 = ! ℓ1 and 𝜇 (ℓ1) = ref ℓ2 and 𝜇′ = 𝜇 and 𝐺′ =

[𝑔 ⊕ (Rℓ1⇒ ref ℓ2)] and 𝑒′ = ℓ2. Assume𝐴 ; 𝐹 `𝜇 [𝑔] ; ! ℓ1 drfde and 𝐹 ` [𝑔 ⊕ (Rℓ1⇒ ref ℓ2)] drf.
By inversion of𝐴 ; 𝐹 `𝜇 [𝑔] ; ! ℓ1 drfde, we have 𝐹 ` 𝑔 drf and𝐴 ` 𝑔 de and locs(! ℓ1) ⊆ 𝐴]A(𝑔)
and ∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔). Note that 𝐴] A(𝑔 ⊕ (Rℓ1⇒ ref ℓ2)) is dened
and equal to 𝐴] A(𝑔). We show 𝐴 ; 𝐹 `𝜇 [𝑔 ⊕ (Rℓ1⇒ ref ℓ2)] ; ℓ2 drfde, by showing:

• 𝐹 ` 𝑔 ⊕ (Rℓ1⇒ ref ℓ2) drf, by inversion of 𝐹 ` [𝑔 ⊕ (Rℓ1⇒ ref ℓ2)] drf (which was as-
sumed)

• 𝐴 ` 𝑔 ⊕ (Rℓ1⇒ ref ℓ2) de, by − ⊕ − and (R−⇒−) rules for de and by showing
𝐴 ` 𝑔 de, which was established above
ℓ1 ∈ 𝐴] A(𝑔), by ℓ1 ∈ locs(! ℓ1) and locs(! ℓ1) ⊆ 𝐴] A(𝑔) (established above)
locs(ref ℓ2) ⊆ 𝐴] A(𝑔): By ∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔) (established
above) with ℓ1 ∈ 𝐴] A(𝑔) (just established), we have locs(𝜇 (ℓ1)) ⊆ 𝐴] A(𝑔).
Furthermore 𝜇 (ℓ1) = ref ℓ2.

• locs(ℓ2) ⊆ 𝐴]A(𝑔 ⊕ (Rℓ1⇒ ref ℓ2)), by locs(ℓ2) ⊆ locs(ref ℓ2) and locs(ref ℓ2) ⊆ 𝐴]A(𝑔)
(just established) and 𝐴] A(𝑔) = 𝐴] A(𝑔 ⊕ (Rℓ1⇒ ref ℓ2))

• ∀ℓ ∈ (𝐴] A(𝑔 ⊕ (Rℓ1⇒ ref ℓ2))) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔 ⊕ (Rℓ1⇒ ref ℓ2)), by
∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔) (established above) and 𝐴] A(𝑔) =

𝐴] A(𝑔 ⊕ (Rℓ1⇒ ref ℓ2)).

Cases Fst and Snd: Similar to Bang.
Case App. We have 𝐺 = [𝑔] and 𝑒 = ℓ1 ℓ2 and 𝜇 (ℓ1) = fun 𝑓 𝑥 is 𝑒𝑏 and 𝜇′ = 𝜇 and

𝐺′ = [𝑔 ⊕ (Rℓ1⇒ fun 𝑓 𝑥 is 𝑒𝑏)] and 𝑒′ = [ℓ1, ℓ2 / 𝑓 , 𝑥]𝑒𝑏 . Assume 𝐴 ; 𝐹 `𝜇 [𝑔] ; ℓ1 ℓ2 drfde and
𝐹 ` [𝑔 ⊕ (Rℓ1⇒ fun 𝑓 𝑥 is 𝑒𝑏)] drf. By inversion of 𝐴 ; 𝐹 `𝜇 [𝑔] ; ℓ1 ℓ2 drfde, we have 𝐹 ` 𝑔 drf
and 𝐴 ` 𝑔 de and locs(ℓ1 ℓ2) ⊆ 𝐴] A(𝑔) and ∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔).
Note that 𝐴] A(𝑔 ⊕ (Rℓ1⇒ fun 𝑓 𝑥 is 𝑒𝑏)) is dened and equal to 𝐴] A(𝑔). We show
𝐴 ; 𝐹 `𝜇 [𝑔 ⊕ (Rℓ1⇒ fun 𝑓 𝑥 is 𝑒𝑏)] ; [ℓ1, ℓ2 / 𝑓 , 𝑥]𝑒𝑏 drfde by showing:

• 𝐹 ` [𝑔 ⊕ (Rℓ1⇒ fun 𝑓 𝑥 is 𝑒𝑏)] drf, by inversion of 𝐹 ` [𝑔 ⊕ (Rℓ1⇒ ref ℓ2)] drf (which
was assumed)

• 𝐴 ` [𝑔 ⊕ (Rℓ1⇒ fun 𝑓 𝑥 is 𝑒𝑏)] de, by − ⊕ − and (R−⇒−) rules for de and by showing
𝐴 ` 𝑔 de, which was established above
ℓ1 ∈ 𝐴] A(𝑔), by ℓ1 ∈ locs(ℓ1 ℓ2) and locs(ℓ1 ℓ2) ⊆ 𝐴] A(𝑔) (established above)
locs(fun 𝑓 𝑥 is 𝑒𝑏) ⊆ 𝐴] A(𝑔): By ∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔)
(established above) with ℓ1 ∈ 𝐴] A(𝑔) (just established), we have locs(𝜇 (ℓ1)) ⊆
𝐴] A(𝑔). Furthermore 𝜇 (ℓ1) = fun 𝑓 𝑥 is 𝑒𝑏 .

39

• locs([ℓ1, ℓ2 / 𝑓 , 𝑥]𝑒𝑏) ⊆ 𝐴] A(𝑔 ⊕ (Rℓ1⇒ ref ℓ2)): by locs([ℓ1, ℓ2 / 𝑓 , 𝑥]𝑒𝑏) ⊆
locs(fun 𝑓 𝑥 is 𝑒𝑏) ∪ {ℓ1, ℓ2} = locs(fun 𝑓 𝑥 is 𝑒𝑏) ∪ locs(ℓ1 ℓ2) and locs(fun 𝑓 𝑥 is 𝑒𝑏) ⊆
𝐴]A(𝑔) (just established) and locs(ℓ1 ℓ2) ⊆ 𝐴]A(𝑔) (established above) and 𝐴]A(𝑔) =
𝐴] A(𝑔 ⊕ (Rℓ1⇒ fun 𝑓 𝑥 is 𝑒𝑏))

• ∀ℓ ∈ (𝐴]A(𝑔 ⊕ (Rℓ1⇒ fun 𝑓 𝑥 is 𝑒𝑏))) \𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴]A(𝑔 ⊕ (Rℓ1⇒ fun 𝑓 𝑥 is 𝑒𝑏)),
by ∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔) (established above) and 𝐴] A(𝑔) =

𝐴] A(𝑔 ⊕ (Rℓ1⇒ fun 𝑓 𝑥 is 𝑒𝑏)).

Case AppSL. We have 𝑒 = 𝑒1 𝑒2 and 𝜇 ;𝐺 ; 𝑒1 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′1 and 𝑒′ = 𝑒′1 𝑒2. Assume
𝐴 ; 𝐹 `𝜇 𝐺 ; 𝑒1 𝑒2 drfde and 𝐹 ` 𝐺′ drf. By inversion of 𝐴 ; 𝐹 `𝜇 𝐺 ; 𝑒1 𝑒2 drfde (noting 𝑒1 = ℓ1
is impossible), we can consider two cases:

• 𝐺 = [𝑔] and 𝐹 ` 𝑔 drf and 𝐴 ` 𝑔 de and locs(𝑒1 𝑒2) ⊆ 𝐴] A(𝑔) and ∀ℓ ∈ (𝐴] A(𝑔)) \
𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔): We establish 𝐴 ; 𝐹 `𝜇 [𝑔] ; 𝑒1 drfde by showing:

𝐹 ` 𝑔 drf, assumed in this case
𝐴 ` 𝑔 de, assumed in this case
locs(𝑒1) ⊆ 𝐴] A(𝑔), by locs(𝑒1) ⊆ locs(𝑒1 𝑒2) and locs(𝑒1 𝑒2) ⊆ 𝐴] A(𝑔) (assumed
in this case)
∀ℓ ∈ (𝐴] A(𝑔)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔), assumed in this case

By the induction hypothesis using 𝜇 ; [𝑔] ; 𝑒1 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′1 with 𝐴 ; 𝐹 `𝜇 [𝑔] ; 𝑒1 drfde
and 𝐹 ` 𝐺′ drf (assumed), we have 𝐴 ; 𝐹 `𝜇 ′ 𝐺′ ; 𝑒′1 drfde. By Lemma 1 with
𝜇 ; [𝑔] ; 𝑒1 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′1, we can consider two cases:

𝐺′ = [𝑔′]: By inversion of 𝐴 ; 𝐹 `𝜇 ′ [𝑔′] ; 𝑒′1 drfde, we have 𝐹 ` 𝑔′ drf and 𝐴 ` 𝑔′ de
and locs(𝑒′1) ⊆ 𝐴]A(𝑔′) and ∀ℓ ∈ (𝐴]A(𝑔′)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴]A(𝑔′). We show
𝐴 ; 𝐹 `𝜇 ′ [𝑔′] ; 𝑒′1 𝑒2 drfde by showing:
− 𝐹 ` 𝑔′ drf, which was established above
− 𝐴 ` 𝑔′ de, which was established above
− locs(𝑒′1 𝑒2) ⊆ 𝐴] A(𝑔′), by locs(𝑒′1 𝑒2) = locs(𝑒′1) ∪ locs(𝑒2) and locs(𝑒′1) ⊆

𝐴] A(𝑔′) (established above) and locs(𝑒2) ⊆ locs(𝑒1 𝑒2) and locs(𝑒1 𝑒2) ⊆
𝐴] A(𝑔) (assumed in this (outer) case) and A(𝑔) ⊆ A(𝑔′) (by Lemma 2 with
𝜇 ; [𝑔] ; 𝑒1 ↦−→ 𝜇′ ; [𝑔′] ; 𝑒′1)

− ∀ℓ ∈ (𝐴] A(𝑔′)) \ 𝐹, locs(𝜇 (ℓ)) ⊆ 𝐴] A(𝑔′), which was established above
𝐺′ = 𝑔 ⊕ ([•] ⊗ [•]): We show 𝐴 ; 𝐹 `𝜇 ′ 𝑔 ⊕ ([•] ⊗ [•]) ; 𝑒′1 𝑒2 drfde by showing:
− ¬(𝑒′1 loc), because 𝑒′1 = ℓ′1 is impossible (no rules for ↦−→ can derive

𝜇 ; [𝑔] ; 𝑒1 ↦−→ 𝜇′ ; 𝑔 ⊕ ([•] ⊗ [•]) ; ℓ′1)
− locs(𝑒2) ⊆ 𝐴] A(𝑔), by locs(𝑒2) ⊆ locs(𝑒1 𝑒2) and locs(𝑒1 𝑒2) ⊆ 𝐴] A(𝑔)

(assumed in this (outer) case)
− 𝐴 ; 𝐹 `𝜇 ′ 𝑔′ ⊕ ([•] ⊗ [•]) ; 𝑒′1 drfde, which was establised above (as

𝐴 ; 𝐹 `𝜇 ′ 𝐺′ ; 𝑒′1 drfde)
• 𝐺 = 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) and ¬(𝑒1 loc) and locs(𝑒2) ⊆ 𝐴] A(𝑔) and
𝐴 ; 𝐹 `𝜇 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; 𝑒1 drfde: By the induction hypothesis using
𝜇 ; 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; 𝑒1 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′1 with 𝐴 ; 𝐹 `𝜇 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; 𝑒1 drfde and

40

𝐹 ` 𝐺′ drf (assumed), we have 𝐴 ; 𝐹 `𝜇 ′ 𝐺′ ; 𝑒′1 drfde. By Lemma 1 with
𝜇 ; 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; 𝑒1 ↦−→ 𝜇′ ;𝐺′ ; 𝑒′1, we can consider three cases:

𝐺1 = [𝑔1] and 𝐺2 = [𝑔2] and 𝐺′ = [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]: By in-
version of 𝐴 ; 𝐹 `𝜇 ′ [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)] ; 𝑒′1 drfde, we have 𝐹 ` 𝑔 ⊕ (𝑔1 ⊗ 𝑔2) drf and
𝐴 ` 𝑔 ⊕ (𝑔1 ⊗ 𝑔2) de and locs(𝑒′1) ⊆ 𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]) and ∀ℓ ∈
(𝐴] [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]) \ 𝐹, locs(𝜇′(ℓ)) ⊆ 𝐴] [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]. We show
𝐴 ; 𝐹 `𝜇 ′ [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)] ; 𝑒′1 𝑒2 drfde by showing:
− 𝐹 ` 𝑔 ⊕ (𝑔1 ⊗ 𝑔2) drf, which was established above
− 𝐴 ` 𝑔 ⊕ (𝑔1 ⊗ 𝑔2) de, which was established above
− locs(𝑒′1 𝑒2) ⊆ 𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]), by locs(𝑒′1 𝑒2) = locs(𝑒′1) ∪ locs(𝑒2) and

locs(𝑒′1) ⊆ 𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]) (established above) and locs(𝑒2) ⊆ 𝐴] A(𝑔)
(assumed in this (outer) case) and 𝐴] A(𝑔) ⊆ 𝐴] A([𝑔 ⊕ (𝑔1 ⊗ 𝑔2)])

− ∀ℓ ∈ (𝐴] [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)]) \ 𝐹, locs(𝜇′(ℓ)) ⊆ 𝐴] [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)], which was
established above

𝐺′ = 𝑔 ⊕ (𝐺′1 ⊗ 𝐺2): We show 𝐴 ; 𝐹 `𝜇 ′ 𝑔 ⊕ (𝐺′1 ⊗ 𝐺2) ; 𝑒′1 𝑒2 drfde by showing:
− ¬(𝑒′1 loc), because 𝑒′1 = ℓ′1 is impossible (no rules for ↦−→ can derive

𝜇 ; 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) ; 𝑒1 ↦−→ 𝜇′ ; 𝑔 ⊕ (𝐺′1 ⊗ 𝐺2) ; ℓ′1)
− locs(𝑒2) ⊆ 𝐴] A(𝑔), assumed in this (outer) case
− 𝐴 ; 𝐹 `𝜇 ′ 𝑔′ ⊕ (𝐺′1 ⊗ 𝐺2) ; 𝑒′1 drfde, which was establised above (as

𝐴 ; 𝐹 `𝜇 ′ 𝐺′ ; 𝑒′1 drfde)
𝐺′ = 𝑔 ⊕ (𝐺1 ⊗ 𝐺′2): Similar to 𝐺′ = 𝑔 ⊕ (𝐺′1 ⊗ 𝐺2) case.

Cases AppSR, PairSL, PairSR, FstS, SndS, RefS, BangS, UpdSL, and UpdSR: Similar to
AppSL.

�

Lemma 7. For any 𝜇 ;𝐺 ; 𝑒 ↦−→∗ 𝜇′ ;𝐺′ ; 𝑒′, if 𝐴 ; 𝐹 `𝜇 𝐺 ; 𝑒 drfde and 𝐹 ` 𝐺′ drf,
then 𝐴 ; 𝐹 `𝜇 ′ 𝐺′ ; 𝑒′ drfde.

Proof. By induction on the the derivation of 𝜇 ;𝐺 ; 𝑒 ↦−→∗ 𝜇′ ;𝐺′ ; 𝑒′, using Lemma 6. �

3.5 Disentanglement Beyond Race-Freedom

Supercially, it may appear that disentanglement prevents determinacy races, because it does
not allow concurrent tasks to have knowledge of each other’s allocations. But this is not correct.
Disentanglement permits many kinds of races, and is general enough to even permit arbitrary
communication in some cases.

To understand the interplay between determinacy races and disentanglement, consider that
any determinacy race between two concurrent tasks may be classied either as a write-write
race or a read-write race. Awrite-write race occurs when both tasks modify the same location,
whereas a read-write race occurs when one of the tasks reads a location that the other task
modies. Write-write races are always safe for disentanglement, because writes can never
“discover” new locations. In the case of read-write races, however, we have to be careful to

41

ensure that the reading task does not discover new locations. That is, a read-write race is
disentangled only when the data being written was allocated by a common ancestor. This
leads to a simple but powerful observation: as long as all possibly shared data is pre-allocated,
disentanglement permits arbitrary communication between concurrent tasks.

Examples

The following examples illustrate a number of use-cases for disentangled race conditions.

Speculative search. In a parallel speculative search, we can use a shared “found-it” ag to
quit early as soon as a suitable element has been found. Specically, we allocate the ag and
then begin searching in parallel with many subtasks. When one of the subtasks nds a desirable
element, it sets the ag; meanwhile, all subtasks regularly poll the ag to check if they can
quit early. Therefore we have a read-write race, but this example is nevertheless disentangled
because we allocate the ag before the subtasks begin.

We can extend this example to non-deterministically select one suitable element. To do this,
we allocate a mutable pointer and then instruct each subtask to set the pointer to the element
it nds (if any). Multiple subtasks might then race the update the pointer (a write-write race),
but this is disentangled because none of the subtasks ever read the pointer. Once all subtasks
complete, the pointer may be safely dereferenced.

Graph search. In graph search algorithms where the number of vertices in the graph is
known, we can use one “visited” ag per vertex to guarantee that each vertex is processed
at most once. All of these ags must be allocated when the search begins, so that the read-write
races on the ags are safe for disentanglement. A similar technique is used in the parallel BFS
discussed in Section 2.3.1, where atomic compare-and-swap operations are used to visit vertices
in parallel.

Concurrent union-nd. We can implement concurrent union-nd (dynamic disjoint sets),
for example as described in [32], on a xed number of nodes. Due to concurrency, any path
compressionwithin the structure is typically non-deterministic (due to race conditions). That is,
while a path is being compressed, another operation might traverse the path. With some care,
utilizing properly synchronized atomic operations, these race conditions are benign. Union-
nd is a crucial subcomponent in graph algorithms such as minimum-spanning-tree, where
one union-nd node is used per vertex in the graph. When the number of vertices is known
ahead-of-time, all nodes may be allocated at the start of the algorithm.

Deduplication by hashing. We can implement parallel deduplication using a concurrent
hash table on a collection of known (i.e., already allocated in memory) elements, for example
as shown in Section 2.3.2. In this example, many subtasks insert elements into a hash table
concurrently and in parallel. When any individual subtask inspects a slot of the hash table,
it may either nd an empty slot, or an element which was previously inserted (possibly by a
concurrent sibling/cousin task). This is disentangled because the elements inserted into the

42

hash table are allocated before all subtasks begin; therefore, even though a subtask may nd an
element that was inserted concurrently, the element is nevertheless safe to access.

Concurrent data structures. Any concurrent data structure (such as a queue, stack, hash
table, etc.) is safe for disentanglement as long as all data associatedwith the structure can be pre-
allocated. In particular, the size of the structure (including the cumulative sizes of its elements)
must be bounded, so that sucient space can be allocated up-front.4 Such a collection may then
be used by multiple concurrent tasks to communicate freely.

4This restriction is conservative, making no assumptions about the details of the data structure itself. The goal
is to ensure that no task will inspect a piece of the structure that may have been allocated by another concurrent
task. These restrictions can be relaxed for particular data structures or use-cases, by specializing operations to
preserve disentanglement. Some of the examples in this section illustrate this approach.

43

44

Chapter 4

Disentangled Memory Management

To manage memory in an ecient and scalable manner, we take advantage of the memory
separation property aorded by disentanglement. In particular, by assigning each task its own
local heap for allocation, disentanglement guarantees that the heaps of concurrent tasks do
not contain objects pointing at each other. This makes it possible for individual tasks to collect
their heaps independently, without synchronizing with other (concurrent) tasks. By scheduling
many such task-local GCs simultaneously, our approach is naturally parallel.

More concretely, we show that task-local heaps may be organized in a tree structure called
the heap hierarchy which mirrors the (dynamic) structure of parallelism in the program. In
the heap hierarchy, any pointer between two heap-allocated objects may be classied as ei-
ther an up-pointer, down-pointer, internal pointer, or cross-pointer, depending on the ancestry
relationship between heaps. Disentanglement guarantees that the heap hierarchy is free of
cross-pointers; therefore, any disjoint collection of subtrees may be collected in parallel with
no additional synchronization. We call this technique subtree collection, because the scope of
each collection is a subtree, i.e., a heap together with all of its descendants.

Subtree collections are facilitated by lightweight remembered sets, which remember down-
pointers from ancestor heaps into descendant heaps.1 Down-pointers are used as additional
roots for collections. We also describe an optional promotion strategy which eliminates down-
pointers by copying data upwards in the hierarchy. Promotion is not necessary for correct-
ness, but can be useful for eciency, and can easily be integrated into subtree collections (by
performing a full promotion phase before the tracing phase of collection begins). Outside of
down-pointer maintenance, the tracing algorithm for subtree collection is fairly unconstrained,
and essentially any tracing collection algorithm can be used, including compaction algorithms.

To schedule garbage collections, we couple memory management closely with the task
scheduler, which assigns tasks to processors. In our approach, the task scheduler addition-
ally assigns heaps to processors, specically by mirroring the assignment of tasks. That is,
every task and its corresponding heap are always assigned to the same processor, which is
benecial for performance (e.g. for improved data locality), and additionally simplies the im-
plementation of the garbage collector. To perform garbage collection, a processor only needs
to interrupt its currently assigned task; the processor then may safely collect its own assigned

1The management of remembered sets and down-pointers is reminiscent of generational garbage collections.

45

heap(s) without needing to synchronize with any other (concurrent) tasks. This approach to
collection—where processors only collect their own assigned heaps—is essentially a special kind
of subtree collection. We refer to these collections as local garbage collections, or LGC for
short.

The LGC technique alone does not cover all heaps in the hierarchy: any “internal” heap
with at least two active descendants is not local to a single processor, and therefore will not be
in scope of a local garbage collection. We therefore develop a second garbage collection mech-
anism which can reclaim memory in internal heaps without pausing active descendant tasks.
At a high level, our approach is to use a snapshot-at-the-beginning strategy [161] together with
a concurrent non-moving tracing algorithm. We refer to these as concurrent garbage collec-
tions, or CGC, for short. To spawn a CGC, only a single active task needs to be temporarily
paused to take a snapshot; after the snapshot has been recorded, the task may be resumed and
proceed concurrently with—and in parallel with—the CGC. This eectively places CGC o the
critical path, ensuring that CGC does not interfere with parallelism.

To allow for CGCs to proceed concurrently and in parallel with other tasks and garbage
collections throughout the hierarchy, we extend the heap hierarchy with a mechanism we call
CGC-chaining. In the extended heap hierarchy, CGC-heaps (i.e., heaps currently undergo-
ing CGC) are explicitly kept separate from primary heaps. Primary heaps therefore remain
available for fresh allocations, without needing to synchronize with an ongoing CGC.

Altogether, in a disentangled heap hierarchy, the techniques presented in this chapter make
it possible to garbage-collect any individual heap independently, with little-to-no additional
synchronization between parallel tasks. In this way, our collection algorithms are naturally
parallel and concurrent, and never need to “stop the world”.

4.1 Preliminaries: Heaps and Heap Objects

A heap object, or simply object, is a contiguous section of memory that is allocated as a unit.
Objects may store both non-pointer data (e.g. numbers) and pointers to other objects. During
execution, programs allocate new objects and read and write existing objects. The objects of an
execution form a memory graph where vertices are objects and (directed) edges are pointers
between objects. Memory graphs evolve over time as the program executes: allocations add
new vertices and (possibly) edges, and writes can delete existing edges, replacing them with
new edges pointing at dierent objects.

A heap is, abstractly, a set of objects. Many heaps can exist simultaneously, but they must
be disjoint: each object exists in at most one heap. Heaps are an abstract data type (we describe
how to implement them in Chapter 6) that oer a variety of natural operations: creation of
a fresh empty heap, allocation of a new object in a heap, deletion of an object from a heap,
and moving an object from one heap to another. We also permit merging two heaps (unioning
their contents), and querying which heap contains an object. We write 𝐻 (𝑥) for the heap that
contains object 𝑥 ; in general, this is a dynamic query, as objects may be moved between heaps.

The roots are the set of objects mentioned explicitly by the program state (e.g. in the seman-
tics of Chapter 3, the roots of expression 𝑒 are locs(𝑒)). As a program executes, the roots change.
Every object in the memory graph is either live or garbage, depending upon whether or not it

46

merge heaps
into parent

fresh empty heaps

fork join

Figure 4.1: Forks and joins. Active tasks are black circles,
and suspended tasks are white circles. Each task has a
heap, drawn as a gray rectangle.

Figure 4.2: A disentangled heap
hierarchy. Up, down, and inter-
nal pointers (solid) are permitted.
Cross-pointers (dotted) are disal-
lowed.

is reachable from the roots (by following pointers in the memory graph). As the program exe-
cutes, live objects may become garbage by either (a) dropping a root, or (b) deleting an edge of
the memory graph (with an update). Garbage objects will never again be used by the program,
and so they may be de-allocated (reclaimed) by deleting them from their corresponding heaps.
The goal of garbage collection is to reclaim space occupied by garbage objects.

4.2 Heap Hierarchy

We give each task its own heap and organize heaps into a tree that mirrors the task tree (Sec-
tion 3.1.3). We call this tree of heaps the heap hierarchy. Initially, there is a single root heap,
corresponding to the initial task. When a task forks, its subtasks are initialized with two fresh
(empty) heaps and, when both subtasks of a task complete, their heaps aremergedwith the heap
of the parent task (see Figure 4.1). This puts heaps and tasks in a one-to-one correspondence.

4.2.1 Pointer Directions

In the heap hierarchy, we can use the ancestor/descendant relationships of heaps to give each
memory graph pointer a direction: up, down, internal, or cross. A pointer from object 𝑥 to object
𝑦 is classied as follows:

• if 𝐻 (𝑥) is a proper descendant of 𝐻 (𝑦), the pointer is an up-pointer;
• if 𝐻 (𝑥) is a proper ancestor of 𝐻 (𝑦), it is a down-pointer;
• if 𝐻 (𝑥) = 𝐻 (𝑦), it is a internal pointer;
• otherwise, it is a cross-pointer.

47

4.2.2 Guarantees of Disentanglement

As illustrated in Figure 4.2, disentanglement provides a strong guarantee on the directions of
the pointers in the memory graph: there are no cross-pointers (Property 1). Furthermore, dis-
entanglement guarantees that the roots of the program only point up (Property 2).
Property 1. Throughout execution of a disentangled program, all pointers in the memory graph
are either up-pointers, down-pointers, or internal pointers.
Property 2. Throughout execution of a disentangled program, for every task, every root of that
task lies within either its own heap or an ancestor heap.

If desired, these properties could be stated formally in a manner similar to the drfde judge-
ment of Section 3.4. In particular, in Figure 3.10, the component highlighted in blue is essentially
the statement of Property 1 (one would only need to eliminate the use of 𝐹 which is specic
to drfde), and the components highlighted in red capture Property 2. A formal proof can then
proceed in a manner similar to the proof of Theorem 1. The gist of the proof is as follows.
Initially when there are no allocated objects, both the memory graph and roots are empty, so
both properties hold initially. We have Property 1 throughout the execution of a disentangled
program because (a) allocations can only create up-pointers in the memory graph (because
new allocations are always in the task’s heap and by Property 2 the locations of the newly al-
located storable lie within the task’s heap or ancestor heaps), (b) writes can only create either
up-pointers or down-pointers (again, because by Property 2 the written-to location and the
stored location both lie within the task’s heap or ancestor heaps), and (c) heap merges can only
cause down-pointers to become up-pointers (and therefore cannot introduce cross-pointers).
We have Property 2 throughout the execution of a disentangled program because new alloca-
tions are always in leaf heaps, and because at each read we are guaranteed by Property 1 that
any newly obtained pointers are into the task’s heap or ancestor heaps.

4.2.3 Relationship to Computation Graphs

The heap hierarchy directly implements the structure of allocations in an open computation
graph 𝐺 , where the memory locations of Section 3.1 are used as object identiers. We derive
the heap hierarchy corresponding to 𝐺 as follows: if 𝐺 = [𝑔] then it is just the single heap
containing the objects A(𝑔), otherwise the heap hierarchy of 𝐺 = 𝑔 ⊕ (𝐺1 ⊗ 𝐺2) is a heap
containing the objects A(𝑔) with two children which are the heap hierarchies of 𝐺1 and 𝐺2,
respectively.

We can see that this correspondence between the heap hierarchy and an open computation
graph is correct by examining forks, joins, and allocations. Forks are witnessed by replacing a
leaf [𝑔] with𝑔⊕([•] ⊗ [•]), which is implemented by creating two empty heaps, corresponding
to the new leaves [•]. Joins occur when a graph 𝑔 ⊕ ([𝑔1] ⊗ [𝑔2]) is replaced by [𝑔 ⊕ (𝑔1 ⊗ 𝑔2)];
this corresponds to three heaps ℎ = A(𝑔), ℎ1 = A(𝑔1), and ℎ2 = A(𝑔2) being merged into a single
heap ℎ] ℎ1] ℎ2 = A(𝑔 ⊕ (𝑔1 ⊗ 𝑔2)). Finally, for each allocation, a leaf [𝑔] is replaced by some
[𝑔 ⊕ (Aℓ⇐𝑠)]. Since tasks store locally allocated data in their own heaps, this corresponds to
extending the heap A(𝑔) with a fresh location ℓ , forming a heap A(𝑔)] {ℓ} = A(𝑔 ⊕ (Aℓ⇐𝑠)).

48

4.3 Subtree Collection

We describe an algorithm called subtree collection, where a subtree consists of a heap and all
of its descendants. As the name suggests, subtree collections are localized to a subtree of the
heap hierarchy.

UtilizingDisentanglement. When performing collection on only a small region of themem-
ory graph, it is necessary to nd all incoming pointers (𝑥,𝑦) from live objects 𝑥 outside the
region to objects 𝑦 inside the region, so that the set of live objects inside the region can be de-
termined. In general however, knowing the set of live objects outside the region requires tracing
the entire memory graph, which defeats the goal of a localized collection (cheaper collection
with smaller scope). A common simplication made is to assume that all incoming pointers are
live, which makes it possible to perform collection locally without needing to trace the entire
memory graph (at the potential cost of preserving some dead objects). The idea is to explicitly
keep track of incoming pointers in a so-called remembered set. Then, when a garbage collection
begins, all incoming pointers are already known, and available to be used as additional roots.

In our case, disentanglement guarantees that all incoming pointers into a subtree are down-
pointers. This is because of Property 1 and the fact that any up-pointer into a subtree must have
originated from within the subtree. The fact that all incoming pointers into a subtree are down-
pointers has multiple benets. First, it means that in order to perform subtree collection, we
only need to remember down-pointers. But more importantly, it means that a subtree collection
only needs to access objects within or above the subtree. Since in a nested-parallel program,
all ancestor tasks are suspended, this results in independence of subtree collections, which in
turn enables a conceptually simple parallel garbage collection strategy: perform many disjoint
(non-overlapping) subtree collections simultaneously across the hierarchy.

Subtree Collection. Subtree collection primarily consists of a tracing phase which identi-
es the set of survivors 𝑆 within the subtree that are reachable from roots or down-pointers.
Any object which is not a survivor is garbage. We also describe an optional promotion phase
which eliminates down-pointers by copying data upwards in the hierarchy. Note that during
promotion, objects may be moved to dierent heaps, in which case an object that originally
was in-scope may become out-of-scope. In order to preserve disentanglement, objects are only
ever be moved upwards in the hierarchy.

We now describe the tracing and (optional) promotion phases in more detail.

4.3.1 Tracing Phase

Let𝑇 be the set of heaps that lie within a subtree. We say that an object 𝑥 is in-scope if𝐻 (𝑥) ∈ 𝑇 ;
otherwise, 𝑥 is out-of-scope. For the subtree 𝑇 , let 𝑅 be the set of roots, and let 𝐷 be the set of
down-pointers (𝑥,𝑦) where𝐻 (𝑥) ∉ 𝑇 and𝐻 (𝑦) ∈ 𝑇 . The additional roots due to down-pointers
are 𝑅𝐷 = {𝑦 | (𝑥,𝑦) ∈ 𝐷}.

The tracing phase begins with the initial set of survivors 𝑆 ← {𝑥 ∈ 𝑅 ∪ 𝑅𝐷 | 𝐻 (𝑥) ∈ 𝑇 }, i.e.
the set of in-scope roots. Tracing proceeds by performing the following:

49

1. Pick a pointer (𝑥,𝑦) where 𝑥 ∈ 𝑆 and 𝑦 ∉ 𝑆 and 𝐻 (𝑦) ∈ 𝑇 . (If there are no such pointers,
tracing is complete.)

2. Insert 𝑦 into 𝑆 .
3. Repeat.

Once tracing completes, the set 𝑆 contains all live in-scope objects. After tracing, subtree col-
lection completes by reclaiming the objects {𝑥 ∉ 𝑆 | 𝐻 (𝑥) ∈ 𝑇 }.

4.3.2 Optional Promotion Phase

The goal of promotion is to eliminate down-pointers by moving objects upwards in the hierar-
chy. Promotion is motivated by eciency: an object 𝑦 which is referenced by an out-of-scope
object 𝑥 cannot be reclaimed by a subtree collection. Taking inspiration from generational col-
lectors, rather than let such an object 𝑦 persist through multiple collections, we can instead
promote it to a higher heap which is collected less often. In this way, down-pointers are anal-
ogous to inter-generational pointers from old objects to young objects. By delaying the pro-
motion of objects until garbage collection, promotion becomes very cheap, as the promotion of
many objects can be batched and any performance artifacts of promotion can be hidden from
the mutator program.

If used, promotion occurs before the tracing phase begins. Promotion proceeds by perform-
ing the following.

1. Let 𝐷 be the set of candidate down-pointers (𝑥,𝑦) where 𝐻 (𝑥) ∉ 𝑇 and 𝐻 (𝑦) ∈ 𝑇 . (If
there are no such down-pointers, promotion is complete.)

2. Pick (𝑥,𝑦) ∈ 𝐷 where 𝐻 (𝑥) is shallowest amongst {𝐻 (𝑥′) | (𝑥′, 𝑦′) ∈ 𝐷}.
3. Promote 𝑦 by moving it to 𝐻 (𝑥). (This promotion may create new down-pointers, in-

cluding candidate down-pointers.)
4. Repeat.

Once promotion completes, there are no more down-pointers to in-scope objects from out-of-
scope objects. Note that it is possible for there to be new down-pointers from promoted objects
to out-of-scope objects, after promotion completes. However, promotion cannot create cross-
pointers, because it only moves objects upwards in the hierarchy.

The order in which promotion processes down-pointers is important for eciency: by op-
erating from top to bottom, we guarantee that each object is promoted at most once. In particu-
lar, in step 2 of the promotion phase, it is crucial that 𝐻 (𝑥) is shallowest amongst all candidate
down-pointers. This guarantees, in chains of down-pointers, that the objects in the chain are
promoted in order of shallowest to deepest. Otherwise, the deepest objects in the chain could
be promoted multiple times.

4.3.3 Example

An example subtree collection, both with and without the optional promotion phase, is shown
in Figure 4.3. In this example, there are ve heaps depicted as large rectangles, and the three
bottom-most heaps are in-scope for collection. The small squares are objects, the diamonds are
root objects, and the arrows are pointers between objects. During collection, if promotion is

50

…

…

…

…

B

A

Before
collection

After collection
(no promotion)

After collection
(with promotion)

A

B

…

…

B

A

C

Figure 4.3: Before and after an example subtree collection of the bottom-most three heaps, with
and without the optional promotion phase. The large rectangles are heaps, the squares are
objects, and the diamonds are root objects. Highlighted groups A and B are kept live due to
down-pointers. The group C is garbage and is reclaimed.

51

not used, then the highlighted groups of objects A and B are kept live due to down-pointers. If
promotion is used, then A and B are promoted to the topmost heap. The group C is garbage,
and is reclaimed.

4.3.4 Correctness

We now argue that subtree collection never reclaims an object that is reachable from the roots.
Consider some live object 𝑥 where initially𝐻 (𝑥) ∈ 𝑇 . There are two cases: either 𝑥 is promoted
to a heap outside the subtree, or it is not. In the former case, 𝑥 will not be reclaimed because
it becomes out-of-scope. In the latter case, consider that due to the lack of cross-pointers, after
promotion completes, we have the guarantee that every path in the memory graph which ends
at 𝑥 is entirely contained within the subtree. Because we assumed that 𝑥 is live, we know there
exists a particular path 𝑥1, . . . , 𝑥𝑛 where 𝑥1 is a root and 𝑥𝑛 = 𝑥 . This path ends at 𝑥 , and so
𝐻 (𝑥𝑖) ∈ 𝑇 for each 𝑖 . Since 𝐻 (𝑥1) ∈ 𝑇 and 𝑥1 is a root, we know that 𝑥1 ∈ 𝑆 initially in the
tracing phase. Therefore once tracing completes, we also know every 𝑥𝑖 ∈ 𝑆 (because the path
is contained within the subtree), including 𝑥 = 𝑥𝑛 ∈ 𝑆 . No objects in 𝑆 are reclaimed, so 𝑥 is not
reclaimed.

4.3.5 Independence of Subtree Collections

A subtree collection (consisting tracing together with an optional promotion phase) only ac-
cesses objects within the subtree or within ancestor heaps of the subtree, and furthermore only
moves objects that lie within the subtree. This means that any two disjoint subtrees—that is,
any two subtrees with no heaps in common—may be collected independently and in parallel,
because any shared ancestors are guaranteed to be outside the scope of both collections. One
subtlety is that two concurrent collections may promote two dierent objects into the same
shared ancestor heap at the same time, however this scenario does not harm independence,
because (a) insertions commute, and (b) neither collection will attempt to access the other’s
promoted objects. Subtree collections, in addition to being independent of other disjoint col-
lections, are also independent of the actions of concurrent tasks. That is, a subtree collection
may be performed locally upon the subtree without interrupting tasks that own heaps outside
the subtree.

4.4 Scheduling and Local Garbage Collection (LGC)

Scheduling Preliminaries. In our setting of nested fork-join parallelism, any at moment
during scheduling, each task can be classied as one of ready, active, suspended, or completed.
A task is ready if it is available to be scheduled on a processor, but is not currently being
executed. A task is active if it is currently being executed by a processor. A task is suspended
if it is waiting for child tasks to complete. And nally, a task is completed if it has no more
steps to take and has therefore terminated.

All computation occurs at active tasks. When an active task forks, it becomes suspended,
and two (ready, or active if immediately scheduled on a processor) children are created. When

52

both children have completed, their parent may then resume as a ready task (or active, if im-
mediately scheduled).

Local HeapAssignment. We now show how to assign heaps to processors based on the cur-
rent state of the tasks during scheduling. The resulting heap assignment is a valid partioning of
heaps into disjoint subtrees, each of which may be individually collected by a single processor
by performing a subtree collection. We refer to each such collection as a local garbage collec-
tion, or LGC for short. LGCs are a specialized form of subtree collection which is integrated
with scheduling. In an LGC, the subtree being collected always consists of heaps which are “lo-
cal” to a single processor. Specically, to perform an LGC, a processor only needs to interrupt
its current active task, and does not need to synchronize with any other active task assigned to
a dierent processor.

Our assignment of heaps for local garbage collections is straightforward. For each proces-
sor which is currently executing an active task 𝑡 , we assign that processor the largest subtree of
heaps which contains 𝑡 ’s heap but does not contain any heap of another active task. Any pro-
cessor can compute its own heap assignment with the following algorithm. Here we write 𝐻𝑡

for the heap corresponding to task 𝑡 . The algorithm computes a set𝑇 of heaps which constitute
the current heap assignment for a single processor.

1. Let 𝑡 be the current active task being executed by a processor.
2. Initialize 𝑇 ← {𝐻𝑡 }.
3. If 𝑡 is the root task, then we are done.
4. Otherwise, let 𝑝 be the (suspended) parent task of 𝑡 , and let 𝑠 be the sibling task of 𝑡 .
5. If 𝑠 is active or suspended, then we are done.
6. Otherwise (if 𝑠 is either ready or completed), then:

• Set 𝑇 ← 𝑇 ∪ 𝐻𝑝 ∪ 𝐻𝑠

• Set 𝑡 ← 𝑝

• Repeat from step 3.
Note that throughout the algorithm, 𝑇 always constitutes a valid subtree. When the algorithm
terminates,𝑇 corresponds to the largest subtree which contains the single active task assigned
to a processor.2 The subtree 𝑇 may then be garbage collected via our subtree collection algo-
rithm, and we call such a collection a local garbage collection.

Example. Figure 4.4 shows an example with two processors and two active tasks currently
being executed by those processors. The local scopes of each processor, as computed by the
above heap assignment, are highlighted.

2The subtree computed in this manner is largest only if every suspended task has at least one active descendant,
which is guaranteed for any non-preemptive scheduler.

53

active

ready

suspended

completed
P1

P2

Figure 4.4: Example heap assignments for local collections, with two processors (P1 and P2)
and two corresponding active tasks.

4.5 Concurrent Garbage Collection (CGC)

Local collections alone do not cover all heaps in the hierarchy. For example, in Figure 4.4, the
root of the hierarchy is not in scope of either collection. In general, shallow heaps (i.e., heaps
close to the root) may have multiple active descendants, and therefore will not be in-scope of
LGC. To collect such heaps, we present a concurrent garbage collection technique, called CGC,
for short.

CGCuses a non-moving concurrent tracing algorithm based on a snapshot-at-the-beginning
strategy [161], and is therefore able to collect any heap without pausing all of the heap’s active
descendant tasks. In contrast, although LGC only needs to pause a single active task, there are
potentially many ready (but not active) tasks in-scope of an LGC which must remain inactive
until LGC completes. This makes it possible for LGC to compact memory without needing to
worry about concurrent access from in-scope tasks. In this way, LGC and CGC are complemen-
tary: LGC oers fast parallel reclamation and compaction of new allocations near the leaves of
the hierarchy, while CGC oers reclamation within shallow heaps.

4.5.1 Primary Heaps and CGC-heaps

As a concurrent collection technique, we allow the program the continue execution concur-
rently with in-progress CGCs (of which there could be many proceeding in parallel throughout
the hierarchy). Specically, we schedule CGCs o the critical path, and do not require any
active tasks to wait for a CGC to complete.3 This presents a technical challenge: when two
completed parallel tasks join and their parent is ready to resume, the heap of the parent might
be currently undergoing a CGC, and therefore unavailable for fresh allocations.

To solve this challenge, we extend hierarchical memory management by distinguishing be-
tween two types of heaps: primary heaps, and CGC-heaps. Primary heaps may be used for
fresh allocations by active tasks (and alsomay be subjected to local garbage collections, by paus-
ing active tasks). In contrast, CGC-heaps do not permit additional allocation. Each CGC-heap

3From the perspective of a computation graph, a CGC can be modeled as a task which is forked but not joined.

54

AB

...

...
in-progress 

CGC
current 

leaf

P1P0

Before

AB...

...

fresh empty 
heap

ready 
for CGC

in-progress 
CGC

P1P0

After

Figure 4.5: Spawning a new CGC-task: processor P1 pushes heap A onto a CGC-chain and
continues with a fresh (primary) heap.

corresponds to a single in-progress CGC, and the contents of a CGC-heap constitute the scope
of the CGC. We associate each CGC-heap with a CGC-task, which is spawned and scheduled
similar to normal tasks, and is responsible for performing the CGC. We refer to normal tasks
as primary tasks to distinguish them from CGC-tasks.

4.5.2 CGC Chaining

In the heap hierarchy, CGC-heaps are distinguished from primary heaps by augmenting each
primary heap with a CGC-chain: a list of CGC-heaps that are either ready for CGC or are
currently undergoing CGC by another processor. That is, each primary heap has zero or more
CGC-heaps attached to it. Spawning a CGC-task creates a new CGC-heap and extends the
CGC-chain. As soon as all CGCs in a chain have completed, we merge all of these heaps back
into their corresponding primary heap.

SpawningCGC-tasks. Figure 4.5 illustrates how aCGC-task is spawned and the correspond-
ing CGC-chain is extended. In the gure, processor P1 has decided to spawn a CGC-task for
its current primary leaf heap, labeled A. The processor carries this out by pushing A onto the
local CGC-chain, spawning the CGC-task, and nally continuing with a fresh primary heap.
In this way, heap A becomes a CGC-heap, corresponding to a new CGC-task. The scheduler
may then assign the new CGC-task to a processor as it sees t. In the gure, we also show a
second processor P0 performing another CGC on a dierent CGC-heap (B), uninterrupted by
the newly spawned CGC-task.

Joining primary tasks. When two children complete and join with their parent task, there
may be non-empty CGC-chains (i.e., in-progress CGC-tasks) at the children, at the parent, or
both. There are two cases for joins, shown in Figure 4.6. Both cases consider joining child
primary heaps B and C into parent primary heap A.

In case 1, neither B nor C have any chained heaps, so the join is simple: we merge the two
child heaps (B and C) into the parent’s primary heap (A) and then resume the parent task.

In case 2, at least one child has a chained heap. In this case, we concatenate the chains, and
also push the parent heap (A) into the chain to the left of any chained heaps on B and C. When

55

A

...

B C

chA

chB chC

Case 2

chA A chB chC BC

A

...

B C

chA

Case 1

chA ABC

Figure 4.6: Two cases handling CGC-chains at joins. The rectangles are heaps, and the ovals
are chains containing one or more heaps. Primary heaps are shaded.

the parent heap A is pushed into the chain, we do not collect it; rather, we treat this heap as
though a collection has already nished on it.

The special handling of the parent heap in case 2 of Figure 4.6 ensures that immutable
pointers between objects are properly tracked. Specically, we ensure that immutable pointers
only point upward in the heap tree, or to the left in a CGC-chain. This invariant is necessary
for preserving the correctness of the snapshotting technique for CGCs. We discuss this in
more detail below: Section 4.5.3 describes pointer invariants, and Section 4.5.4 describes the
snapshotting and tracing algorithms for CGC.

4.5.3 Pointer Directions, Revisited

To establish invariants on the directions of pointers under CGC chaining, we extend our prior
classication of pointers with two additional classications: left and right pointers, which are
pointers between heaps within a CGC-chain. Note that under CGC chaining, the heap structure
is no longer a tree, and therefore the prior denitions for up, down, internal, and cross pointers
(Section 4.2) are not immediately applicable. We can recover the prior denitions by identifying
a representative heap for each object. The representative heap of an object is a primary heap;
note that the primary heaps alone form a rooted tree structure, and therefore can be used to
identify up, down, and cross-pointers.

Similar to before, wewrite𝐻 (𝑥) for the heap that contains an object 𝑥 , which could be either
a primary or a CGC-heap. We dene the representative heap of an object, denoted 𝑅𝐻 (𝑥), as
follows.

𝑅𝐻 (𝑥) ,
{
𝐻 (𝑥), if 𝐻 (𝑥) is a primary heap
ℎ, o.w., where ℎ is the primary heap of the CGC chain containing 𝐻 (𝑥)

We then classify a pointer from 𝑥 to 𝑦 as follows.
• internal pointer, if 𝐻 (𝑥) = 𝐻 (𝑦);

56

• up-pointer, if 𝑅𝐻 (𝑥) is a descendant of 𝑅𝐻 (𝑦).
• down-pointer, if 𝑅𝐻 (𝑥) is an ancestor of 𝑅𝐻 (𝑦).
• cross-pointer, if neither 𝑅𝐻 (𝑥) nor 𝑅𝐻 (𝑦) is an ancestor of the other.
• le-pointer, if 𝐻 (𝑥) and 𝐻 (𝑦) lie in the same chain (i.e. 𝑅𝐻 (𝑥) = 𝑅𝐻 (𝑦)) and 𝐻 (𝑦) is to
the left of 𝐻 (𝑥) in the chain.

• right-pointer, if 𝐻 (𝑥) and 𝐻 (𝑦) lie in the same chain (i.e. 𝑅𝐻 (𝑥) = 𝑅𝐻 (𝑦)) and 𝐻 (𝑦) is
to the right of 𝐻 (𝑥) in the chain.

The rst four (internal, up, down, and cross) are identical to before, but now appropriately
rephrased in terms of primary and CGC-heaps. The two new classications are left- and right-
pointers, which lie within a chain.

Pointer invariants, revisited. All immutable pointers are either internal, up, or left-pointers.
In this way, left-pointers are analogous to up-pointers. Right-pointers are analogous to down-
pointers: to create a right-pointer from 𝑥 to 𝑦, the object 𝑥 has to mutable, and there must have
been an in-place update of 𝑥 to point to 𝑦.

Invariants are preserved by joins. Inspecting Figure 4.6 more closely, we see that the two
cases correctly preserve these invariants. In particular, after a join, a down-pointer becomes
either internal or a right-pointer. Similarly, a join may cause an up-pointer to become either an
internal or a left-pointer.

4.5.4 CGC Snapshotting and Tracing

To trace memory and collect garbage, just like any collection algorithm, CGC requires a (po-
tentially conservative) set of roots. Here, we use a SATB (i.e. snapshot-at-the-beginning [161])
collection algorithm. At the time a CGC-task is spawned, we record the current root set of the
current active primary task; these are called the snapshotted roots. Then, we rely on a SATB
write barrier to additionally remember any object which becomes unreachable due to an in-
place update by an active primary task. The only remaining additional roots needed are those
corresponding to down-pointers and right-pointers; these are remembered explicitly. Note that
any incoming left-pointers and up-pointers are covered by the snapshot.

Tracing. For a CGC-heap ℎ, let 𝑅ℎ be the set of snapshotted roots of the heap, and let 𝐷ℎ

be the set of down- and right-pointers (𝑥,𝑦) where 𝐻 (𝑥) ≠ ℎ and 𝐻 (𝑦) = ℎ. The additional
roots due to down- and right-pointers are 𝑅𝐷ℎ = {𝑦 | (𝑥,𝑦) ∈ 𝐷ℎ}. The CGC tracing algorithm
begins with the initial set of survivors 𝑆ℎ ← 𝑅ℎ ∪ 𝑅𝐷ℎ . Tracing proceeds as follows.

1. Pick a pointer (𝑥,𝑦) where 𝑥 ∈ 𝑆ℎ and𝑦 ∉ 𝑆ℎ and𝐻 (𝑦) = ℎ. (If there are no such pointers,
tracing is complete.)

2. Insert 𝑦 into 𝑆ℎ .
3. Repeat.

When tracing completes, the set 𝑆ℎ contains all live in-scope objects. After tracing, CGC com-
pletes by reclaiming the objects {𝑥 ∈ ℎ | 𝑥 ∉ 𝑆ℎ}.

57

SATB write barrier. Here, we assume that the SATB write-barrier (executed by concurrent
primary tasks) inserts objects directly into CGC survivor sets before any pointer is overwritten.
In particular, consider an in-place update of an object 𝑥 which is about to overwrite the pointer
(𝑥,𝑦). The SATB write-barrier checks if 𝐻 (𝑥) is a CGC-heap, and also if 𝐻 (𝑥) = 𝐻 (𝑦). If both
conditions hold, then the write-barrier inserts 𝑦 into 𝑆𝐻 (𝑥) , i.e., the current CGC survivor set of
the CGC-heap 𝐻 (𝑥). This will cause the CGC tracing procedure to trace 𝑦 as well as all objects
reachable from 𝑦 within heap 𝐻 (𝑥).

In Section 6.7, we describe the SATB write-barrier in more detail, especially in regards to
managing the concurrency between the CGC-task and the write-barrier. For the algorithm
above, it suces to assume that the write-barrier executes atomically with respect to one step
of tracing.

4.5.5 CGC Scheduling

By placing CGCs o the critical path, we ensure that the work of CGC does not interfere with
parallelism. However, because CGC-tasks are placed o the critical path, it is possible that the
scheduler will accidentally ignore CGC-tasks, leading to an unbounded delay in collection. To
ensure this does not occur, we propose a mild prioritization of CGC-tasks in the scheduler as
follows. Immediately after each join (where two child heaps are merged into a parent heap
and the primary parent task is resumed), the scheduler checks if there is CGC-task available
to be scheduled in the CGC-chain of the parent. If there is, then the scheduler immediately
schedules the CGC-task on a processor; otherwise, the scheduler continues as normal. This
approach ensures that the responsiveness of CGC-tasks is bounded.

4.6 Collection Policy

Utilizing LGC and CGC techniques, any heap in the hierarchy can be collected independently,
and individual garbage collections can proceed concurrently with—and in parallel with—other
parallel tasks and garbage collections elsewhere in the heap hierarchy. In this way, LGC and
CGC can be seen as building blocks which can be used and adapted for a variety of garbage
collection policies.

For our implementation in Chapter 6, we describe a specic policy which is provably work-
ecient, and which utilizes both LGC (on the critical path) and CGC (o the critical path). This
policy is described in detail in Section 6.7.3, where we also analyze its work-eciency. We also
note that, based on the work in this thesis, Arora et al. [18] developed a collection policy which
is provably ecient in terms of both work- and space-bounds. One limitation of that work,
however, is that it eectively places CGC on the critical path, which increases the span, a.k.a.,
critical path length. In future work, we aim to design a garbage collection policy which oers
simultaneous guarantees for work, space, and span.

58

Chapter 5

Entanglement Detection

In the presence of entanglement, the garbage collection techniques of Chapter 4 might reclaim
an object incorrectly by missing a cross-pointer. To avoid this unsafe behavior, we enforce
disentanglement with a dynamic approach, where individual memory accesses are monitored
during execution, and if entanglement is detected, then the program is (safely) terminated. This
allows for all disentangled programs to run to completion, including those that are eectful
and/or non-deterministic. We make these guarantees precise by formulating soundness and
completeness properties (Theorems 2 and 3). Roughly speaking, soundness (a.k.a. “no missed
alarms”) says that if entanglement is not detected, then the execution is disentangled; similarly,
completeness (a.k.a. “no false alarms”) says that if execution is disentangled, then entanglement
is not detected.

It is important to note that, as a dynamic approach, entanglement detection is execution-
dependent. If an execution of a program exhibits entanglement, then we detect the entangle-
ment and terminate. But on the exact same program—even on the same input—it is possible that
a dierent execution might not exhibit entanglement, in which case we allow the execution to
complete. This is possible because the outcome of a race condition might determine whether
or not entanglement occurs during execution. Therefore, although our approach handles en-
tanglement safely, a shortcoming is that we cannot prevent the possibility of entanglement. An
important problem for future work is to give good diagnostics when entanglement is detected,
to facilitate debugging.

Because entanglement detection occurs dynamically and aects runtime performance, it
is essential that it can be made ecient and scalable. Our approach takes inspiration from
a long line of work on dynamic race detection for parallel programs [24, 50, 63, 64, 104, 122,
123, 151, 157]. While race detection remains expensive in practice (with overheads exceeding
an order of magnitude for sequential runs, e.g., [151, 157]), we show that entanglement can
be detected dynamically on-the-y with close to zero overhead in practice. This is due to a
number of dierences between data races and entanglement; for example, unlike typical race
detectors, our entanglement detector does not need to maintain an “access history” for each
individual memory location. We defer a more detailed discussion of dierences between the
two techniques to Section 9.2.

59

5.1 Overview

We begin by considering a language with (nested) fork-join parallelism and mutable references,
and present a dynamic semantics that checks for entanglement by monitoring accesses to ref-
erences (mutable objects) only. The dynamic semantics constructs a computation graph of the
execution that represents the parallel tasks and their dependencies in terms of fork and join
edges. To detect entanglement, the semantics checks that each object accessed is allocated by
a task that precedes the current task in the computation graph.

We prove soundness and completeness for the semantics (Theorems 2 and 3), thereby es-
tablishing that to detect entanglement, it suces to track operations on mutable objects. No-
tably, the semantics incurs no “overhead” for immutable data, even when such data is reachable
through a mutable object. Because the only operations monitored by the semantics are deref-
erences, we are able to prove that the work overhead of entanglement detection is proportional
to the number of dereference operations.

For entanglement checks, the semantics associates each allocated object with a vertex in
the computation graph. Naïvely, this would require 𝑂 (𝑁) additional space for 𝑁 heap objects,
to store one vertex identier per object. To reduce this space cost, we show how to group allo-
cations by sharing a single vertex identier amongst many objects allocated by the same task.
This reduces the additional space cost from 𝑂 (𝑁) down to approximately 𝑂 (min(𝑁,𝑀/𝐵)),
where 𝑀 is the total size of memory and 𝐵 is a chunking factor. The quantity 𝑀/𝐵 therefore
represents the number of “heap chunks” used to store objects, which is typically much smaller
than 𝑁 in practice.

Our semantics paves the way for an implementation, albeit an inecient one. The idea is to
represent the computation graph using a well-known “series-parallel order maintenance” data
structure for checking the precedence relation needed for entanglement checks. Series-parallel
order maintenance, or SP-order maintenance for short, is well-studied in the race detection lit-
erature and many solutions can achieve eciency and scalability [24, 50, 63, 64, 104, 122, 123,
151, 157]. In practice, however, the constant factors for precedence queries are signicant: we
completed such a direct implementation andmeasured that it can incur as much as 2x overhead,
primarily due to the cost of precedence queries.

As a nal step, we optimize away many of the SP-order maintanence operations by ob-
serving that typically, only a small number of mutable objects can lead to entanglement at any
moment. We refer to such objects as entanglement candidates. Throughout execution, we ex-
plicitly track the set of candidates and only perform graph queries on these objects; all queries
on others are pruned away. We prove that this optimization does not lead to an asymptotic
impact on our bounds in the worst case, and show empirically that it can dramatically improve
eciency and scalability by eliminating many SP-order maintenance operations.

5.2 Entanglement and Determinacy Races

In a disentangled program, tasks are not permitted to become entangled: no task is allowed to
obtain a pointer to an object that was allocated by a concurrent task. Entanglement is always
caused by a determinacy race (Theorem 1). However, as we discussed previously in Section 2.3,

60

1 // initialize strings 𝐴[𝑖 .. 𝑗] (exclusive at 𝑗)
2 fun init(𝐴: string array, 𝑖: int, 𝑗: int) =

3 if 𝑗 − 𝑖 = 0 then () else

4 if 𝑗 − 𝑖 = 1 then 𝐴[𝑖] := Int.toString 𝑖 else

5 let val 𝑚 = b(𝑖 + 𝑗)/2c
6 in (init(𝐴, 𝑖,𝑚) ‖ init(𝐴,𝑚, 𝑗)); ()
7 end

8
9 val 𝐴 = Array.allocate 3
10 val _ = init(𝐴, 0, 3)
11 val (𝑥,𝑦) = (𝐴[0] ^ 𝐴[2] ‖ 𝐴[1] ^ 𝐴[2])
12 val _ = print (𝑥 ^ 𝑦)

Figure 5.1: Example disentangled program.

some determinacy races are compatible with disentanglement. In particular, when all commu-
nication utilizes only pre-allocated memory (i.e. memory allocated by common ancestors in the
fork-join task tree), then disentanglement is still guaranteed. This allows determinacy races to
be utilized in a disentangled manner, which can be useful for eciency in practice.

Figure 5.1 presents an example of a small program that, as presented, is disentangled. We
then consider multiple variations on the example which create dierent combinations of deter-
minacy races and (dis)entanglement. Our goal here is to illustrate the nuances of disentangle-
ment, including its interaction with determinacy races, which can be tricky to reason about.

The code in Figure 5.1 operates on an array of strings, where each string is heap-allocated
and immutable. We write (𝑒1 ‖ 𝑒2) to execute 𝑒1 and 𝑒2 in parallel, wait for both to complete,
and return their results as a tuple. The operation ^ denotes string concatenation.

The example denes a function init (lines 2-7) which in parallel initializes an array 𝐴 be-
tween two indices 𝑖 and 𝑗 by storing a freshly allocated string at each index. On line 10, the
example calls init on an array of size 3, which results in contents ["0","1","2"]. It then in
parallel concatenates a few elements of the array, resulting in 𝑥 ="02" and 𝑦 ="12" (line 11).
Finally, it concatenates 𝑥 and 𝑦 and prints out "0212" (line 12). As written, the code is free of
determinacy races.

Example: race-free and disentangled. As presented in Figure 5.1, this code is disentangled.
There are multiple ways we could go about showing this. One way is to observe that the code
is determinacy-race-free, which ensures disentanglement (Theorem 1). Another approach is to
consider all of the allocations that occur in the computation, and where each allocated objects
is used. The allocations of this computation include: the array𝐴, the three strings stored in the
array (at each𝐴[𝑖]), and the two strings allocated in parallel on line 11. The array𝐴 is allocated
before everything else in the computation, so it is always safe to use. The strings stored in
the array are allocated by the calls init(0, 1), init(1, 2), and init(2, 3) which are respectively
performed by three parallel tasks. These tasks perform no reads on the array and only update
disjoint indices, so none of them acquires a cross-reference. Next, on line 11, the three strings
within𝐴 are used, but this is safe, because all tasks from within the call to init on the previous

61

Variables 𝑥, 𝑓

Numbers 𝑛 ∈ N
Memory Locations ℓ

Types 𝜏 ::= nat | 𝜏 × 𝜏 | 𝜏→𝜏 | 𝜏 ref
Storable Values 𝑠 ::= 𝑛 | fun 𝑓 𝑥 is 𝑒 | 〈ℓ, ℓ〉 | ref ℓ

Expressions 𝑒 ::= ℓ | 𝑠 | 𝑥 | 𝑒 𝑒 | 〈𝑒, 𝑒〉 | fst 𝑒 | snd 𝑒 | ref 𝑒 | ! 𝑒 | 𝑒 := 𝑒 | 〈𝑒 ‖ 𝑒〉
Memory 𝜇 ∈ Locations ⇀ Storable Values

Allocation Map 𝛼 ∈ Locations ⇀ Vertices
Task Tree 𝑇 ::= Leaf(𝑣) | Par(𝑣,𝑇 ,𝑇)
Vertices 𝑢, 𝑣,𝑤

Computation Graphs 𝐺

Program State 𝑆 ::= (𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒) | ERROR(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒)

Figure 5.2: Syntax

line are guaranteed to complete before line 11. Similarly, line 12 is permitted to use the two
strings allocated on line 11 for the same reason.

Example: racy and disentangled. It is possible to change Figure 5.1 so that the program
has a determinacy race but is still disentangled. In particular, consider replacing line 11 with
the following.

val ((𝑥,𝑦), _) = ((𝐴[0] ^ 𝐴[2] ‖ 𝐴[1] ^ 𝐴[2]) ‖ 𝐴[2] := 𝐴[0])

This code has a race which causes the reads at𝐴[2] to return either "0" or "2". Nevertheless, it
is disentangled, because both of these strings were allocated by preceding tasks (namely, from
within the call to init, which completes before line 11 begins).

Example: racy and entangled. It is also possible to change Figure 5.1 so that the program
is entangled due to a determinacy race. Consider replacing line 11 with the following (where
the intent is that the string "!" is allocated dynamically).

val ((𝑥,𝑦), _) = ((𝐴[0] ^ 𝐴[2] ‖ 𝐴[1] ^ 𝐴[2]) ‖ 𝐴[2] := “!”)

This introduces a third task which allocates a string "!" and writes it at 𝐴[2], causing a deter-
minacy race: in some executions 𝑥 will be "02" but in others it will be "0!" (and similarly for𝑦).
This change makes the program entangled, because the tasks which read the contents of 𝐴[2]
might obtain a pointer to the string "!", which is allocated by a concurrent task.

5.3 Language and Graph Semantics

At a high level, the idea for entanglement detection is to only check dereferences of mutable
data (i.e., ref cells). We present the detection algorithm by embedding it in the operational
semantics of a small ML-like language with (nested) fork-join parallelism, mutable references,

62

Execution with Entanglement Detection 𝑆 ↦−→ 𝑆′

ℓ ∉ dom(𝜇)
(𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; 𝑠) ↦−→ (𝜇 [ℓ ↩→𝑠] ; 𝛼 [ℓ ↩→𝑣] ;𝐺 ; Leaf(𝑣) ; ℓ)

Alloc

𝜇 (ℓ1) = fun 𝑓 𝑥 is 𝑒

(𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; ℓ1 ℓ2) ↦−→ (𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; [ℓ1, ℓ2 / 𝑓 , 𝑥]𝑒)
App

𝜇 (ℓ) = 〈ℓ1, ℓ2〉
(𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; fst ℓ) ↦−→ (𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; ℓ1)

Fst

𝜇 (ℓ) = 〈ℓ1, ℓ2〉
(𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; snd ℓ) ↦−→ (𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; ℓ2)

Snd

𝜇 (ℓ) = ref ℓ′ 𝛼 (ℓ′) 4𝐺 𝑣

(𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; ! ℓ) ↦−→ (𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; ℓ′)
Bang-Pass

𝜇 (ℓ) = ref ℓ′ 𝛼 (ℓ′) $𝐺 𝑣

(𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; ! ℓ) ↦−→ ERROR(𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; ℓ′)
Bang-Detect

(𝜇 [ℓ1 ↩→ ref _] ; 𝛼 ;𝐺 ; Leaf(𝑣) ; ℓ1 := ℓ2) ↦−→ (𝜇 [ℓ1 ↩→ ref ℓ2] ; 𝛼 ;𝐺 ; Leaf(𝑣) ; ℓ2)
Upd

𝑣,𝑤 ∉ Vertices(𝐺) 𝐺′ = fork(𝐺,𝑢, 𝑣,𝑤)
(𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑢) ; 〈𝑒1 ‖ 𝑒2〉) ↦−→ (𝜇 ; 𝛼 ;𝐺′ ; Par(𝑢, Leaf(𝑣), Leaf(𝑤)) ; 〈𝑒1 ‖ 𝑒2〉)

Fork

𝑤 ∉ vertices(𝐺) 𝐺′ = join(𝐺,𝑢, 𝑣,𝑤)
(𝜇 ; 𝛼 ;𝐺 ; Par(_, Leaf(𝑢), Leaf(𝑣)) ; 〈ℓ1 ‖ ℓ2〉) ↦−→ (𝜇 ; 𝛼 ;𝐺′ ; Leaf(𝑤) ; 〈ℓ1, ℓ2〉)

Join

(𝜇 ; 𝛼 ;𝐺 ;𝑇1 ; 𝑒1) ↦−→ (𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′1 ; 𝑒′1)
(𝜇 ; 𝛼 ;𝐺 ; Par(𝑣,𝑇1,𝑇2) ; 〈𝑒1 ‖ 𝑒2〉) ↦−→ (𝜇′ ; 𝛼′ ;𝐺′ ; Par(𝑣,𝑇 ′1,𝑇2) ; 〈𝑒′1 ‖ 𝑒2〉)

ParL

(𝜇 ; 𝛼 ;𝐺 ;𝑇2 ; 𝑒2) ↦−→ (𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′2 ; 𝑒′2)
(𝜇 ; 𝛼 ;𝐺 ; Par(𝑣,𝑇1,𝑇2) ; 〈𝑒1 ‖ 𝑒2〉) ↦−→ (𝜇′ ; 𝛼′ ;𝐺′ ; Par(𝑣,𝑇1,𝑇 ′2) ; 〈𝑒1 ‖ 𝑒′2〉)

ParR

Figure 5.3: Execution with entanglement detection (main computation steps).

63

Execution with Entanglement Detection (cont.) 𝑆 ↦−→ 𝑆′

(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒1) ↦−→ (𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′1)
(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒1 𝑒2) ↦−→ (𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′1 𝑒2)

App-SL

(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒1) ↦−→ ERROR(𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′1)
(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒1 𝑒2) ↦−→ ERROR(𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′1 𝑒2)

App-SLE

(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒2) ↦−→ (𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′2)
(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; ℓ1 𝑒2) ↦−→ (𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; ℓ1 𝑒′2)

App-SR

(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒2) ↦−→ ERROR(𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′2)
(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; ℓ1 𝑒2) ↦−→ ERROR(𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; ℓ1 𝑒′2)

App-SRE

... and similarly for pairs (Pair-SL, Pair-SR, Pair-SLE, Pair-SRE) and updates
(Upd-SL, Upd-SR, Upd-SLE, Upd-SRE)

(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒) ↦−→ (𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′)
(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; fst 𝑒) ↦−→ (𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; fst 𝑒′)

Fst-S

(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒) ↦−→ ERROR(𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′)
(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; fst 𝑒) ↦−→ ERROR(𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; fst 𝑒′)

Fst-SE

... and similarly for second projection (Snd-S, Snd-SE), refs (Ref-S, Ref-SE),
and dereferences (Bang-S, Bang-SE).

(𝜇 ; 𝛼 ;𝐺 ;𝑇1 ; 𝑒1) ↦−→ ERROR(𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′1 ; 𝑒′1)
(𝜇 ; 𝛼 ;𝐺 ; Par(𝑣,𝑇1,𝑇2) ; 〈𝑒1 ‖ 𝑒2〉) ↦−→ ERROR(𝜇′ ; 𝛼′ ;𝐺′ ; Par(𝑣,𝑇 ′1,𝑇2) ; 〈𝑒′1 ‖ 𝑒2〉)

ParLE

... and similarly for par-right step (ParRE).

Figure 5.4: Execution with entanglement detection (administrative rules).

64

G
u

v w

fork(G, u, v, w)

G
u v

w

join(G, u, v, w)

Figure 5.5: Functions fork and
join on computation graphs.

vertex

task

checkA[0]:=“0” A[1]:=“1” A[2]:=“2”

A[0]^A[2] A[1]^A[2]

Figure 5.6: Example dag and entanglement checks for the
disentangled program in Figure 5.1.

and a shared memory. This language is similar to that of Chapter 3: it has identical expressions
and values, and it similarly maintains a dynamic task tree and constructs a computation graph.
The computation graph is used in this setting to check for entanglement.

The syntax of the language is shown in Figure 5.2, and the dynamics are given in Figure 3.3.
The operational semantics is a small-step semantics of the form 𝑆 ↦−→ 𝑆′where a single program
state consists of ve components: a memory 𝜇, an allocation map 𝛼 , a computation graph 𝐺 , a
task tree𝑇 , and an expression 𝑒 . There is also an explicit error state, written ERROR(𝜇 ;𝛼 ;𝐺 ;𝑇 ;𝑒),
which indicates when entanglement has been detected (see Section 5.3.2). Computation graphs
and task trees are discussed in Section 5.3.1. The allocation map 𝛼 is used for detection, and is
discussed in Section 5.3.2. The memory 𝜇 is used to map memory locations to their contents.
An explicit allocation step (rule Alloc) extends the memory 𝜇, producing 𝜇 [ℓ ↩→𝑠] where ℓ is
a fresh location and 𝑠 is the contents of that location. In this way, storable values always “take
one more step”. Memory locations are the only irreducible term of the language.

5.3.1 Parallelism, Task Trees, and Computation Graphs (Dags)

Similar to Chapter 3, the language here supports nested fork-join parallelism with a “parallel
tuple” expression 〈𝑒1 ‖ 𝑒2〉, which runs 𝑒1 and 𝑒2 in parallel, waits for both to complete, and
nally evaluates to a tuple of their results. To identify which parallel tuples are currently being
evaluated, the semantics maintains a task tree 𝑇 , which can either be a leaf of the form Leaf(𝑣),
or an internal “par” node denoted Par(𝑣,𝑇1,𝑇2). The elements 𝑣 stored in the task tree are
vertices for the computation graph, described below.

In rule Fork, a parallel tuple begins execution by transitioning from a leaf in the task tree
to a par-node, with two leaves as children. Then, steps may occur either on the left or the
right non-deterministically via rules ParL and ParR. Eventually, when both child tasks have
completed, rule Join transitions back to a leaf in the task tree (resuming the execution of the
parent task) and converts the parallel tuple to a standard tuple.

65

Computation Graphs (Dags). Throughout execution, the semantics maintains a directed,
acyclic graph (a.k.a., dag) which summarizes the execution and is used to check for entangle-
ment. Dags are extended at each fork and join using a “current vertex” stored in the task tree.
In rule Forkwhere a leaf task currently has vertex𝑢, the function fork(𝐺,𝑢, 𝑣,𝑤) extends graph
𝐺 with two new vertices 𝑣 and𝑤 for the child tasks, and two edges (𝑢, 𝑣) and (𝑢,𝑤), indicating
that the children began executing after vertex 𝑢. Symmetrically, in rule Join where two leaf
siblings have currently have vertices 𝑢 and 𝑣 , the function join(𝐺,𝑢, 𝑣,𝑤) extends graph𝐺 with
one new vertex 𝑤 and edges (𝑢,𝑤) and (𝑣,𝑤), indicating that the continuation (at 𝑤) began
executing after the children completed. This maintenance of graphs is illustrated in Figure 5.5.

In a dag 𝐺 , we say that vertex 𝑢 precedes vertex 𝑣 , denoted 𝑢 4𝐺 𝑣 , if there exists a path in
the dag from 𝑢 to 𝑣 . Note that 4 is a partial order. For any pair of vertices 𝑢 and 𝑣 , if 𝑢 $𝐺 𝑣

and also 𝑣 $𝐺 𝑢, then we say that 𝑢 and 𝑣 are concurrent.

Relationship with Chapter 3. The presentation of task trees and computation graphs in
this chapter is similar to that of Chapter 3, but diers slightly. In Chapter 3, the notion of an
open computation graph encodes both the task tree and the dag simultaneously, in the same
structure. Here, we instead choose to separate the two. We leave the implementation of the
computation graph abstract, and rely on abstract queries of the form 𝑢 4𝐺 𝑣 on dags 𝐺 . This
is intentional: the implementation of the computation graph will ultimately be handled by an
SP-order maintenace structure (see Section 6.8) which allows for ecient updates and queries on
the graph. Our detection algorithm is agnostic to the implementation details of computation
graphs and queries, and therefore we choose to leave the computation graph abstract. This
approach also elucidates the overhead of entanglement detection, by making graph queries
explicit in the semantics.

5.3.2 Entanglement Detection

Entanglement occurs when a task acquires a memory location that was allocated by a concur-
rent task. To detect entanglement, the semantics tags each memory location ℓ with a vertex
𝛼 (ℓ), indicating where in the computation the location was allocated. This occurs in rule Al-
loc, where both the memory 𝜇 and the map 𝛼 are extended with the new location (guaranteeing
dom(𝜇) = dom(𝛼)). When dereferencing a mutable reference, we check for entanglement by
inspecting the result of the read. Specically, when a read at location ℓ returns some other loca-
tion ℓ′, we compare 𝛼 (ℓ′) against the current vertex 𝑣 . If 𝛼 (ℓ′) 4𝐺 𝑣 , then this access is safe for
disentanglement and the execution may proceed with rule Bang-Pass. However, if 𝛼 (ℓ′) $𝐺 𝑣 ,
then we have detected entanglement (rule Bang-Detect).

In short, entanglement is detected whenever rule Bang-Detect is used during execution,
which results in a stuck program state: any state of the form ERROR(𝜇 ; 𝛼 ; 𝐺 ; 𝑇 ; 𝑒) cannot
step. In this way, the semantics terminates an execution as soon as entanglement is detected.
All other steps allow the computation to proceed as normal.

Note that immutable reads are never checked. For example, in rule Fst, we could have
included 𝛼 (ℓ1) 4𝐺 𝑣 as one of the premises, but it is intentionally left out. This is because,
as we will discuss more carefully in Section 5.4, reads of immutable data are always safe for
disentanglement.

66

5.3.3 Example Revisited

The dag in Figure 5.6 summarizes the execution of the example program from Figure 5.1. Each
black circle is a vertex, and the solid black edges (implicitly pointing down) are execution de-
pendencies between vertices. The tasks of the computation are illustrated as shaded gray boxes,
such that at anymoment throughout execution, the nesting of the shaded gray boxes represents
the task tree. We draw red, curved arrows to summarize where entanglement checks occur. A
red curved arrow from𝑢 to 𝑣 indicates that a mutable dereference was performed at 𝑣 , returning
some object allocated at 𝑢. The intent here is that arrays operate analogously to mutable refer-
ences: indexing into an array checks the resulting object for entanglement in the same manner
as rules Bang-Pass and Bang-Detect of the semantics. For example, reading 𝐴[0] and 𝐴[2]
(Figure 5.1, line 11) discovers the strings "0" and "2" which are checked to ensure both were
allocated previously in the computation (i.e. not by a concurrent task). The example program
is disentangled, and indeed in Figure 5.6 we see that entanglement is never detected, because
for every red curved edge from 𝑢 to 𝑣 , there is a path 𝑢 4 𝑣 in the dag.

5.4 Soundness and Completeness

In our approach, entanglement is considered to have been detectedwhenever ruleBang-Detect
is used in an execution. In this setting, soundness can be stated as a preservation property for
disentanglement, i.e., that steps taken without detecting entanglement preserve disentangle-
ment. Similarly, completeness is the property that, if disentanglement is preserved by a step,
then entanglement is not detected. In other words, soundness is “no missed alarms”, and com-
pleteness is “no false alarms”.

The disentanglement invariant, written 𝑆 de, is dened in Figure 5.7.1 It consists of two
components: root disentanglement and memory disentanglement.

The root disentanglement judgement, written 𝛼 ;𝐺 ;𝑇 ; 𝑒 rootsde, establishes that each
task only currently uses locations allocated at or before its associated vertex. We state this
formally in terms of locs(𝑒), the set of locations mentioned directly by an expression, dened
in the natural way: for example, locs(𝑒1 𝑒2) = locs(𝑒1) ∪ locs(𝑒2) and locs(ℓ) = {ℓ}. The
judgement 𝛼 ;𝐺 ;𝑇 ; 𝑒 rootsde is then established inductively on both the structure of 𝑒 and
the task tree 𝑇 , where the task tree is used to delimit each task. Observe for example that at
each leaf task, we have ∀ℓ ∈ locs(𝑒). 𝛼 (ℓ) 4𝐺 𝑣 , i.e. that every location ℓ which is mentioned
by the expression was allocated before the current vertex 𝑣 in the computation.

Thememory disentanglement judgement, written 𝜇 ; 𝛼 ;𝐺 memde, establishes that each
immutable location of the memory only points “backwards” in the computation. For example,
if ℓ stores the tuple 〈ℓ1, ℓ2〉 then 𝛼 (ℓ1) 4𝐺 𝛼 (ℓ) and similarly for ℓ2. Thus, if it is safe to access ℓ
then it is similarly safe to access the contents of ℓ . This formalizes our intuition that immutable
data is always safe for disentanglement. In contrast, if ℓ stores a mutable reference ref ℓ′, then ℓ′
might have been written there by a concurrent task, hence why rule Bang-Pass and rule Bang-
Detect need to check this explicitly.

1The denition here is similar to the disentanglement denitions of Chapter 3, but now appropriately rephrased
in terms of abstract computation graphs and explicit task trees.

67

Disentanglement 𝑆 de

𝜇 ; 𝛼 ;𝐺 memde 𝛼 ;𝐺 ;𝑇 ; 𝑒 rootsde

(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒) de

𝜇 ; 𝛼 ;𝐺 memde 𝛼 ;𝐺 ;𝑇 ; 𝑒 rootsde

ERROR(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒) de

Memory Disentanglement 𝜇 ; 𝛼 ;𝐺 memde

∀ℓ ∈ imm(𝜇). ∀ℓ′ ∈ locs(𝜇 (ℓ)) . 𝛼 (ℓ′) 4𝐺 𝛼 (ℓ)
𝜇 ; 𝛼 ;𝐺 memde

imm(𝜇) , {ℓ ∈ dom(𝜇) | 𝜇 (ℓ) ≠ ref _}

Root Disentanglement 𝛼 ;𝐺 ;𝑇 ; 𝑒 rootsde

∀ℓ ∈ locs(𝑒). 𝛼 (ℓ) 4𝐺 𝑣

𝛼 ;𝐺 ; Leaf(𝑣) ; 𝑒 rootsde

𝛼 ;𝐺 ;𝑇1 ; 𝑒1 rootsde 𝛼 ;𝐺 ;𝑇2 ; 𝑒2 rootsde

𝛼 ;𝐺 ; Par(𝑣,𝑇1,𝑇2) ; 〈𝑒1 ‖ 𝑒2〉 rootsde

𝛼 ;𝐺 ; Par(𝑣,𝑇1,𝑇2) ; 𝑒 rootsde

𝛼 ;𝐺 ; Par(𝑣,𝑇1,𝑇2) ; (fst 𝑒) rootsde

}
...similarly for (snd 𝑒), (ref 𝑒), and (! 𝑒)

¬(𝑒1 loc)
𝛼 ;𝐺 ; Par(𝑣,𝑇1,𝑇2) ; 𝑒1 rootsde ∀ℓ ∈ locs(𝑒2). 𝛼 (ℓ) 4𝐺 𝑣

𝛼 ;𝐺 ; Par(𝑣,𝑇1,𝑇2) ; (𝑒1 𝑒2) rootsde

𝛼 (ℓ1) 4𝐺 𝑣 𝛼 ;𝐺 ; Par(𝑣,𝑇1,𝑇2) ; 𝑒2 rootsde

𝛼 ;𝐺 ; Par(𝑣,𝑇1,𝑇2) ; (ℓ1 𝑒2) rootsde

...similarly for 〈𝑒1, 𝑒2〉
and (𝑒1 := 𝑒2)

Figure 5.7: Single-step disentanglement invariant, consisting of memory property for all im-
mutable locations, and disentanglement property for all program “roots”.

68

Note that 𝑆 de is dened for both regular program states as well as ERROR states. This
makes it possible to identify any state as disentangled, regardless of whether or not the dy-
namic semantics claims to have detected entanglement, which is key to the statement of the
completeness theorem, below.

To state soundness and completeness, we identify “no-error” program states, which are
those in which the dynamic semantics has not detected entanglement.

(𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒) noerror

The soundness and completeness theorems (Theorems 2 and 3) are then given in terms of
single steps. Roughly speaking, soundness says that if entanglement is not detected, then the
step is disentangled; similarly, completeness says that if the step is disentangled, then entan-
glement is not detected.
Theorem 2 (Soundness). If 𝑆 de and 𝑆 ↦−→ 𝑆′ and 𝑆′ noerror, then 𝑆′ de.
Theorem 3 (Completeness). If 𝑆 de and 𝑆 ↦−→ 𝑆′ and 𝑆′ de, then 𝑆′ noerror.

5.4.1 Completeness Proof

Theorem 3 states: if 𝑆 de and 𝑆 ↦−→ 𝑆′ and 𝑆′ de, then 𝑆′ noerror. In the following proof, note
that for any state 𝑆′ = ERROR(. . .), we have ¬(𝑆′ noerror), and therefore a contradiction may
be obtained by deriving a judgement of the form ERROR(. . .) noerror.

Proof. By induction on the derivation of 𝑆 ↦−→ 𝑆′.
All cases with a right-hand side 𝑆′ where 𝑆′ noerror trivially satisfy the consequent and

therefore are omitted. We now consider the remaining cases (i.e., those with a right-hand side
𝑆′ = ERROR(. . .)).

Case Bang-Detect. We have 𝜇 ; 𝛼 ; 𝐺 ; Leaf(𝑣) ; ! ℓ de and 𝜇 (ℓ) = ℓ′ and 𝛼 (ℓ′) $𝐺 𝑣 .
By assumption, this takes a step to where we have 𝜇 ; 𝛼 ; 𝐺 ; Leaf(𝑣) ; ℓ′ de. This implies
𝛼 ; 𝐺 ; Leaf(𝑣) ; ℓ′ rootsde which in turn yields 𝛼 (ℓ′) 4𝐺 𝑣 . However, this contradicts the
assumption 𝛼 (ℓ′) $𝐺 𝑣 . Therefore Bang-Detect does not appear in the derivation 𝑆 ↦−→ 𝑆′.

The remainder of the cases all follow a similar structure, where the inductive hypothesis
is used to derive a contradiction, thereby demonstrating that the corresponding rule does not
appear in the derivation of 𝑆 ↦−→ 𝑆′ in the antecedent of the theorem statement. As an example,
consider case App-SLE. We have 𝜇 ; 𝛼 ; 𝐺 ; 𝑇 ; 𝑒1 𝑒2 de and ERROR(𝜇′ ; 𝛼′ ; 𝐺′ ; 𝑇 ′ ; 𝑒′1 𝑒2) de.
From these we have 𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒1 de and ERROR(𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′1) de. Inductively, we have
ERROR(𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′1) noerror, which is a contradiction. The rest of the cases (App-SRE,
Pair-SLE, Pair-SRE,Upd-SLE,Upd-SRE, Fst-SE, Snd-SE, Ref-SE, Bang-SE, ParLE, and ParRE) all
proceed similarly.

�

5.4.2 Soundness Proof

The proof of the soundness result (Theorem 2) is more involved, as it amounts to showing that
all uses of immutable data are always safe for disentanglement.

69

An interesting case in the soundness result is rule Alloc, which establishes the connec-
tion between thememory disentanglement and root disentanglement properties discussed above.
When allocating a new (immutable) memory location, in order to satisfy the memory disen-
tanglement property, we have to establish that the contents of the new location only point
backwards, to other previously allocated locations. Because each of these other locations is a
“root” of the current expression, we obtain this property from the root disentanglement invari-
ant. Another interesting case in the proof is an immutable read. For example, in rule Fst, we
have to re-establish the root disentanglement property for the result of the read. By appealing
to memory disentanglement, which ensures that the contents of the immutable location only
point “backwards” in the computation, we are able to do so. In this way, disentanglement of the
memory and the roots work in tandem, enabling us to prove that immutable data never needs
to be checked for entanglement.

Supporting Lemmas and Denitions

The soundness result relies on two supporting lemmas, Lemmas 8 and 9. Here, we write vert(𝑇)
for the “root vertex” of 𝑇 , i.e. vert(Leaf(𝑢)) = 𝑢 and vert(Par(𝑢, _, _)) = 𝑢.
Lemma 8. When taking a step, the root vertex either stays the same or moves forward.

Formally, for any 𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒 ↦−→∗ 𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′, we have vert(𝑇) 4𝐺 ′ vert(𝑇 ′).
Lemma 9. Taking a step extends the computation graph.

Formally, for any 𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒 ↦−→∗ 𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′ and 𝑢 4𝐺 𝑣 , we have 𝑢 4𝐺 ′ 𝑣 .

Main proof

The soundness result, Theorem 2, states the following: if 𝑆 de and 𝑆 ↦−→ 𝑆′ and 𝑆′ noerror,
then 𝑆′ de.

Proof. By induction on the derivation of 𝑆 ↦−→ 𝑆′. All cases with the right-hand side 𝑆′ =
ERROR(. . .) do not satisfy the the antecedent 𝑆′ noerror and therefore are omitted. (For ex-
ample, rule Bang-Detect.) The remaining cases follow.

Case Alloc. We have 𝜇 ; 𝛼 ; 𝐺 ; Leaf(𝑣) ; 𝑠 de. Need to show 𝜇′ ; 𝛼′ ; 𝐺 ; Leaf(𝑣) ; ℓ de
where 𝜇′ = 𝜇 [ℓ ↩→𝑠] and 𝛼′ = 𝛼 [ℓ ↩→𝑣] and ℓ ∉ dom(𝜇). By 𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; 𝑠 de we have
∀ℓ ∈ locs(𝑠) . 𝛼 (ℓ) 4𝐺 𝑣 and therefore 𝜇′ ;𝛼′ ;𝐺 memde. We also have 𝛼′ ;𝐺 ; Leaf(𝑣) ; ℓ rootsde
because 𝛼′(ℓ) = 𝑣 . Therefore 𝜇′ ; 𝛼′ ;𝐺 ; Leaf(𝑣) ; ℓ de.

Case App-SL. We have 𝜇 ;𝛼 ;𝐺 ;𝑇 ; (𝑒1 𝑒2) de and therefore (for𝑇 either Leaf or Par) we have
∀ℓ ∈ locs(𝑒2) . 𝛼 (ℓ) 4𝐺 vert(𝑇) as well as 𝜇 ;𝛼 ;𝐺 ;𝑇 ;𝑒1 de. By induction, we have 𝜇′;𝛼′;𝐺′;𝑇 ′;𝑒′1 de
and therefore both 𝜇′ ; 𝛼′ ;𝐺′ memde as well as 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′1 rootsde. By Lemmas 8 and 9 we
have ∀ℓ ∈ locs(𝑒2). 𝛼 (ℓ) 4𝐺 ′ vert(𝑇) 4𝐺 ′ vert(𝑇 ′), and therefore (for 𝑇 ′ either Leaf or Par) we
have 𝛼′ ;𝐺′ ;𝑇 ′ ; (𝑒′1 𝑒2) rootsde. Altogether, these yield 𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; (𝑒′1 𝑒2) de.

Cases Pair-SL and Upd-SL proceed similarly as App-SL.
Case App-SR. We have 𝜇 ;𝛼 ;𝐺 ;𝑇 ; (ℓ1 𝑒2) de and therefore (for𝑇 either Leaf or Par) we have

𝛼 (ℓ1) 4𝐺 vert(𝑇) as well as 𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒2 de. By induction we have 𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′2 de and
therefore both 𝜇′ ;𝛼′ ;𝐺′ memde as well as 𝛼′ ;𝐺′ ;𝑇 ′ ; 𝑒′2 rootsde. By Lemmas 8 and 9, we have
𝛼 (ℓ1) 4𝐺 ′ vert(𝑇 ′) and therefore (for 𝑇 ′ either Leaf or Par) we have 𝛼′ ;𝐺′ ;𝑇 ′ ; (ℓ1 𝑒′2) rootsde
which in turn yields 𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; (ℓ1 𝑒′2) de.

70

Cases Pair-SR and Upd-SR proceed similarly as App-SR.
Case App. We have 𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; (ℓ1 ℓ2) de where 𝜇 (ℓ1) = fun 𝑓 𝑥 is 𝑒 , and therefore

𝜇 ;𝛼 ;𝐺 memde as well as 𝛼 ;𝐺 ;Leaf(𝑣) ; (ℓ1 ℓ2) rootsde. From this we have 𝛼 (ℓ1) 4𝐺 𝑣 and also
𝛼 (ℓ2) 4𝐺 𝑣 . Additionally, because ℓ1 ∈ imm(𝜇), we have ∀ℓ′ ∈ locs(fun 𝑓 𝑥 is 𝑒). 𝛼 (ℓ′) 4𝐺 𝛼 (ℓ1).
The same holds for all ℓ′ ∈ locs(𝑒) because locs(fun 𝑓 𝑥 is 𝑒) = locs(𝑒). We therefore have ∀ℓ′ ∈
locs([ℓ1, ℓ2 / 𝑓 , 𝑥]𝑒). 𝛼 (ℓ′) 4𝐺 𝑣 because locs([ℓ1, ℓ2 / 𝑓 , 𝑥]𝑒) ⊆ locs(𝑒) ∪ {ℓ1, ℓ2} and previously
we determined both 𝛼 (ℓ1) 4𝐺 𝑣 and 𝛼 (ℓ2) 4𝐺 𝑣 . Therefore 𝛼 ;𝐺 ;Leaf(𝑣) ; [ℓ1, ℓ2 / 𝑓 , 𝑥]𝑒 rootsde.
Altogether, this yields 𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; [ℓ1, ℓ2 / 𝑓 , 𝑥]𝑒 de.

Case Fst-S. We have 𝜇 ; 𝛼 ; 𝐺 ; 𝑇 ; (fst 𝑒) de and therefore (for 𝑇 either Leaf or Par) we
have 𝜇 ; 𝛼 ; 𝐺 ; 𝑇 ; 𝑒 de. By induction, we have 𝜇′ ; 𝛼′ ; 𝐺′ ; 𝑇 ′ ; 𝑒′ de and therefore both
𝜇′ ;𝛼′ ;𝐺′ memde as well as 𝛼′ ;𝐺′ ;𝑇 ′ ;𝑒′ rootsde. Therefore (for𝑇 ′ either Leaf or Par) we have
𝛼′ ;𝐺′ ;𝑇 ′ ; (fst 𝑒′) rootsde which in turn yields 𝜇′ ; 𝛼′ ;𝐺′ ;𝑇 ′ ; (fst 𝑒′) de.

Cases Snd-S, Ref-S, and Bang-S proceed similarly as Fst-S.
Case Fst. We have 𝜇 ; 𝛼 ; 𝐺 ; Leaf(𝑣) ; (fst ℓ) de. Need to show 𝜇 ; 𝛼 ; 𝐺 ; Leaf(𝑣) ; ℓ1 de

where 𝜇 (ℓ) = 〈ℓ1, ℓ2〉. By 𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; (fst ℓ) de we have 𝜇 ; 𝛼 ;𝐺 memde and therefore
𝛼 (ℓ1) 4𝐺 𝛼 (ℓ). By 𝛼 ; 𝐺 ; Leaf(𝑣) ; (fst ℓ) rootsde we have 𝛼 (ℓ) 4𝐺 𝑣 . Together, these imply
𝛼 (ℓ1) 4𝐺 𝑣 , which in turn gives us 𝛼 ;𝐺 ;Leaf(𝑣) ;ℓ1 rootsde and therefore 𝜇 ;𝛼 ;𝐺 ;Leaf(𝑣) ;ℓ1 de.

Case Snd proceeds symmetrically to Fst.
Case Bang-Pass. We have 𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; (! ℓ) de and 𝜇 (ℓ) = ref ℓ′ and 𝛼 (ℓ′) 4𝐺 𝑣 . Need

to show 𝜇 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; ℓ′ de, which follows immediately from the assumptions.
Case Upd. Let 𝜇1 be the memory before the update (i.e. 𝜇1 = 𝜇 [ℓ1 ↩→ ref _]) and 𝜇2 = 𝜇 [ℓ1 ↩→

ref ℓ2] be the memory after. We have 𝜇1 ;𝛼 ;𝐺 ;Leaf(𝑣) ; (ℓ1 := ℓ2) de and therefore 𝜇1 ;𝛼 ;𝐺 memde
as well as 𝛼 (ℓ2) 4𝐺 𝑣 . Therefore we have 𝛼 ;𝐺 ; Leaf(𝑣) ; ℓ2 rootsde. Because ℓ ∉ imm(𝜇2), we
also have 𝜇2 ; 𝛼 ;𝐺 memde. Together, these yield 𝜇2 ; 𝛼 ;𝐺 ; Leaf(𝑣) ; ℓ2 de.

Case Fork. We have 𝜇;𝛼 ;𝐺 ;Leaf(𝑢);〈𝑒1 ‖ 𝑒2〉 de. Need to show 𝜇;𝛼 ;𝐺′;Par(𝑢, Leaf(𝑣), Leaf(𝑤));
〈𝑒1 ‖ 𝑒2〉 dewhere𝐺′ = fork(𝐺,𝑢, 𝑣,𝑤). From 𝛼 ;𝐺 ;Leaf(𝑢) ;〈𝑒1 ‖ 𝑒2〉 rootsdewe have 𝛼 (ℓ) 4𝐺 𝑢

for every ℓ ∈ locs(𝑒1) ∪ locs(𝑒2). By the denition of forking, we have 𝑢 4𝐺 𝑣 and 𝑢 4𝐺 𝑤 .
Therefore 𝛼 (ℓ) 4𝐺 ′ 𝑢 4𝐺 𝑣 for every ℓ ∈ locs(𝑒1), and similarly 𝛼 (ℓ) 4𝐺 𝑢 4𝐺 ′ 𝑤 for all ℓ in
𝑒2. Together, these imply 𝛼 ; 𝐺′ ; Leaf(𝑣) ; 𝑒1 rootsde and 𝛼 ; 𝐺′ ; Leaf(𝑤) ; 𝑒2 rootsde which
in turn yield 𝛼 ;𝐺′ ; Par(𝑢, Leaf(𝑣), Leaf(𝑤)) ; 〈𝑒1 ‖ 𝑒2〉 rootsde. We also have 𝜇 ; 𝛼 ;𝐺 memde
and therefore 𝜇 ; 𝛼 ;𝐺′ memde since𝐺′ is an extension of𝐺 . Altogether, these imply 𝜇 ; 𝛼 ;𝐺′ ;
Par(𝑢, Leaf(𝑣), Leaf(𝑤)) ; 〈𝑒1 ‖ 𝑒2〉 de.

Case Join. We have 𝜇 ; 𝛼 ; 𝐺 ; Par(_, Leaf(𝑢), Leaf(𝑣)) ; 〈ℓ1 ‖ ℓ2〉 de and therefore 𝛼 ; 𝐺 ;
Leaf(𝑢) ; ℓ1 rootsde and 𝛼 ;𝐺 ; Leaf(𝑣) ; ℓ2 rootsde. Need to show 𝜇 ; 𝛼 ;𝐺′ ; Leaf(𝑤) ; 〈ℓ1, ℓ2〉 de
where𝐺′ = join(𝐺,𝑢, 𝑣,𝑤). From 𝛼 ;𝐺 ; Leaf(𝑢) ; ℓ1 rootsde and we have 𝛼 (ℓ1) 4𝐺 𝑢, which by
extension gives us 𝛼 (ℓ1) 4𝐺 ′ 𝑢. By the denition of joining we have 𝑢 4𝐺 ′ 𝑤 , so 𝛼 (ℓ1) 4𝐺 ′ 𝑤 .
Similarly, 𝛼 (ℓ2) 4𝐺 𝑣 4𝐺 ′ 𝑤 . Together these yield 𝛼 ; 𝐺′ ; Leaf(𝑤) ; 〈ℓ1, ℓ2〉 rootsde. We also
have 𝜇 ; 𝛼 ; 𝐺 memde and therefore 𝜇 ; 𝛼 ; 𝐺′ memde by extension. Altogether, these imply
𝜇 ; 𝛼 ;𝐺′ ; Leaf(𝑤) ; 〈ℓ1, ℓ2〉 de.

Case ParL. We have 𝜇 ;𝛼 ;𝐺 ;Par(𝑣,𝑇1,𝑇2) ; 〈𝑒1 ‖ 𝑒2〉 de and therefore both 𝛼 ;𝐺 ;𝑇1 ;𝑒1 rootsde
and 𝛼 ;𝐺 ;𝑇2 ; 𝑒2 rootsde as well as 𝜇 ;𝛼 ;𝐺 memde. Therefore 𝜇 ;𝛼 ;𝐺 ;𝑇1 ; 𝑒1 de. By induction
we have 𝜇′ ; 𝛼′ ; 𝐺′ ; 𝑇 ′1 ; 𝑒

′
1 de and therefore 𝜇′ ; 𝛼′ ; 𝐺′ memde and 𝛼′ ; 𝐺′ ; 𝑇 ′1 ; 𝑒

′
1 rootsde.

Altogether therefore we have 𝜇′ ; 𝛼′ ;𝐺′ ; Par(𝑣,𝑇 ′1,𝑇2) ; 〈𝑒′1 ‖ 𝑒2〉 de.
Case ParR proceeds symmetrically to ParL.

71

�

5.5 Entanglement Detection Cost Analysis

We bound the work and space of our entanglement detection algorithm. Theorems 4 and 5 fol-
low directly from the observation that entanglement detection only introduces three sources
of overhead: maintaining the computation graph, mapping locations to vertices in the graph,
and performing graph queries at dereference operations. The work of maintaining the com-
putation graph can be charged to the overall work of the computation, as each step makes at
most a constant number of additions to the computation graph. Mapping locations to vertices
in the graph can be performed by storing vertex identiers in memory along with the contents
of each location. The remaining costs are isolated to details of how the computation graph
is maintained and queried, so for the sake of brevity here, we leave these costs abstract. At a
high level, the idea is to use SP-order maintenance, a well-studied problemwith many solutions
available “o-the-shelf” with low overhead in practice. More details about graph maintenance
and queries are provided in Section 6.8.
Theorem 4 (Work of Entanglement Detection). For a program with work (total number of
steps)𝑊 , execution with entanglement detection requires 𝑂 (𝑊 + 𝐷 ·𝑊𝑞) work in total, where
𝐷 is the number of dereference operations, and𝑊𝑞 is an upper bound on the work required for
a graph query.
Theorem 5 (Space of Entanglement Detection). At any point during execution, entanglement
detection requires 𝑂 (𝑁 + 𝑆𝑔) additional space, where 𝑁 is the current number of heap objects,
and 𝑆𝑔 is the current space required to maintain the computation graph. A similar bound holds
for live (reachable) memory.

5.5.1 Utilizing Heap Chunks to Optimize Space

A common implementation strategy is to represent heaps as lists of “chunks”, where each chunk
is a fairly large region of contiguous memory (e.g. one or more pages). When heap chunks are
task-local, we can signicantly reduce the number of vertex labels stored for entanglement de-
tection. In particular, our implementation (Chapter 6) guarantees that all objects within a chunk
were allocated by the same task (or one of that task’s completed subtasks). We can therefore
assign one vertex identier per chunk. For 𝑁 heap objects using a total of𝑀 space, this reduces
the amount of additional space needed from 𝑁 (one vertex identier per heap object) down
to approximately min(𝑁,𝑀/𝐵) (one vertex identier per chunk). Because typical memory ob-
jects are small, and therefore 𝑁 ≈ 𝑀 , this is a signicant improvement. The following theorem
formalizes the bound.
Theorem 6 (Chunked Space of Entanglement Detection). Using task-local heap chunks, at any
point during execution, entanglement detection requires 𝑂 (min(𝑁,𝑀/𝐵) + 𝑇 + 𝑆𝑔) additional
space, where𝑀 is the current total heap size, 𝑁 is the number of heap objects, 𝐵 is the minimum
size of a heap chunk,𝑇 is the current number of active tasks, and 𝑆𝑔 is the current space required
to maintain the computation graph.

72

Proof. It suces to bound the number of heap chunks. Consider a task 𝑡 and let 𝑀𝑡 be the size
of 𝑡 ’s local heap, split across 𝑘𝑡 heap chunks, with 𝑁𝑡 heap objects in those chunks. We assume
bump-allocation within each chunk, which ensures that the amount of memory allocated in any
two consecutive heap chunks is at least 𝐵. Hence, we have 𝑘𝑡 ≤ 1 + 2𝑀𝑡/𝐵. Also, because large
objects are given their own chunks, we have 𝑘𝑡 ≤ 𝑁𝑡 . Putting these two upper bounds together
and summing over all active tasks yields a bound of 𝑂 (min(𝑁,𝑀/𝐵) +𝑇) heap chunks. �

5.6 Entanglement Candidates

The entanglement detection semantics in Section 5.3 describes how to check whether an execu-
tion is entangled: for every dereference of a ref cell, perform a query on the computation graph
(Figure 3.3, rules Bang-Pass and Bang-Detect). Here we show that a signicant number of
these queries can be pruned away dynamically, resulting in signicant performance improve-
ment in practice.

The high-level idea is to annotate each ref cell with a bit that indicates whether or not the
ref requires a graph query when it is dereferenced, to check for entanglement. Any ref that
is marked is called an entanglement candidate (or simply candidate for short). Throughout
execution, ref cells are dynamically marked and unmarked; that is, a refmight at various points
throughout execution be marked as a candidate and later unmarked when it returns to a safe
state. On each dereference !𝑥 , we rst check if 𝑥 is marked as a candidate. If so, then we do a
graph query to check for entanglement, consistent with the semantics. But if 𝑥 is not marked,
then we skip the graph query.

Below, we describe how candidates are marked and unmarked throughout execution (Sec-
tion 5.6.1) and analyze the cost of this algorithm (Section 5.6.2). We rst focus on ref objects,
and then generalize our techniques to handle arrays (Section 5.6.3). Next, we provide some
intuition for how candidate tracking can make a signicant impact in practice (Section 5.6.4).
Finally, in Section 5.6.5, we connect the idea of candidates with the semantics of Section 5.3 and
argue that this technique is a valid optimization (i.e., it does not aect correctness of detection).

5.6.1 Marking and Unmarking Candidates

Objects are born safe. When a task rst allocates a ref, at that moment, the ref can only
contain data that the task already had access to. Therefore, each ref begins its life unmarked,
indicating that the ref is safe (i.e., not a candidate). As long as a ref is never updated, it remains
safe, similar to immutable data.

Marking candidates at updates. Intuitively, when a ref is updated, it might become a can-
didate and need to be marked. Here we leverage an observation about entanglement. Consider
a reference 𝑥 which currently contains a pointer to an object𝑦, and suppose that a task becomes
entangled by performing the dereference !𝑥 and acquiring a pointer to 𝑦. At this moment, the
pointer from 𝑥 to 𝑦 in memory must be a down-pointer, i.e., 𝐻 (𝑥) must be an ancestor of 𝐻 (𝑦)
in the heap hierarchy (where𝐻 (𝑥) is the heap that contains object 𝑥 ; see Section 4.2). In other

words, in order to acquire a cross-pointer, a task must read a down-pointer. Therefore,

73

any ref which contains a down-pointer must be marked as a candidate. We specically mark
candidates at updates: when a task performs an update 𝑥 := 𝑦, if this creates a down-pointer
from 𝑥 to 𝑦, then the task marks 𝑥 as a candidate. Note that if the pointer from 𝑥 to 𝑦 is not a
down-pointer, then the ref is not marked as a candidate.

Unmarking candidates in leaf heaps. Any ref which does not contain a down-pointer is
no longer a candidate and should be unmarked. To unmark a candidate 𝑥 , we wait until 𝐻 (𝑥)
is a leaf heap (which occurs naturally due to tasks joining with their parents). At this point,
because the heap has no descendants, we know that any pointer from 𝑥 is no longer a down-
pointer, and thus 𝑥 is safe. Therefore, we unmark all candidates within a heap whenever a heap
becomes a leaf. Specically, whenever two completed tasks join, we unmark all candidates in
their parent heap.

Another strategy for unmarking would be to detect when a down-pointer is overwritten
with an internal or up-pointer. We choose not to use this strategy because it is not ecient for
large mutable objects, such as array objects (described in Section 5.6.3). In particular, as long
as an array contains at least one down-pointer, it must remain marked. Attempting to unmark
arrays at individual updates would require counting the number of down-pointers dynamically,
which would be prohibitively expensive.

Candidate sets. To facilitate unmarking candidates in bulk when a heap becomes a leaf, we
give each heap a candidate set which is the set of objects within that heap that are currently
marked as a candidate. When a candidate is marked, it is added to the corresponding set. To
unmark candidates of a heap, we iterate through the candidate set and unmark each object
individually. The candidate set is then cleared.

5.6.2 Cost Analysis of Tracking Candidates

Tracking candidates does not impact the asymptotic costs of execution and has low overhead.
The space overhead of candidate sets is 𝑂 (1) per candidate, because each candidate is only
stored in one candidate set. The algorithm takes constant work on each update, to mark a
candidate and add it to a candidate set. At joins, it traverses the candidate set of a single heap
to clear candidates. This incurs constant work per candidate, and can be charged to the cost
of the update that marked the candidate. When an object is dereferenced, we incur constant
overhead to rst check if the object is a candidate.

Our algorithm for tracking candidates is conservative because the program may also delete
a down-pointer (causing an object which is marked as a candidate to no longer have any down-
pointers), but the algorithm does not attempt to track this. It would be prohibitively expensive
to attempt to track individual down-pointer deletions, especially with candidate arrays (Sec-
tion 5.6.3), which may have a large number of down-pointers at any moment. Our algorithm
avoids this cost by unmarking candidates “lazily” at joins.

74

5.6.3 Candidate Arrays

Generalizing the above algorithm for mutable array objects is straightforward. Similar to ref

cells, we give each array a single bit. If an update 𝑎[𝑖] := 𝑥 creates a down-pointer from 𝑎 to 𝑥 ,
then we mark 𝑎 as a candidate. Later, when the heap 𝐻 (𝑎) becomes a leaf, we unmark 𝑎.

In this way, we (conservatively) only track whether or not the whole array is a candidate,
rather than attempting to precisely track every index of the array separately, which would
be costly in practice. For example, consider an array of pointers and suppose several tasks
are adding and deleting down-pointers to it, in parallel. Determining when a particular delete
removes the last down pointer from the arraywould be prohibitively expensive (it would require
counting the number of down-pointers and updating this every time the array is mutated).
Instead, our algorithm unmarks the array (as a candidate) after all descendant tasks complete.
In this way, the algorithm only incurs constant overhead for the entire array.

5.6.4 Asymptotically Fewer Graph Queries

By tracking candidates, we asymptotically reduce the number of graph queries for many paral-
lel algorithms and primitives. In particular, consider parallel operations on mutable arrays such
as map, lter, and scan (a.k.a., prex sums). These operations read their input array and allo-
cate a fresh output array for the result. Without candidates, reading the input requires 𝑂 (𝑛)
entanglement checks for an input array of size 𝑛, and therefore would naïvely require 𝑂 (𝑛)
graph queries for entanglement detection. With candidates, we may reduce the number of
graph queries from𝑂 (𝑛) down to𝑂 (1), and often even zero, as we observe in our experiments
(Section 8.7.2).

The reduction in queries occurs when the input array is not a candidate. Whether or not
an input is a candidate depends on how that input was generated. Typically, the input is gen-
erated by a similar operation (e.g. the input to a lter may be generated by a previous map);
in such cases, the input is not a candidate. For example, the map operation allocates an array,
populates it (in parallel) with down-pointers, and then joins back up. When this completes, all
down-pointers become internal, and therefore the resulting array is not a candidate for later
operations.

5.6.5 Candidates in the Detection Semantics

We now describe how the notion of candidate can be dened in terms of the semantics of Sec-
tion 5.3, allowing us to argue that tracking objects with down-pointers suces for entanglement
detection. We formally dene a location ℓ as a candidate as follows. The denition says that
location ℓ is a candidate if there exists a leaf task that is allowed to access ℓ but who would be-
come entangled if it would dereference ℓ . This is precisely the condition in which entanglement
is detected by the semantics.
Denition 1. In a program state (𝜇 ; 𝛼 ;𝐺 ;𝑇 ; 𝑒), consider a location ℓ where 𝜇 (ℓ) = ref ℓ′. We
say that ℓ is an entanglement candidate if there exists some Leaf(𝑣) in the task tree 𝑇 such
that 𝛼 (ℓ) 4𝐺 𝑣 and 𝛼 (ℓ′) $𝐺 𝑣 .

75

ṽ
<latexit sha1_base64="4ir+DGY0SFNrTDjkz6Q/ypowoYs=">AAAB8XicbVBNS8NAEN34WetX1aOXYBE8laQKeix68VjBfmAbymYzaZduNmF3Uiih/8KLB0W8+m+8+W/ctDlo64OBx3szzMzzE8E1Os63tba+sbm1Xdop7+7tHxxWjo7bOk4VgxaLRay6PtUguIQWchTQTRTQyBfQ8cd3ud+ZgNI8lo84TcCL6FDykDOKRnrqIxcBZJNZeVCpOjVnDnuVuAWpkgLNQeWrH8QsjUAiE1Trnusk6GVUIWcCZuV+qiGhbEyH0DNU0gi0l80vntnnRgnsMFamJNpz9fdERiOtp5FvOiOKI73s5eJ/Xi/F8MbLuExSBMkWi8JU2Bjb+ft2wBUwFFNDKFPc3GqzEVWUoQkpD8FdfnmVtOs197JWf7iqNm6LOErklJyRC+KSa9Ig96RJWoQRSZ7JK3mztPVivVsfi9Y1q5g5IX9gff4AeZmQyA==</latexit>

↵̃(`)
<latexit sha1_base64="pcdQnEsdT0/bmqTIKGu9FVpqT7A=">AAAB/nicbVBNS8NAEN34WetXVDx5WSxCvZSkCnosevFYwX5AE8pmM22XbjZhdyOUUPCvePGgiFd/hzf/jZs2B219MPB4b4aZeUHCmdKO822trK6tb2yWtsrbO7t7+/bBYVvFqaTQojGPZTcgCjgT0NJMc+gmEkgUcOgE49vc7zyCVCwWD3qSgB+RoWADRok2Ut8+9jTjIWQe4cmITKsecH5e7tsVp+bMgJeJW5AKKtDs219eGNM0AqEpJ0r1XCfRfkakZpTDtOylChJCx2QIPUMFiUD52ez8KT4zSogHsTQlNJ6pvycyEik1iQLTGRE9UoteLv7n9VI9uPYzJpJUg6DzRYOUYx3jPAscMglU84khhEpmbsV0RCSh2iSWh+AuvrxM2vWae1Gr319WGjdFHCV0gk5RFbnoCjXQHWqiFqIoQ8/oFb1ZT9aL9W59zFtXrGLmCP2B9fkDm16VPQ==</latexit>

↵̃(`0)
<latexit sha1_base64="I5HTIjFGUti/Q+vA7mOkorWvB8o=">AAAB/3icbVBNS8NAEN34WetXVPDiJVjEeilJFfRY9OKxgv2AJpTNZtIu3WzC7kYosQf/ihcPinj1b3jz37hpc9DWBwOP92aYmecnjEpl29/G0vLK6tp6aaO8ubW9s2vu7bdlnAoCLRKzWHR9LIFRDi1FFYNuIgBHPoOOP7rJ/c4DCEljfq/GCXgRHnAaUoKVlvrmoasoCyBzMUuGeFJ1gbHTs3LfrNg1ewprkTgFqaACzb755QYxSSPgijAsZc+xE+VlWChKGEzKbiohwWSEB9DTlOMIpJdN759YJ1oJrDAWuriypurviQxHUo4jX3dGWA3lvJeL/3m9VIVXXkZ5kirgZLYoTJmlYisPwwqoAKLYWBNMBNW3WmSIBSZKR5aH4My/vEja9ZpzXqvfXVQa10UcJXSEjlEVOegSNdAtaqIWIugRPaNX9GY8GS/Gu/Exa10yipkD9AfG5w8Di5Vu</latexit>

v
<latexit sha1_base64="SY9oYaEaa+KdXKJhr2tqgNkqNUU=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGK/YA2lM120y7dbMLupFBK/4EXD4p49R9589+4aXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju8xvjbk2IlZPOEm4H9GBEqFgFK30OC72SmW34s5BVomXkzLkqPdKX91+zNKIK2SSGtPx3AT9KdUomOSzYjc1PKFsRAe8Y6miETf+dH7pjJxbpU/CWNtSSObq74kpjYyZRIHtjCgOzbKXif95nRTDG38qVJIiV2yxKEwlwZhkb5O+0JyhnFhCmRb2VsKGVFOGNpwsBG/55VXSrFa8y0r14apcu83jKMApnMEFeHANNbiHOjSAQQjP8Apvzsh5cd6dj0XrmpPPnMAfOJ8/GRCNEg==</latexit>

↵(`)
<latexit sha1_base64="zE8Jgc2mqMHV0HkGHkLw5haRXZg=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBahXkpSBT0WvXisYGuhCWWynbRLN5uwuxFK6d/w4kERr/4Zb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjtk4yxbDFEpGoTggaBZfYMtwI7KQKIQ4FPoaj25n/+IRK80Q+mHGKQQwDySPOwFjJ90GkQ6j6KMR5r1xxa+4cdJV4OamQHM1e+cvvJyyLURomQOuu56YmmIAynAmclvxMYwpsBAPsWiohRh1M5jdP6ZlV+jRKlC1p6Fz9PTGBWOtxHNrOGMxQL3sz8T+vm5noOphwmWYGJVssijJBTUJnAdA+V8iMGFsCTHF7K2VDUMCMjalkQ/CWX14l7XrNu6jV7y8rjZs8jiI5IaekSjxyRRrkjjRJizCSkmfySt6czHlx3p2PRWvByWeOyR84nz9kXJFC</latexit>

↵(`0)
<latexit sha1_base64="/p2qS4aSn5iKyit3zilKej67A9U=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BItYLyWpgh6LXjxWsB/QhDLZTtqlm03c3RRK6e/w4kERr/4Yb/4bt20O2vpg4PHeDDPzgoQzpR3n28qtrW9sbuW3Czu7e/sHxcOjpopTSbFBYx7LdgAKORPY0ExzbCcSIQo4toLh3cxvjVAqFotHPU7Qj6AvWMgoaCP5HvBkAGUPOT+/6BZLTsWZw14lbkZKJEO9W/zyejFNIxSaclCq4zqJ9icgNaMcpwUvVZgAHUIfO4YKiFD5k/nRU/vMKD07jKUpoe25+ntiApFS4ygwnRHogVr2ZuJ/XifV4Y0/YSJJNQq6WBSm3NaxPUvA7jGJVPOxIUAlM7fadAASqDY5FUwI7vLLq6RZrbiXlerDVal2m8WRJyfklJSJS65JjdyTOmkQSp7IM3klb9bIerHerY9Fa87KZo7JH1ifP8i8kXM=</latexit>

Figure 5.8: A partial dag on the left and its corresponding task tree on the right. Each node of the
tree corresponds to contracted sub-dags, shown delimited by boxes. In the tree, disentangled
pointers may point up, down, or internally to a node. An example entangled pointer is shown
in dotted blue.

For example, consider the array 𝐴 in the example of Figure 5.6, whose code was shown in
Figure 5.1. Even though the array is mutable, the reads during A[0]^A[2] (and during A[1]^A[2])
cannot cause entanglement because the contents of the array (A[0], A[1], and A[2]) were all
allocated before (4𝐺) all leaf tasks. That is, while it is being read from (Figure 5.1, line 11), the
array 𝐴 is not a candidate and we can elide the graph queries. Note that 𝐴 was a candidate
earlier in the computation—specically, while it was being initialized during the call to init

(Figure 5.1, line 10). It just so happens that the array was never read while it was a candidate.
As soon as the tasks within the call to init join, the array 𝐴 is no longer a candidate.

Relating task trees and computation graphs. According to Denition 1, whether or not
an object is a candidate depends on the current state of the computation graph 𝐺 and how it
relates to the current task tree, 𝑇 . We can relate them as follows. Given a partial computation
dag𝐺 , we can derive the task tree by contracting the dag: label each vertex of the dag so that (i)
a fork and its corresponding join get the same label, and (ii) all vertices between them also get
that label. If we contract all the vertices with the same label, we get a tree that is isomorphic to
the task tree (upto labels); the labels map vertices of the dag to nodes in the task tree.

We use �̃� to refer to the label of vertex𝑢, and dene a partial order ≤ on the nodes of the task
tree: �̃� ≤ 𝑣 if �̃� is an ancestor of 𝑣 . The direction of pointers between objects (up, down, internal,
and cross, as described in Section 4.2) can then be expressed in terms of the labels assigned to
vertices. In particular, for a location ℓ , let 𝛼 (ℓ) be its allocation vertex in the dag and let 𝛼 (ℓ) be
its label in the task tree. Based on their positions in the tree, we can classify a pointer from ℓ to
ℓ′ as follows: (i) up pointer if 𝛼 (ℓ) > 𝛼 (ℓ′), (ii) internal pointer if 𝛼 (ℓ) = 𝛼 (ℓ′), (iii) down pointer
if 𝛼 (ℓ) < 𝛼 (ℓ′), and (iv) cross pointer otherwise: when 𝛼 (ℓ) � 𝛼 (ℓ′) and 𝛼 (ℓ′) � 𝛼 (ℓ).

For example, consider the dag and its tree in Figure 5.8. The dag has two fork-join pairs
that correspond to subcomputations that have nished, as shown by the boxes; so every vertex
within a box gets the same label. All other vertices are not between a fork-join pair, so they
get dierent labels. After contracting the boxes, we get the tree on the right (with gray nodes).
The gure also shows an up-pointer, an internal pointer, and a down-pointer, shown with solid
green arrows. An example cross pointer is illustrated as a dotted blue arrow.

76

Candidates have down-pointers. The following statement formalizes the intuition that
candidate objects (as given by Denition 1) have down-pointers.
Theorem 7. Assuming disentanglement (i.e., no cross-pointers),

ℓ is a candidate⇔ ∃ ℓ′ : ℓ′ ∈ locs(𝜇 (ℓ)) ∧ 𝛼 (ℓ) < 𝛼 (ℓ′)

Proof. We can prove the right-to-left implication as follows: if there is a down pointer from
𝛼 (ℓ), it means that 𝛼 (ℓ) is an internal (non-leaf) node of the task tree and has at least one path
to a leaf such that 𝛼 (ℓ′) is not on it, i.e., ∃ leaf 𝑣 : 𝛼 (ℓ) < 𝑣 ∧ 𝛼 (ℓ′) � 𝑣 . It follows from
Lemma 10 that ∃ leaf 𝑣 : 𝛼 (ℓ) 4𝐺 𝑣 ∧ 𝛼 (ℓ′) $𝐺 𝑣 , and therefore ℓ is indeed a candidate.

For the left-to-right implication, we have a leaf 𝑣 and location ℓ′ such that 𝛼 (ℓ) 4𝐺 𝑣 and
𝛼 (ℓ′) $𝐺 𝑣 . There are three cases for the pointer from ℓ to ℓ′:

1. Case 𝛼 (ℓ′) ≤ 𝛼 (ℓ). From Lemma 10, we have 𝛼 (ℓ) ≤ 𝑣 , and therefore 𝛼 (ℓ′) ≤ 𝑣 ; applying
the lemma a second time reveals 𝛼 (ℓ′) 4𝐺 𝑣 , which is a contradiction because of the
assumption that 𝛼 (ℓ′) $𝐺 𝑣 .

2. Case 𝛼 (ℓ′) � 𝛼 (ℓ) and 𝛼 (ℓ) � 𝛼 (ℓ′). Therefore the pointer from ℓ to ℓ′ is a cross-pointer,
violating our disentanglement assumption.

3. Case 𝛼 (ℓ) < 𝛼 (ℓ′). This satises the right-hand side of the desired implication.

�

The above proof relies on the following lemma, which establishes that for leaves, the tree
ordering is equivalent to the dag ordering. This result can be proven by induction over in-
dividual steps of execution; formally, this would require augmenting the stepping judgement
𝑆 ↦−→ 𝑆′ with the vertex labeling �̃�. The proof is then mechanical, so we omit it for brevity.
Lemma 10. Throughout execution, for any vertex 𝑢 and leaf 𝑣 , 𝑢 4𝐺 𝑣 ⇔ �̃� ≤ 𝑣 .

The result of Theorem 7 establishes that marking candidates when down-pointers are cre-
ated is sucient for detecting entanglement. Therefore, because we unmark candidates con-
servatively, our candidate tracking algorithm is a valid optimization.

77

78

Chapter 6

The MPL Compiler for Parallel ML

To realize our goal of ecient and scalable parallel functional programming, we developed
MPL (“maple”), a compiler and runtime system for Parallel ML. MPL extends the MLton [106]
compiler for Standard ML, and provides ecient support for nested fork-join parallelism.

MPL inherits many features from MLton, especially in terms of compilation itself, where
MPL and MLton are essentially identical. The main dierences between the two systems are
localized to the runtime system, where we implement a thread scheduler and memory manage-
ment system based on the techniques developed in this thesis. In this chapter we summarize
many important implementation details, especially concerning the implementation of the hier-
archical heap architecture, scheduler, and garbage collector.

Acknowledgements

MPL is the culmination of over a decade of work from multiple contributors, including Ram
Raghunathan, Stefan Muller, Adrien Guatto, Jatin Arora, Rohan Yadav, Larry Wang, Guy Blel-
loch, Umut Acar, Matthew Fluet, as well as myself. Around 2018, I took over as the lead de-
veloper of MPL. The origins of MPL can be traced back to Daniel Spoonhower’s multicore
extensions to MLton, developed for his thesis [143].

6.1 Scheduler

MPL features a work-stealing scheduler [36] utilizing Arora-Blumofe-Plaxton concurrent de-
ques [19]. The scheduler maps user threads (one-shot continuations, implemented as heap-
allocated call-stacks) onto worker threads (OS threads, specically pthreads). We use one
worker thread per processor, and therefore for simplicity we refer to these simply as “pro-
cessors”.

Initially, there is a single user-thread being executed by one processor. At each steal, the
scheduler creates a new user-thread to execute the stolen work. The scheduler coordinates
with the runtime system to create new heaps and merge existing heaps (at forks and joins), as
described in this section.

MPL’s scheduler is unique in that it is written mostly at the source level (i.e., in ML it-
self) with special runtime system calls where necessary. This is advantageous for compilation,

79

1 structure MPL: sig

2 structure Thread: sig

3 type t // rst−class thread
4 type thread = t
5 val getCurrent: unit → thread
6 val newThread: (unit → unit) → thread // Fresh output thread is suspended.
7 // (Must switchTo the new thread
8 // to execute it.)
9
10 val switchTo: thread → unit // switchTo(t) suspends the current thread, and
11 // resumes 𝑡 . The current thread will
12 // be resumed when someone switches back.
13 end

14
15 structure Heaps: sig

16 type depth = int
17 val getCurrentDepth: Thread.t → depth
18 val switchToHeapAtDepth: Thread.t × depth → unit
19 val attachSiblingAtDepth: Thread.t × Thread.t × depth → unit
20 val mergeSiblings: Thread.t * Thread.t → unit
21 val mergeIntoParent: Thread.t → unit
22 end

23 end

Figure 6.1: Auxiliary functions used by the scheduler. The modules Thread and Heaps are im-
plemented in the run-time system and linked as foreign functions.

because (as observed also in [144]) it allows for certain optimizations to by implemented by re-
lying entirely upon standard compilation optimizations. In particular, the Cilk [37, 70] fast/slow
clone optimization can be expressed using higher-order functions.

6.1.1 Thread and Heap Maintenance

The scheduler coordinates with the run-time system to manage threads and heaps using
the interface shown in Figure 6.1. The MPL.Thread module provides rst-class threads, and
support for hierarchical heaps is provided by the MPL.Heapsmodule. Both of these modules are
implemented by functions in the run-time system, with bindings provided at the source level
via MPL’s foreign-function interface.

Instead ofmanipulating heaps as rst-class objects, the scheduler implicitly associates heaps
with rst-class threads. A single thread may have many heaps associated with it, as illustrated
in Figure 6.2. These heaps correspond to a path of heaps in the heap hierarchy. To distinguish
the “current” heap of a thread (in which the thread performs all allocations), we equip each
heap with a depth. For example, in Figure 6.2, heap D has depth 3. Threads control which heap
they allocate in by indexing heaps by their depths.

The run-time system provides multiple operations to manipulate heaps, as shown in the
Heaps module of Figure 6.1.

80

heap
record

heap
contents objects pointerparent /

child

A

B

C E

D . . .

G

H . . .

 . . .

F . . .

Thread T1 Thread T2

Thread T3

depth = 0

depth = 1

depth = 2

depth = 3

Figure 6.2: Example threads and heaps. Each thread has a list of associated heaps at various
depths, corresponding to a path of heaps in the heap hierarchy.

• The function getCurrentDepth returns the depth of the current heap of a thread.
• The function switchToHeapAtDepth takes a thread 𝑡 and a depth 𝑑 as argument, and
switches to the heap at depth 𝑑 in the heap list associated with 𝑡 . If there is no such
heap, a fresh heap at depth 𝑑 is created.1

• The function attachSiblingAtDepth takes two threads 𝑡1 and 𝑡2 as well as a depth 𝑑 as
arguments, and informs the runtime system that 𝑡1 and 𝑡2’s heaps at depth 𝑑 are siblings
in the heap hierarchy. For example, in Figure 6.2, thread T2 was attached as a sibling of
T1 at depth 2.

• The function mergeSiblings takes two threads 𝑡1 and 𝑡2 as arguments, and merges their
heap lists with a “zip”: heaps from 𝑡1 and 𝑡2 at the same depth are merged, resulting in
a new heap list. When mergeSiblings completes, the new heap list is given to thread 𝑡1,
and thread 𝑡2 is left with an empty associated heap list. This operation is only ever used
on sibling threads. (For example, in Figure 6.2, threads T1 and T2 are siblings, but T2
and T3 are not.)

• The function mergeIntoParent takes a thread 𝑡 as argument and merges its current heap
into the parent of that heap. This requires that the thread has at least two heaps in its
heap list.

1For eciency, heap creation is delayed until the next failed limit check. That is, heaps are instantiated lazily
as needed, which helps reduce fragmentation and decreases the overhead of heap maintenance. This is discussed
in Section 6.3.

81

1 structure Scheduler: sig

2 type job
3 val spawn: (unit → unit) → job
4 val tryCancel: job → bool
5
6 type sync_var
7 val freshSyncVar: MPL.Thread.t → sync_var
8 val leftSynchronize: sync_var → unit
9 val rightSynchronize: sync_var → unit
10 end

Figure 6.3: Simplied interface of the work-stealing scheduler.

1 val 𝑆 = Scheduler.freshSyncVar(MPL.Thread.getCurrent())
2 val _ = Scheduler.spawn (fn () ⇒ 𝑒2; Scheduler.rightSynchronize(𝑆))
3 val _ = 𝑒1
4 val _ = Scheduler.leftSynchronize(𝑆) // wait for rightSynchronize(S)
5 // at this point, expressions 𝑒1 and 𝑒2 are both guaranteed to have completed

Figure 6.4: Example usage of sync_vars, as provided by MPL’s scheduler. The call to
leftSynchronize blocks until the corresponding call to rightSynchronize completes.

1 datatype sync_var = S of {incounter: int ref, guardedThread: MPL.Thread.t}
2 fun freshSyncVar(𝑡) = S {incounter = ref(2), guardedThread = 𝑡}
3
4 // Note: leftSynchronize must only be called by guardedThread
5 fun leftSynchronize(S{incounter, guardedThread}) =

6 if Atomic.fetchAndAdd(incounter, −1) = 1 then

7 () // rightSynchronize already happened, so no need to block
8 else

9 // rightSynchronize hasn’t happened yet.
10 // Switch away from this thread (it will be resumed when rightSynchronize happens)
11 MPL.Thread.switchTo(getIdleSchedulerThread(. . .))
12
13 // Note: this call never returns. Should be called as the nal operation of some other thread.
14 // (Must not be called by guardedThread.)
15 fun rightSynchronize(S{incounter, guardedThread}) =

16 if Atomic.fetchAndAdd(incounter, −1) = 1 then

17 // leftSynchronize already happened; guardedThread is ready to be resumed
18 MPL.Thread.switchTo(guardedThread)
19 else

20 // leftSynchronize hasn’t happened yet
21 MPL.Thread.switchTo(getIdleSchedulerThread(. . .))

Figure 6.5: Implementation of thread synchronization in MPL, using atomic fetch-and-add op-
erations and switching between rst-class threads.

82

6.1.2 Scheduler Jobs and Synchronization

At the source-level, we implement a standard work-stealing scheduler. In Figure 6.3, we show a
simplied interface which is sucient for implementing par (see Section 6.1.3). Some additional
functionality is omitted here for brevity.

The scheduler provides support for rst-class jobs which may be migrated between proces-
sors for parallelism. Jobs are thin wrappers around rst-class functions of type unit → unit,
and are stored in scheduler queues and migrated between processors. Executing a job is as
simple as calling its associated function. Under the hood, the scheduler executes jobs by creat-
ing and switching-to fresh threads (using the functions newThread and switchTo, as shown in
Figure 6.1).

Cancellation. To support the Cilk-style clone optimization (described below, in Section 6.1.3),
the scheduler allows for jobs to be cancelled using the function tryCancel, which either suc-
ceeds or fails. Cancelling a job will only succeed if the job has not already begun execution;
otherwise, the job cannot be cancelled and tryCancel will return false, indicating failure. If
tryCancel succeeds, it returns true.

Thread synchronization. For synchronization between threads, the scheduler provides a
type sync_var which can be used to block execution of a thread until all dependencies have
completed. The interface here is specialized for binary fork-join parallelism, with two syn-
chronization functions called leftSynchronize and rightSynchronize, respectively. When a
sync_var is created, a thread 𝑡 is passed as an argument; we refer to this thread as being guarded
by the sync_var. The function leftSynchronizemay then later be called by the guarded thread;
this call will block until rightSynchronize is called by some other thread. An example usage of
these functions is shown in Figure 6.4.

The sync_var type and corresponding functions can be implemented in terms of atomic
read-modify-write operations and switching between rst-class threads, as shown in Figure 6.5.
At a high level, the idea is to allocate an in-counter which counts the number of outstanding
dependencies. In our implementation, which is specialized for binary fork-join parallelism, this
count is always initially 2.2 The functions leftSynchronize and rightSynchronize then atomi-
cally fetch-and-decrement the in-counter, allowing them each to determine whether or not the
other synchronization operation has happened yet. This race condition has two possibilities: ei-
ther the leftSynchronize occurs rst, or the rightSynchronize occurs rst. In the former case,
the leftSynchronize switches away from the guarded thread, and then the rightSynchronize

later switches to it, resuming the guarded thread. In the latter case, the leftSynchronize is able
to continue executing the guarded thread without any switching.

Note that for both leftSynchronize and rightSynchronize, if the guarded thread is not
ready to be resumed, then these operations “return to the scheduler” by switching to an idle
scheduler thread. As a result, the current processor will resume normal scheduler operations
(such as attempting to steal ready-to-be-executed jobs from other processors).

2This could easily be generalized to a larger number of dependencies if desired, and even allows for specifying
a dynamically determined number of dependencies.

83

1 fun par(𝑓 : unit → 𝛼, 𝑔: unit → 𝛽) : 𝛼 × 𝛽 =

2 let

3 val 𝑇1 = MPL.Thread.getCurrent()
4 val 𝑑 = MPL.Heaps.getCurrentDepth(𝑇1)
5 val rightSideThread = ref (NONE: MPL.Thread.t option)
6 val rightSideResult = ref (NONE: 𝛽 option)
7 val syncVar = Scheduler.freshSyncVar(𝑇1)
8
9 // Spawn the "slow clone" of right−hand side.
10 // If executed on a dierent processor, will be executed inside a fresh thread (𝑇2).
11 val rightSide = Scheduler.spawn(fn () ⇒

12 let

13 val 𝑇2 = MPL.Thread.getCurrent()
14 val _ = MPL.Heaps.switchToHeapAtDepth(𝑇2, 𝑑 + 1)
15 val _ = MPL.Heaps.attachSiblingAtDepth(𝑇1,𝑇2, 𝑑 + 1)
16 val 𝑟2 = 𝑔()
17 in

18 rightSideThread := SOME(𝑇2);
19 rightSideResult := SOME(𝑟2);
20 Scheduler.rightSynchronize(syncVar)
21 end)
22
23 // Advance to depth 𝑑 + 1 and execute the left−hand side
24 val _ = MPL.Heaps.switchToHeapAtDepth(𝑇1, 𝑑 + 1)
25 val 𝑟1 = 𝑓 ()
26
27 // Get the right−hand side result
28 val 𝑟2 =

29 if Scheduler.tryCancel(rightSide) then

30 // rightSide successfully cancelled: execute "fast clone" on same processor.
31 (MPL.Heaps.mergeIntoParent(𝑇1);
32 MPL.Heaps.switchToHeapAtDepth(𝑇1, 𝑑);
33 𝑔()) // execute 𝑔 directly, with no additional synchronization
34 else

35 // synchronize with the "slow clone" (rightSide, executed by dierent processor)
36 let

37 val _ = Scheduler.leftSynchronize(syncVar)
38 val SOME(𝑇2) = !rightSideThread
39 val _ = MPL.Heaps.mergeSiblings(𝑇1,𝑇2) // merge right heaps into left
40 val _ = MPL.Heaps.mergeIntoParent(𝑇1)
41 val _ = MPL.Heaps.switchToHeapAtDepth(𝑇1, 𝑑)
42 val SOME(𝑟2) = !rightSideResult
43 in

44 𝑟2
45 end

46 in

47 (𝑟1, 𝑟2)
48 end

Figure 6.6: Simplied presentation of the implementation of par in MPL.

84

6.1.3 Implementing the par Function

As described in Chapter 2, we provide the programmer with a single parallel primitive called
par, which takes two functions 𝑓 and 𝑔 as arguments, evaluates 𝑓 () and 𝑔() in parallel, and
nally returns their results as a tuple. This primitive is implemented mostly at the source level,
with calls into theMPL run-time system as necessary.

A simplied presentation of the implementation of par is shown in Figure 6.6, using the
interfaces of Figures 6.1 and 6.3. For a call par(𝑓 , 𝑔) which occurs at a heap of depth 𝑑 , the idea
is to spawn a job which executes 𝑔() in a heap of depth 𝑑 + 1, and then reuse the current thread
to execute 𝑓 (), also at depth 𝑑 + 1. We refer to the execution of 𝑓 () as the “left-hand side”, and
similarly refer to the execution of 𝑔() as the “right-hand side”.

Fast/Slow Clones. When the left-hand side (the call to 𝑓 ()) is nished, it is possible that the
spawned right-side job has not yet been scheduled. We could immediately synchronize with
this job, whichwould have the eect of switching back to the scheduler and then creating a fresh
thread for the right-side job. This overhead is substantial, and can be avoided, as demonstrated
by the clone optimization in the Cilk implementation [37, 70]. We refer to the right-side job as
the slow clone of 𝑔(); this version of 𝑔() has to perform synchronization code and requires a
fresh thread to execute. To avoid the overhead of the slow clone, before synchronizing with the
slow clone, the par function rst attempts to cancel the right-side job. If this is successful, then
𝑔() can be executed on the same thread with no additional synchronization. We refer to this
call to 𝑔() as the fast clone. In a highly-parallel program (where the parallelism of the program
is much larger than the number of available processors), many calls to par will be able to take
advantage of the fast clone.

ForMPL, in the fast-clone case (where 𝑔() is executed on the same thread), we “revert” the
new heap that was used to execute 𝑓 () at depth 𝑑 + 1, and execute 𝑔() at depth 𝑑 rather than
𝑑 + 1. This is accomplished by merging the current heap (containing any allocations of 𝑓 ())
back into the parent heap before executing 𝑔(). In the case where the slow clone is executed on
a dierent processor, we need to retrieve the right-hand-side result, and also need to merge the
right-hand-side heaps. Both of these are accomplished using the references rightSideResult
and rightSideThread, which are updated by the right-hand-side job when it completes, and
before it synchronizes. This way, after the original thread 𝑇1 calls leftSynchronize, it can
safely read the right-hand-side thread and merge its heaps. After merging heaps, it is safe
(with respect to disentanglement) to read the right-side result (Figure 6.6, line 42).

6.2 Block Allocator

All signicant allocations performed byMPL are backed by a block allocation system. At a high
level, this system is based roughly on the Hoard memory allocator [25].

Blocks and superblocks. We logically divide the virtualmemory space into xed-size blocks
of 2𝑘 bytes (we use 𝑘 = 12), appropriately aligned such that the low-order bits of the beginning
of each block are zeroed. Blocks are organized into contiguous groups called superblocks,

85

where each superblock contains 2𝑠 blocks (we use 𝑠 = 7). Each superblock has a size class, in-
dicating how much memory it can supply with a single allocation. A size class of 1 means that
the superblock can be used to supply allocations of single blocks; a size class of 2 means that
the superblock supplies allocations of 2 contiguous blocks, etc. Size classes are powers-of-two
to ensure that any superblock can be used for any size class, up to 2𝑠 (the superblock size).

Free-lists and fullness groups. Superblocks are organized into processor-local free-lists, to
ensure fast processor-location allocation of blocks. Based on the Hoard algorithm, superblocks
are also organized into fullness groups based on how many blocks within the superblock are
currently in use. To select a superblock to supply an allocation, each processor always selects
the fullest superblock from the appropriate size class within its processor-local freelist of avail-
able superblocks. This ensures that mostly-unused superblocks eventually become completely
free. Any superblock which is completely free may then be reassigned to a dierent size class,
if needed.

Processors hold onto their superblocks. In a deviation from the Hoard algorithm, we do
notmigrate superblocks between processors. If no free superblock is available for allocation in a
processor’s local freelist, then the processor simply allocates a new superblock from the OS. The
advantages of this approach are that (i) it it simpler to implement, (ii) it has low contention, and
(iii) it has good locality, as memory initialized by a processor will eventually become available
for re-allocation by the same processor. The downside is that it potentially uses more memory
than necessary. Nevertheless, because all processors in the MPL runtime system are treated
homogeneously by the scheduler, and because the number of processors is xed throughout
an execution, this approach works well. In the future, if these constraints are relaxed, it may
become necessary to implement Hoard-style superblock migrations.

Megablocks. Beyond superblocks, for large allocations (those exceeding the largest superblock
size class, which in our case is 512KB), we implement a megablock allocator. Megablocks are
stored in a global freelist, accessible by any processor, and are organized by size class. To al-
locate a megablock, a processor acquires a global lock on the global freelist, and searches for
an appropriate megablock. If none is found, a new megablock is mmap’ed from the OS. When a
megablock is freed, it is always returned to the global freelist. In our current implementation,
megablocks are never returned to the OS, but this could be easily be changed in the future if
desired. We allow megablocks of up to 218 blocks.

Very large allocations. Finally, beyond megablocks, for extremely large allocations (those
exceeding the largest megablock size class, which in our case is more than 1GB of memory in
a single allocation), we mmap and munmapmemory directly from the OS on every allocation and
free.

86

6.3 Heaps and Heap Objects

Heaps and Chunks. In the run-time system, we implement heaps as linked lists of heap
chunks, with each chunk consisting of one or more contiguous blocks (Section 6.2) of memory.
This strategymakes it possible tomerge two heapswithout copying any data: instead, wemerge
two heaps simply by linking together their chunks-lists, which takes constant time.

At the front of each chunk is a chunk descriptor containing various metadata needed for
allocation and garbage collection, including frontier and limit pointers. The frontier points to
the beginning of the unallocated space within a chunk, and the limit points to the end of the
chunk. To perform allocations, the compiled source manipulates the frontier to bump-allocate
within the “current” heap chunk until the limit is reached. The compiled code includes explicit
limit checks to determine when a new chunk is needed: when a limit check fails due to lack
of space, a call is made into the runtime system to allocate a new chunk and extend the current
heap, or perform a garbage collection if needed.

Lazy Heap Creation. To reduce fragmentation and decrease the cost of instantiating new
heaps,MPL instantiates new heaps lazily at failed limit checks. Specically, when a limit check
fails and a fresh chunk is needed, MPL performs a call into the runtime system. The runtime
call allocates the fresh chunk at the current thread’s depth, and a fresh heap is instantiated only
if no heap at that depth exists yet. This way, every heap in the system contains at least one
chunk, and chunks aren’t abandoned until they are mostly full.

HeapObjects. Within the allocated region of a chunk (between the chunk start and frontier),
MPL stores heap objects. The heap object model of MPL is inherited from MLton [106]; for
completeness, we describe the details here.

Each heap objects consist of a header together with a payload. The header stores GC meta-
data specic to that object (accessible only by the compiler and runtime system), and the pay-
load stores data corresponding to source-level values. Although the payload data is determined
by the source-level program, its representation and layout is ultimately controlled by the com-
piler. As a whole-program optimizing compiler,MPLwill choose low-level memory representa-
tions for data depending on the context in which that data is used. That is, two values that both
have the same source-level type might have dierent memory representations in the compiled
code. Similarly, the same source-level function might be copied multiple times in the compiled
code, with each copy specialized for dierent data representations. This is especially true for
polymorphic source-level functions, which are monomorphized at compile-time by making (at
least) one copy per distinct monomorphic instantiation.

One of the main optimizations performed byMPL (inherited fromMLton) during compila-
tion is data attening, which changes the memory representations of objects with the goal of
eliminating unnecessary allocations. That is, while an object of type (int × int) array could
be represented by an array of pointers to tuples, it is likely more ecient (both in terms of
total memory usage and data locality) to use an “array-of-structs” layout, avoiding the use of
pointers entirely. In this way, MPL deviates from the theoretical semantics of Section 3.1 in
which disentanglement was dened. In particular, for ease and simplicity of presentation, the

87

formal semantics of Section 3.1 explicitly allocates a memory location for all data, even “small”
types such as integers. But this would not be ecient in practice. Data attening optimizations
are crucial for eciency; we have measured runtime and space improvements of 2x or more
due to attening. These optimizations appear to be safe for disentanglement, because attening
only eliminates allocations. We therefore leave the attening optimizations turned on. We have
encountered no correctness issues due to attening in our experiments and benchmarks.

Heap Object Types and Tags. MPL permits many dierent forms of payloads with exible
sizes and layouts. To be able to trace through memory, the GC system needs to know the size
and layout of each payload. Therefore, in the header of each object, MPL stores an object tag.
The object tag keeps track of four pieces of information: (1) an object type (described below),
(2) whether or not the object is mutable, (3) the number of bytes of non-pointer data, and (4)
the number of pointers to other objects. This information is sucient for the GC system to
determine the size of an object, as well as whether or not it contains pointers to other objects
(and at what osets those pointers are located). Object tags are eciently represented as indices
into a static object tag table. MPL reserves 19 bits in the header for a tag index, allowing up
to 219 dierent object tags in single executable. Typical executables only need (at most) a few
hundred distinct tags.

MPL uses three distinct object types: normal objects, stack objects, and sequence objects.
Most objects in a typical program are normal objects, which are used to represent tuples,
records, and (mutable) references. A normal object consists of some number of non-pointer
elds followed by zero or more pointers, as indicated by the object tag. The sequence object
type is used to represent (mutable) arrays and (immutable) vectors. Objects of this type have
a larger GC header, which additionally stores the length of the sequence (in terms of number
of elements). Each element of a sequence object is laid out like a normal object, but with no
GC header. The GC header of the sequence itself describes the layout of each element (e.g. the
number of non-pointer and pointer elds and their osets). Finally, objects of the stack type are
used to store call-stacks for rst-class threads in the source program. These rst-class threads
are used extensively in the implementation of our scheduler (Section 6.1). First-class threads
themselves are represented as normal objects, containing a distinguished pointer to the stack.

The compiled program directly manipulates call-stacks by pushing and popping function
frames which store local data needed by individual function calls. Frames can contain pointers
to heap objects. To make it possible for the GC to identify where these pointers are located on
the stack, each frame has a corresponding frame index which is used to look up information
about the layout of the frame in a frame info table. The frame info table is stored statically in
the compiled code of each executable, similar to the static object tag table.

Single- and Multi-object Chunks. Typically, a heap chunk stores many heap objects: at its
smallest, a heap chunk is at least a page (4KB) in size, and most heap objects are on the order
of tens (or possibly hundreds) of bytes. However, some objects are large. Sequence objects in
particular can be very large: MPL supports arrays containing up to 263 − 1 elements. Stack
objects also can grow quite large, depending on the maximum stack depth of a program.

To support large objects, MPL distinguishes between single-object chunks and multi-

88

object chunks. As the names suggest, a single-object chunk stores only a single object, where
as a multi-object chunk stores many objects adjacent to one another. Sequence objects (arrays
and vectors) are only given their own single-object chunk if the sequence is at least half a page
in size. MPL chooses to give all stacks their own chunk, to facilitate stacks growing if necessary.

The advantage of single-object chunks is that it allows for large objects to bemoved between
heaps without copying any data. In particular, during garbage collections, if a large array needs
to be moved between heaps, this can be accomplished in constant time (by unlinking and then
relinking the chunk into a dierent chunk-list). The same is true for single-object chunks con-
taining stacks. The running time performance advantages of this optimization are signicant,
and easily outweigh the (small amount of) fragmentation introduced by single-object chunks.

6.4 Parallel Initialization of Sequence Objects

As described in Section 6.3, the sequence object type is used to represent (mutable) arrays and
(immutable) vectors, which can be large (up to 263−1 elements). When a fresh region of memory
is allocated for a sequence object, it could contain arbitrary bits (i.e., the fresh memory is not
guaranteed to be zero’ed or otherwise initialized to some known safe value). If a fresh sequence
object is tagged as containing pointers but is left uninitialized, then the GC systemmay attempt
to interpret unknown bits as a pointer, leading to a crash (or worse). Fresh sequence objects
therefore need to be initialized with values which are safe-for-GC.

Many compilers and runtime systems—includingMLton, on whichMPL is based—perform
this initialization with a sequential loop on a single processor, at the moment a sequence is
allocated. This approach is a non-starter for parallelism, as it introduces long delays onto the
critical path: any algorithmwhich in parallel generates many elements stored in an array would
be eectively sequentialized.

Parallelization with Raw Sequences. MPL parallelizes the allocation and initialization of
sequence objects in a three-step process.

1. First, a region of memory for a sequence object is allocated, and the GC header is ini-
tialized. In the GC header, the object is marked as a raw sequence: any sequence object
marked as raw might contain unknown bits, and therefore should not be scanned by the
GC sytem. WhenMPL’s garbage collector encounters a sequence marked as raw, it skips
over the contents of the sequence.

2. Next, the raw sequence is initialized in parallel: for each eld of the sequence that even-
tually may contain a pointer, a GC-safe value is written (e.g., a null-pointer). This step
is integrated with the scheduler, using ordinary tasks which are spawned and scheduled
just like any other parallel computation inMPL.

3. Finally, the sequence is unmarked, and is no longer raw. At this point, the GC can safely
scan the sequence.

After completing this three-step process, the sequence can then be lled with normal ML values
in parallel.

89

6.5 Heap Queries

The MPL runtime system relies heavily on the ability to query which heap contains an object,
and to do so eciently. This presents an interesting challenge, becauseMPL creates fresh heaps
and merges heaps at a high rate: typically, each call to par creates at least one fresh heap, and
then later performs at least one heap merge. The frequency of heap merges precludes any
implementation which iterates through the heap on each merge to update a heap ownership
eld, even if this eld was stored on a per-chunk basis. Such an approachwould be prohibitively
expensive. For ecient heap queries, we need an algorithm which is eectively constant-time
at heap merges.

Here we leverage the observation that heap queries are essentially an instance of the classic
union-nd problem. Based on this observation, we choose to support ecient heap queries
in MPL with a path-compressing union-nd data structure. In particular, given the address of
some object,MPL can nd the heapwhich contains the object via the following procedure. First,
the chunk descriptor of the chunk that contains the object can be found in constant time by
zeroing the low-order bits of the object’s address. In the chunk descriptor, we store a pointer to a
union-nd node corresponding to the heap which contains the chunk. We then follow parent-
pointers in the union-nd tree to nd the representative union-nd node for this tree in the
union-nd forest (path-compressing along the way, if needed). The representative union-nd
node then contains a pointer to the heap record of the appropriate heap.

Note that, to nd chunk descriptors in constant time, we require that chunks are appropri-
ately aligned at power-of-two addresses. This is guaranteed by the block allocator: each chunk
consists of one or more contiguous blocks, and blocks themselves are aligned.

6.5.1 Memory Reclamation for Union-Find Nodes

In the union-nd forest, path compression will splice out many union-nd nodes. To avoid a
space leak, these nodes must be reclaimed. Detecting precisely when a union-nd node is no
longer in use is not obvious, because many processors may perform heap queries concurrently.
We therefore defer the work of reclaiming union-nd nodes to garbage collections.

At LGCs, rather than attempt to determinewhich nodes are and aren’t still in use, we instead
simply construct a fresh heap structure with fresh heap records and fresh union-nd nodes, in a
at structure. This way, we ensure that all old union-nd nodes and heap records are no longer
in use, and may be reclaimed all at once in bulk. This approach essentially performs a custom
scavenging copying collection on heap records and union-nd nodes at each collection.

For CGCs, we use a similar approach. However, note that in the case of CGC, we cannot
simply reclaim all old union-nd and heap nodes, because some of these may still be in use
by other processors. Essentially, in the case of CGC, the union-nd data-structure behaves
as a (wait-free) concurrent data structure, and suers from the same correctness issues for
reclamation as other concurrent data structures do [69, 105].

When reclaiming union-nd nodes during CGC, rather than directly free old nodes, we
instead retire them, using a variant of the DEBRA epoch-based reclamation algorithm [43].
The high-level idea of epoch-based reclamation is to associate each retired node with an epoch,
which is a period of execution that is agreed upon by all processors. Any nodewhichwas retired

90

at least two epochs prior to the current epoch is safe to free. To help each other free nodes,
processors periodically attempt to advance the current epoch. When a processor successfully
advances the epoch, it may safely free nodes that it retired two epochs prior.

6.5.2 Allocation for Heap Records and Union-Find Nodes

To support ecient allocation of heap records and union-nd nodes, we implement an allocator
which is specialied for xed-size small objects. Similar toMPL’s block allocator (Section 6.2), the
xed-size allocator is based on processor-local freelists. Note that the memory of the xed-size
allocator is backed by blocks from the blocks allocator, ensuring that all of MPL’s allocations
ultimately are backed by a single mechanism which communicates with the OS to map and
unmap virtual memory.

6.6 Remembered Sets and Write Barriers

We equip each heap with a depth and a remembered set in order to eciently implement the
collection algorithms described in Chapter 4. The depth is simply the depth of the heap in the
heap hierarchy, which is easilymaintained at forks and joins. The remembered sets store entries
of the form (𝑥,𝑦), indicating that object 𝑥 held a down- or right-pointer to 𝑦. This approach
supports a strategy we call pinning, which is described in more detail in Section 6.8.4.

Remembered sets are maintained by a write barrier, which is a small piece of code that
inserted in the compiled program before certain writes to memory. Our implementation has a
write barrier for every update of pointer data that might result in a down-pointer. At the write
barrier for the update 𝑥 [𝑖] := 𝑦, we compare the depths of heap(𝑥) and heap(𝑦): if heap(𝑦) is
deeper than heap(𝑥), then we remember the down-pointer by inserting the entry (𝑥,𝑦) in the
remembered set for heap(𝑦). Note that disentanglement guarantees that 𝑥 is either an ancestor
or a descendant of 𝑦, which is why we can determine their relative position in the hierarchy
simply by comparing their depths.

The contents of the remembered set are used to facilitate fast management of down- and
right-pointers during both LGC and CGC. In particular, both collection algorithms use the ob-
jects {𝑦 | (_, 𝑦) ∈ RememberedSet} as additional roots for collection after lting the remembered
set to remove invalid entries. Remembered set entries can become invalid if the correspond-
ing down- or right-pointer has become due to heap merges. That is, for any remembered-set
entry (𝑥,𝑦), if heap(𝑥) = heap(𝑦), then the entry is no longer needed (because the down- or
right-pointer has become an internal pointer), and so the entry is removed.

6.7 Garbage Collection

InMPL, garbage collections are triggered at failed limit checks based on an amortization policy.
When a GC is triggered,MPL chooses between LGC and CGC based on a shallowness criterion,
which concentrates the work of CGC on shallow heaps, and relies on LGC for all other heaps
(e.g., heaps close to the leaves of the hierarchy). In this section, we describe the implementa-

91

tions of LGC (Section 6.7.1) and CGC (Section 6.7.2), as well as the amortization policy which
determines when LGCs and CGCs occur (Section 6.7.3).

6.7.1 LGC

We implemented LGC by adapting a Cheney-style copying collector [49], which copies and
compacts surviving objects into a fresh set of heaps. The tracing phase performs a Cheney-
style collection on each in-scope heap, beginning at the deepest local heap and progressing to
the shallowest local heap. In each heap, objects are copied by individually evacuating pointers
which point into the from-space, and we install forwarding pointers so that references to old
objects may be updated. By processing from deepest to shallowest, we guarantee that when a
heap is processed, all up-pointers into the heap have already been evacuated.

Note that the Cheney-style collection algorithm used for LGC requires that all in-scope
tasks remain inactive until the LGC completes. Otherwise, if an in-scope task were active, it
could witness a forwarding pointer installed on a relocated object.

MPL ensures that in-scope tasks remain inactive by integrating with the scheduler. Each
in-scope task corresponds to one job in the scheduler queue; therefore, to ensure that these
tasks remain inactive, LGC temporarily removes the appropriate jobs from the scheduler queue.
In particular, we implement the local heap assignment algorithm of Section 4.4 by walking
upwards from the leaf, iteratively removing jobs from the scheduler queue that were added by
the current thread. Each such job corresponds to a sibling task which is ready but inactive.
By removing these job from the scheduler queue, MPL ensures that the corresponding tasks
remain inactive. Later, when the LGC completes, all of the jobs removed in this process are
restored by placing them back into the scheduler queue. From a scheduling perspective, this
eectively treats each LGC as an additional dependency for each in-scope inactive task.

Simplied Heap Assignment. In our current implementation, MPL deviates slightly from
the local heap assignment algorithm of Section 4.4, by not distinguishing between completed
and active tasks. This simplies the implementation of the heap assignment algorithm: re-
moving one job from the scheduler queue corresponds to claiming a single ancestor heap to
be included in LGC. However, the consequence is that any heap of a completed child task (as
well its parent) is excluded from LGC until the sibling completes. Note that in our experiments
(Chapter 8), we observe that MPL is highly space-ecient in general, suggesting that in prac-
tice, this simplication does not have signicant impact on the precision of garbage collection.
In future work, we plan to revisit this issue, to measure the impact precisely.

Example. Returning to Figure 6.2, consider that T1 called par at depth 2 and is now currently
working on the left-side task, at depth 3. If T1 triggers an LGC, it may attempt to remove the
corresponding right-side job (not shown in the gure). There are then two possibilities.

1. Suppose another processor has already begun working on the right-side job. Then thread
T1 fails to remove the job, and the scope of the LGC is limited to only heap D. When
the LGC completes, because no jobs were removed, no jobs need to be returned to the
scheduler queue.

92

2. Suppose the right-side job has not yet begun execution on another processor. Then T1

will successfully remove the right-side job and thereby claim the heap C for LGC. Next,
T1 may attempt to claim heap B by removing another right-side job; however, T1 will
fail to claim B, because the appropriate right-side job has already begun execution on
another processor (thread T2 in the gure). Therefore, the scope of the LGC will consist
of two heaps: D and C. When the LGC completes, the single job that was removed (to
claim C) is placed back into the scheduler queue.

6.7.2 CGC

For CGC, we implemented a non-moving mark-and-sweep algorithm based on a SATB (i.e.,
snapshot-at-the-beginning [161]) strategy. Our CGC algorithm iteratively processes objects in
depth-rst order in two passes. The rst pass marks reachable objects. After marking reachable
objects, all chunks in which no objects were reachable are freed. Next, the algorithm performs
a second pass over the reachable objects, to unmark them.

For the SATB algorithm, we augment each heap with a forgoen set, which contains all
objects 𝑥 such that a mutable update deleted a pointer to 𝑥 . The forgotten set is updated at write
barriers. Additionally, when a processor inserts an element into the forgotten set, it marks the
object, thereby ensuring that the same object is not added multiple times. In this way, forgotten
set maintenance “helps” concurrent collection.

Coordinating access between a CGC task and other tasks adding elements to the forgot-
ten set requires care. For eciency, we implement forgotten sets with a distributed “bag” data
structure consisting of 𝑃 separate lists, one for each processor. When processor 𝑖 adds an el-
ement to the forgotten set, it adds the element to the 𝑖th list. This ensures that insertions are
low-contention.

The CGC task itself accesses the forgotten set by removing batches of inserted elements
(which must then be scanned for collection). To end the marking phase of CGC, the CGC task
attempts to close the forgotten set. If it succeeds, then the marking phase is complete, and
no more elements will be added to the forgotten set. If it fails, then an additional element (or
multiple elements) must have been added to the forgotten set by another processor. In this case,
the CGC will remove the new element(s), scan it for collection, and then try again to close the
forgotten set (repeating until it succeeds). This process is guaranteed to eventually succeed,
because the write barrier marks each element before adding it to the forgotten set, and only
adds to the forgotten set if an element is not already marked.

6.7.3 Amortization Policy for LGC and CGC

A simple amortization policy for LGC and CGC is as follows. We keep track of the size (i.e., the
amount of allocated memory) of each heap ℎ, denoted |ℎ |. We then annotate each heap ℎ with
a counter, 𝑆 (ℎ), which is the amount of memory in ℎ that survived the most recent garbage
collection where ℎ was in-scope. That is, when a collection is completed on a heap ℎ, we reset
the counter 𝑆 (ℎ) to the new size, i.e., 𝑆 (ℎ) ← |ℎ |. Fresh allocations in a heap ℎ increase |ℎ | but
do not aect 𝑆 (ℎ). Note that counters 𝑆 (ℎ) and |ℎ | are summed when heaps merge.

93

For a particular local heap assignment 𝑇 on a single processor (Section 4.4), our policy
dictates that the processor should perform an LGC whenever

∑
ℎ∈𝑇 |ℎ | ≥ 𝑘

∑
ℎ∈𝑇 𝑆 (ℎ), where

𝑘 > 1 is an amortization parameter, set at run-time. The parameter 𝑘 can be adjusted to control
the cost of garbage collection: increasing𝑘 decreases the frequency of garbage collection, which
decreases the time cost and increases the space cost.

For CGC, we use a similar policy. For any primary leaf heap ℎ, our policy spawns a CGC
task to garbage-collect ℎ if the following two conditions are met:

1. The size of the heap must be large enough. Specically, we do not collect a heap ℎ unless
|ℎ | ≥ 𝑘 · 𝑆 (ℎ), where 𝑘 > 1 is an amortization parameter, set at run-time.

2. The heap must be shallow. Specically, the heap must be at depth 𝑑shallow or less, where
𝑑shallow is a parameter set at run-time.

The shallowness condition is a heuristic, to ensure that CGC and LGC cooperate. In particular,
note that the rst condition (i.e., |ℎ | ≥ 𝑘 · 𝑆 (ℎ)) is also a satisfying condition of LGC. For
shallow heaps, rather than perform LGC eagerly, we instead prioritize CGC. This prioritization
ismotivated by the observation that shallow heaps are typically larger than other heaps: as tasks
“join up” and merge their heaps, data naturally ows upwards, into shallow heaps, eventually
accumulating at the root heap.

Work-eciency. The combination of our CGC and LGC amortization policies produces an
overall collection policy which is work-ecient. In particular, for an execution that performs
𝑊 work in total, this policy ensures that the total work of garbage collection is at most 𝑂 (𝑊).
(The work of execution is the total number of instructions performed, excluding the cost of
garbage collection.)

The argument for work-eciency is straightforward. Garbage collection requires a linear
amount of work; therefore, each LGC of a local heap assignment 𝑇 pays 𝑂 (∑ℎ∈𝑇 |ℎ |), and each
CGC of an internal heap ℎ pays 𝑂 (|ℎ |). These costs can be charged against the cost of allo-
cations. For each individual heap ℎ, at the beginning of any garbage collection on that heap
(either LGC or CGC), there are𝐴(ℎ) = |ℎ | −𝑆 (ℎ) fresh allocations that have not yet participated
in a garbage collection. Assigning a potential of 𝐴(ℎ) to the heap yields an amortized garbage
collection cost, per heap, of 𝐴(ℎ)/(𝑘 − 1), where 𝑘 > 1 is the amortization constant. Summing
over all heaps and all garbage collections yields a total cost of𝐴tot/(𝑘−1), where𝐴tot is the total
amount of memory allocated throughout execution. Because 𝐴tot ≤𝑊 (i.e., every allocation is
at least one unit of work), we have that the total cost of garbage collection is bounded by𝑂 (𝑊).

Separate Control over LGC and CGC. The above policy uses a single amortization param-
eter 𝑘 for both LGC and CGC, but this is not necessary. InMPL, we give each of LGC and CGC
their own amortization parameters: 𝑘LGC and 𝑘CGC, respectively. This allows us to separately
control the eagerness of LGC and CGC. By default, MPL makes CGC more eager than LGC,
with the settings 𝑘CGC = 2 and 𝑘LGC = 8. In our experience, because CGC typically operates on
larger heaps, it is advantageous for space eciency to run CGC more frequently. In contrast,
because LGCs is scheduled on the critical path, it is advantageous for running time eciency
to run LGC less frequently. The space impact of increasing the LGC amortization parameter is
small, because LGC generally operates on smaller heaps.

94

For a shallowness threshold, we use𝑑shallow = 2. That is, by default,MPL only spawns CGCs
for heaps that have at most two ancestors. This ensures that CGC is concentrated on a small
number of (generally large) shallow heaps.

LGCScopeHeuristic. As a heuristic, LGC claims as fewheaps as possiblewhile still ensuring
that enough memory is in-scope. In particular, if an LGC is allowed to trace up to 𝑀 memory,
then the LGC will select as few heaps as possible to guarantee at least 𝑐 · 𝑀 memory is in-
scope of the collection (where 0 < 𝑐 < 1 is an adjustable parameter; MPL uses 𝑐 = 3/4 by
default). This heuristic is motivated by two observations: (i) it is benecial for parallelism to
select smaller LGC scopes, and (ii) the heap hierarchy generally is top- and bottom-heavy, with
many middle-range heaps which are nearly empty.

For example, consider a leaf heap ℎ together with its parent ℎ′, both local to a single proces-
sor. Suppose an LGC is triggered where |ℎ | = 90 and |ℎ′| = 10, with parameter 𝑐 = 0.9. Instead
of collecting both heaps, the LGC will only collect ℎ, because ℎ alone constitutes 90% of the
available collectible memory. This leaves the parent heap ℎ′ unclaimed, allowing for a sibling
task (if any) to be scheduled before the LGC completes.

6.8 Entanglement Detection Implementation

6.8.1 Vertex Identiers and SP-order maintenance

To implement graph queries for entanglement detection, we use DePa [156], an “o-the-shelf”
SP-order maintenance data structure which is optimized for binary nested parallelism and is
suitable for MPL’s parallel primitives. In this data structure, each vertex is represented by
an identier packed into one or more machine words, and graph queries are eciently per-
formed by comparing vertex identiers, requiring work proportional to the number of words
in the identier. The size of a identier is determined by the dynamic nesting depth of the
corresponding task during execution. In the common case, because dynamic nesting depths of
highly-parallel programs are typically small, a vertex identier is a single 64-bit word. At forks
and joins, the scheduler reassigns the current vertex identier of the current thread to match
that specied by our algorithm (Chapter 5).

6.8.2 Read and Write Barriers for Detection

Marking entanglement candidates. InMPL’s write barrier, we additionally mark the mu-
tated object as an entanglement candidate if the write creates a down-pointer. To mark candi-
dates, we reserve a bit in the object’s GC header which indicates whether or not the object is a
candidate.

Inserting read barriers. For entanglement detection, MPL inserts read barriers for reads
(dereferences) of mutable objects. In Parallel ML, ref-cells and arrays are the only mutable ob-
jects, meaning that the only operations needing a read barrier are the operations which retrieve

95

elements from refs and arrays, including standard dereferences as well as atomic compare-and-
swaps:

val !: 𝛼 ref → 𝛼

val sub: 𝛼 array × int → 𝛼

val refCompareAndSwap: 𝛼 ref × 𝛼 × 𝛼 → 𝛼

val arrayCompareAndSwap: 𝛼 array × int × 𝛼 × 𝛼 → 𝛼

In the compiler front-end, we begin by conservatively marking all of these operations as
needing a read barrier. However, not all actually result in a read barrier in the generated code.
In the compiler backend,MPL eventually chooses concrete, bit-level representations for all data.
In this step, we only add read barriers if MPL chooses to represent the contents of the ref (or
array) with a pointer.

For example, consider an object 𝑥 of type int ref and corresponding dereference !𝑥 . MPL
never chooses to indirect the integer through a pointer, so no read barrier is inserted. But with
types such as (int × int) ref,MPLmay choose to either (a) inline the integers into the ref, or
(b) allocate the tuple separately and represent the contents of the cell with a pointer. A read
barrier is inserted only in the latter case, whereMPL chooses to allocate the contents separately.

Read barrier fast and slow path. The read barrier has two behaviors: a fast path for objects
that are not entanglement candidates, and a slow path otherwise. The fast path is implemented
by codegen in the compiler. For each dereference !𝑥 , we generate code which rst optimistically
performs the read, and then by inspects the header of 𝑥 to check if 𝑥 is marked as a candidate.
If the read barrier sees that 𝑥 is not marked as a candidate, then the fast path is satised, and
execution continues as normal (i.e., the graph query is elided). If the read barrier sees that 𝑥 is
marked as a candidate, then we fall back on the slow path. In the slow path, MPL performs a
graph query to check for entanglement. The graph query is implemented as a function call into
the run-time system (written in C and linked with the generated code).

Note that the read barrier synchronizes with the write barrier, which might concurrently
update an object and mark it as a candidate. The order of operations is important. The read
barrier inspects the mark after it performs the read, while the write barrier sets the mark before
it performs the update. Abstractly, there are two states for an object, determined by the state
of the mark: either (i) it is denitely not a candidate, or (ii) it is possibly a candidate. By placing
the mark between the read and write, we ensure that the state transition (from non-candidate
to possibly-candidate) linearizes when the mark is set.

6.8.3 Memory Management for Detection

Vertex identiers in heap chunks. In each chunk descriptor, MPL additionally stores a
vertex identier, which is shared across all objects within the chunk. When a new chunk is
allocated, it is assigned the current vertex identier of the thread that allocated the chunk.
Chunk boundaries are aligned, allowing fast access to chunk descriptors by zeroing-out the low-
order bits of an object’s address. This makes it possible (in constant time) to look up the vertex
of the thread which allocated an object. The read barrier therefore can check for entanglement
by inspecting the vertex stored in the chunk descriptor of the object in question.

96

Reassignment of vertices during GC. InMPL, the GC design incorporates a local copying
collector which compacts the live objects of each thread into a new set of heap chunks. These
new chunks must be assigned an appropriate vertex identier. Here, we take advantage of the
fact that after two threads join, their corresponding graph vertices are indistinguishable with
respect to entanglement detection. That is, using the denitions of Section 5.6, for any two
vertices 𝑢 and 𝑣 such that �̃� = 𝑣 and any leaf vertex 𝑤 , we have 𝑢 4𝐺 𝑤 if and only if 𝑣 4𝐺 𝑤 .
When picking a vertex identier for a new chunk during GC, it is therefore safe to use any
vertex identier of any chunk in the heap being compacted.

6.8.4 Chunk Pinning: Handling the Possibility of Entanglement

Wenow describe how to ensure that execution remainsmemory-safe, even at themomentwhen
entanglement occurs. This requires care, because there is a race between LGC (which compacts
thread-local memory by copying objects) and entanglement (which allows a thread to reach
into another thread’s local memory).

To illustrate the problem, consider two concurrent threads 𝐴 and 𝐵 as shown in Figure 6.7.
Thread 𝐴 begins executing a dereference !x, where x is shared between the two threads. By
reading from x, thread 𝐴 acquires a pointer to an object y which was allocated by 𝐵.3 Next,
suppose thread 𝐵 performs a garbage collection which copies y to a new location y’, forwards
the down-pointer (from x) to point to y’, and nally reclaims y. When 𝐴 proceeds with the
entanglement check on y, it will then read from reclaimed memory, and possibly crash (or
worse).

Pinning. Tomake the entanglement checkmemory-safe, we have to ensure that it is safe for a
concurrent thread to access the chunk descriptor of any object which is potentially entangled.
Here we take advantage of a key property (discussed in Section 5.6): entanglement can only
occur due to a read of a down-pointer. When MPL creates a down-pointer, it executes a write
barrier (which adds the down-pointer to a remembered set for GC). In the write barrier, wemark
the target object of each down-pointer as pinned; then, in LGC, we ensure that these objects
are not moved (i.e. the address of a pinned object must not change during a collection). Any
chunk that contains a pinned object is called a pinned chunk. By preserving the addresses of
pinned objects, the GC implicitly ensures that pinned chunks are not reclaimed. Therefore, it
is safe at any moment for a thread to access the descriptor of a pinned chunk, to inspect the
vertex identier stored there to detect entanglement.

In the example of Figure 6.7, the pinning technique xes the race by ensuring that object
y is pinned. The GC performed by thread 𝐵 therefore is required to preserve y (and the chunk
containing y), allowing the entanglement check performed by 𝐴 to proceed safely.

Unpinning. A pinned object may be later unpinned as soon as there are no more down-
pointers which point at the object. As heaps merge upwards due to thread joins, down-pointers

3At this point, it would be problematic for thread 𝐴 to perform a garbage collection, because it is holding a
cross-pointer. Our implementation therefore disallows GCs from being triggered within a read barrier, specically
by ensuring that no limit check is placed between the dereference and the entanglement check.

97

x

y y’
A:
y = !x
check(y)

B: local GC relocates y,
reclaims chunk(y)

Figure 6.7: Example of race between local GC and the entanglement check. Thread 𝐴 rst
acquires a pointer to 𝑦. Meanwhile, 𝐵 forwards 𝑦 to 𝑦′ and reclaims the old memory. Thread 𝐴
then proceeds with the entanglement check on a dangling pointer.

heap
record chunk objects pointerparent /

child
pinned
chunk

A

B

C D

 . . .

A

B

 . . .

unpinned

before merge {C, D} into B after merge

Figure 6.8: Example, before and after heaps C and D merge into B. Afterwards, the down-
pointer from B into D has become an internal pointer, and therefore the indicated chunk may
be unpinned.

98

naturally become internal, which enables unpinning. We could unpin objects at heap merges:
whenever a heap is merged into its parent, if this causes all down-pointers incident upon a
pinned object to become internal, then the object may be safely unpinned. However, unpinning
objects at every heap merge would be inecient, because merges are frequent. We therefore
instead perform unpinning in bulk during GC.

Unpinning integrates naturally withMPL’s handling of remembered sets (Section 6.6). Dur-
ing GC, MPL scans the remembered set to identify down-pointers that have become internal
due to prior joins. During this process, we identify the set of objects which must remain pinned
(due to the existence of a down-pointer). All other pinned objects are then unpinned.

Example. Figure 6.8 shows an example where pinned chunks become unpinned due to a heap
merge. In the gure, there are four heaps shown on the left, labeled A through D. Each heap
consists of a list of chunks, and within each chunk are various objects of dierent sizes allocated
by the program, with pointers to other objects. Pinned chunks are shaded in light red: these
chunks contain pinned objects, i.e., objects which are pointed-to by a down-pointer from an
ancestor heap. On the left in the gure, there are two pinned chunks: one in heap B, and one
in heap D. The right-side of the gure illustrates the heap structure after C and D are merged
into their parent. As a result of the merge, a down-pointer (from B into D) becomes an internal
pointer within B. The corresponding object therefore may be unpinned, as may its containing
chunk (which no longer contains any pinned objects).

Cost of chunk pinning. Chunk pinning makes it possible to handle the possibility of en-
tanglement. We measured the impact of pinning, in comparison to a promotion-based LGC
algorithm (as described in Chapter 4), and found that overall it oers a slight improvement in
time and space in comparison to promotion, with approximately −3% and −7% dierence (re-
spectively) in time and space on average across the benchmarks in our evaluation. This slight
improvement may seem surprising, given that one disadvantage of pinning is that it introduces
additional fragmentation into the system (by preventing the GC from relocating pinned objects
to compact memory). However, note that this fragmentation is short-lived: as the program
“joins back up”, objects naturally become unpinned, as illustrated in Figure 6.8.

The space loss due to fragmentation appears to be outweighed by other advantages of pin-
ning. For example, the pinning strategy allows for a more space-ecient implementation of
remembered sets for down-pointers. In particular, for a promotion-based collection, MPL uses
remembered-set entries of the form (𝑥, 𝑖,𝑦), indicating that 𝑥 [𝑖] is a down-pointer to 𝑦; this
representation allows for the GC to update 𝑥 [𝑖] to point to the new version of 𝑦 when 𝑦 is re-
located by collection. Under the pinning strategy, because the addresses of pinned objects are
kept xed (and thus down-pointers do not need to be updated by GC), we do not need to store
this additional information in the remembered set. Therefore, under the pinning strategy, we
instead use remembered-set entries of the form (𝑥,𝑦), where 𝑥 is an object which contains a
down-pointer to 𝑦. Then, by comparing heap(𝑥) against heap(𝑦), we can determine whether
or not it is safe to unpin 𝑦. We therefore save space by shrinking the size of each individ-
ual remembered-set entry. Furthermore, if there are multiple down-pointers incident upon an
object, we only need to keep one entry (the one with heap(𝑥) of minimum depth). These dif-

99

ferences can result in signicant space savings in the remembered set, especially in programs
with a large number of down-pointers.

100

Chapter 7

The Parallel ML Benchmark Suite

To evaluate the performance of MPL and provide examples of ecient and scalable Parallel
ML programs, we developed the Parallel ML Benchmark Suite.1 The suite consists of sophis-
ticated parallel benchmarks from various problem domains, including graphs, text processing,
digital audio processing, image analysis and manipulation, numerical algorithms, computa-
tional geometry, and others. We ported many of these benchmarks to Parallel ML from existing
state-of-the-art parallel C/C++ benchmark suites and libraries including PBBS [14, 32, 133], Par-
layLib [34, 155], Ligra [131], GBBS [54], and PAM [148]. Even though these benchmarks were
originally written in C/C++, all of these benchmarks are naturally disentangled.

The Parallel ML Benchmark Suite is supported by MPLLib,2 a library of key parallel algo-
rithms and data-structures for parallel programming. MPLLib provides data structures such
as sequences, sets, dictionaries, matrices, adjacency graphs, oct-trees, simplicial complexes
(meshes), etc., and supports a wide variety of parallel operations on these data structures. The
library also provides utilities for parallel I/O and processing for text, image (.ppm, .gif), and
audio (.wav) les, as well as utilities for benchmarking.

In this chapter, we present an overview and discussion of our benchmarks and the library
that supports them, including programming details for some of the key data structures and
operations provided by MPLLib.

Acknowledgements

The Parallel ML Benchmark Suite includes contributions from multiple collaborators and col-
leagues, including Jatin Arora, Guy Blelloch, Umut Acar, Larry Wang, and Troels Henriksen.

7.1 Graph Algorithms

These algorithms are ported from Ligra [131] and GBBS [54]. We represent graphs in an adja-
cency table, specically in a “compressed sparse row” format. In this representation, all edges
of the graph are compressed into a single vertex array, and the graph additionally stores

1https://github.com/MPLLang/parallel-ml-bench
2https://github.com/MPLLang/mpllib

101

https://github.com/MPLLang/parallel-ml-bench
https://github.com/MPLLang/mpllib

an array of osets, indicating where the neighbors of a vertex are located. Specically, the
set of neighbors of a vertex 𝑣 lie between indices offsets[𝑣] and offsets[𝑣 + 1] in the com-
pressed neighbor array. The degree of a vertex therefore can also be eciently computed as
offsets[𝑣 + 1] - offsets[𝑣]. Here, vertices are labeled 0 to 𝑁 − 1.

Based on this representation, we implement an abstract graph interface, providing functions
for querying degrees or retrieving the neighbors of vertices, both of which are supported with
constant work. The graph library also provides ecient implementations of vertex subsets and
Ligra-inspired parallel “edge map” operations.

Benchmarks. Our graph-based benchmarks are as follows.
• Bfs computes a breadth-rst search. The input is a randomly generated power-law graph [44]
with approximately 16.7M vertices and 199M edges, symmetrized.3

• Centrality computes single-source betweenness centrality. The input graph is the same
as for the BFS benchmark.

• Low-d-decomp computes a low-diameter decomposition of a graph. The input graph is
the same as for BFS.

• Max-indep-set computes a maximal independent set, i.e., a maximal set of non-adjacent
vertices. The input graph is the same as for BFS.

• Triangle-count counts the number of triangles in an undirected graph. The input is a
randomly generated power-law graph with approximately 1M vertices and 19.6M edges,
symmetrized.

7.2 Computational Geometry

Some of the algorithms in this section share an implementation of an oct-tree, which organizes
points into a rooted tree by recursively partitioning into rectangular regions. We implement
oct-trees as an algebraic datatype, consisting of either a node with children, or a leaf. The leaves
are “chunked” for eciency; in particular, rectangular regions containing fewer than 50 points
are represented as (unordered) arrays. This signicantly improves space eciency by avoiding
redundant nodes, and improves cache eciency for leaf-heavy operations. For example, in the
nearest-neighbors benchmarks, the nearest neighbor of any point is likely stored at the same
leaf.

The construction of the oct-tree is parallelized and included in the benchmark measure-
ments. To construct an oct-tree, we partition points via a 2𝐷-way lter (for 𝐷-dimensional
space; e.g., 4-way lter for 2-dimensional space) and then recursively build the children in par-
allel.

For delaunay, we implement a library which abstractly provides operations on meshes
(a.k.a., simplicial complexes). The library supports key operations such as rip-and-tent, as well
as mesh hopping, where the simplex containing a point can be found by walking through the
mesh starting at any point, using “point-outside” queries to determine the direction towards

3A symmetrized graph is an undirected graph where each edge is represented as two directed edges.

102

any point from any simplex. To support mesh hopping, the simplex must be convex. Our li-
brary therefore provides primitives for constructing an appropriate convex boundary for any
set of points.

The nearest-neighbors algorithm, in addition to being a standalone benchmark here, is also
used as a subroutine for the delaunay algorithm, to aid in point location within a mesh. In
particular, the delaunay algorithm iteratively inserts batches of points, and periodically be-
tween batches recomputes a nearest-neighbor data structure. This is used to locate the nearest
neighbor within the current mesh, before mesh-hopping, to reduce the number of simplexes
traversed by mesh-hopping.

For the range-query benchmark, we use Parallel Augmented Maps [148], which we ported
to Parallel ML. Specically we use weight-balanced binary trees, augmented for range queries
as described in the PAM paper. In the future, this benchmark could be further optimized by
using PaC-trees [55], which conceptually are a “chunked” version of PAM trees.

Benchmarks. Our computational geometry benchmarks are the following.
• Delaunay computes a Delaunay triangulation of 1M uniformly random points within a
circle, using the algorithm by Blelloch, Gu, Shun, and Sun [33].

• Nearest-nbrs computes all nearest neighbors within a set of 2D points (i.e. for each
point, the nearest other point within the set) by constructing an intermediate quad-tree
and then querying it in parallel. The input is 1M points distributed uniformly randomly
within a circle.

• Quickhull computes the convex hull of 20M uniformly random points distributed within
a circle.

• Range-query performs rectangular queries on a collection of 2-dimensional points, where
for each query, it counts the number of points within the rectangle. This is implemented
using Parallel Augmented Maps [148]. In total there are 1M points in the database, and
1M queries on those points are performed in parallel.

7.3 Images and Audio

These benchmarks generally operate on either image data (of type pixel array, where pix-
els store RGB color information) or audio data (of type real array, where each element is a
oating-point sample in the range [−1, +1]). To support these operations we implemented le
support for .ppm, .gif, and .wav le types. The parallel versions of both the reverb and seam-
carving algorithms are described in detail in the author’s online blog.4 At a high level, the reverb
algorithm is similar to a parallel prex sums algorithm, but specialized for 2-dimensional data,
where the size of second the dimension is determined by the reverb delay parameter. Parallel
seam-carving is accomplished by a dynamic programming algorithm which partions the image
into triangular-blocked strips, which is more ecient (in terms of both cache eciency and par-
allelism) than the simpler row-major parallelization strategy, providing up to 5x performance
improvement at scale.

4https://shwestrick.github.io/

103

https://shwestrick.github.io/

Benchmarks. Our image and audio processing benchmarks are as follows.
• Raytracer computes an image of 1000×1000 pixels by ray-tracing. This implementation
is provided by Troels Henriksen.5

• Seam-carve is a parallel implementation of the seam-carving technique [22] for content-
aware rescaling. This benchmark removes 100 vertical seams from a panoramic image of
approximately 1.5M pixels.

• Tinykaboom is a port of a C++ graphics application6 which procedurally generates an
explosion eect. It generates 10 frames of 100 × 100 pixels each.

• Reverb applies an articial reverberation eect to an audio le. The input is approxi-
mately 4 minutes long with a sample rate of 44.1 kHz at 16 bits per sample.

7.4 Text Processing

• Dedup takes a collection of words and removes duplicates by deterministic hashing. The
input text is approximately 148MB with 16.5M words and 65K unique words.

• Grep is a parallel implementation of the Unix grep utility, with parallelization both across
the lines as well as within long lines. In particular, we perform a prex-doubling parallel
search within long lines to nd the rst occurrence of the pattern. The benchmark simply
performs a direct comparison to match against the pattern, and for simplicity does not
support regular expressions. The input text is approximately 148MBwith 16.5M lines and
386K matching lines.

• Wc is a parallel implementation of the Unix wc utility, which computes the number of
lines, the number of words, and the number of bytes in a text le. The input text is
approximately 1.7GB with 216M lines.

• Sux-array computes the sux array of a uniformly random input text of 10M charac-
ters.

• Palindrome nds the longest (contiguous) substring which is a palindrome using a poly-
nomial rolling hash. The input is 1M characters.

• Tokens separates a text into tokens, using whitespace as delimiters. The input text is
approximately 148MB with 16.5M tokens.

7.5 Numerical Algorithms

• Dense-matmul multiplies two 1024 × 1024 dense matrices of 64-bit oating-point ele-
ments using the simple𝑂 (𝑛3)-work, four-way divide-and-conquer cache-oblivious algo-
rithm.

• Sparse-mxv multiplies a sparse matrix (2M rows, 200M nonzero entries) with a vector
of length 2M.

5https://github.com/athas/raytracers
6https://github.com/ssloy/tinykaboom

104

https://github.com/athas/raytracers
https://github.com/ssloy/tinykaboom

• Primes generates all prime numbers that are less than 100M (approximately 5.8M primes)
with a parallel sieve.

• Bignum-add performs addition on two bignums of 500M bytes each. Bignums are rep-
resented as sequences of bytes, where each byte represents one digit in radix 128. This
leaves one bit leftover in each byte, which is used in the algorithm as a carry bit.

• Integrate calculates the integral of
√︁
1/𝑥 for 𝑥 ∈ [1, 1000] with a midpoint-rectangular

Riemann sum across 𝑛 = 500M points.
• Linearrec solves a linear recurrence of the form 𝑅𝑖 = 𝑥𝑖𝑅𝑖−1 +𝑦𝑖 ; the input is 200M pairs
of doubles (𝑥𝑖, 𝑦𝑖).

• Linet nds a line of best t (by least-squares) for 500M 2D points (pairs of doubles).
• Mcss computes the maximum contiguous subsequence sum of an array of 500M doubles.

7.6 Other Algorithms

• Msort-strings performs parallel mergesort on a collection of strings taken from an En-
glish corpus. The input is 38MB with 4.1M strings of approximately 10 characters each
on average.

• Msort-int64 performs parallel mergesort on 64-bit integers. The input contains 20M
uniformly random integers, generated by a hash function.

• Nqueens counts the number of solutions to the 13 × 13 n-queens problem.

105

106

Chapter 8

Evaluation

To evaluate the performance of MPL, we perform a number of empirical evaluations across over
30 benchmarks from the Parallel ML Benchmark Suite (Chapter 7). Collectively, these compar-
isons demonstrate that MPL is ecient and scalable in terms of both time and space usage. In
particular, we show that MPL generally outperforms existing state-of-the-art procedural and
functional parallel language implementations which have automatic memory management, in-
cluding Java, Go, and multicore OCaml. Furthermore, we show that MPL is competitive with
low-level, memory-unsafe languages such as C++.

8.1 Overview

Overheads and Scalability

In Section 8.3, we begin by comparing MPL against the MLton [106] compiler for (sequential)
Standard ML. Because MPL extends MLton, the two systems are able to compile exactly the
same benchmarks1 and are very similar in terms of the details of compilation itself. The main
dierence between MLton and MPL is their runtime systems: whereas MLton only supports
sequential execution and has a sequential GC, our MPL is fully parallel. Therefore, this com-
parison allows us to determine the overheads and scalability of our memory management tech-
niques, in comparison to an ecient sequential baseline. We consider a number of dierences
in memory management betweenMPL andMLton, especially regarding heap architecture and
garbage collection policy.

On executions using up to 72 processors, we observe that MPL achieves between 14-60x
speedup over (sequential) MLton while on average using less space. Note that in general, par-
allel execution can require more memory than sequential execution—as much as a factor 𝑃 on 𝑃
processors, in theory. MPL therefore is able to eciently manage memory to avoid this blowup
when possible, without signicant impact on runtime scalability.

1Specically, we use MLton to compile the sequential elision of each benchmark, where parallel tuples are
replaced by sequential tuples.

107

Problem-Based Cross-Language Comparisons

To determine howMPL fares against other state-of-the-art parallel language implementations,
we perform a number of “problem-based” comparisons. The problem-based methodology, as
popularized by PBBS [14, 133], considers benchmarks with well-dened input and output spec-
ications. That is, if program A and program B both solve the same problem (by having the
same input and output, down to individual bits, if possible), then it is reasonable to compare
them broadly in terms of performance, even in A and B are based on dierent languages and
systems. We use this approach to compare MPL against a multiple other parallel languages,
including multicore OCaml, Java, Go, and C++.

OCaml. In Section 8.4, we compare MPL against multicore OCaml [139], a state-of-the-art
parallel functional language implementation. Multicore OCaml supports fork-join parallelism,
and has a source-level language which is essentially the same asMPL. Therefore, for this com-
parison, we are able to use very similar benchmark codes. We ported multiple of our bench-
marks to OCaml, and also ported multiple OCaml benchmarks toMPL. The results of this com-
parison show thatMPL is approximately 2x faster while also using 2x less space at scale (on 72
processors).

Java and Go. In Section 8.5, we compare against Java and Go to determine how MPL’s per-
formance fares against well-known memory-safe procedural languages. In these comparisons,
we consider the classic problem of sorting, where we compare the fastest parallel sorting imple-
mentations we could nd in each language. We also consider ve other highly parallel bench-
marks representing a variety of characteristics, including both compute-bound and memory-
bound benchmarks, as well as benchmarks with both low and high rates of allocation.

We observe that, although both Java and Go are sometimes faster than MPL on one pro-
cessor, they do not scale as well. At scale (on 72 processors), MPL is on average 2x faster than
Go and over 3x faster than Java. MPL also uses less space than both Go and Java on average
(approximately 4x less than Java and 30% less than Go). Finally, we note that the running time
performance advantage of MPL is highest for benchmarks with a high rate of allocation. This
results show that MPL generally outperforms both Java and Go (in terms of both time and
space), often by a wide margin, and the performance advantage appears to be due to ecient
and scalable memory management.

C++. All of the above comparisons consider languages that are memory-safe and have au-
tomatic memory management. However, memory-unsafe languages such as C++ are often
favored by programmers for achieving high performance, expecially in the world of shared-
memory multicore parallelism. Therefore, it is interesting to consider how MPL fares in com-
parison to C++, to establish a ballpark number forMPL’s “absolute” performance. In Section 8.6,
we perform such a comparison using the same problem-based methodology as the rest of our
experiments. The C++ benchmarks in this comparison are taken from state-of-the-art suites
and libraries, including PBBS [14, 32, 133], ParlayLib [34], and Ligra [131].

We note that although this comparison is unfair against MPL (due to the additional safety
guarantees provided byMPL), we do not focus here on language-level dierences betweenMPL

108

and C++. Rather, the point of this comparison to determine whether or notMPL is competitive
in performance with the fastest available low-level programming techniques.

At a high level, we observe that on 72 processors,MPL is on average less than 2x slower than
C++ while using a similar amount of memory. In three cases, MPL is within 30% of C++, and
in one case,MPLmatches the performance of C++. These measurements include the cost (both
space and time) of automatic memory management and GC. This comparison demonstrates
that MPL is generally competitive with (i.e., within a factor 2 of) the fastest low-level parallel
programming techniques. With further engineering, we believe this performance gap can be
narrowed, and eventually closed.

Overhead of Entanglement Detection

As described in Chapter 5, MPL achieves memory safety via entanglement detection, which
monitors individual reads and writes during execution to ensure disentanglement. In Sec-
tion 8.7, we measure the overhead of these techniques by measuring MPL’s performance both
with andwithout detection (i.e, by enabling and disabling detection at compile-time). Across the
board, we observe close to zero overhead in terms of both time and space. We also consider the
performance improvement due to our entanglement candidates algorithm (Section 5.6), which
dynamically eliminates unnecessary graph queries when checking for entanglement. We ob-
serve that, by tracking candidates, we are able to bring the number of graph queries down to 0
in most cases, and achieve performance improvements of up to a factor of 2x. The entanglement
candidates algorithm is therefore key to the low overhead of entanglement detection.

8.2 Methodology and Experimental Setup

To measure run times, we run each benchmark 20 times back-to-back and report the average,
excluding initialization (e.g., loading the input from le), warmup, and teardown. To measure
space usage, we measure the average of the maximum resident set size (as reported by Linux) of
20 back-to-back runs of the benchmark. Back-to-back runs are executed in the same program
instance to ensure that the eect of memory management amortization thresholds is taken into
account (for example, a garbage collection might run only once every ve runs). Wewrite𝑇𝑃 for
time on 𝑃 processors, and similarly 𝑅𝑃 for the max residency on 𝑃 processors. For the sequential
baseline runs, we write 𝑇𝑠 . Unless stated otherwise, all run times are in seconds, and all space
numbers (max residencies) are in GB.

We run all of our experiments on a 72-core Dell PowerEdge R930 consisting of 4× 2.4GHz In-
tel (18-core) E7-8867 v4 Xeon processors, 1TB of memory, and running Ubuntu version 16.04.7
with Linux version 4.10.0-40-generic x86_64. All of ourMPL experiments useMPL version
0.3. In Section 8.4, we use multicore OCaml version 5.0.0+dev4-2022-06-14with default set-
tings and the library domainslib version 0.4.2. In Section 8.5, we use Java OpenJDK version
11.0.14 with the G1GC collector, which we found yielded the best performance. We used the
following runtime settings to control the number of threads:

-XX:ParallelGCThreads=𝑁
-Djava.util.concurrent.ForkJoinPool.common.parallelism=𝑁

109

For Go, we use version 1.18.4. In Section 8.6, we use g++ version 10.3.0 with the jemalloc
library, and the compiler ags -O3, -march=native, -std=c++17, and -mcx16.

The code for these experiments is publicly available on GitHub.2

8.3 Overheads and Scalability

We evaluate the end-to-end scalability of our memory management techniques by comparing
against theMLton compiler for StandardML. BecauseMPL extendsMLton, the two systems are
very similar. As baseline we use the sequential versions of our benchmarks, which are derived
from parallel benchmarks by replacing parallel tuples with sequential ones. This approach en-
ables us to measure the cost of our memory management techniques by keeping the underlying
algorithms the same for both parallel and sequential versions.

The results of this comparison are shown in Table 8.1 and Figures 8.1 and 8.2. Figures 8.1
and 8.2 show the speedup of our benchmarks in comparison to the sequential baseline on up to
72 processors; we split these into two separate plots tomake them easier to read. Table 8.1 shows
measurements for sequential, uniprocessor runs (𝑃 = 1), and parallel runs with 72 processors
(𝑃 = 72), including time and space usage, as well as overheads, speedups, and memory blowups.

Overhead. The overhead—measured by the ratio𝑇1/𝑇𝑠 of uniprocessor to sequential time—is
relatively small, ranging between a factor of 1 (no overhead) to 4.27 (327% slower) in compar-
ison to the sequential baseline, with a geometric average of 1.5x (see “geomean” in Table 8.1).
These overheads include all overheads of parallelism, including the cost of scheduling as well as
parallel memory management. The largest overhead in comparison to MLton is on the primes

benchmark (approximately 4x). We veried that this overhead is due to compilation (rather than
memory management or scheduling) by adjustingMPL’s compile-time thresholds for function
specialization3 andmeasuring the performance of primes across dierent settings. With a larger
threshold, the uniprocessor overhead of primes becomes 25%, and the speedup on 72 processors
increases to 22x.

Speedup. The speedup—measured by the ratio 𝑇𝑠/𝑇𝑃 of the sequential running time to the
𝑃-processor running time—shows the benets of parallelism over the sequential. In Table 8.1,
we observe between 14-60x speedup, with an average of 30x. A speedup of 𝑇𝑠/𝑇𝑃 = 𝑃 would
indicate perfect speedup, i.e., full utilization of all 𝑃 processors. Perfect speedup is uncommon,
even for embarrassingly parallel benchmarks, due to overheads of parallelism and memory
bottlenecks on modern multicores. Typically, we expect to see speedups scale linearly with the
number of processors but then plateau as the memory bandwidth of the machine is reached,
particularly for “memory-bound” benchmarks.

2https://github.com/MPLLang/parallel-ml-bench
3Specically, we increased the -polyvariance-small threshold. This setting is inherited from MLton, and

controls the “polyvariance” optimization pass, which duplicates higher-order functions at each use, if the size of
the function is smaller than some threshold. By increasing this threshold, we allow the compiler to inline and
specialize larger higher-order functions, which increases code size but can substantially improve performance in
some cases.

110

https://github.com/MPLLang/parallel-ml-bench

Time (s) Space (GB)

OV SU BU1 BU72
Benchmark 𝑇𝑠 𝑇1

𝑇1
𝑇𝑠

𝑇72
𝑇𝑠
𝑇72

𝑅𝑠 𝑅1
𝑅1
𝑅𝑠

𝑅72
𝑅72
𝑅𝑠

bfs 11.4 18.7 1.64 .420 27 35 7.4 0.2 5.7 0.2

bignum-add 2.47 4.05 1.64 .069 36 8.6 3.0 0.3 3.1 0.4

centrality 14.5 18.6 1.28 .466 31 33 6.6 0.2 5.7 0.2

dedup 3.05 6.14 2.01 .127 24 11 2.8 0.3 8.9 0.8

delaunay 8.24 11.9 1.44 .379 22 2.7 1.1 0.4 2.1 0.8

dense-matmul 1.88 2.85 1.52 .048 39 .11 .046 0.4 .091 0.8

grep 1.44 2.12 1.47 .040 36 4.6 .61 0.1 .85 0.2

integrate 3.06 3.11 1.02 .052 59 .0020 .013 6.5 .050 25.0

linearrec 3.34 5.02 1.50 .226 15 77 6.7 0.1 21 0.3

linet 2.00 2.42 1.21 .146 14 8.5 8.2 1.0 8.2 1.0

low-d-decomp 6.67 8.24 1.24 .215 31 28 6.8 0.2 6.1 0.2

max-indep-set 12.1 16.3 1.35 .341 35 18 6.9 0.4 5.5 0.3

mcss 1.90 4.64 2.44 .078 24 4.3 4.1 1.0 4.1 1.0

msort-int64 3.36 3.98 1.18 .077 44 5.0 .66 0.1 .91 0.2

msort-strings 1.31 3.05 2.33 .070 19 1.5 .67 0.4 1.7 1.1

nearest-nbrs 1.31 1.67 1.27 .038 34 1.5 .72 0.5 2.2 1.5

nqueens 1.23 1.64 1.33 .029 42 .0020 .044 22.0 .26 130.0

palindrome 1.09 1.64 1.50 .032 34 .20 .061 0.3 .10 0.5

primes 1.74 7.43 4.27 .122 14 1.5 .26 0.2 .37 0.2

quickhull 2.53 3.51 1.39 .113 22 15 13 0.9 20 1.3

range-query 14.5 17.0 1.17 .297 49 13 4.4 0.3 4.2 0.3

raytracer 2.93 3.28 1.12 .057 51 .39 .090 0.2 .41 1.1

reverb 1.00 1.32 1.32 .042 24 6.9 1.5 0.2 1.9 0.3

seam-carve 12.0 15.5 1.29 .859 14 .54 .090 0.2 .56 1.0

sparse-mxv 1.33 2.45 1.84 .049 27 2.1 4.5 2.1 4.4 2.1

sux-array 4.36 7.19 1.65 .146 30 6.3 1.2 0.2 1.8 0.3

tinykaboom 2.45 2.46 1.00 .041 60 .0054 .0073 1.4 .038 7.0

tokens 1.56 1.93 1.24 .043 36 13 1.1 0.1 1.1 0.1

triangle-count 4.93 5.37 1.09 .113 44 2.7 .79 0.3 1.2 0.4

wc 4.18 7.69 1.84 .130 32 1.9 3.6 1.9 3.6 1.9

geomean 1.48 30 0.43 0.73

Table 8.1: Comparison with sequential baseline: times, max residencies, overheads (OV),
speedups (SU), and space blowups (BU).

111

1 10 20 30 40 50 60 70
Processors

1

10

20

30

40

50

60

70

Sp
ee

du
p

bfs
bignum-add
delaunay
linearrec
low-d-decomp

mcss
msort-int64
nearest-nbrs
nqueens
raytracer

reverb
seam-carve
tinykaboom
tokens
wc

Figure 8.1: Speedups in comparison to sequential baseline (group 1).

112

1 10 20 30 40 50 60 70
Processors

1

10

20

30

40

50

60

70

Sp
ee

du
p

centrality
dedup
dense-matmul
grep
integrate

linefit
max-indep-set
msort-strings
palindrome
primes

quickhull
range-query
sparse-mxv
suffix-array
triangle-count

Figure 8.2: Speedups in comparison to sequential baseline (group 2).

113

In Figures 8.1 and 8.2, we observe two primary behaviors, as expected. Most benchmark
can be classied as either compute-bound or memory-bound: the compute-bound benchmarks
(e.g. raytracer, tinykaboom, integrate, dense-matmul) all scale approximately linearly, whereas
the memory-bound benchmarks (e.g. seam-carve, reverb, delaunay, linet) each initially scale
linearly and then plateau as the memory bandwidth of the machine is reached.

One example of a memory-bound benchmark is linet. Despite low overall speedup (only
14x on 72 processors), MPL’s parallel performance on this benchmark is nearly optimal.4 In
particular, consider that the linet algorithm has to go over the input data twice; given that
each element is 16 bytes and the input is 500M elements, the total number of bytes that need
to be read is 16 GB. Our machine has a peak read bandwidth of 140 GB/sec, which implies a
peak performance of 16/140 = .114 seconds. We achieve .146 seconds on 72 processors, which
is reasonably close to the peak bandwidth.

Another example of a memory-bound benchmark is seam-carve, which has relatively low
speedup (14x on 72 processors) due to three factors. First, seam-carving not highly parallel: in
an image of width𝑤 and height ℎ, seam-carving has 𝑂 (𝑤ℎ) work and𝑂 (ℎ) span, leaving only
𝑂 (𝑤) parallelism, which for typical images is small. Second, seam-carving only does a small
amount of compute (a few arithmetic instructions) per memory access. Third, seam-carving
has a high allocation and reclamation rate: this particular implementation is “pure” in the sense
that removing one seam does not modify the input image, so in total the benchmark allocates
approximately 100 copies of the input image, which stresses the memory management system.
In light of these bottlenecks, a speedup of 14x for seam-carving is admirable.

The primes benchmark also has reasonably low speedup, which is explainable entirely due
to its uniprocessor overhead, discussed above. Indeed, on this benchmark,MPL has an excellent
“self-speedup” of 𝑇1/𝑇72 = 61, and looking closely at the speedup of primes in Figure 8.2, we
observe an almost perfectly straight line.

These results show that the speedups are signicant and that they are usually inversely
correlated with the overheads, showing that the scalability is overall quite good.

Space Eciency. The space blowup on 𝑃 processors–dened by the ratio𝑅𝑃/𝑅𝑠 of 𝑃-processor
space usage to sequential–summarizes the additional memory required to support parallelism
and parallel memory management.

In Table 8.1, we immediately observe that MPL has low blowups across the board in com-
parison to the sequential baseline. Surprisingly, on average,MPL uses lessmemory thanMLton
on both uniprocessor and parallel runs. This is due to MPL’s collection policy, which is more
eager than MLton’s, in anticipation of parallelism. By default, MLton uses a single heap with
an amortization ratio of 8x, and therefore will use up to 8x more memory than the working
set size. MPL uses two amortization ratios—one for LGC, and one for CGC, as described in
Section 6.7.3—and is more eager for CGC, with an amortization ratio of 2x. In this way, MPL
gets a space benet both from generational eects (where LGC essentially functions as a fast
nursery collector) as well as from a lower overall amortization ratio.

We have observed that, by increasing MPL’s GC amortization ratios, we can decrease the

4In our later comparison with C++ (Section 8.6), we observe thatMPLmatches the performance of C++ on the
linet benchmark.

114

sequential overhead of MPL relative to MLton while increasing the memory blowup. For ex-
ample, increasing the CGC amortization ratio to 8x brings the sequential time overhead of
nearest-nbrs to within 20% but increases the sequential memory blowup to 1.5x; similarly, on
dedup, the sequential time overhead improves slightly (down to 1.8x from 2x) while the mem-
ory usage approximately doubles. However, at scale, we do not witness an improvement in
running time from this change. This is why we choose to makeMPL more eager with CGC by
default: improved space performance with little eect on running time at scale. We note also
that because of MPL’s chunked heaps, there is a potential space benet for large objects stored
in single-object chunks, which do not need to be copied during LGC, as described in Section 6.3.
We plan to investigate the performance advantages of this optimization in future work.

On 72 processors, MPL achieves blowups in the range 0.1-2.1x in all but three cases. The
three exceptions are integrate (25x), nqueens (130x), and tinykaboom (7x). We attribute these
blowups to the unavoidable costs of parallelism, including a constant overhead (the memory
of the scheduler) as well as a multiplicative factor: on 𝑃 processors, any parallel algorithm
might need as much as a factor of 𝑃 more memory than sequential. All three benchmarks
have small overall memory usage on 1 processor, which amplies the cost of any constant
overheads in the observed blowups. Note thatMPL has “self-blowups” 𝑅72/𝑅1 in the range 4-6x
for these benchmarks. Self-blowup can be a useful measure for the multiplicative space cost of
parallelism. In these cases, it is low in comparison to the number of processors, 𝑃 .

For 18 out of 30 benchmarks,MPL uses signicantly less space on 72 processors thanMLton
uses sequentially. This suggests thatMPL’s memorymanagement and garbage collection strate-
gies are space-ecient and scalable. Furthermore,MPL’s low overheads and good speedups (as
discussed above) demonstrate that the runtime cost of automatic memory management is well-
amortized and does not interfere with parallelism.

8.4 Comparison with Multicore OCaml

The surface languages supported by the MPL compiler and OCaml are essentially the same,
raising the question of how the two systems compare, and making it possible to perform such
a comparison by using very similar benchmarks. In this section, we perform a modest compar-
ison betweenMPL and OCaml. Before we dive into details, we note that beyond the similarity
of the languages, the two systems have dierent aims. Our main goal is to develop a fully par-
allel/distributed memory manager that comes with theoretical guarantees on eciency. The
multicore extensions to the OCaml compiler prioritize backward compatibility with sequential
codes, especially with respect to performance [139]. The currently available version of mul-
ticore OCaml uses a generational collector with a concurrent, non-moving major GC and a
stop-the-world parallel minor GC.

Benchmarks. We consider four OCaml-specic benchmarks taken from the OCaml Sand-
mark suite,5 which we ported to MPL. These benchmarks have the prex “SM:” in tables and
gures. We also use ve benchmarks from Section 8.3: raytracer, primes, msort-int64, msort-

5https://github.com/ocaml-bench/sandmark

115

https://github.com/ocaml-bench/sandmark

𝑇1 𝑇72 𝑅1 𝑅72

O M O
M O M O

M O M O
M O M O

M

tokens 4.87 1.93 2.52 .819 .043 19.05 1.5 1.1 1.36 14 1.1 12.73

msort-int64 11.2 3.98 2.81 .479 .077 6.22 1.1 .66 1.67 6.8 .91 7.47

primes 8.20 7.43 1.10 .168 .122 1.38 .45 .26 1.73 1.7 .37 4.59

raytracer 5.30 3.28 1.62 .161 .057 2.82 .080 .090 0.89 .41 .41 1.00

SM:lu-decomp 2.96 1.21 2.45 .256 .154 1.66 .048 .063 0.76 .41 .21 1.95

msort-strings 4.10 3.05 1.34 .119 .070 1.70 .36 .67 0.54 1.7 1.7 1.00

SM:nbody 3.19 4.33 0.74 .227 .192 1.18 .0060 .0087 0.69 .15 .096 1.56

SM:game-of-life 3.07 1.70 1.81 .073 .079 0.92 .021 .054 0.39 .17 .12 1.42

SM:binarytrees5 1.25 1.84 0.68 .088 .096 0.92 .067 .080 0.84 .76 1.1 0.69

geomean 1.50 2.22 0.88 2.22

Table 8.2: MPL vs OCaml: Times (seconds) and max residencies (GB) of MPL (column M) and
OCaml (column O). The ratios O

M are the performance of OCaml relative to MPL. Larger ratios
are better for MPL.

strings, and tokens. The raytracer implementations are taken from Troels Henriksen’s compar-
ison.6 We ported the four other benchmarks (primes, msort-int64,7 msort-strings, and tokens)
fromMPL to OCaml. Because of the similarities between Parallel ML and OCaml, and because
multicore OCaml supports fork-join parallelism, the resulting benchmark codes are very simi-
lar.

Results. Table 8.2 presents the results of the comparison, with running times 𝑇𝑝 and max
residency 𝑅𝑝 on both 𝑝 = 1 and 𝑝 = 72 processors. The columns labeled “O” are results for
OCaml, and the columns “M” are results for our MPL. The column O

M is the performance of
OCaml relative toMPL; larger ratios are in favor of MPL.

In terms of running times,MPL is generally faster than OCaml and scales better. On 1 core,
OCaml requires approximately 1.5x more time thanMPL. On 72 cores, the gap is approximately
2.2x, andMPL is faster than OCaml in all but two benchmarks (where the gap is less than 10%).
In terms of memory usage, MPL is generally competitive with OCaml. On 1 core, MPL uses
approximately 15%more space on average. On 72 cores, OCaml uses 2x more space (1.75x when
exluding the maximum “outlier”). The results show thatMPL performs well in practice, and the
fully parallel/distributed GC of MPL can deliver good overall scalability, work eciency, and
space eciency.

The largest dierence in both running time and memory is the tokens benchmark, where
MPL is 19x faster than OCaml and uses 13x less space. To identify the reason, we measured
space usage across dierent numbers of repetitions of the tokens benchmark on 72 processors.
(In our experiments, we average over 20 repetitions to obtain reliable timings and account for
amortization in memory management policies.) On a single repetition, both MPL and OCaml
use approximately 1GB of memory. As the number of repetitions increases, the space usage of

6https://github.com/athas/raytracers
7For the msort-int64 benchmark, we allow OCaml to use its native int type, which is 63 bits wide.

116

https://github.com/athas/raytracers

MPL stays approximately constant. In contrast, OCaml’s memory usage increases linearly with
repetitions. For example, OCaml uses approximately 1GB to run the benchmark once, 1.7GB to
run it twice back-to-back, 2.5GB to run it three times, etc. We veried that this trend continues:
OCaml needs approximately 18GB to complete 40 repetitions. Investigating further, we inserted
an explicit call to Gc.full_major() between each repetition. This brought the memory usage
down to approximately 1.5GB and improved the run time on 72 processors by a factor of 2 (still
this is 50% more space and 9x slower compared toMPL).

8.5 Comparison with Java and Go

We compare with Java and Go, two industry-strength memory-safe procedural languages with
well-engineered automaticmemorymanagement. Both languages support fork-join parallelism
out-of-the-box, which makes it possible to write ecient divide-and-conquer parallel programs
as well as parallel loop-based algorithms. Examples of parallel constructs in both Java and Go
are shown in Figures 8.3 and 8.4, and described in more detail below.

For these comparisons, we consider seven of our problem-based benchmarks: linet, mcss,
msort-int64, msort-strings, primes, sparse-mxv, and tokens. All of these benchmarks are highly
parallel, and represent a variety of characteristics, including both compute-bound andmemory-
bound benchmarks, as well as benchmarks with both low and high rates of allocation. (For
example, mcss is compute-bound, linet is memory-bound, primes has a low rate of allocation,
and tokens has a high rate of allocation.) We also consider the classic problem of sorting (msort-
int64 and msort-strings benchmarks), where we compare the fastest parallel sorting algorithms
we could nd.

At a high level, the takeaway from these comparisons is thatMPL can outperform modern
memory-safe procedural languages, often by a wide margin, and the performance advantage
appears to be due to memory management. In particular, although both Java and Go are some-
times faster than MPL on one processor, they do not scale as well. At scale (on 72 processors),
MPL is faster than both Java and Go on all benchmarks, and on average is 2x faster than Go and
over 3x faster than Java. The performance advantage of MPL is largest for benchmarks that
have a high rate of allocation, such as the tokens benchmark. Furthermore,MPL uses less space
than both Go and Java in almost all cases (both uniprocessor and parallel runs). On 72 proces-
sors, MPL uses on average approximately 30% less space than Go and 4x less space than Java.
These results suggest that MPL’s main performance advantage is due to ecient and scalable
memory management.

Java Benchmarks and Results

In Java, we implement benchmarks using the Fork/Join Framework [97] and java.util.stream
library which provides parallel operations on logical streams of data. (The Java streams library
is supported under the hood by the Fork/Join framework.) For example, the code shown in
Figure 8.3 demonstrates a couple examples of how the Java Streams can be used for parallelism.
For the sorting comparisons (msort-int64, msort-strings), we use the standard parallelSort
function from the java.util.Arrays library, which is provided as part of the Fork/Join frame-

117

IntStream.range(0, 𝑁).parallel().forEach(𝑖 → {
// ... body of parallel for−loop, where 0 ≤ 𝑖 < 𝑁

});

int[] filterResults = // parallel lter
IntStream.range(0, 𝑁).parallel()
.filter(𝑖 → { /∗ ... predicate using 𝑖 ... ∗/ })
.toArray(); // output results as an array

Figure 8.3: Two examples of loop-based parallelism us-
ing Java Streams, both of which operate on integers 𝑖 in
the range 0 ≤ 𝑖 < 𝑁 . The former is a parallel for-loop,
the latter a parallel lter.

func pardo(f, g func()) {
done := make(chan bool)
go func(){g(); done<-true}()
f()
<-done

}

Figure 8.4: Example binary
fork-join in Go. The expression
pardo(f,g) runs the functions f

and g in parallel using goroutines
(Go’s lightweight threads) and
channel synchronization.

𝑇1 𝑇72 𝑅1 𝑅72

J M J
M J M J

M J M J
M J M J

M

linet 12.6 2.42 5.21 1.07 .146 7.33 28 8.2 3.41 30 8.2 3.66

mcss 6.29 4.64 1.36 .441 .078 5.65 11 4.1 2.68 30 4.1 7.32

msort-int64 2.28 3.98 0.57 .263 .077 3.42 4.2 .66 6.36 2.4 .91 2.64

msort-strings .947 3.05 0.31 .075 .070 1.07 1.1 .67 1.64 1.3 1.7 0.76

primes 8.90 7.43 1.20 .181 .122 1.48 1.2 .26 4.62 1.8 .37 4.86

sparse-mxv 1.71 2.45 0.70 .086 .049 1.76 15 4.5 3.33 17 4.4 3.86

tokens 4.01 1.93 2.08 .458 .043 10.65 19 1.1 17.27 20 1.1 18.18

geomean 1.12 3.29 4.26 4.06

Table 8.3: MPL vs Java: Times (seconds) and max residencies (GB) of MPL (columnM) and Java
(column J). The ratios J

M are the performance of Java relative to MPL. Larger ratios are better
for MPL.

work.

Results. Table 8.3 presents the results of the Java comparison, with running times 𝑇𝑝 and
max residency 𝑅𝑝 on both 𝑝 = 1 and 𝑝 = 72 processors. The columns labeled “J” are results for
Java, and the columns “M” are results for our MPL. The column J

M is the performance of Java
relative to MPL; larger ratios are in favor of MPL.

On 72 processors, MPL is faster than Java on all benchmarks, with an average of 3.3x. In
terms of space, MPL uses less space in all cases except one. The performance gap (for both
space and time) is often wide, especially for space, where MPL uses 4x less space than Java on
average. On uniprocessor runs,MPL and Java have similar performance on average. There are a
three benchmarks where Java is faster thanMPL on a single processor (msort-* and sparse-mxv
benchmarks). The largest gap on a single processor is msort-strings, where Java is 3x faster than
MPL. However, on these benchmarks,MPL scales better: for example, on 72 processors,MPL is
10% faster on msort-strings, 75% faster on sparse-mxv, and 3x faster than Java on msort-int64.

118

𝑇1 𝑇72 𝑅1 𝑅72

G M G
M G M G

M G M G
M G M G

M

linet 7.24 2.42 2.99 .168 .146 1.15 9.3 8.2 1.13 9.5 8.2 1.16

mcss 6.21 4.64 1.34 .106 .078 1.36 4.8 4.1 1.17 4.9 4.1 1.20

msort-int64 3.41 3.98 0.86 .266 .077 3.45 1.4 .66 2.12 2.0 .91 2.20

msort-strings 1.32 3.05 0.43 .111 .070 1.59 .67 .67 1.00 1.0 1.7 0.59

primes 2.47 7.43 0.33 .140 .122 1.15 .45 .26 1.73 .53 .37 1.43

sparse-mxv 4.85 2.45 1.98 .089 .049 1.82 6.8 4.5 1.51 6.1 4.4 1.39

tokens 4.38 1.93 2.27 .478 .043 11.12 2.5 1.1 2.27 2.5 1.1 2.27

geomean 1.12 2.13 1.49 1.35

Table 8.4: MPL vs Go: Times (seconds) and max residencies (GB) of MPL (column M) and Go
(column G). The ratios G

M are the performance of Go relative to MPL. Larger ratios are better
for MPL.

The largest gap, in terms of both time and space, is the tokens benchmarks, where on 72
processors MPL is 10x faster and uses 18x less space. This benchmark has a high rate of allo-
cation: it extracts the tokens of a le of size 148MB, which contains approximately 16.5 million
tokens (average length of each token: 9 characters). That is, it allocates 16.5 million strings in
parallel, of total size approximately 148MB. We measured that Java spends approximately half
of its time allocating strings. Specically, we developed an alternate version of the benchmark
which pre-allocates the output strings; when the pre-allocation cost is excluded from the mea-
surements, Java’s 72-processor running time improves by approximately 2x. However, this is
still 4-5x slower than MPL. Going further, we used the same approach to exclude the cost of
all dynamic allocations (e.g., including temporary intermediate arrays), and found that Java’s
72-processor runtime improves signicantly, down to 0.053s, which is only approximately 25%
slower than MPL (0.043s on 72 processors, including the cost of allocation and memory man-
agement). Therefore, Java’s limited scalability on this benchmark (self-speedup of 9x) appears
to be due to the cost of dynamic allocation and memory management, especially for high rates
of allocation. In contrast, MPL manages the high rate of allocation eciently and with good
scalability (self-speedup of 45x).

Go Benchmarks and Results

Utilizing native “goroutines” and channels, Go directly supports nested parallelism. In partic-
ular, the code shown in Figure 8.4 shows how to implement a binary fork-join primitive called
pardo which is similar to the par primitive we provide in MPL. The Go expression pardo(f,g)
runs the functions f and g in parallel, and allows for arbitrary nesting, i.e., the functions f and
g may themselves call pardo if desired. This makes it possible to write ecient divide-and-
conquer parallel programs in Go, which we do here.

Results. Table 8.4 presents the results of the Go comparison, with running times𝑇𝑝 and max
residency 𝑅𝑝 on both 𝑝 = 1 and 𝑝 = 72 processors. The columns labeled “G” are results for Go,

119

and the columns “M” are results for ourMPL. The column G
M is the performance of Go relative

toMPL; larger ratios are in favor of MPL.
We rst observe that, in terms of both time and space eciency,MPL and Go are generally

competitive. On average, Go is 10% slower on one processor and approximately 2x slower on 72
processors. All space ratios fall within the range 0.59-2.3x, with averages of 1.5x on uniprocessor
runs and 1.35x on 72-processor runs.

Comparing running times more closely, we see that Go is in three cases faster than MPL
on a single core (msort-int64, msort-strings, and primes), but does not scale as well: on 72
processors, MPL is 1.6-3.5x faster for sorting, and approximately 15% faster for primes. The
largest gap between the two systems is the tokens benchmark, where MPL is 11x faster on
72 processors. On this benchmark, Go maintains a relatively low total space usage but only
achieves a self-speedup 𝑇1/𝑇72 of approximately 9x. This is low in comparison to Go’s self-
speedup on the other benchmarks (e.g. 43x on linet, 58x on mcss, and 18x on primes).

As discussed in the Java comparison, the tokens benchmark has a high rate of allocation,
suggesting that the low speedup in this case is due to memory management and GC. For Go,
we found that disabling GC entirely (by setting GOGC=-1) improves Go’s time performance on
the tokens benchmark by approximately 2-3x. However, this is still approximately 4-6x slower
thanMPL. We developed an alternative version of the Go tokens benchmark which separately
pre-allocates as much memory as possible (including the output strings, and all temporary
intermediate arrays). Excluding the cost of these pre-allocations from the measurements, we
nd that the Go running time improves signicantly, down to only 1.8x slower than MPL on
72 processors, which is in the same ballpark as the other benchmarks. Therefore, Go’s limited
scalability on this benchmark (only approximately 9x self-speedup) appears to be due to the cost
of dynamic allocation and memory management. In contrast, MPL is able to manage the high
rate of allocation in the tokens benchmark eciently and with good scalability (self-speedup
of 45x).

8.6 Comparison with C++

Low-level, memory-unsafe languages such as C++ arewidely used for high-performance shared-
memory multicore parallelism, largely due to the level of control over memory layout and rep-
resentation they oer, which is key to achieving high performance in many cases. It is therefore
interesting to consider howMPL fares against the fastest low-level techniques.

We consider here 15 problem-based benchmarks, including sophisticated parallel algorithms
from domains such as graph processing (e.g. edge-balanced parallel bfs), computational geom-
etry (e.g. delaunay triangulation, nearest neighbors, and convex hull), text processing (e.g.
parallel string search and tokenization), various numerical algorithms (e.g., bignums, linear re-
gression and linear recurrence, numerical integration, matrix and vector multiplications, etc.),
as well as the classic sorting problem. The C++ benchmarks in this comparison are taken from
state-of-the-art suites and libraries, including PBBS [14, 32, 133], ParlayLib [34], and Ligra [131].
We ported all of these benchmarks toMPL; interestingly, all of these benchmarkswere naturally
disentangled.

This comparison in unfair againstMPL, becauseMPL oers guarantees which C++ does not,

120

𝑇1 𝑇72 𝑅1 𝑅72

C M M
C C M M

C C M M
C C M M

C

bfs 8.47 18.7 2.21 .188 .420 2.23 5.4 7.4 1.37 6.1 5.7 0.93

bignum-add 1.89 4.05 2.14 .036 .069 1.92 1.5 3.0 2.00 2.3 3.1 1.35

delaunay 3.48 11.9 3.42 .160 .379 2.37 .40 1.1 2.75 1.2 2.1 1.75

grep 1.00 2.12 2.12 .021 .040 1.90 .49 .61 1.24 1.2 .85 0.71

integrate 1.85 3.11 1.68 .030 .052 1.73 .015 .013 0.87 .76 .050 0.07

linearrec .921 5.02 5.45 .080 .226 2.83 4.8 6.7 1.40 5.6 21 3.75

linet 2.16 2.42 1.12 .149 .146 0.98 8.0 8.2 1.02 8.8 8.2 0.93

mcss .972 4.64 4.77 .038 .078 2.05 4.0 4.1 1.02 4.8 4.1 0.85

msort-int64 2.17 3.98 1.83 .058 .077 1.33 .65 .66 1.02 1.4 .91 0.65

nearest-nbrs 1.01 1.67 1.65 .022 .038 1.73 .22 .72 3.27 .96 2.2 2.29

primes 1.58 7.43 4.70 .072 .122 1.69 .17 .26 1.53 .92 .37 0.40

quickhull .941 3.51 3.73 .036 .113 3.14 2.6 13 5.00 3.5 20 5.71

sparse-mxv 2.13 2.45 1.15 .046 .049 1.07 4.2 4.5 1.07 4.9 4.4 0.90

tokens 1.09 1.93 1.77 .025 .043 1.72 .70 1.1 1.57 1.4 1.1 0.79

wc 3.12 7.69 2.46 .052 .130 2.50 1.8 3.6 2.00 2.5 3.6 1.44

geomean 2.38 1.86 1.59 1.01

Table 8.5: MPL vs C++: Times (seconds) and max residencies (GB) of MPL (columnM) and C++
(column C). The ratios M

C are the performance of MPL relative to C++. Note: smaller ratios

are better for MPL.

namely, memory safety. However, we do not focus here on dierences at the language-level be-
tween C++ and MPL. Instead, our goal is to establish a ballpark measure for the “absolute”
eciency of MPL, taking into account the performance overhead of automatic memory man-
agement and GC. With this in mind, we do not expectMPL to outperform C++. Rather, in this
section, we show that MPL is generally competive with C++. That is, on average, MPL is less
than 2x slower than C++ on 72 processors. Notably, we show that MPL is highly competitive
in terms of space usage: on average, on 72 processors, MPL has the same memory footprint as
C++ across these benchmarks.

Results. Table 8.5 presents the results of our C++ comparison, with running times 𝑇𝑝 and
max residency 𝑅𝑝 on both 𝑝 = 1 and 𝑝 = 72 processors. The columns labeled “C” are results for
C++, and the columns “M” are results for our MPL. The columns M

C show the performance of
MPL relative to C++, where smaller ratios are in favor of MPL. Note: in contrast to our prior
comparisons (such as in Sections 8.4 and 8.5), here we report MPL’s overhead rather than its
performance advantage. This is because, in general, we do not expectMPL to outperform C++.
Instead, we are interested in establishing the performance gap between the performance that
MPL oers and the fastest low-level techniques.

We observe that on 72 processors, MPL is on average less than 2x slower than C++ while
using a similar amount of memory. These measurements include the cost (both space and time)
of automatic memory management and GC. Runtime overheads of MPL range from 0.98-3.14x,

121

with 9 out of 15 benchmarks incurring less than 2x overhead, and 2 benchmarks (linet and
sparse-mxv) within ±10% of C++. On the linet benchmark, as discussed in Section 8.3, both
MPL and C++ have nearly optimal performance for our test machine.

On uniprocessor runs, MPL has higher runtime overhead (2.4x on average) than it does at
scale (1.9x). That is,MPL has better self-scalability than C++. In other words, this demonstrates
that the overheads of memory safety and automatic memory management are well-parallelized
and scale well. These overheads include the cost of managing the dynamic tree of heaps, of
parallel garbage collection, but also for other safety features in the MPL language, including
(for example) out-of-bounds array checks, all of which perform well in parallel.

In terms of space usage, there are three benchmarks where MPL uses signicantly more
space than C++: linearrec, nearest-nbrs, and quickhull. All three of these benchmarks operate
on similar data: an array containing pairs of double-precision oating-point numbers (repre-
senting 2-dimensional points in Euclidean space). The additional space usage of MPL in these
cases appears to be due tomemory representation, determined by compilation. In particular, the
MPL compiler has multiple data attening compilation passes which attempt to “unbox” data
(i.e., eliminate heap allocations by attening this data into its container). Thus, on aMPL array
of type (real × real) array, the compiler controls whether or not the tuples in the array are
attened into the array, or indirected by a pointer. In these three benchmarks where MPL has
higher space usage (linearrec, nearest-nbrs, and quickhull), the compiler does not succeed in
attening these tuples into the array, resulting in higher space usage. The runtime performance
is also aected: both linearrec and quickhull incur approximately 3x runtime overhead in com-
parison to C++, due to the cost of additional indirection the corresponding loss of data locality.
(For example, the cost of random access to access a point in the MPL quickhull benchmark
likely incurs two cache misses, whereas in C++ it would only incur at most one.) We believe
that, by controlling data attening more carefully, the performance gap on these benchmarks
can be closed. In future work, we plan to revisit this issue.

Nevertheless, MPL has (on average) the same memory footprint on 72 processors as C++.
Additionally, we observe that the space overhead of MPL is on average smaller on 72 processors
than it is on one processor, i.e.,MPL’s memory usage per processor is lower than C++ in these
benchmarks. Notably, on 9 out of 15 benchmarks, MPL uses less memory than C++ at scale.
These results demonstrate that MPL generally is highly space-ecient and can compete with
low-level manual memory management.

8.7 Evaluation of Entanglement Detection

We evaluate our entanglement detection techniques in two parts. First, we compare MPL
against itself with entanglement detection disabled, to measure the overhead of entanglement
detection. We observe close to zero overhead across the board (in terms of both time and space),
with approximately 1% overhead on average. Next, we show that the eciency of entanglement
detection is largely due to our entanglement candidates algorithm, which eliminates unneces-
sary entanglement checks. We perform this comparison by measuring the time performance
of detection with and without the candidates tracking algorithm. Our results show that the
candidates algorithm brings the number of entanglement checks down to 0 in multiple cases,

122

𝑇1 𝑇72 𝑅1 𝑅72

MPLdd MPL MPLdd MPL MPLdd MPL MPLdd MPL

bfs-tree 19.9 20.5 (+3%) .433 .442 (+2%) 7.8 7.8 (+0%) 68 68 (+0%)
centrality 16.2 16.0 (-1%) .432 .426 (-1%) 6.9 6.9 (+0%) 5.9 5.9 (+0%)

dedup-strings 5.35 5.52 (+3%) .114 .122 (+7%) 2.6 2.6 (+0%) 6.4 6.7 (+5%)
delaunay 8.72 9.18 (+5%) .323 .335 (+4%) .59 .58 (-2%) 1.3 1.3 (+0%)

dense-matmul 2.78 2.79 (+0%) .048 .048 (+0%) .064 .063 (-2%) .31 .31 (+0%)
game-of-life 1.81 1.73 (-4%) .067 .067 (+0%) .061 .061 (+0%) .35 .35 (+0%)

grep 2.09 2.05 (-2%) .038 .038 (+0%) 1.1 1.1 (+0%) 1.4 1.4 (+0%)
low-d-decomp 8.16 8.37 (+3%) .406 .392 (-3%) 6.9 6.9 (+0%) 14 13 (-7%)
msort-strings 2.70 2.77 (+3%) .060 .058 (-3%) .62 .62 (+0%) 1.7 1.7 (+0%)
nearest-nbrs 1.54 1.54 (+0%) .046 .047 (+2%) .26 .26 (+0%) 1.6 1.6 (+0%)

nqueens 1.60 1.61 (+1%) .028 .029 (+4%) .045 .045 (+0%) .32 .32 (+0%)
palindrome 1.62 1.69 (+4%) .031 .032 (+3%) .061 .063 (+3%) .36 .36 (+0%)

primes 7.42 7.56 (+2%) .123 .120 (-2%) .27 .27 (+0%) .56 .56 (+0%)
quickhull 3.22 3.40 (+6%) .103 .110 (+7%) 2.4 2.4 (+0%) 5.9 6.1 (+3%)

range-query 14.4 15.4 (+7%) .250 .248 (-1%) 4.5 4.5 (+0%) 4.5 4.6 (+2%)
raytracer 3.50 3.30 (-6%) .058 .058 (+0%) .11 .11 (+0%) .54 .55 (+2%)

reverb 1.34 1.31 (-2%) .042 .041 (-2%) 1.5 1.5 (+0%) 2.1 2.1 (+0%)
seam-carve 16.2 16.2 (+0%) .808 .827 (+2%) .091 .091 (+0%) .71 .71 (+0%)

skyline 7.31 7.57 (+4%) .250 .251 (+0%) .88 .88 (+0%) 25 25 (+0%)
sux-array 5.54 5.74 (+4%) .113 .115 (+2%) 1.2 1.2 (+0%) 1.7 1.6 (-6%)
tinykaboom 2.47 2.48 (+0%) .042 .042 (+0%) .0093 .011 (+18%) .31 .31 (+0%)

tokens 1.96 1.86 (-5%) .043 .042 (-2%) 1.1 1.1 (+0%) 1.4 1.4 (+0%)
triangle-count 4.74 4.57 (-4%) .192 .191 (-1%) 2.5 2.5 (+0%) 14 14 (+0%)

geomean 1.01x 1.01x 1.01x 1.0x

Table 8.6: Times (seconds), max residencies (GB), and percent dierences of MPL relative to
MPLdd, which has detection disabled. The percentages in parentheses are the overhead of en-
tanglement detection. The “geomean” is the geometric mean of the ratiosMPL/MPLdd.

and provides running time improvements of up to a factor of 2x.
The comparisons in this section are taken from an earlier version of the Parallel ML Bench-

mark Suite. The code is available on GitHub.8

8.7.1 With and Without Entanglement Detection

We compare MPL against itself with entanglement detection disabled to determine the over-
heads of entanglement detection itself. Here, we write MPLdd for the version of MPL that has
detection disabled. There are two main dierences with entanglement detection disabled: (i)
the read barrier is disabled, which could have a signicant impact on performance, and (ii)
entanglement candidates are no longer tracked.

8https://github.com/MPLLang/entanglement-detect

123

https://github.com/MPLLang/entanglement-detect

Entanglement detection overheads are small. Table 8.6 shows results on 1 and 72 pro-
cessors. Columns𝑇1 and𝑇72 show the run-time forMPL andMPLdd, with the additional cost of
MPL relative toMPLdd shown as percentage for each quantity. Observe that theMPL times are
usually within ±5% ofMPLdd. 18 out of 23 benchmarks considered here have less than 2% time
overhead, and we observe a max time overhead of 7% in only two cases on 72 processors. On
average across all benchmarks (geometric mean of the ratios MPL/MPLdd), the time overhead
is approximately 1% on both 1 and 72 processors.

Entanglement detection scales well. On both 1 and 72 processors, we observe similar time
overheads across all benchmarks. Entanglement detection therefore has no noticeable impact
on scalability.

Space overheads are small. Columns 𝑅1 and 𝑅72 show the space usage forMPL andMPLdd,
with the additional cost of MPL relative to MPLdd shown as percentage for each quantity. For
both 1-core and 72-core runs, there is almost no noticable space overhead. Only one benchmark
(tinykaboom) registers above 10% space overhead, but only for sequential runs, where the over-
all footprint is small: while MPLdd uses approximately 9 MB, MPL uses 11 MB. Entanglement
detection therefore appears to have a small constant space overhead. At scale, with memory on
the order of gigabytes, this overhead is negligible.

8.7.2 Improvement Due To Entanglement Candidates

We now demonstrate that the low overhead of entanglement detection is due to the elimination
of unnecessary graph queries. Our technique for eliminating unnecessary graph queries is our
candidate tracking algorithm (Section 5.6). To measure the performance improvement due to
tracking candidates, we run a version of MPL that still performs detection, but without can-
didate tracking. We focus here only on the benchmarks which have a large number of graph
queries (i.e., a large number of dereferences of mutable pointers to heap-allocated objects). The
performance of the omitted benchmarks is not signicantly aected by the candidate track-
ing algorithm (specically, on average, the performance change is ±1%). That is, by tracking
candidates, we improve performance only in the cases where it is needed, and do not harm
performance otherwise.

The results of this comparison are presented in Table 8.7. In the table, the “Improvement
Ratio” columns are calculated as𝑇o/𝑇on, where𝑇o is the time with candidate tracking disabled,
and 𝑇on is the time with it enabled. Improvement ratios larger than 1 indicate a performance
improvement due to the candidate tracking algorithm. We provide improvement ratios for
both uniprocessor runs (𝑃 = 1) as well as parallel runs (𝑃 = 72). We also collect additional data,
including the number of graph queries performed (both with and without candidate tracking),
and the number of times a candidate was marked (which is an upper bound on the number of
candidate objects).

We rst observe that by tracking candidates, we are able to improve performance in almost
all cases, often by a signicantmargin. The benchmarkwith the biggest change is msort-strings,
with approximately 2x improvement. Other improvements range from 2% up to a factor of 1.6x.

124

Improvement Ratio # Graph Queries

𝑃 = 1 𝑃 = 72 Naïve w/ Candidates # Candidate Marks

bfs-tree 0.99x 0.99x 16M 16M 64
dedup-strings 1.17x 1.12x 122M 0 0

delaunay 1.44x 1.25x 237M 0 0
low-d-decomp 0.99x 1.02x 1M 0 62
msort-strings 1.87x 1.95x 247M 0 0
nearest-nbrs 1.60x 1.23x 73M 0 0

quickhull 1.62x 1.20x 184M 0 0
skyline 1.16x 1.07x 174M 1M 1K

triangle-count 1.02x 0.95x 3M 0 2

Table 8.7: Performance improvement ratio due to tracking candidates, including number of
graph queries performed both with and without candidate tracking.

Inspecting the number of graph queries performed, we see that our approach successfully elides
a signicant number of unnecessary graph queries, and in all but 2 benchmarks, the number
of graph queries goes down to 0. For example, under the naïve strategy (tracking disabled),
the msort-strings benchmark performs approximately 250M graph queries, but after tracking
candidates, none are performed.

This elimination of unnecessary graph queries is key to the near-zero overhead

of entanglement detection. Note that although the graph queries are elided, there is still
overhead for the “fast path” of the read barrier on mutable objects, which inspects the header
of the dereferenced object to determine whether or not it is a candidate. However, this overhead
is not signicant enough to be a concern: as evidenced by the results in comparison with vanilla
MPL (in Table 8.6), the cost of the fast path is nearly zero.

There are three interesting benchmarks here which do not see signicant improvement:
bfs-tree, low-d-decomp, and triangle-count. In the case of low-d-decomp and triangle-count,
although tracking candidates successfully eliminates all graph queries, the number of queries
needed in the rst place is low relative to the work performed by the benchmark, so the op-
portunity for improvement is small (e.g. the input for low-d-decomp has approximately 200M
edges but performs only 1M queries when the candidate tracker is disabled). In contrast, the
bfs-tree benchmark achieves no performance improvement because no graph queries are elim-
inated. This is the only benchmark does not see a signicant number of queries eliminated due
to the candidates algorithm. The reason in this case is that the algorithm uses a shared array to
associate state with each element of the input, and negotiates access to this state via a lock-free
algorithm. As soon as one piece of this state is updated, the shared array becomes a candidate,
and all further accesses to it require full checks.

Finally, it’s worth emphasizing that the number of candidate marks (i.e., the number of
times any object is marked as a candidate) is small across the board. This is an upper bound on
the number of candidate objects, and therefore bounds the space overhead of tracking candi-
dates (i.e., it bounds the size of the candidate set during execution). These results conrm our
hypothesis that only a small number of objects typically pose a risk for entanglement.

125

8.7.3 Entangled Tests

As mentioned, all benchmarks used in our performance evaluation above are naturally disen-
tangled. To validate our detector, we also developed a set of entanglement test cases, including
both synthetic tests as well as variations of some of our benchmarks. Our detector successfully
found entanglement in all instances.

One interesting case of entanglementwe developedwas a variation of the hash-deduplication
algorithm, similar to that described in Section 2.3.2. Note that the implementation we show in
Section 2.3.2 is disentangled. We were able to introduce entanglement by changing this code,
to mix allocations with insertions. In particular, in the entangled version, we copy each ele-
ment immediately before it is inserted, and insert the copy instead of the original. This causes
entanglement because, when inspecting a slot in the hash table, a task may observe a pointer
to an element that was allocated and inserted by another (concurrent) task. In contrast, in the
disentangled version, all inserted elements are allocated before the insertions begin.

126

Chapter 9

Related Work

9.1 Parallel Memory Management

Nearly all high level languages today support automatic memory management and numer-
ous techniques for incorporating parallelism, concurrency, and real-time features into memory
managers have been developed. Jones et al. [86] provides an excellent survey. Here, we contrast
the disentanglement-based memory management techniques proposed in Chapter 4 with prior
systems that use processor-local or thread-local heaps combined with a shared global heap that
must be collected cooperatively [15, 21, 56–58, 102].

The Doligez-Leroy-Gonthier (DLG) parallel collector [56, 57] employs this design, with the
invariant that there are no pointers from the shared global heap into any processor-local heap
and no cross pointers between processor local-heaps. To maintain this invariant, all mutable
objects are allocated in the shared global heap and (transitively reachable) data is promoted
(copied) from a processor-local heap to the shared global heap when updating a mutable object.
This approach penalizes allocations and updates for mutable data and thus increases the cost
of common scheduling and communication actions, such as migrating a user-level thread or
returning the result of a child task.

The Manticore garbage collector [21] is a variant of the DLG design, where the Appel semi-
generational collector [16] is used for collection of the processor-local heaps. As with the DLG
design, Manticore collector can incur large promotion overheads. Recent work [96] has consid-
ered extending the Manticore language with mutable state via software transactional memory,
but observed that promotions lead to eciency problems.

The two-level hierarchical model that does not allow pointers from the global to the local
heaps incur large overheads when an object allocated locally must be shared, which can hap-
pen often in nested-parallel programs due to scheduling actions, which migrate tasks between
processes or workers. Adaptations of the two-level model to concurrent and parallel systems
therefore devised techniques to relax this invariant. For example, the Glasgow Haskell Com-
piler (GHC) uses a garbage collector [102] that allows pointers from global to local heaps and
relies on a read barrier to promote (copy) data to the global heap when accessed. Although
Haskell is a pure language, there are signicant side eects due to lazy evaluation. GHC there-
fore combines elements of the DLG and Domani et al. [58] collectors for improved handling of

127

side eects. The Multicore OCaml project also utilizes a variant of the two-level heap model,
oering multiple strategies for collection based on dierent relaxations of the invariants main-
tained between local and global heaps [139]. As a result of this work, OCaml version 5.0 features
a two-level collector with a concurrent, non-moving major GC and a stop-the-world parallel
minor GC.

In contrast to these prior approaches, in our work, we associate heaps with tasks rather than
system-level threads or processors. The result is a dynamic hierarchy that mirrors the structure
of the computation; here, we take advantage of the structure of fork-join parallel computations,
which are naturally hierarchical. The hierarchy can be arbitrarily deep in principle and grows
and shrinks as the computation proceeds. To support sharing, we allow pointers between heaps
that have ancestor-descendant relationships. For example, a heap can point to an object allo-
cated in its parent, and a parent can point to an object allocated in its children. The only kind of
pointer that is not allowed is a cross-pointer between concurrent heaps. This approach enables
taking advantage of important properties of parallel programs, e.g., we can return the result of
a child task and migrate threads without copying (promoting) data, and concurrent threads can
share the data allocated by their ancestors, and disentangled eects do not require an immediate
promotion of data.

In the sequential setting, region-based memory management [80, 126, 130, 150] shares some
similarities with hierarchical heaps. In a region-based system, a program dynamically cre-
ates and destroys regions, into which individual objects may be allocated; thus, regions (only)
support bulk deallocation (but also supporting garbage collection has been considered [59]).
Statically-scoped regions [75, 150] are organized as a stack, while dynamically-scoped regions [75,
80] impose no particular relationship between regions. In general, pointers from one region to
any other region are supported; a type-and-eect system [150] or linear types [66, 152] can be
used to guarantee that pointers into deallocated regions will never be followed. The exibility
of allocating new objects into any available region allows for arbitrary memory graphs and
avoids the need to promote objects from one region to another, but with the overhead of ex-
plicitly managing the set of available regions, rather than implicitly having a single allocation
frontier.

Nearly all of the work reviewed above relies on the idea of organizing memory as a hierar-
chy of heaps, some shallow like most other work, and some possibly deep, like our work. The
general idea of hierarchical heaps goes back to 1990s. Early approaches in procedural languages
such as Split-C [91], Co-Array Fortran [114], and Titanium [159], dierentiate betweenmemory
that is local and remote to a thread. Alpern et al. developed abstract models of uniprocessor
and multiprocessor machines as hierarchies of memories [13]. More recently, the technique
was employed in the Sequioa language, which allows the programmer to designate tasks to
run on a xed memory hierarchy by specifying the mapping between tasks and levels [62]. The
work on Legion [23] builds on Sequioa by allowing the programmer to control data sharing and
locality using types and by allowing more dynamic hierarchies. One dierence between these
approaches and our approach is that in our approach, the memory hierarchy mirrors the evolu-
tion of the computation automatically, growing and shrinking dynamically as the computation
proceeds.

This dynamic and automatic management of hierarchical memory was rst proposed in
2015 [4] and realized concretely for functional programs [120]. A recent paper [76] extended the

128

technique to support for isolated eects at the sequential portions of the parallel computation.
Handling of more general eects remained unknown until the results presented in this thesis.

9.2 Race Detection

There has been signicant work on detecting races in parallel and concurrent programs. Our
entanglement detection technique is similar to race detection in the sense that it concerns a
property of memory accesses. Prior research on race detection can broadly be divided into two
lines of work: (i) those that target task-parallel programs, and (ii) those that target general con-
currency. The rst line of work assumes, as we do here, task parallelism, where a program may
create many (e.g., millions of) ne-grained threads, which synchronize in a structured fashion.
The second line of work assumes a general concurrency setting, where programs contain a
small number of coarse-grained threads that may synchronize by using locks, synchronization
variables, etc. Techniques from this second line of work do not scale to task-parallel programs
because of their coarse-grained threads assumption (e.g,. [123]), and are less directly relevant
to this thesis.

Race Detection for Task Parallel Programs

Many algorithms for race detection in task-parallel programs, such as fork-join programs, have
been proposed [24, 50, 63, 64, 104, 122, 123, 151, 157]. These algorithms all revolve around an or-
dering data structure, sometimes called a series-parallel order or SP-order data structure, which
keeps track of whether two instructions are sequentially dependent or can be executed in paral-
lel. Experiments with state-of-the-art race detection show over an order of magnitude overhead
in sequential runs, and parallel runs with race detection typically run slower than the sequential
baseline even with over a dozen cores [151]. All of the above work considers nested parallelism
with fork-join and async-nish constructs, which result in similar dependency structures. More
recent work considers race detection for futures and establishes worst-case bounds, though the
overheads are no longer constant [157].

Our entanglement detection techniques share the same basic structure as these race de-
tectors, in the sense that for entanglement detection we similarly record the structure of the
computation as a graph and query the graph with the help of an order maintenance data struc-
ture. However, entanglement detection is more ecient than race detection. This is due to a
few dierences between the two techniques.

One of the most signicant overheads of race detection is incurred by the maintenance of
“access histories”, which track the history of reads and writes on each individual memory lo-
cation [104, 123, 151]. For example, an array of size 𝑁 requires 𝑁 access histories for race
detection (one for each index). In contrast, entanglement detection requires only a single an-
notation (one vertex identier) for the whole array. Furthermore, as we show in Section 5.5,
the space overhead of the annotations for entanglement detection can be further reduced by
grouping together the allocations of individual threads, resulting in essentially negligible space
overhead. Maintenance of access histories for race detection also incurs a time penalty, partic-
ularly on reads, where the thread identier of the reader is logged at each access.

129

Finally, we note that entanglement detection benets from compiler optimizations which
perform data inlining (also called “attening” or “unboxing”). For example, when operating on
an array of unboxed integers, entanglement detection requires neither a read barrier nor a write
barrier, and therefore incurs no overhead. In contrast, race detection still needs tomonitor these
operations.

Race Detection for General Concurrency

In this thesis we consider task-parallel programs that typically generate a very large num-
ber of ne-grained tasks or threads, that synchronize in a structured fashion. There has been
much work on race detection for more general concurrent programs, which use a small num-
ber of coarse-grained threads that can synchronize in an unstructured manner, using locks and
other synchronization primitives. Early work proposes the lock-set algorithm [129], which can
lead to false positives. Subsequent work proposed precise techniques by using vector-clocks
to capture the happens-before relations between threads [65]. Followup work has proposed
hybrid approaches that combine lock sets and vector clocks, trading o eciency and preci-
sion [115, 160]. Most approaches use dynamic, on-the-y race detection though there has also
been some work on predicting data races [89, 140].

A general assumption in the general concurrency domain is that threads are coarse grained,
and the total number of threads is small. These approaches, therefore, do not work well for task
parallel programs, where the number ne-grained threads can be very large [123]. Another lim-
itation of dynamic race-detection under general concurrency is that these techniques are unable
to account for logical (potentially unrealized) parallelism and remain sensitive to scheduling de-
cisions. In contrast, race-detection for task parallelism can account for logical parallelism, as
can the entanglement detection techniques presented here.

9.3 Parallel Programming Languages

In this thesis, we consider the Parallel ML functional programming language which extends
Standard ML with parallelism. As with the Standard ML language, Parallel ML supports refer-
ences and destructive updates, and allows writing both purely functional and impure (impera-
tive) programs.

Parallel ML builds on a rich history of research or parallel programming languages, includ-
ing both procedural and functional ones. Programming languages such as Cilk/Cilk++ [37, 71,
84], Cilk-F/L [135, 136], I-Cilk [107], and Intel TBB [85] extend C/C++ with task parallelism
but they all require manual memory management, which is especially challenging for parallel
programs. The Rust language oers a type-safe option for systems-level programming [127]
and can ensure memory safety under certain assumptions.

Extensions of the Java language to support parallelism include the Fork/Join Framework [97],
and Habanero Java [83], both of which support automatic memory management. The X10 [46,
98] language is designed with concurrency and parallelism from the beginning and supports
both imperative and object-oriented features. Even though these languages simplify writing
parallel programs by managing memory automatically, avoiding concurrency bugs can still be

130

challenging, because of the lax control over side eects that these languages oer. Motivated
partly by this concern, research on Deterministic Parallel Java [38, 39] develops type systems
to guarantee determinism.

Modern type-safe functional programming languages oer substantial control over side ef-
fects [72, 92, 93, 95, 100, 117, 118, 124, 145, 149], which help programmers avoid unintentional
race conditions. Recent projects include Manticore [67, 68] MultiMLton [138, 162], SML# [116],
multicore OCaml [139], and both current and prior work on disentanglement and MPL [4,
18, 76, 120, 153, 154]. There has also been signicant progress on parallel and concurrent
Haskell [45, 87], including work on memory management techniques [102].

We note that even though disentanglement and entanglement have so far been applied to
functional programming languages, they are fundamentally a language-agnostic property, and
thus could be applied to procedural languages.

Scheduling

Almost all modern parallel programming languages utilize a thread scheduler in the run-time
system which migrates threads between processors to utilize processors as best as possible
within some context. Many scheduling algorithms have been designed to improve a variety
of metrics, including time [3, 7, 8, 19, 36], responsiveness and interactivity [107–111, 137],
space [29, 35, 112], and locality [1, 27, 30, 31].

Granularity Control

An important parameter in many parallel codes is the “granularity” or the “grain” at which
computations revert from parallel to sequential. In the current state of the art, researchers and
practitioners typically control granularity manually by optimizing their codes to switch from
parallel to sequential codes at a certain granularity, e.g., small input sizes. This is the technique
used in our benchmarks as well as those that we compare against. This manual approach to
granularity control has several important drawbacks and there have been recent works that
propose solutions that can automate or semi-automate granularity control [5–7, 121].

One interesting observation is that the memory management techniques presented in this
thesis naturally adapt to changes to grain size. For example, if the grain size is decreased, then
the depth of the heap hierarchy increases, and in response, the scope of LGC increases. In other
words, the amount of memory collected by LGC is mostly invariant under dierent grain sizes.

131

132

Chapter 10

Concluding Remarks

10.1 Discussion

Statically Checking for Disentanglement

In this thesis, we use a dynamic entanglement detection technique to enforce disentanglement
during execution. It is important to emphasize that, as a dynamic approach, entanglement
detection is execution-dependent. Due to non-determinism, our detector cannot prevent the
possibility of entanglement. An important problem for future work therefore is to develop
static tests that can prevent the possibility of entanglement entirely.

To ensure disentanglement statically, one natural approach could be to use a type system.
Designing a suitable type system for disentanglement seems possible, but challenging: entan-
glement is an undecidable property, and it emerges due to subtle interaction between non-
determinism and aliasing. A conservative type system could be used to ensure disentangle-
ment (for example by forbidding all in-place updates), but this would result in signicant loss
in eciency. Existing type and eect systems for determinism (e.g., [38, 39]) could possibly be
adapted to ensure disentanglement, but these would also forbid the non-deterministic programs
that we wish to allow.

As we discuss in Sections 2.3 and 3.5, many ecient parallel algorithms are inherently
non-deterministic, and one of the advantages of disentanglement is that it allows for non-
determinism. Some examples considered in this thesis include breadth-rst-search, between-
ness centrality, delaunay triangulation, deduplication, low-diameter decomposition, maximal
independent set, and others. Ideally, a static test for disentanglement should allow for these ex-
amples, as well as other non-deterministic parallel programming idioms which are commonly
used to improve eciency in practice.

We note that various systems for enforcing “safe non-determinism” have been proposed
(e.g., [40, 94]). It would be interesting to explore whether these systems can be adapted to
ensure disentanglement, and (if so) what disentangled programs would be permitted.

133

Entanglement Management

Our experience with developing a parallel benchmark suite shows that many parallel programs
are naturally disentangled. Perhaps surprisingly, we have found that this holds even for pro-
grams that were originally written in low level languages such as C/C++. But, as we consider a
broader set of parallel programs and include concurrent programs, which use communication
between concurrently executing tasks (or threads), entanglement will arise naturally. In future
work, we plan to use entanglement detection to bring the benets of disentanglement-based
memory management to entangled programs by detecting entanglement at run-time and man-
aging it automatically. The result should be a fully general parallel functional programming
language which is just as ecient as the implementation presented in this thesis, but which
also supports eects and communication with no restrictions.

Disentanglement Beyond Fork-Join

Although we focus on fork-join parallelism, the denition of disentanglement could be general-
ized to other forms of parallelism. At a high level, the idea would be represent computations as
computation graphs, and similarly dene disentanglement as the property that every instruc-
tion which uses a location is sequentially dependent upon the instruction which allocated that
location. This generalized denition makes no assumption about the structure of the compu-
tation graph, and therefore could in principle be applied to arbitrary computations, including
other structured forms of parallelism (e.g., futures [77, 78], async-nish [98]), as well as more
general unstructured parallelism. We conjecture that determinacy-race-free programs are dis-
entangled for arbitrary computations; we leave the proof to future work.

In more general settings, an interesting research avenue is to determine how to structure
memory so that disentanglement can be exploited for improved eciency and scalability. For
example, programs with futures might require that memory be restructured dynamically when
a future is touched (to ensure that after a touch, the continuation can safely access memory
allocated by the touched future).

Distributed Computing

In this thesis, we focus on shared-memory, multicore parallelism. Moving beyond multicore
parallelism, we note that disentanglement appears to be directly applicable in the eld of dis-
tributed computing, where separation of memory between remote nodes is essential for e-
ciency. Any distributed program which communicates only via message passing is essentially
disentangled by construction, allowing for local memory management without interfering with
remote nodes. More generally, if a distributed program utilizes a distributed shared memory
scheme, disentanglement could provide an opportunity to implement distributed shared mem-
ory more eciently, by restricting remote access to descendants (in the task tree).

Heterogeneous Computing

Hardware such as GPUs provide an opportunity to accelerate data-parallel functional opera-
tions (including map, scan, reduce, lter, etc.). GPU implementations of these operations can

134

be supported in a functional setting in various ways. For example, the Futhark language im-
plementation compiles a dialect of parallel ML and produces ecient GPU code [81, 82]. Al-
ternatively, one could implement a high-level functional library, utilizing low-level GPU code
under-the-hood for improved eciency, and link the GPU code via a foreign-function inter-
face (e.g., as demonstrated by Yadav and Houghton [158]). Our MPL compiler features a rich
foreign-function interface and is capable of oering GPU support in this manner.1

For a library that utilizes the GPU via foreign functions, there are a few options for memory
management. One option would be to manually copy data to and from the GPU, and ensure that
any data allocated on the GPU is properly reclaimed. For example, a library could implement
data-parallel operations on the GPU by (1) copying data to the GPU, (2) performing a parallel
operation on that data, (3) copying the data back, and (4) freeing the GPU-allocated memory.
This approach, however, can incur signicant cost due to explicit data migration. To avoid this
cost, another option would be to utilize “unied” memory, which allows for the same data to be
accessed both by the CPU and the GPU, and automatically migrates data between the two, on
demand [128]. The garbage collector could then reclaim and recycle unied memory, similar
to standard memory.

In the context of disentangled memorymanagement (Chapter 4), a GPU kernel is essentially
the same as an active leaf task, and could be scheduled and managed in a similar manner.
This would allow us to schedule GPU kernels cooperatively with other work in the system,
including both parallel CPU tasks and garbage collections. In this way, it seems possible to
support heterogenous computing within the framework of disentangled memory management,
and it would be interesting to explore this avenue in future work.

Closing the Performance Gap

As we show in Chapter 8, MPL is generally competitive with low-level, memory-unsafe pro-
grams written in C++. On average,MPL has the same memory footprint at scale, and is within
a factor of 2x in terms of running times. With further research and engineering, we believe it
is possible to close the performance gap entirely.

For closing the gap, perhaps the most important angle to investigate is data attening.
MPL performs a number of data attening passes during compilation, which it inherits from
the MLton compiler. These passes inline data into their containers; for example, an array of
type (int × int) array has two possible representations: (i) as an array of pointers to heap-
allocated tuples, or (ii) as a attened array, with no pointers, where the tuples are inlined into the
array itself. The attened representation helps eliminate unnecessary allocations and avoids the
cost of indirection, and is usually more ecient in practice. Therefore, in general,MPL/MLton
perform attening aggressively at compile time. However, attening can increase space usage
by reducing sharing. To combat a signicant increase in space usage, the compiler has a number
of heuristics which limit the impact of attening.

Data attening is essential for eciency in some cases, but MPL/MLton do not always
“make the right choice” at compile time. One interesting example is the quickhull benchmark,
on whichMPL has approximately 3x time overhead in comparison to C++. On this benchmark,

1Specically, MPL inherits the MLton FFI (http://www.mlton.org/ForeignFunctionInterface) which is
the same interface used by Yadav and Houghton [158].

135

http://www.mlton.org/ForeignFunctionInterface

we attempted to increase the aggressiveness of attening at compile time by modifying the
compiler slightly. The result was nearly a 2x performance boost (due primarily to improved
data locality, i.e., fewer cache misses), bringing the overall time performance to within 60% of
C++. This suggests that by controlling attening, we may be able to reduce the performance
gap betweenMPL and C++ signicantly.

When it matters for performance, the programmer needs control over memory representa-
tion and layout. An interesting research question for future work is to oer such control in a
high-level language such as Parallel ML while preserving the desirable qualities of the language
(e.g., its simple yet eective type system).

10.2 Conclusion

Functional programming languages provide programmers with the ability to control eects
and avoid unintentional race-conditions. In this way, functional languages are well-suited for
parallelism, especially when it comes to reasoning about correctness. But parallel functional
language imlementations have long underperformed in comparison to their procedural and
imperative counterparts, largely due to the overhead of automatic memory management and
garbage collection.

In this thesis, we establish a disentanglement property which has broad applicability to
parallel programs, including functional programs as well as more generally any program that
uses eects in a disciplined manner. We then design memory management techniques that
take advantage of disentanglement, and implement a memory manager for Parallel ML which
is naturally parallel, ecient, and scalable. Our implementation outperforms existing mem-
ory managed language implementations, and is competitive with low-level, memory-unsafe
languages such as those based on C. This result takes an important step towards closing the
performance gap between low-level (e.g., memory-unsafe) and high-level parallel languages,
such as functional languages, which oer important correctness benets that are crucial for
parallel programming.

136

Bibliography

[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work stealing.
Theory of Computing Systems, 35(3):321–347, 2002.

[2] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Oracle scheduling: Controlling
granularity in implicitly parallel languages. In ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 499–518,
2011.

[3] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Scheduling parallel programs by
work stealing with private deques. In Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’13, 2013.

[4] Umut A. Acar, Guy Blelloch, Matthew Fluet, Stefan K. Muller, and Ram Raghunathan.
Coupling memory and computation for locality management. In Summit on Advances in
Programming Languages (SNAPL), 2015.

[5] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Oracle-guided scheduling for con-
trolling granularity in implicitly parallel languages. Journal of Functional Programming
(JFP), 26:e23, 2016.

[6] Umut A. Acar, Vitaly Aksenov, Arthur Charguéraud, andMike Rainey. Performance chal-
lenges inmodular parallel programs. In Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’18, pages 381–382, 2018. ISBN
978-1-4503-4982-6.

[7] Umut A. Acar, Arthur Charguéraud, Adrien Guatto, Mike Rainey, and Filip Sieczkowski.
Heartbeat scheduling: Provable eciency for nested parallelism. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2018, pages 769–782, 2018. ISBN 978-1-4503-5698-5.

[8] Umut A. Acar, Vitaly Aksenov, Arthur Charguéraud, and Mike Rainey. Provably and
practically ecient granularity control. In Proceedings of the 24th Symposium on Principles
and Practice of Parallel Programming, PPoPP ’19, pages 214–228, 2019. ISBN 978-1-4503-
6225-2.

[9] Umut A. Acar, Jatin Arora, Matthew Fluet, Ram Raghunathan, SamWestrick, and Rohan
Yadav. Mpl: A high-performance compiler for parallel ml, 2020. https://github.com/
MPLLang/mpl.

[10] Sarita V. Adve. Data races are evil with no exceptions: technical perspective. Commun.
ACM, 53(11):84, 2010.

137

https://github.com/MPLLang/mpl
https://github.com/MPLLang/mpl

[11] Sarita V. Adve and Hans-Juergen Boehm. Memory models: a case for rethinking paral-
lel languages and hardware. Commun. ACM, 53(8):90–101, 2010. doi: 10.1145/1787234.
1787255. URL https://doi.org/10.1145/1787234.1787255.

[12] T. R. Allen and D. A. Padua. Debugging Fortran on a shared memory machine. In Pro-
ceedings of the 1987 International Conference on Parallel Processing, pages 721–727, August
1987.

[13] B. Alpern, L. Carter, and E. Feig. Uniform memory hierarchies. In Proceedings [1990] 31st
Annual Symposium on Foundations of Computer Science, pages 600–608 vol.2, Oct 1990.
doi: 10.1109/FSCS.1990.89581.

[14] Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, Magdalen Dobson, and Yihan
Sun. The problem-based benchmark suite (pbbs), V2. In Jaejin Lee, Kunal Agrawal,
and Michael F. Spear, editors, PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, Seoul, Republic of Korea, April 2 - 6, 2022, pages
445–447. ACM, 2022. doi: 10.1145/3503221.3508422. URL https://doi.org/10.1145/
3503221.3508422.

[15] Todd A. Anderson. Optimizations in a private nursery-based garbage collector. In Pro-
ceedings of the 9th International Symposium on Memory Management, ISMM 2010, Toronto,
Ontario, Canada, June 5-6, 2010, pages 21–30, 2010.

[16] Andrew W. Appel. Simple generational garbage collection and fast allocation. Software
Practice and Experience, 19(2):171–183, 1989. URL http://www.cs.princeton.edu/fac/
~appel/papers/143.ps.

[17] Andrew W. Appel and Zhong Shao. Empirical and analytic study of stack versus heap
cost for languages with closures. Journal of Functional Programming, 6(1):47–74, January
1996. URL ftp://daffy.cs.yale.edu/pub/papers/shao/stack.ps.

[18] Jatin Arora, Sam Westrick, and Umut A. Acar. Provably space ecient parallel func-
tional programming. In Proceedings of the 48th Annual ACM Symposium on Principles of
Programming Languages (POPL)", 2021.

[19] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multi-
programmed multiprocessors. Theory of Computing Systems, 34(2):115–144, 2001.

[20] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: Data structures for par-
allel computing. ACM Trans. Program. Lang. Syst., 11(4):598–632, October 1989.

[21] Sven Auhagen, Lars Bergstrom, Matthew Fluet, and John H. Reppy. Garbage collection
for multicore NUMA machines. In Proceedings of the 2011 ACM SIGPLAN workshop on
Memory Systems Performance and Correctness (MSPC), pages 51–57, 2011.

[22] Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing. In ACM
SIGGRAPH 2007 Papers, SIGGRAPH ’07, page 10–es, New York, NY, USA, 2007. Associa-
tion for Computing Machinery. ISBN 9781450378369. doi: 10.1145/1275808.1276390. URL
https://doi.org/10.1145/1275808.1276390.

[23] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing locality and inde-
pendence with logical regions. In SC ’12: Proceedings of the International Conference on

138

https://doi.org/10.1145/1787234.1787255
https://doi.org/10.1145/3503221.3508422
https://doi.org/10.1145/3503221.3508422
http://www.cs.princeton.edu/fac/~appel/papers/143.ps
http://www.cs.princeton.edu/fac/~appel/papers/143.ps
ftp://daffy.cs.yale.edu/pub/papers/shao/stack.ps
https://doi.org/10.1145/1275808.1276390

High Performance Computing, Networking, Storage and Analysis, pages 1–11, Nov 2012.
doi: 10.1109/SC.2012.71.

[24] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E. Leiserson. On-the-y
maintenance of series-parallel relationships in fork-join multithreaded programs. In 16th
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 133–144, 2004.

[25] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard:
A scalable memory allocator for multithreaded applications. In Ninth International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IX), 2000.

[26] Guy E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3),
March 1996.

[27] Guy E. Blelloch and Phillip B. Gibbons. Eectively sharing a cache among threads. In
SPAA, 2004.

[28] Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipelstein, Marco Zagha, and Siddhartha
Chatterjee. Implementation of a portable nested data-parallel language. J. Parallel Distrib.
Comput., 21(1):4–14, 1994.

[29] Guy E. Blelloch, Phillip B. Gibbons, Yossi Matias, and Girija J. Narlikar. Space-ecient
scheduling of parallelism with synchronization variables. In Proceedings of the Ninth
Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’97, pages 12–
23, 1997.

[30] Guy E. Blelloch, Rezaul A. Chowdhury, Phillip B. Gibbons, Vijaya Ramachandran, Shimin
Chen, and Michael Kozuch. Provably good multicore cache performance for divide-and-
conquer algorithms. In In the Proceedings of the 19th ACM-SIAM Symposium on Discrete
Algorithms, pages 501–510, 2008.

[31] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Harsha Vardhan Simhadri.
Scheduling irregular parallel computations on hierarchical caches. In Proc. ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA), pages 355–366, 2011.

[32] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. Internally de-
terministic parallel algorithms can be fast. In PPoPP ’12, pages 181–192, 2012.

[33] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism in randomized incre-
mental algorithms. In Proceedings of the 28th ACM Symposium on Parallelism in Algo-
rithms and Architectures, SPAA ’16, page 467–478, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450342100. doi: 10.1145/2935764.2935766. URL
https://doi.org/10.1145/2935764.2935766.

[34] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. Parlaylib - A toolkit for par-
allel algorithms on shared-memory multicore machines. In Christian Scheideler and
Michael Spear, editors, SPAA ’20: 32nd ACM Symposium on Parallelism in Algorithms
and Architectures, Virtual Event, USA, July 15-17, 2020, pages 507–509. ACM, 2020. doi:
10.1145/3350755.3400254. URL https://doi.org/10.1145/3350755.3400254.

[35] Robert D. Blumofe and Charles E. Leiserson. Space-ecient scheduling of multithreaded

139

https://doi.org/10.1145/2935764.2935766
https://doi.org/10.1145/3350755.3400254

computations. SIAM Journal on Computing, 27(1):202–229, 1998.
[36] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by

work stealing. Journal of the ACM, 46(5):720–748, September 1999.
[37] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,

Keith H. Randall, and Yuli Zhou. Cilk: An ecientmultithreaded runtime system. Journal
of Parallel and Distributed Computing, 37(1):55–69, 1996.

[38] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann,
Rakesh Komuravelli, Jerey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vak-
ilian. A type and eect system for deterministic parallel java. In Proceedings of the 24th
ACM SIGPLAN conference on Object oriented programming systems languages and appli-
cations, OOPSLA ’09, pages 97–116, 2009.

[39] Robert L Bocchino, Jr., Vikram S. Adve, Sarita V. Adve, and Marc Snir. Parallel pro-
gramming must be deterministic by default. In First USENIX Conference on Hot Topics in
Parallelism, 2009.

[40] Robert L. Bocchino Jr., Stephen Heumann, Nima Honarmand, Sarita V. Adve, Vikram S.
Adve, Adam Welc, and Tatiana Shpeisman. Safe nondeterminism in a deterministic-by-
default parallel language. In Thomas Ball and Mooly Sagiv, editors, Proceedings of the
38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2011, Austin, TX, USA, January 26-28, 2011, pages 535–548. ACM, 2011.

[41] Hans-Juergen Boehm. How to miscompile programs with "benign" data races. In 3rd
USENIX Workshop on Hot Topics in Parallelism, HotPar’11, Berkeley, CA, USA, May 26-27,
2011, 2011.

[42] Hans-Juergen Boehm and Sarita V. Adve. Foundations of the C++ concurrency mem-
ory model. In Rajiv Gupta and Saman P. Amarasinghe, editors, Proceedings of the ACM
SIGPLAN 2008 Conference on Programming Language Design and Implementation, Tucson,
AZ, USA, June 7-13, 2008, pages 68–78. ACM, 2008. doi: 10.1145/1375581.1375591. URL
https://doi.org/10.1145/1375581.1375591.

[43] Trevor Alexander Brown. Reclaiming memory for lock-free data structures: There has
to be a better way. In Chryssis Georgiou and Paul G. Spirakis, editors, Proceedings of the
2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San
Sebastián, Spain, July 21 - 23, 2015, pages 261–270. ACM, 2015. doi: 10.1145/2767386.
2767436. URL https://doi.org/10.1145/2767386.2767436.

[44] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive model
for graph mining. In SIAM SDM, 2004.

[45] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon L. Peyton Jones, Gabriele Keller,
and Simon Marlow. Data parallel haskell: a status report. In Proceedings of the POPL
2007Workshop on Declarative Aspects of Multicore Programming, DAMP 2007, Nice, France,
January 16, 2007, pages 10–18, 2007.

[46] Philippe Charles, Christian Grotho, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented

140

https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/2767386.2767436

approach to non-uniform cluster computing. In Proceedings of the 20th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications,
OOPSLA ’05, pages 519–538. ACM, 2005.

[47] Siddhartha Chatterjee, Guy E. Blelloch, and Marco Zagha. Scan primitives for vector
computers. In 1990 ACM/IEEE Conference on Supercomputing (SC), page 666–675, 1990.
ISBN 0897914120.

[48] Siddhartha Chatterjee, Guy E. Blelloch, and Allan L. Fisher. Size and access inference for
data-parallel programs. In ACM SIGPLAN Conference on Programming Language Design
and Implementation PLDI), page 130–144, 1991. ISBN 0897914287.

[49] C. J. Cheney. A non-recursive list compacting algorithm. Communications of the ACM,
13(11):677–8, November 1970.

[50] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and Andrew F.
Stark. Detecting data races in Cilk programs that use locks. In Proceedings of the 10th
ACM Symposium on Parallel Algorithms and Architectures, SPAA ’98, 1998.

[51] Intel Corp. Knights landing (knl): 2nd generation intel xeon phi processor. In Intel Xeon
Processor E7 v4 Family Specication, 2017. https://ark.intel.com/products/series/
93797/Intel-Xeon-Processor-E7-v4-Family.

[52] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: From lists to
streams to nothing at all. In ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP), page 315–326, 2007.

[53] Alain Darte. On the complexity of loop fusion. In IEEE Int. Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), 1999.

[54] LaxmanDhulipala, Guy E. Blelloch, and Julian Shun. Theoretically ecient parallel graph
algorithms can be fast and scalable. ACM Trans. Parallel Comput., 8(1):4:1–4:70, 2021. doi:
10.1145/3434393. URL https://doi.org/10.1145/3434393.

[55] LaxmanDhulipala, Guy E. Blelloch, YanGu, and Yihan Sun. Pac-trees: supporting parallel
and compressed purely-functional collections. In Ranjit Jhala and Isil Dillig, editors, PLDI
’22: 43rd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, San Diego, CA, USA, June 13 - 17, 2022, pages 108–121. ACM, 2022. doi:
10.1145/3519939.3523733. URL https://doi.org/10.1145/3519939.3523733.

[56] Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage collection for mul-
tiprocessor systems. In Conference Record of the Twenty-rst Annual ACM Symposium
on Principles of Programming Languages, ACM SIGPLAN Notices, Portland, OR, Jan-
uary 1994. ACM Press. URL ftp://ftp.inria.fr/INRIA/Projects/para/doligez/
DoligezGonthier94.ps.gz.

[57] Damien Doligez and Xavier Leroy. A concurrent generational garbage collector for a
multi-threaded implementation of ML. In Conference Record of the Twentieth Annual ACM
Symposium on Principles of Programming Languages, ACM SIGPLAN Notices, pages 113–
123. ACMPress, January 1993. URL file://ftp.inria.fr/INRIA/Projects/cristal/
Xavier.Leroy/publications/concurrent-gc.ps.gz.

141

https://ark.intel.com/products/series/93797/Intel-Xeon-Processor-E7-v4-Family
https://ark.intel.com/products/series/93797/Intel-Xeon-Processor-E7-v4-Family
https://doi.org/10.1145/3434393
https://doi.org/10.1145/3519939.3523733
ftp://ftp.inria.fr/INRIA/Projects/para/doligez/DoligezGonthier94.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/para/doligez/DoligezGonthier94.ps.gz
file://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/publications/concurrent-gc.ps.gz
file://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/publications/concurrent-gc.ps.gz

[58] Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Erez Petrank, and Dafna Sheinwald.
Thread-local heaps for Java. In David Detlefs, editor, ISMM’02 Proceedings of the
Third International Symposium on Memory Management, ACM SIGPLAN Notices, pages
76–87, Berlin, June 2002. ACM Press. URL http://www.cs.technion.ac.il/~erez/
publications.html.

[59] Martin Elsman. A stack machine for region based programs. In SPACE [142]. URL
http://www.diku.dk/topps/space2001/program.html#MartinElsman.

[60] Perry A. Emrath and Davis A. Padua. Automatic detection of nondeterminacy in parallel
programs. In Proceedings of the Workshop on Parallel and Distributed Debugging, pages
89–99, May 1988.

[61] Perry A. Emrath, Sanjoy Ghosh, and David A. Padua. Event synchronization analysis for
debugging parallel programs. In Supercomputing ’91, pages 580–588, November 1991.

[62] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike Hous-
ton, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, William J. Dally, and Pat
Hanrahan. Sequoia: Programming the memory hierarchy. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM. ISBN
0-7695-2700-0.

[63] Mingdong Feng and Charles E. Leiserson. Ecient detection of determinacy races in Cilk
programs. Theory of Computing Systems, 32(3):301–326, 1999.

[64] Jeremy T. Fineman. Provably good race detection that runs in parallel. Master’s thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Com-
puter Science, Cambridge, MA, August 2005.

[65] Cormac Flanagan and Stephen N. Freund. Fasttrack: ecient and precise dynamic race
detection. SIGPLANNot., 44(6):121–133, June 2009. ISSN 0362-1340. doi: 10.1145/1543135.
1542490.

[66] Matthew Fluet, Greg Morrisett, and Amal J. Ahmed. Linear regions are all you need.
In Proceedings of the 15th Annual European Symposium on Programming (ESOP), March
2006.

[67] Matthew Fluet, Mike Rainey, and John Reppy. A scheduling framework for general-
purpose parallel languages. In ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP), 2008.

[68] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly threaded paral-
lelism in Manticore. Journal of Functional Programming, 20(5-6):1–40, 2011.

[69] Keir Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, UK, 2004. URL
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599193.

[70] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the
Cilk-5 multithreaded language. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 212–223, 1998.

[71] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin. Reduc-
ers and other Cilk++ hyperobjects. In 21st Annual ACM Symposium on Parallelism in

142

http://www.cs.technion.ac.il/~erez/publications.html
http://www.cs.technion.ac.il/~erez/publications.html
http://www.diku.dk/topps/space2001/program.html#MartinElsman
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599193

Algorithms and Architectures, pages 79–90, 2009.
[72] David K. Giord and John M. Lucassen. Integrating functional and imperative program-

ming. In Proceedings of the ACM Symposium on Lisp and Functional Programming (LFP),
pages 22–38. ACM Press, 1986.

[73] Marcelo J. R. Gonçalves. Cache Performance of Programs with Intensive Heap Alloca-
tion and Generational Garbage Collection. PhD thesis, Department of Computer Science,
Princeton University, May 1995.

[74] Marcelo J. R. Gonçalves and Andrew W. Appel. Cache performance of fast-allocating
programs. In Record of the 1995 Conference on Functional Programming and Computer
Architecture, June 1995.

[75] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James
Cheney. Region-based memory management in Cyclone. In Proceedings of SIGPLAN
2002 Conference on Programming Languages Design and Implementation, ACM SIGPLAN
Notices, pages 282–293, Berlin, June 2002. ACM Press. ISBN 1-58113-463-0.

[76] Adrien Guatto, SamWestrick, Ram Raghunathan, Umut A. Acar, and Matthew Fluet. Hi-
erarchical memory management for mutable state. In Proceedings of the 23rd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2018, Vienna,
Austria, February 24-28, 2018, pages 81–93, 2018.

[77] Robert H. Halstead, Jr. Implementation of Multilisp: Lisp on a Multiprocessor. In Pro-
ceedings of the 1984 ACM Symposium on LISP and functional programming, LFP ’84, pages
9–17. ACM, 1984.

[78] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM
TOPLAS, 7(4):501–538, October 1985.

[79] Kevin Hammond. Why parallel functional programming matters: Panel statement. In
Reliable Software Technologies - Ada-Europe 2011 - 16th Ada-Europe International Confer-
ence on Reliable Software Technologies, Edinburgh, UK, June 20-24, 2011. Proceedings, pages
201–205, 2011.

[80] David R. Hanson. Fast allocation and deallocation of memory based on object lifetimes.
Software Practice and Experience, 20(1):5–12, January 1990.

[81] Troels Henriksen. Design and Implementation of the Futhark Programming Language.
PhD thesis, University of Copenhagen, Universitetsparken 5, 2100 KÃ̧ benhavn, 11 2017.

[82] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E.
Oancea. Futhark: Purely functional gpu-programming with nested parallelism and
in-place array updates. In Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2017, pages 556–571, New York,
NY, USA, 2017. ACM. ISBN 978-1-4503-4988-8. doi: 10.1145/3062341.3062354. URL
http://doi.acm.org/10.1145/3062341.3062354.

[83] Shams Mahmood Imam and Vivek Sarkar. Habanero-java library: a java 8 framework
for multicore programming. In 2014 International Conference on Principles and Practices
of Programming on the Java Platform Virtual Machines, Languages and Tools, PPPJ ’14,

143

http://doi.acm.org/10.1145/3062341.3062354

pages 75–86, 2014.
[84] Intel Cilk++ SDK Programmer’s Guide. Intel Corporation, October 2009. Document Num-

ber: 322581-001US.
[85] TBB. Intel(R) Threading Building Blocks. Intel Corporation, 2009. Available from http:

//www.threadingbuildingblocks.org/documentation.php.
[86] Richard Jones, Antony Hosking, and Eliot Moss. The garbage collection handbook: the art

of automatic memory management. Chapman & Hall/CRC, 2011.
[87] Gabriele Keller, ManuelM.T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, and

Ben Lippmeier. Regular, shape-polymorphic, parallel arrays in haskell. In Proceedings of
the 15th ACM SIGPLAN international conference on Functional programming, ICFP ’10,
pages 261–272, 2010.

[88] Ken Kennedy and Kathryn S. McKinley. Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In Int. Workshop on Languages and Compilers
for Parallel Computing, 1993.

[89] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. Dynamic race prediction in lin-
ear time. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, pages 157–170. ACM, 2017.

[90] Chaitanya Koparkar, Mike Rainey, Michael Vollmer, Milind Kulkarni, and Ryan R. New-
ton. Ecient tree-traversals: Reconciling parallelism and dense data representations. 5
(ICFP), aug 2021. doi: 10.1145/3473596. URL https://doi.org/10.1145/3473596.

[91] A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C. Goldstein, S. Lumetta, T. von Eicken,
and K. Yelick. Parallel programming in split-c. In Proceedings of the 1993 ACM/IEEE
Conference on Supercomputing, Supercomputing ’93, pages 262–273, New York, NY, USA,
1993. ACM. ISBN 0-8186-4340-4. doi: 10.1145/169627.169724. URL http://doi.acm.
org/10.1145/169627.169724.

[92] Lindsey Kuper and Ryan R Newton. Lvars: lattice-based data structures for determin-
istic parallelism. In Proceedings of the 2nd ACM SIGPLAN workshop on Functional high-
performance computing, pages 71–84. ACM, 2013.

[93] Lindsey Kuper, Aaron Todd, Sam Tobin-Hochstadt, and Ryan R. Newton. Taming the
parallel eect zoo: Extensible deterministic parallelism with lvish. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’14, pages 2–14, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2784-8. doi:
10.1145/2594291.2594312. URL http://doi.acm.org/10.1145/2594291.2594312.

[94] Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami, and Ryan R. Newton. Freeze
after writing: Quasi-deterministic parallel programming with lvars. In Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, pages 257–270, New York, NY, USA, 2014. ACM.

[95] John Launchbury and Simon L. Peyton Jones. Lazy functional state threads. In Proceedings
of the ACM SIGPLAN’94 Conference on Programming Language Design and Implementation

144

http://www.threadingbuildingblocks.org/documentation.php
http://www.threadingbuildingblocks.org/documentation.php
https://doi.org/10.1145/3473596
http://doi.acm.org/10.1145/169627.169724
http://doi.acm.org/10.1145/169627.169724
http://doi.acm.org/10.1145/2594291.2594312

(PLDI), Orlando, Florida, USA, June 20-24, 1994, pages 24–35, 1994.
[96] Matthew Le and Matthew Fluet. Partial aborts for transactions via rst-class continu-

ations. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, pages 230–242, 2015. ISBN 978-1-4503-3669-7.

[97] Doug Lea. A Java fork/join framework. In ACM 2000 Conference on Java Grande, pages
36–43, 2000.

[98] Jonathan K. Lee and Jens Palsberg. Featherweight X10: a core calculus for async-nish
parallelism. In R. Govindarajan, David A. Padua, and Mary W. Hall, editors, Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP 2010, Bangalore, India, January 9-14, 2010, pages 25–36. ACM, 2010. doi: 10.1145/
1693453.1693459. URL https://doi.org/10.1145/1693453.1693459.

[99] Peng Li, Simon Marlow, Simon L. Peyton Jones, and Andrew P. Tolmach. Lightweight
concurrency primitives for GHC. In Proceedings of the ACM SIGPLAN Workshop on
Haskell, Haskell 2007, Freiburg, Germany, September 30, 2007, pages 107–118, 2007.

[100] J. M. Lucassen and D. K. Giord. Polymorphic eect systems. In Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’88,
pages 47–57, New York, NY, USA, 1988. ACM. ISBN 0-89791-252-7.

[101] Georey Mainland, Roman Leshchinskiy, and Simon Peyton Jones. Exploiting vector
instructions with generalized stream fusion. Commun. ACM, 60(5):83–91, 2017.

[102] SimonMarlow and Simon L. Peyton Jones. Multicore garbage collection with local heaps.
In Hans-Juergen Boehm and David F. Bacon, editors, Proceedings of the 10th International
Symposium on Memory Management, ISMM 2011, San Jose, CA, USA, June 04 - 05, 2011,
pages 21–32. ACM, 2011.

[103] Trevor L. McDonell, Manuel M.T. Chakravarty, Gabriele Keller, and Ben Lippmeier. Op-
timising purely functional gpu programs. In ACM SIGPLAN International Conference on
Functional Programming (ICFP), page 49–60, 2013. ISBN 9781450323260.

[104] JohnMellor-Crummey. On-the-y detection of data races for programs with nested fork-
join parallelism. In Proceedings of Supercomputing’91, pages 24–33, 1991.

[105] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distributed Syst., 15(6):491–504, 2004. doi: 10.1109/TPDS.2004.8. URL
https://doi.org/10.1109/TPDS.2004.8.

[106] MLton. MLton web site. http://www.mlton.org, n.d.
[107] StefanMuller, Kyle Singer, Noah Goldstein, Umut A. Acar, Kunal Agrawal, and I-Ting An-

gelina Lee. Responsive parallelism with futures and state. In Proceedings of the ACM
Conference on Programming Language Design and Implementation (PLDI), 2020.

[108] Stefan K.Muller and Umut A. Acar. Latency-hidingwork stealing: Scheduling interacting
parallel computations with work stealing. In Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacic
Grove, CA, USA, July 11-13, 2016, pages 71–82, 2016.

[109] Stefan K. Muller, Umut A. Acar, and Robert Harper. Responsive parallel computation:

145

https://doi.org/10.1145/1693453.1693459
https://doi.org/10.1109/TPDS.2004.8
http://www.mlton.org

Bridging competitive and cooperative threading. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017, pages 677–
692, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4988-8.

[110] Stefan K. Muller, Umut A. Acar, and Robert Harper. Competitive parallelism: Getting
your priorities right. Proc. ACM Program. Lang., 2(ICFP):95:1–95:30, July 2018. ISSN
2475-1421.

[111] Stefan K. Muller, Sam Westrick, and Umut A. Acar. Fairness in responsive parallelism.
In Proceedings of the 24th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2019, 2019.

[112] Girija J. Narlikar. Scheduling threads for low space requirement and good locality. In 11th
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 83–95, 1999.

[113] Robert H. B. Netzer and Barton P. Miller. What are race conditions? ACM Letters on
Programming Languages and Systems, 1(1):74–88, March 1992.

[114] Robert W. Numrich and John Reid. Co-array fortran for parallel programming. SIGPLAN
Fortran Forum, 17(2):1–31, August 1998. ISSN 1061-7264. doi: 10.1145/289918.289920.
URL http://doi.acm.org/10.1145/289918.289920.

[115] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. In Rudolf
Eigenmann and Martin C. Rinard, editors, Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP 2003, June 11-13, 2003, San
Diego, CA, USA, pages 167–178. ACM, 2003.

[116] Atsushi Ohori, Kenjiro Taura, and Katsuhiro Ueno. Making sml# a general-purpose high-
performance language, 2018. Unpublished Manuscript.

[117] Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic language based
on sampling functions. ACM Trans. Program. Lang. Syst., 31(1):4:1–4:46, December 2008.
ISSN 0164-0925.

[118] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In Pro-
ceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’93, pages 71–84, 1993.

[119] Simon L. Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T.
Chakravarty. Harnessing the multicores: Nested data parallelism in Haskell. In FSTTCS,
pages 383–414, 2008.

[120] Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy Blelloch. Hierarchical mem-
ory management for parallel programs. In Proceedings of the 21st ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP 2016, pages 392–406, New York, NY,
USA, 2016. ACM.

[121] Mike Rainey, Ryan R. Newton, Kyle C. Hale, Nikos Hardavellas, Simone Campanoni,
Peter A. Dinda, and Umut A. Acar. Task parallel assembly language for uncompromising
parallelism. In Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 20211, pages 1064–1079. ACM, 2021.

146

http://doi.acm.org/10.1145/289918.289920

[122] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. Ecient
data race detection for async-nish parallelism. In Howard Barringer, Ylies Falcone,
Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace, Grigore Rosu, Oleg Sokol-
sky, and Nikolai Tillmann, editors, Runtime Verication, volume 6418 of Lecture Notes in
Computer Science, pages 368–383. Springer Berlin / Heidelberg, 2010. ISBN 978-3-642-
16611-2.

[123] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. Scalable
and precise dynamic datarace detection for structured parallelism. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, pages 531–542, 2012.

[124] John C. Reynolds. Syntactic control of interference. In Proceedings of the 5th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’78, pages
39–46, New York, NY, USA, 1978. ACM.

[125] Dan Robinson. Hpe shows the machine — with 160tb of shared memory. Data Center
Dynamics, May 2017.

[126] D. T. Ross. The AED free storage package. Communications of the ACM, 10(8):481–492,
August 1967.

[127] Rust Team. Rust language, 2019. URL https://www.rust-lang.org/.
[128] Nikolay Sakharnykh. Maximizing unied memory performance in

cuda. https://developer.nvidia.com/blog/maximizing-unied-memory-
performance-cuda/, 2017. URL https://developer.nvidia.com/blog/
maximizing-unified-memory-performance-cuda/.

[129] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Ander-
son. Eraser: A dynamic race detector for multi-threaded programs. In Proceedings of the
Sixteenth ACM Symposium on Operating Systems Principles (SOSP), October 1997.

[130] Jacob T. Schwartz. Optimization of very high level languages (parts i and ii). Computer
Languages, 2–3(1):161–194,197–218, 1975.

[131] Julian Shun and Guy E. Blelloch. Ligra: a lightweight graph processing framework for
shared memory. In PPOPP ’13, pages 135–146, New York, NY, USA, 2013. ACM.

[132] Julian Shun andGuy E. Blelloch. Phase-concurrent hash tables for determinism. In Guy E.
Blelloch and Peter Sanders, editors, 26th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’14, Prague, Czech Republic - June 23 - 25, 2014, pages 96–107.
ACM, 2014. doi: 10.1145/2612669.2612687. URL https://doi.org/10.1145/2612669.
2612687.

[133] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola, Har-
sha Vardhan Simhadri, and Kanat Tangwongsan. Brief announcement: The problem
based benchmark suite. In Proceedings of the Twenty-fourth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’12, pages 68–70, 2012. ISBN 978-1-
4503-1213-4.

[134] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. Reducing con-

147

https://www.rust-lang.org/
https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/
https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/
https://doi.org/10.1145/2612669.2612687
https://doi.org/10.1145/2612669.2612687

tention through priority updates. In Proceedings of the Twenty-fth Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA ’13, pages 152–163, 2013.

[135] Kyle Singer, Yifan Xu, and I-Ting Angelina Lee. Proactive work stealing for futures.
In Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming,
PPoPP ’19, pages 257–271, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6225-2. doi:
10.1145/3293883.3295735. URL http://doi.acm.org/10.1145/3293883.3295735.

[136] Kyle Singer, Kunal Agrawal, and I-Ting Angelina Lee. Scheduling I/O latency-hiding
futures in task-parallel platforms. In Bruce M. Maggs, editor, 1st Symposium on Algo-
rithmic Principles of Computer Systems, APOCS 2020, Salt Lake City, UT, USA, January
8, 2020, pages 147–161. SIAM, 2020. doi: 10.1137/1.9781611976021.11. URL https:
//doi.org/10.1137/1.9781611976021.11.

[137] Kyle Singer, Noah Goldstein, Stefan K. Muller, Kunal Agrawal, I-Ting Angelina Lee, and
Umut A. Acar. Priority scheduling for interactive applications. In Christian Scheideler
and Michael Spear, editors, SPAA ’20: 32nd ACM Symposium on Parallelism in Algorithms
and Architectures, Virtual Event, USA, July 15-17, 2020, pages 465–477, 2020.

[138] K. C. Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. Multimlton: A
multicore-aware runtime for standard ml. Journal of Functional Programming, FirstView:
1–62, 6 2014.

[139] K. C. Sivaramakrishnan, StephenDolan, LeoWhite, Sadiq Jaer, TomKelly, Anmol Sahoo,
Sudha Parimala, Atul Dhiman, and Anil Madhavapeddy. Retrotting parallelism onto
ocaml. Proc. ACM Program. Lang., 4(ICFP):113:1–113:30, 2020.

[140] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan.
Sound predictive race detection in polynomial time. In John Field and Michael Hicks,
editors, Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012,
pages 387–400. ACM, 2012.

[141] A. Sodani. Knights landing (knl): 2nd generation intel xeon phi processor. In 2015 IEEE
Hot Chips 27 Symposium (HCS), pages 1–24, Aug 2015.

[142] SPACE. Proceedings of the Second workshop on Semantics, Program Analysis and Com-
puting Environments for Memory Management (SPACE’01), London, January 2001. URL
http://www.diku.dk/topps/space2001/.

[143] Daniel Spoonhower. Scheduling Deterministic Parallel Programs. PhD thesis,
Carnegie Mellon University, May 2009. URL https://www.cs.cmu.edu/~rwh/theses/
spoonhower.pdf.

[144] Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert Harper. Beyond
nested parallelism: Tight bounds on work-stealing overheads for parallel futures. In
Proceedings of the Twenty-rst Annual Symposium on Parallelism in Algorithms and Ar-
chitectures, SPAA ’09, pages 91–100, New York, NY, USA, 2009. ACM.

[145] Guy L. Steele, Jr. Building interpreters by composing monads. In Proceedings of the 21st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’94,

148

http://doi.acm.org/10.1145/3293883.3295735
https://doi.org/10.1137/1.9781611976021.11
https://doi.org/10.1137/1.9781611976021.11
http://www.diku.dk/topps/space2001/
https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf
https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf

pages 472–492, New York, NY, USA, 1994. ACM. ISBN 0-89791-636-0.
[146] Guy L. Steele Jr. Making asynchronous parallelism safe for the world. In Proceedings of

the Seventeenth Annual ACM Symposium on Principles of Programming Languages (POPL),
pages 218–231. ACM Press, 1990.

[147] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. Generating
performance portable code using rewrite rules: From high-level functional expressions to
high-performance opencl code. In ACM SIGPLAN International Conference on Functional
Programming (ICFP), page 205–217, 2015. ISBN 9781450336697.

[148] Yihan Sun, Daniel Ferizovic, and Guy E. Blelloch. PAM: parallel augmented maps. In
Andreas Krall and Thomas R. Gross, editors, Proceedings of the 23rd ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP 2018, Vienna, Austria,
February 24-28, 2018, pages 290–304. ACM, 2018. doi: 10.1145/3178487.3178509. URL
https://doi.org/10.1145/3178487.3178509.

[149] Tachio Terauchi and Alex Aiken. Witnessing side eects. ACM Trans. Program. Lang.
Syst., 30(3):15:1–15:42, May 2008. ISSN 0164-0925.

[150] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information and
Computation, February 1997. URL http://www.diku.dk/research-groups/topps/
activities/kit2/infocomp97.ps.

[151] Robert Utterback, Kunal Agrawal, Jeremy T. Fineman, and I-Ting Angelina Lee. Provably
good and practically ecient parallel race detection for fork-join programs. In Proceed-
ings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2016, Asilomar State Beach/Pacic Grove, CA, USA, July 11-13, 2016, pages 83–94, 2016.

[152] David Walker. On linear types and regions. In SPACE [142]. URL http://www.diku.
dk/topps/space2001/program.html#DavidWalker.

[153] Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. Disentanglement in
nested-parallel programs. In Proceedings of the 47th Annual ACM Symposium on Principles
of Programming Languages (POPL)", 2020.

[154] Sam Westrick, Jatin Arora, and Umut A. Acar. Entanglement detection with near-zero
cost. In Proceedings of the 24th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2022, 2022.

[155] SamWestrick, Mike Rainey, Daniel Anderson, andGuy E. Blelloch. Parallel block-delayed
sequences. In Jaejin Lee, Kunal Agrawal, and Michael F. Spear, editors, PPoPP ’22: 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Seoul, Re-
public of Korea, April 2 - 6, 2022, pages 61–75. ACM, 2022. doi: 10.1145/3503221.3508434.
URL https://doi.org/10.1145/3503221.3508434.

[156] Sam Westrick, Larry Wang, and Umut A. Acar. DePa: Simple, provably ecient, and
practical order maintenance for task parallelism. CoRR, abs/2204.14168, 2022. doi: 10.
48550/arXiv.2204.14168. URL https://doi.org/10.48550/arXiv.2204.14168.

[157] Yifan Xu, Kyle Singer, and I-Ting Angelina Lee. Parallel determinacy race detection
for futures. In Rajiv Gupta and Xipeng Shen, editors, PPoPP ’20: 25th ACM SIGPLAN

149

https://doi.org/10.1145/3178487.3178509
http://www.diku.dk/research-groups/topps/activities/kit2/infocomp97.ps
http://www.diku.dk/research-groups/topps/activities/kit2/infocomp97.ps
http://www.diku.dk/topps/space2001/program.html#DavidWalker
http://www.diku.dk/topps/space2001/program.html#DavidWalker
https://doi.org/10.1145/3503221.3508434
https://doi.org/10.48550/arXiv.2204.14168

Symposium on Principles and Practice of Parallel Programming, San Diego, California, USA,
February 22-26, 2020, pages 217–231. ACM, 2020. doi: 10.1145/3332466.3374536. URL
https://doi.org/10.1145/3332466.3374536.

[158] Rohan Yadav and Brandon Houghton. Adding fast cuda bindings to standard ml, 2017.
URL https://github.com/rohany/StandardML-GPU.

[159] Kathy Yelick, Luigi Semenzato, Geo Pike, Carleton Miyamoto, Ben Liblit, Arvind Kr-
ishnamurthy, Paul Hilnger, Susan Graham, David Gay, Phil Colella, and Alex Aiken.
Titanium: a high-performance java dialect. Concurrency: Practice and Experience, 10(11-
13):825–836, 1998.

[160] Yuan Yu, Tom Rodeheer, and Wei Chen. Racetrack: ecient detection of data race
conditions via adaptive tracking. In Andrew Herbert and Kenneth P. Birman, editors,
Proceedings of the 20th ACM Symposium on Operating Systems Principles 2005, SOSP 2005,
Brighton, UK, October 23-26, 2005, pages 221–234. ACM, 2005.

[161] Taichi Yuasa. Real-time garbage collection on general-purpose machines. Journal of
Systems and Software, 11(3):181–198, 1990.

[162] Lukasz Ziarek, K. C. Sivaramakrishnan, and Suresh Jagannathan. Composable asyn-
chronous events. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages
628–639, 2011.

150

https://doi.org/10.1145/3332466.3374536
https://github.com/rohany/StandardML-GPU

	Introduction
	Parallel Functional Programming with Parallel ML
	Purely Functional Algorithms
	Parallel Reduction
	Maximum Contiguous Subsequence Sum
	Sparse Matrix-Vector Multiplication
	Tokenization

	Parallel Array Operations
	Tabulate
	Scan (Parallel Prefix Sums)
	Filter
	Flatten
	Discussion: Fusion with Function Composition

	Non-deterministic Parallel Algorithms
	Parallel BFS
	Parallel Deduplication by Concurrent Hashing

	Disentanglement
	Language and Graph Semantics
	Syntax
	Computation Graphs and Actions
	Open Computation Graphs
	Operational Semantics

	Example: Transposing Points in 2D
	Definition of Disentanglement
	Disentanglement and Race-Freedom
	Proof: Race-Freedom Preserves Disentanglement

	Disentanglement Beyond Race-Freedom

	Disentangled Memory Management
	Preliminaries: Heaps and Heap Objects
	Heap Hierarchy
	Pointer Directions
	Guarantees of Disentanglement
	Relationship to Computation Graphs

	Subtree Collection
	Tracing Phase
	Optional Promotion Phase
	Example
	Correctness
	Independence of Subtree Collections

	Scheduling and Local Garbage Collection (LGC)
	Concurrent Garbage Collection (CGC)
	Primary Heaps and CGC-heaps
	CGC Chaining
	Pointer Directions, Revisited
	CGC Snapshotting and Tracing
	CGC Scheduling

	Collection Policy

	Entanglement Detection
	Overview
	Entanglement and Determinacy Races
	Language and Graph Semantics
	Parallelism, Task Trees, and Computation Graphs (Dags)
	Entanglement Detection
	Example Revisited

	Soundness and Completeness
	Completeness Proof
	Soundness Proof

	Entanglement Detection Cost Analysis
	Utilizing Heap Chunks to Optimize Space

	Entanglement Candidates
	Marking and Unmarking Candidates
	Cost Analysis of Tracking Candidates
	Candidate Arrays
	Asymptotically Fewer Graph Queries
	Candidates in the Detection Semantics

	The MPL Compiler for Parallel ML
	Scheduler
	Thread and Heap Maintenance
	Scheduler Jobs and Synchronization
	Implementing the !par! Function

	Block Allocator
	Heaps and Heap Objects
	Parallel Initialization of Sequence Objects
	Heap Queries
	Memory Reclamation for Union-Find Nodes
	Allocation for Heap Records and Union-Find Nodes

	Remembered Sets and Write Barriers
	Garbage Collection
	LGC
	CGC
	Amortization Policy for LGC and CGC

	Entanglement Detection Implementation
	Vertex Identifiers and SP-order maintenance
	Read and Write Barriers for Detection
	Memory Management for Detection
	Chunk Pinning: Handling the Possibility of Entanglement

	The Parallel ML Benchmark Suite
	Graph Algorithms
	Computational Geometry
	Images and Audio
	Text Processing
	Numerical Algorithms
	Other Algorithms

	Evaluation
	Overview
	Methodology and Experimental Setup
	Overheads and Scalability
	Comparison with Multicore OCaml
	Comparison with Java and Go
	Comparison with C++
	Evaluation of Entanglement Detection
	With and Without Entanglement Detection
	Improvement Due To Entanglement Candidates
	Entangled Tests

	Related Work
	Parallel Memory Management
	Race Detection
	Parallel Programming Languages

	Concluding Remarks
	Discussion
	Conclusion

	Bibliography

