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Abstract

Driven by shortcomings of current democratic systems, practitioners and political scientists are exploring democratic
innovations, i.e., institutions for decision-making that more directly involve constituents. In this thesis, we support this
exploration using tools from computer science, via three approaches: we design practical algorithms for use in democratic
innovations, we mathematically analyze the fairness properties of proposed decision-making processes, and we identify
extensions of such processes that satisfy desirable properties. Our work mixes techniques from computational social
choice, algorithms, optimization, probabilistic modeling, and empirical analysis.

In Part I, we apply the first two approaches to citizens’ assemblies, which are randomly selected panels of constituents who
deliberate on a policy issue. We analyze existing algorithms for the random selection of these assemblies, and we design
new algorithms for this task that are provably fair and now widely used in practice. In addition, we design algorithms for
partitioning assembly members into deliberation groups, which allow more members to interact than before.

Part II identifies extensions to liquid democracy and legislative apportionment. First, we demonstrate that a variant
of liquid democracy, in which agents are asked for two potential delegates rather than a single delegate, reduces the
concentration of power observed in classic liquid democracy. Second, we extend legislative elections over parties to
approval ballots, and give apportionment methods for this setting that satisfy strong proportionality axioms. Finally, we
extend a proposal for the randomized apportionment of legislative seats over states to satisfy additional monotonicity
axioms.

In Part III of this thesis, we engage with a specific policy topic, refugee resettlement. We design algorithms for allocating
resettled refugees to localities in a country, which improves these refugees’ chances of finding employment over the
status quo and is now being used by a major US resettlement agency.





Acknowledgements

I am deeply grateful to Ariel Procaccia, who has been a wonderful advisor, but also much more than this word would
suggest. Thank you, Ariel, for introducing me to the tremendous breadth of your interests; for demonstrating the value of
finding new questions, not just answers; and for bringing healthy skepticism to my optimistic suggestions and optimistic
suggestions to my skeptical responses. Most of all, thank you for being excellent company through the emotional highs
and lows of doing research. I could not have asked for a better advisor and can only hope to do justice to you as a role
model.

Many thanks to the other members of my thesis committee — Anupam, Avrim, David, and Tuomas — for their perspective
and support. I am very lucky to have closely worked with two of you: with Anupam during our work on Chapters 2
and 3 and with Avrim during my internship at TTIC. Both of you have impressed me when you spotted connections that
caught me by surprise and opened up entirely new directions for the project. David and Tuomas, thank you for your
insightful questions and comments — I have not talked enough to either of you, but hope to make up for it!

Thank you to my lovely collaborators, which (besides those already named) are Narges Ahani, Yushi Bai, Jake Barrett,
Gerdus Benadè, Markus Brill, Uri Feige, Bailey Flanigan, Kobi Gal, Nika Haghtalab, Daniel Halpern, Rose Hong, Anson
Kahng, Greg Kehne, Lucas Leopold, Wanyi Li, Simon Mackenzie, Evi Micha, Dominik Peters, Tim Randolph, Gili Rusak,
Ulrike Schmidt-Kraepelin, Nisarg Shah, Alex Teytelboym, Andy Trapp, Jamie Tucker-Foltz, and Lily Xu. Thank you
for all the things you have taught me, for the ping pong of ideas that makes a research project, and for some late nights
working together (in the office or on Zoom). A few names feel like they belong on this list but are not on there yet — let’s
add them soon? Besides my academic collaborators, I am equally grateful to the many practitioners I have had the
pleasure of meeting, and in particular to Adam Cronkright, Brett Hennig, and Philipp Verpoort. Your vision, enthusiasm,
and attention to detail are inspiring and motivate me to push further in my own work.

Since I arrived in Pittsburgh, I have felt welcome at CSD, and have been glad to work there. I realize that this did not
happen on its own, and I thank everybody who has contributed: Thanks to the great staff, in particular to Deb Cavlovich,
Pat Loring, and Charlotte Yano. Thank you to the students and faculty volunteering their time, skills, and houses to
create social cohesion, and many thanks to those who push our community to be more inclusive and welcoming. I am
also indebted to all those who set me up for CMU in the first place: those who encouraged me to develop my passions,
who taught me to do math, computer science, and research, who saw possibilities for me that I did not see myself, and
who vouched for me.

I also want to thank the MD4SG group on Civic Participation, which I have had the privilege of co-organizing over the
past two years. I truly cherish this community of like-minded researchers, and I am again and again amazed by what
each of you brings to group’s conversations. Thank you, Anson, for your work in organizing this group so far, and thank
you, Manon, for taking over his role right now.

To my friends in the States and Europe (whom I cannot list without doing somebody injustice): Life would be less joyful
and less interesting without you. Thank you for conversations running over time, for hikes and bike rides, for visiting
and hosting me, and for sharing food, music, and feelings. Through you, I have learned about the world, life, and life as a
researcher, and I cannot thank you enough for that. You’re always welcome, so please come visit!

Where even to begin thanking my family? Dear Micha, Willy, Mama, and Papa; cher Thomas et chère famille française;
liebe Großfamilie und de facto Großfamilie, you all have been shaping my values, fostering my curiosity, and supporting
me throughout my life. Thank you for the different places I can be at home at, and thank you for still surprising me with
where life takes you. Finally, I deeply thank a person I love, who has a beautiful heart  ♥





Contents

Abstract iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1 Overview of Thesis Contribution and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Real-World Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Proposals for Citizens’ Assemblies 12

2 Fair Algorithms for Selecting Citizens’ Assemblies 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Contribution I: Algorithmic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Formulating the Optimization Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Solving the Optimization Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Contribution II: Deployable Selection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Effect of Adopting LexiMin over Legacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Neutralizing Self-Selection Bias 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Selection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Algorithm Part I: Assignment of Marginals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Algorithm Part II: Rounding of Marginals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Learning Participation Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Benefits of Stratified Sampling 34
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Our Approach and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Background on Stratified Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Warming Up in a Continuous Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Main Result: The Variance of Stratified Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Block Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.2 Variance Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 General Selection Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6.1 Random Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6.2 Case Study: Comparison of Stratification Methods . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Improving Deliberation Groups 52
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.1 Our Approach and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Expressing the Table Allocation Problem as Concave Balancing . . . . . . . . . . . . . . . . . . . . . 55
5.4 Optimizing a Specific Saturation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Simultaneously Optimizing All Saturation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Implementation and Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6.1 How Well Does the Greedy Algorithm Optimize Its Objective? . . . . . . . . . . . . . . . . . 61
5.6.2 Comparison across Table-Allocation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Proposals for Other Aspects of Democracy: Liquid Delegation and Apportion-
ment 64

6 Avoiding the Concentration of Power in Liquid Democracy 65
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Our Approach and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Algorithmic Model and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.2 Connections to Confluent Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.4 Hardness of Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Probabilistic Model and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.1 The Preferential Delegation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.2 Lower Bounds for Single Delegation (𝑘 = 1, 𝛾 = 0) . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.3 Upper Bound for Double Delegation (𝑘 = 2, 𝛾 = 0) . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4.1 Multiple vs. Single Delegations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4.2 Evaluating Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Party-List Apportionment with Approval Votes 93
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.1.2 Relation to Other Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3 Constructing Party-Approval Rules via Multiwinner Voting Rules . . . . . . . . . . . . . . . . . . . . 97

7.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3.2 Embedding Party-Approval Elections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3.3 PAV Guarantees Core Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4 Constructing Party-Approval Rules via Portioning and Apportionment . . . . . . . . . . . . . . . . . 102
7.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4.2 Composed Rules That Fail EJR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



7.4.3 Composed Rules That Satisfy EJR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5 Computational Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8 Monotone Randomized Apportionment 110
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.1.1 Our Approach and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.3 Population Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.3.1 Population Monotonicity Is Incompatible with Quota . . . . . . . . . . . . . . . . . . . . . . 116
8.3.2 A Population Monotone and Ex Ante Proportional (But Not Quota) Method . . . . . . . . . 117

8.4 House Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.4.1 Examples of Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.4.2 Cumulative Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.4.3 House Monotone, Quota-Compliant, and Ex Ante Proportional Apportionment . . . . . . . 122

8.5 Proof of Cumulative Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.6 Other Applications of Cumulative Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.6.1 Sortition of the European Commission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.6.2 Repeated Allocation of Courses to Faculty Or Shifts to Workers . . . . . . . . . . . . . . . . . 130

8.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Proposal for Refugee Resettlement 132

9 Online Refugee Placement 133
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.2 Institutional Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.4 Online Bipartite Matching (𝑠𝑖 = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.4.1 Algorithmic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.4.2 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.5 Non-Unit Cases (𝑠𝑖 ≥ 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.6 Batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.6.1 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
9.7 Uncertainty in the Number of Future Arrivals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.7.1 Relying on Capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.7.2 Arrival Misestimation on Bootstrapped Data and Incorporating Uncertainty . . . . . . . . . 150
9.7.3 Better Knowledge of Future Arrivals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.8 Implementation in Annie™ Moore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Conclusions 156

10 Conclusions and Future Work 157
10.1 How Can Computer Science Guide Democratic Innovations? . . . . . . . . . . . . . . . . . . . . . . 157
10.2 Future Directions for the Study of Democracy in Computer Science . . . . . . . . . . . . . . . . . . . 159

Bibliography 162



Appendix 183

A Appendix for Chapter 2: Fair Algorithms for Selecting Citizens’ Assemblies 184
A.1 Desiderata for Sortition in the Political Science Literature . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.1.1 Properties of Idealized Sortition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.1.2 Beyond Idealized Sortition, and the Objective of Maximal Fairness . . . . . . . . . . . . . . . 187

A.2 Additional Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



Introduction 1
1.1 Overview . . . . . . . . . . . . . 2
1.2 Real-World Impact . . . . . . . 9
1.3 Bibliographic Notes . . . . . . . 11

Imagine living in a society in which democracy lived up to its ideals: constituents
would have equal power in making collective decisions, these decisions would
account for all constituents’ perspectives, and constituents could accept decisions
as legitimate even when they personally disagree with them. Such a society could
turn problems that seem insurmountable today into opportunities: instead of
climate change, we could live in a world of clean air and sustainable wealth;
in a pandemic, collectively balance safety and freedom; establish policies that
mitigate the harms of racism, sexism and other forms of prejudice; and provide
equitable opportunity to all.

Current democratic systems claim that, by electing representatives, they already
implement democracy to its full extent, and yet they fall far short of the ideals
above. Following the “folk theory” of democracy [AB16]

[AB16] Achen and Bartels (2016): Democ-
racy for Realists., competitive elections

empower a majority of voters to choose their preferred policy by voting for the
right candidate, elections incentivize representatives to defend their constituents’
interests, and the neutral process of voting should make decisions legitimate. The
data, however, show that each of these points comes with major caveats,1

1: Voting behavior is influenced by irrel-
evant factors, such as the result of sports
games [HMM10]. Across US states, pol-
icy and the majority preference agree no
more frequently than they disagree [LP12].
A large share of the US population is
dissatisfied with all candidates in the
election [Fin16]. Politicians may dramat-
ically misjudge their constituents’ opin-
ions [BS18], and, across 27 democratic na-
tions, only a median of 35� agree that their
elected officials “care what ordinary people
think” [WSC19]. Around the world, con-
stituents have low trust in legislatures and
political parties [OEC22], which has been
shown to increase constituents’ support for
breaking the law [MH11]. Constituents in
democracies around the world feel that they
do not have a say in government decision
making [OEC22].

which
substantially reduce society’s ability to act in concert. Improving the functioning
of democracy is urgently needed, because democracy has been losing ground
to authoritarian forms of governance over the last decade: according to the
Varieties of Democracy Institute, the “level of democracy enjoyed by the average
global citizen in 2021 is down to 1989 levels,” eradicating “30 years of democratic
advances” [BAL+22].

Motivated by this growing threat to global democracy, political scientists and
practitioners have been developing democratic innovations [EE19; Lan20; Smi09],
proposed institutions that would more directly involve constituents in decision
making. When attempted in practice, some of these innovations have achieved
resounding success, suggesting that they can become powerful instruments
for strengthening democracy. Below we introduce three prominent democratic
innovations, the first and third of which feature in this thesis: [BAL+22] Boese et al. (2022): Democracy

Report 2022.

[EE19] Elstub and Escobar (2019): Hand-
book of Democratic Innovation and Gover-
nance.
[Lan20] Landemore (2020): Open Democ-
racy.

[Smi09] Smith (2009): Democratic Innova-
tions.

Citizens’ assemblies: A panel of randomly selected constituents deliberates on
a policy question and formulates joint recommendations to decision makers.
Empirical research shows that deliberation in citizens’ assemblies is of high
quality, that citizens’ assemblies find common ground despite polarization,
and that they produce decisions rooted in considered judgement [DBC+19].

[DBC+19] Dryzek et al. (2019): The Crisis of
Democracy and the Science of Deliberation.

Due to this success, citizens’ assemblies have become more numerous and
prominent around the world [OEC20].

[OEC20] OECD (2020): Innovative Citizen
Participation and New Democratic Institu-
tions.
[Wam07] Wampler (2007): Participatory
Budgeting in Brazil.

[GB20] Ganuza and Baiocchi (2020): The
Power of Ambiguity.

Participatory budgeting: Constituents deliberate and vote on how part of the
public budget should be spent, a decision that is classically made through
intransparent negotiations between politicians. In its birthplace, the city of
Porto Allegre in Brazil, participatory budgeting “has deepened democracy,
promoted social justice, improved how local states function, and made govern-
ment officials accountable to their constituents” [Wam07], and more than 1 500
cities worldwide have since adopted forms of participatory budgeting [GB20].
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Liquid democracy: Constituents can directly vote on many decisions as in di-
rect democracy, or may temporarily delegate their vote to other constituents.
This is meant to provide the practical benefits of political representation while
“maximally [lowering] the barriers to entry to the status of elected represen-
tative” [Lan20]. Liquid democracy has been implemented inside political [Lan20] Landemore (2020): Open Democ-

racy.parties, within companies, and as a form of civic participation in regional
governments [Pau20]. [Pau20] Paulin (2020): Ten Years of Liquid

Democracy Research.
In this thesis, we use techniques from computer science to support and contribute
to this crucial process of democratic innovation. We do so by following three
approaches:

▶ We design practical algorithms for use in democratic innovations (Chapters 2,
3, 5, and 9),

▶ we mathematically analyze the fairness properties of proposed decision-making
processes (Chapter 4), and

▶ we identify extensions of such processes that satisfy desirable properties (Chap-
ters 6 to 8).

In Section 10.1, we reflect more broadly on what computer science can offer to
support democratic innovations. As will be illustrated throughout this thesis,
researching democratic innovations is also fruitful for computer science: our
work contributes new questions, technical results, and opportunities for practical
impact to the field.

1.1 Overview of Thesis Contribution and Structure
[DBC+19] Dryzek et al. (2019): The Crisis of
Democracy and the Science of Deliberation.

Part I: Practical and Theoretical Suggestions for Citizens’ [Fis09] Fishkin (2009): When the People
Speak.

[Lan20] Landemore (2020): Open Democ-
racy.

[Man10] Mansbridge (2010): Deliberative
Polling as the Gold Standard.

[OEC20] OECD (2020): Innovative Citizen
Participation and New Democratic Institu-
tions.
[PKC20] Pek et al. (2020):Democracy Trans-
formed.

[NR19] Niessen and Reuchamps (2019): De-
signing a Permanent Deliberative Citizens’
Assembly.

[OEC21] OECD (2021): Eight Ways to Insti-
tutionalise Deliberative Democracy.

[Pek19] Pek (2019): Rekindling Union
Democracy Through the Use of Sortition.

[GW18] Gastil and Wright (2018): Legisla-
ture by Lot.

[BS14] Bouricius and Schecter (2014): An
Idealized Design for Government. Part 2.

Assemblies

This thesis puts a particular focus on citizens’ assemblies,2

2: Randomly selected deliberative bodies
bear a variety of names including citi-
zens’ assemblies/panels/juries, consensus con-
ferences, deliberative polls, and planning
cells [OEC20]. While we refer to these bod-
ies as citizens’ assemblies throughout this
thesis, our work applies to the broader cate-
gory of deliberative minipublics [SS18b].

which I believe to be
the most promising direction for augmenting democracy. This belief is rooted
in a variety of observations made during my thesis research through studying
political science and political theory, collaborating with practitioners in the
selection of citizens’ assemblies, reading the final reports produced by citizens’
assemblies, and watching recordings of citizens’ assembly deliberation.

Based on similar impressions, prominent political scientists have advocated for
proliferating the use of citizens’ assemblies [DBC+19; Fis09; Lan20; Man10], and
an increasing number of public authorities now commission citizens’ assem-
blies [OEC20]. Some proponents suggest that randomly-selected deliberative
bodies can play roles beyond the advisory role of classic citizens’ assemblies. For
instance, schools in Bolivia have selected random student governments [PKC20],
and regions in Belgium and France recently instituted permanent political bodies
composed of random constituents [NR19; OEC21]. Beyond current experimenta-
tion, advocates have proposed designs in which groups of random citizens take
on the role of union representatives [Pek19], legislative chambers [GW18], or
hiring boards for positions in the executive branch [BS14].
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The first part of this thesis studies different aspects of citizens’ assemblies and
derives suggestions for how they are currently organized or could be organized in
the future. The first three chapters in this part focus on sortition, i.e., the random
selection of a citizens’ assembly’s members. This work is driven by the tensions
between two primary objectives in sortition: representativeness, which means that
groups in the population should be present on the panel roughly in proportion
to their share of the population, and equality, which means that no individual
or group should receive preferential treatment over others. Each of these three
chapters makes different assumptions about what assembly organizers can do,
about the constraints on representativeness, and on what form of equality they
strive for:

Chapter Organizers select from… Representativeness constraints… Aim to equally include…

Chapter 2 a given pool of volunteers are already given volunteers in the pool
Chapter 3 a pool of volunteers produced by

randomness and self-selection
can still be set agents in the population

Chapter 4 the entire population can still be set unidentified groups in the
population

Whereas these three chapters study the selection of the assembly members,
Chapter 5 investigates a problem faced by practitioners later in the process,
namely, how to partition the assembly members into discussion groups.

Chapter 2: Fair Algorithms for Selecting Citizens’ Assemblies

population

recipients

pool

panel

invitation

self-selection

selection algorithm

Figure 1.1: Steps of panel selection.

Most organizations select the members of a citizens’ assembly through a three-
step process, which is illustrated in Figure 1.1: First, practitioners send a large
number of invitations to a random subset of the population, typically by random
mail. Second, if the recipient of an invitation is willing to serve on a panel, they
can opt into a pool of volunteers. Third, a panel of predetermined size is sampled
from the pool.

This chapter develops multiple selection algorithms, algorithms which perform the
third step of sampling the panel. As mentioned above, the process should satisfy
the objectives of representativeness and equality. Following current practice,
representativeness is enforced by a collection of quotas on different features,3

3: For example, the quotas might require
that between 14 and 16 of the 30 panel mem-
bers be female, that exactly 5 members be
above 65 years old, and so forth.

which the chosen panel must deterministically satisfy. The principle of equality,
by contrast, had not been systematically quantified before our work. We capture
it through what we call a fairness measure, which is a concave objective function
taking each pool member’s probability of selection as its input. Within what the
representativeness constraints allow, the concave objective encourages that pool
members be selected with similar probabilities.

In this chapter, we develop an algorithmic framework of selection algorithms that
are maximally fair, i.e., which draw the panel with such a probability distribution
that a given fairness measure is maximized. This framework combines techniques
from convex optimization, column generation, and integer linear programming
in a novel way, and yields practically efficient selection algorithms for a range
of fairness measures inspired by the literature on fair division. Furthermore,
we develop an efficient implementation for one selection algorithm, LexiMin.
Using data from ten citizens’ assemblies, we demonstrate that this algorithm
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yields vastly more equitable selection probabilities than the previous state of the
art (without compromising on representativeness). Multiple organizations have
adopted LexiMin and have used it for selecting dozens of assemblies around the
world.

Chapter 3: Neutralizing Self-Selection Bias

A possible objection to the approach taken in the previous section is that the
notion of equality it provides only extends to members of a given pool. This
is in line with the thinking of some practitioners we have talked to, for whom
fairness among volunteers is the objective. But an equally valid perspective is that
the objective is to give members of the population an equal chance of making it
through all three stages of the pipeline (Figure 1.1), which we call their end-to-end
probability.4 In particular, this perspective suggests that, when an agent who is 4: In part, these perspectives differ in

whether declining an invitation is seen as
a voluntary action signaling disinterest or
whether it shows that the individual is un-
able to participate. Typically, organizers fi-
nancially compensate panel members, cover
travel and accommodation costs, and pro-
vide childcare to enable more individuals to
participate. See Jacquet [Jac17] for a study
of why agents decline to participate.

a priori unlikely to self-select into the pool joins the pool against the odds, the
selection algorithm should select this agent with particularly high probability in
order to make up for the agent’s tendency not to join the pool.

In this chapter, we develop a methodology for sampling a citizens’ assembly
that approximately equalizes end-to-end probabilities. That is, we design a
polynomial-time sampling algorithm, and prove that, as the number of invi-
tations sent out grows large enough, (1) the end-to-end probabilities when using
the selection algorithm converge to an equal value, (2) the process satisfies quotas
with increasingly tight gaps between upper and lower quotas, and (3) the proba-
bility that the selection algorithm cannot produce a panel within these quotas5 5: Since who receives the invitations and

whether the recipients opt in is random, this
event cannot be entirely excluded.

goes to zero. This algorithm is also based on column generation, but combines it
with a famous result from discrepancy theory by Beck and Fiala [BF81].

[BF81] Beck and Fiala (1981): “Integer-
making” Theorems.Since the results in the previous section assumed that the organizers knew each

pool members’ a-priori probability of opting in — which is not the case in prac-
tice — we complement these results with a learning approach for estimating such
probabilities from data. The challenge in this learning task is that practitioners
observe only the characteristics of those recipients who opt in (“cases”), not of
those who decline to do so (“controls”). In many cases, survey data allows orga-
nizers to observe the features of a random sample of the population, but for this
sample it is not known whether they would have opted into the pool if invited. In
the language of econometrics, these data are “contaminated controls” [LI96], and [LI96] Lancaster and Imbens (1996): Case-

Control Studies with Contaminated Controls.there are generic, iterative ways of approximately estimating parameters in this
setting. Assuming a natural parametric model for how an individual’s features
determine their probability of opting in, we show that the maximum likelihood
estimator can instead be found by minimizing a single convex function in our
setting. We apply this learning algorithm to data from a real citizens’ assembly
combined with public survey data. The determined parameters of the parametric
model allow us to create a semi-synthetic population, for which the selection
algorithm gets very close to equalizing end-to-end probabilities.

Chapter 4: Benefits of Stratified Sampling

The selection process in the last two chapters was quite complicated, mainly
because of the high level of self-selection in the selection pipeline (Figure 1.1).
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This chapter studies sortition in an alternative setting without self-selection, i.e.,
where the selection algorithm can directly chose the panel members from the
population. This setting might be either applicable if serving on a panel is made
mandatory as some authors suggest [Lei04; Mal15], or approximately applicable if [Lei04] Leib (2004):Deliberative Democracy

in America.
[Mal15] Malkopoulou (2015): The Paradox
of Democratic Selection.

practitioners can substantially raise the rate of opting in.6 In principle, our selec-

6: Some practitioners claim far higher opt-
in rates for recruitment by phone rather
than those typical for random mail. More-
over, should citizens’ assemblies gain im-
pact and visibility in the future, participa-
tion rates would likely increase [Jac17].

tion algorithms from Chapter 2 still apply, by considering the entire population as
a pool, albeit at prohibitive computational cost. More importantly, this approach
would be overly complicated given that, in a model without self-selection, there
is no tension between equal selection probabilities and representativeness.

In this chapter, we compare the two selection algorithms generally discussed in
the political theory literature: uniform sampling and stratified sampling . Since
both algorithms select constituents with perfectly equal probabilities, we study
how well the algorithms satisfy representativeness. Uniform sampling satisfies a
powerful stochastic guarantee on representativeness: for any group 𝑀 of agents
in the population, the number of 𝑀’s representatives on the panel is a random
variable whose distribution is concentrated around 𝑀’s proportional share of
the panel. Thus, any arbitrary group in the population is likely represented close
to proportionally in a (sufficiently large) panel selected through uniform sam-
pling — not only groups that are externally identifiable, but also unobservable
groups such as those defined by common beliefs or interests [Sto08]. In contrast [Sto08] Stone (2008): Voting, Lotteries, and

Justice.to this stochastic representativeness, stratified sampling satisfies deterministic
gurantees on representativeness. For example, if half of the panel is drawn uni-
formly among women and half uniformly among men, each panel will be gender
balanced.

But does the deterministic guarantee of stratified sampling come at the cost of
worsening the stochastic representation for other groups in the population? We
prove that the answer is essentially no: Stratified sampling (with careful treatment
of indivisibilities) never increases the variance of any group 𝑀’s representation
by more than a factor that is very close to 1.7 Using data from the General Social 7: We also prove that this factor is tight, and

that uniform sampling minimizes the maxi-
mum representation variance across groups
𝑀. Given that variances for stratified sam-
pling are never much larger, stratified sam-
pling is still near-optimal from this worst-
case perspective.

Survey, we show that a careful stratification will actually decrease the variance of
representation for other groups of interest, because features tend to correlate to
some degree. Based on these observations, we recommend that, when selecting a
citizens’ assembly without self-selection bias, organizers should adopt stratified
sampling rather than uniform sampling.

Chapter 5: Improving Deliberation Groups

Finally, we turn our attention from the selection of the panel to a task that touches
on the deliberation happening once the assembly convenes. For this deliberation,
assembly members are typically subdivided into groups of 5–10 members each,
which we refer to as tables since group members typically gather around a table
to exchange experiences and arguments under professional moderation. Assem-
blies last for multiple deliberation sessions, and the composition of the tables
is mixed up anew for each session. Our project of optimizing the assignment
of tables started from conversations with the Sortition Foundation, a nonprofit
organization recruiting citizens’ assemblies, about a software tool they created
for this purpose [Ver22]. According to our contacts, practitioners have two major [Ver22] Verpoort (2022): GroupSelect.
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aims in determining these groups: each small groups should satisfy representa-
tiveness quotas like those in Chapter 2, and practitioners want as many assembly
members to meet as possible.

Informed by the Sortition Foundation’s existing approach, we capture this task as
an optimization problem, in which we must determine a partition of the agents
into representative tables, one partition for each of 𝑇many sessions. The objective
is to maximize, summed up over all pairs of assembly members, a function of
how often the pair meets across all sessions. We call such a function a saturation
function and assume that it is monotone nondecreasing (“meeting more often
does no harm”) and concave (“meetings between the same pair have diminishing
returns”). For any given saturation function, a greedy algorithm that uses an ILP
solver as a subroutine approximates the optimal objective value within a factor
of 1 − 1/𝑒 ≈ 0.63. As we show on data from real citizens’ assemblies, instantiating
the greedy algorithm with an appropriate saturation function yields a group-
allocation algorithm that is practically efficient and dramatically outperforms
the practitioners’ software in terms of its own metric of success.

To avoid the arbitrary choice of saturation function, we construct an alternative
algorithm, which simultaneously approximates the objectives for all possible
saturation functions within a factor ofΩ(1/ log𝑇). For a natural generalization of
the group-allocation problem, we prove that this result is tight up to a log log𝑇
factor. Empirically, we show that this simultaneous-approximation approach
continues to outcompete the practitioners’ algorithm, even though the greedy
algorithms seem somewhat preferable in our data.

Part II: Impulses for Other Aspects of Democracy: Liquid
Delegation and Apportionment

In the second part of the thesis, we explore alternative approaches to democracy
in areas other than citizens’ assemblies. First, we extend another democratic
innovation, liquid democracy, in a way that shows promise for decreasing the
concentration of power observed in past deployments. In the following two
chapters, we turn away from democratic innovations proper, and instead inves-
tigate new approaches to a well-established element of democracy, namely, the
apportionment of legislative seats.

Chapter 6: Avoiding the Concentration of Power in Liquid Democracy

Chapter 6 studies liquid democracy, another democratic innovation seen as a
possible path for giving constituents more say in politics [BZ16]. As in direct [BZ16] Blum and Zuber (2016): Liquid

Democracy.democracy, liquid democracy allows constituents to vote on fine-grained issues
such as individual laws. Since constituents have limited expertise on policy
and limited time to devote to politics, liquid democracy alternatively allows
constituents to delegate their vote to any other constituent, whose vote then has
the weight of multiple individuals. These delegations are transitive (i.e., a delegate
can delegate their vote and all votes delegated to them to another constituent)
and revocable at any point. The probably largest deployment of liquid democracy
took place in the Pirate Party in Germany [BP14; KKH+15]

[BP14] Bullwinkel and Probst (2014): In-
nerparteiliche Willensbildung und Entschei-
dungsprozesse durch digitale Partizipation.
[KKH+15] Kling et al. (2015): Voting Be-
haviour and Power in Online Democracy.. A major concern
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in this deployment was that some individuals, so-called super-voters, amassed
enormous weight through transitive delegations.

In this chapter, we investigate whether the emergence of super-voters could be
prevented if delegators nominated multiple potential delegates that they are indif-
ferent between and if a centralized algorithm could choose the delegate among
these options with the goal of reducing the weight of the heaviest super-voter.
In a random graph model, we prove that when each delegator nominates two
potential delegates rather than one, this approach leads to a doubly exponential
reduction in the weight of the largest super-voter, with high probability. This
improvement is related to the power of two choices phenomenon documented
in load balancing [ABKU94]. Furthermore, we find that the clear improvement [ABKU94] Azar et al. (1994): Balanced Allo-

cations.going from one delegate to two potential delegates persists in random graphs
generated with preferential attachment, in which some nodes are much more
frequently chosen as delegates than others.

Chapter 7: Party-List Apportionment with Approval Votes

The following chapter develops procedures for allocating the seats of a legislature
to political parties. Specifically, our work applies to electoral systems using party-
list proportional representation,8 which means that each party receives a share of 8: Being used in 85 countries, this elec-

toral system is the most widely used glob-
ally [ACE22]. Its most frequent alternative
is plurality (“first past the post”), in which
candidates compete in districts and, in each
district, the candidate winning the largest
vote share receives a seat.

seats proportional to its share of the popular vote.

Whereas voters can currently only vote for a single party, we extend party-list
proportional representation to approval ballots, which means that voters can
vote for any subset of the parties. These approval ballots allow voters to commu-
nicate their preferences with larger expressiveness, which in turn enables the
apportionment procedure to promote parties commonly approved by different
voters. In contrast to single-party ballots, how to define proportional representa-
tion and how to apportion seats is not well established for approval ballots. We
adapt axioms from the related literature on multi-winner elections and design
apportionment methods that satisfy combinations of axioms that have remained
elusive in that literature. Specifically, we propose an apportionment method
satisfying core stability [ABC+17] and one that satisfies both extended justified [ABC+17] Aziz et al. (2017): Justified Repre-

sentation in Approval-Based Committee Vot-
ing.

representation [ABC+17] and house monotonicity [BC08].

[BC08] Barberà and Coelho (2008): How
to Choose a Non-Controversial List with k
Names.

Chapter 8: Monotone Randomized Apportionment

We then study another extension of apportionment, which is not only applica-
ble to the apportionment of seats to parties but also to the apportionment of
seats to states, as is done in the US for example. This kind of apportionment
has a long and fascinating history, which has been marked by the challenge of
simultaneously guranteeing desirable axioms, most prominently quota, house
monotonicity, and population monotonicity [BY01]. Grimmett [Gri04] suggests [BY01] Balinski and Young (2001): Fair Rep-

resentation.
[Gri04] Grimmett (2004): Stochastic Appor-
tionment.

the use of randomness in apportionment, which allows to apportion in a way that
is perfectly proportional (ex ante, i.e., in expectation) while satisfying quota.

To help choose between the many randomized apportionment methods satisfy-
ing Grimmett’s two axioms, we study if apportionment methods can additionally
satisfy versions of house monotonicity and population monotonicity that are
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suitably generalized to the randomized setting. Indeed, we design a random-
ized apportionment method that satisfies ex-ante proportionality, quota, and
house monotonicity. Satisfying both quota and population monotonicity is not
possible, but we give an apportionment method that satisfies ex-ante proportion-
ality and population monotonicity (without quota). Our exploration of these
questions leads us to an interesting generalization of randomized dependent
rounding [GKPS06], and additionally provides new insights into the mathe- [GKPS06] Gandhi et al. (2006): Dependent

Rounding and Its Applications to Approxi-
mation Algorithms.

matical structure of deterministic apportionment methods. Our generalized
rounding procedure can be used to resolve multiple shortcomings of a suggested
reform of the European Commision proposed by Buchstein and Hein [BH09]. [BH09] Buchstein and Hein (2009): Ran-

domizing Europe.

Part III: Refugee Resettlement

Like the previous two parts, the third part of this thesis is motivated by an urgent
need for political action. As of 2022, a record 100 million people are forcibly dis-
placed worldwide, more than twice the number from 2012 [UNH22, p. 7]. Among [UNH22] UNHCR (2022): Global Trends:

Forced Displacement in 2021.the 27 million people with refugee status,9 the United Nations High Commissioner
9: This number excludes people displaced
within their home country and asylum seek-
ers.

for Refugees (UNHCR) identifies 1.5 million as in need of resettlement [UNH21].

[UNH21] UNHCR (2021): Projected Global
Resettlement Needs 2022.

This designation means that these refugees need to be permanently relocated
from their current country of asylum into a third country, for example because
their safety is at risk or because of trauma caused by violence or torture. Even for
this highly vulnerable population, the response of the international community
has fallen far short of the need; even before the pandemic, only around 100 000
refugees were resettled per year [UNHnd]

[UNHnd] UNHCR (n.d.): Refugee Data
Finder..

Despite this similarity in motivation, the third part stands out from the others
in two ways: First, the first two parts aim to change democratic structures, hop-
ing that doing so will indirectly enable society to overcome urgent problems.
By contrast, the third part engages with a concrete problem, refugee resettle-
ment, and aims for marginal improvements rather than systematic change.10 10: While we wholeheartedly agree that

“many of our pressing social problems can-
not be solved by better allocating our ex-
isting sets of outcomes” [Man19] and that
changes to immigration policy would yield
much larger positive impact, we still be-
lieve that the improvements of this work
are worthwhile to pursue.

Second, whereas the first two parts develop algorithms with theoretical guar-
antees, the third develops a heuristic algorithm — albeit inspired by theoretical
arguments — and studies it empirically.

Chapter 9: Online Refugee Placement

In the only chapter of this part, we study a problem faced by resettlement agencies
in the US. Each week, such a resettlement agency is assigned a batch of refugees
by the federal government, and the agency must place these refugees in its local
affiliates, while respecting the affiliates’ yearly capacities. The main objective
of the resettlement agency is to help many refugees find employment, which
depends on which affiliate each refugee is placed in. Building up on a previous
tool by Ahani et al. [AAM+21] and its predictions of employment chances, we [AAM+21] Ahani et al. (2021): Placement

Optimization in Refugee Resettlement.design heuristic algorithms for making these allocation decisions. In contrast
to earlier algorithms, ours explicitly take into account that refugees arrive over
time (online). Our algorithms achieve over 98 percent of the hindsight-optimal
employment, compared to under 90 percent of previous myopic approaches. This
improvement persists even when we incorporate a vast array of practical features
of the refugee resettlement process including indivisible families, batching, and
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uncertainty with respect to the number of future arrivals. As we describe below,
we incorporated our algorithm into the optimization software used by a leading
US resettlement agency.

1.2 Real-World Impact

Since the research in this thesis is driven by practical problems, I spent substantial
effort to translate our technical results into impact in the real world. In particular,
several of the algorithms designed in this thesis have been implemented in
software tools that are now being used in practice.

A Fair Selection Algorithm for Citizens’ Assemblies

Over the course of my research on citizens’ assemblies, I have built connections
with practitioners in more than a dozen organizations. The conversations with
these practitioners have sparked research questions, have informed our solution
approaches, and have helped practitioners understand and apply the results of
our work.

As perhaps the most impactful output of this thesis, I have developed an efficient
implemention of the LexiMin algorithm described in Section 2.3, which allows
practitioners to sample a representative panel in a way that gives pool members
maximally fair chances of being selected.11 Brett Hennig, co-founder and co- 11: I also created implementations for other

algorithms in this framework, maximizing
fairness measures based on egalitarian wel-
fare and Nash welfare (Section 2.2).

director of the Sortition Foundation, which has adopted LexiMin, describes the
value of our algorithm to his organization as follows:

“Putting the algorithm we use to select representative samples of
people for citizens’ assemblies on a solid theoretical basis, and prov-
ing that these algorithms are the fairest possible algorithms we can
use, has been invaluable to the Sortition Foundation as we strive to
increase the transparency and legitimacy of deliberative democracy
processes all over the world. It is absolutely essential to get this cru-
cial step in the recruitment process right as we move towards giving
such assemblies real political power.”

StratifySelect. My implementation of LexiMin is now the default algorithm
in the open-source software StratifySelect [HG21], which has been used to select [HG21] Hennig and Gölz (2021): StratifySe-

lect.
[Sco21] Scotland’s Climate Assembly (2021):
Recommendations for Action.

[UKH22] UKHSA (2022): Test and Trace
Public Advisory Group Report.

[NR19] Niessen and Reuchamps (2019): De-
signing a Permanent Deliberative Citizens’
Assembly.

the assemblies of multiple NGOs since before our work. Though we do not have
systematic insight into who uses this software, the Sortition Foundation has used
StratifySelect with our algorithm since March 2020 and selects dozens of citizens’
assemblies per year. Among the assemblies selected by the Sortition Foundation
with our algorithm are Scotland’s Climate Assembly [Sco21], the NHS Test and
Trace Public Advisory Group in the United Kingdom [UKH22], and the Citizens’
Council in East Belgium, which is the oldest permanent citizens’ assembly in the
world [NR19].
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Panelot. To circumvent the technical hurdle of installing StratifySelect, Gili
Rusak and I developed and maintain the website Panelot (panelot.org) [GR20]. [GR20] Gölz and Rusak (2020): Panelot.
On this website, anybody can select citizens’ assemblies through LexiMin for
free.

For privacy reasons, we originally did not retain any data about access to this
website. Nevertheless, we know that the site is actively used: we have anecdotally
heard about the website being used to select citizens’ assemblies, and, in the 30
days after we enabled basic logging in June 2022, users computed 10 LexiMin
lotteries.12

12: Based on pool and panel sizes, we be-
lieve that these lotteries selected 5 distinct
citizens’ assemblies, and that the remaining
5 lotteries were used to replace members
of an existing panel who dropped out. The
website was used an additional 5 times with
infeasible quotas; it seems that practitioners
use Panelot to find possible relaxations of
infeasible quotas.

Figure 1.2: Screenshot of the web interface
during the democratic lottery for the Michi-
gan assembly. For an explanation of the in-
terface and process, see Figure 2.3.

Democratic Lottery with Physical Randomness. As described in Section 2.5, I
actively supported the nonprofit organization of by for * in selecting the panel for
their citizens’ assembly on COVID-19 in Michigan [Cit20]. To make the selection [Cit20] Citizens’ Panel on COVID-19

(2020): Final report.process more trustworthy and to allow observers to see the fairness of selection
probabilities, the panel was selected using lottery balls on live stream [Ofb20]. [Ofb20] Of By For * (2020): Democratic lot-

tery— the citizens’ panel on COVID-19.I helped of by for * design this process, optimized a “rounded” lottery over
panels, and together with Stephen Braitsch, created the website that allowed pool
members to watch the live stream and track their chances of being selected in
real time (Figure 1.2). We received very positive feedback from the organizers,
and pool members found the lottery exciting. One participant recounted her
experience of being selected as follows (edited for readability):

“I was very surprised when I made the lotto. I was showing my son
the democratic drawing. He was sitting next to me in the chair when
the balls were going up. ‘Mom you won!’ He was really happy.”

I similarly supported the selection of the Washington Climate Assembly [Was21]. [Was21] Washington Climate Assembly
(2021):Washingtonians Finding Solutions To-
gether.

Improved Mixing of Deliberation Groups

In Chapter 5, we find that certain greedy algorithms can schedule deliberation
groups in a way that allows many more pairs of panel members to interact
than the algorithm currently used in practice. With Philipp Verpoort from the
Sortition Foundation, Rose Hong, and Jake Barrett, I am currently integrating
this algorithm into the tool GroupSelect [Ver22], which previously hosted [Ver22] Verpoort (2022): GroupSelect.
the baseline algorithm. This implementation will include a novel user interface
that supports practitioners in trading off group representativeness and breadth
of pairwise interactions, and is based on the experience of using the tool in
practice.

https://panelot.org
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Online Refugee Placement

In Chapter 9, we design a data-based online algorithm for matching resettled
refugees to the local affiliates of a resettlement agency. In the Summer of 2021,
Narges Ahani and I implemented this algorithm in the software tool Annie™
Moore used by the US resettlement agency HIAS. As we describe in Chapter 9,
the algorithm was designed with close attention to the practical problems en-
countered by HIAS. Moreover, our user interface augments the interface of the
original version of Annie™ in a way that exposes key tradeoffs in case HIAS staff
need to manually override the matching (Section 9.8). Our improvements to the
software have been well-received by HIAS leadership:

“Annie™ 2.0 is a game-changer for our pre-arrivals processes, allow-
ing us to plan and optimize our pre-arrival strategy a year rather
than a week ahead.”

1.3 Bibliographic Notes

The research contained in this thesis is based on joint work with different co- [FGG+21] Flanigan et al. (2021): Fair Algo-
rithms for Selecting Citizens’ Assemblies.

[FGGP20] Flanigan et al. (2020): Neutraliz-
ing Self-Selection Bias in Sampling for Sorti-
tion.
[BGP19] Benadè et al. (2019): No Stratifica-
tion Without Representation.

[BGG+22] Barrett et al. (2022): Now we’re
talking.

[GKMP18] Gölz et al. (2018): The Fluid Me-
chanics of Liquid Democracy.

[BGP+22] Brill et al. (2022):Approval-Based
Apportionment.

[GPP22] Gölz et al. (2022): In This Appor-
tionment Lottery, the House Always Wins.

[AGP+21] Ahani et al. (2021): Dynamic
Placement in Refugee Resettlement.

[GP19] Gölz and Procaccia (2019): Migra-
tion as Submodular Optimization.

[BG21] Blum and Gölz (2021): Incentive-
Compatible Kidney Exchange in a Slightly
Semi-Random Model.
[BG22] Bai and Gölz (2022): Envy-Free and
Pareto-Optimal Allocations for Agents with
Asymmetric Random Valuations.

[BFGP22] Bai et al. (2022): Fair Allocations
for Smoothed Utilities.

[GKP19] Gölz et al. (2019): Paradoxes in Fair
Machine Learning.

authors, as described below. In all works included, I was the primary contributor
or one of multiple primary contributors. On all publications, authors appear in
alphabetical order.

Chapter 2 is based on joint work with Bailey Flanigan, Anupam Gupta, Brett
Hennig, and Ariel Procaccia [FGG+21]. Chapter 3 is based on joint work with
Bailey Flanigan, Anupam Gupta, and Ariel Procaccia [FGGP20]. Chapter 4 is
based on joint work with Gerdus Benadè and Ariel Procaccia [BGP19]. Chap-
ter 5 is based on joint work with Jake Barrett, Kobi Gal, Rose Hong, and Ariel
Procaccia [BGG+22]. Chapter 6 is based on joint work with Anson Kahng, Si-
mon Mackenzie, and Ariel Procaccia [GKMP18]. Chapter 7 is based on joint
work with Markus Brill, Dominik Peters, Ulrike Schmidt-Kraepelin, and Kai
Wilker [BGP+22]. Chapter 8 is based on joint work with Dominik Peters and
Ariel Procaccia [GPP22]. Chapter 9 is based on joint work with Narges Ahani,
Ariel Procaccia, Alexander Teytelboym, and Andrew Trapp [AGP+21].

To keep this thesis more thematically coherent, a substantial part of my doctoral
research is omitted:

▶ Work on refugee matching from a more theoretical angle [GP19].

▶ Work on mechanism design for kidney exchange using smoothed analy-
sis [BG21].

▶ Work on fair item allocation, in a random model [BG22] and using smoothed
analysis [BFGP22].

▶ Work combining fair machine learning with axioms from fair division [GKP19].
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2.1 Introduction

In representative democracies, political representatives are usually selected by
election. However, over the last 35 years, an alternative selection method has
been gaining traction among political scientists [CM99; Dah90; DD10] and
practitioners [FL05; MM18; OEC20; Par21]: sortition, the random selection of
representatives from the population. The chosen representatives form a panel,
commonly called a citizens’ assembly, which convenes to deliberate on a pol-
icy question. Citizens’ assemblies are now being administered by around 50
organizations in over 25 countries [Dem19], and just one of these organizations,
the Sortition Foundation in the UK, recruited 29 panels in 2020. While many
citizens’ assemblies are initiated by civil-society organizations, they are also [CM99] Carson andMartin (1999): Random

Selection in Politics.
[Dah90] Dahl (1990): After the Revolution.

[DD10] Delannoi and Dowlen (2010): Sorti-
tion.
[FL05] Fishkin and Luskin (2005): Experi-
menting with a Democratic Ideal.

[MM18]McKay andMacLeod (2018):MASS
LBP and Long-Form Deliberation in Canada.

[OEC20] OECD (2020): Innovative Citizen
Participation and New Democratic Institu-
tions.
[Par21] Various Authors (2021): Partici-
pedia.

[Dem19] Democracy R&D (2019):About the
network.

increasingly being commissioned by public authorities on municipal, regional,
national, and supranational levels [OEC20]. In fact, since 2019, multiple regional
parliaments in Belgium and the Council of Paris have internally established per-
manent sortition bodies [NR19; OEC21]. Citizens’ assemblies’ growing utilization

[NR19] Niessen and Reuchamps (2019): De-
signing a Permanent Deliberative Citizens’
Assembly.
[OEC21] OECD (2021): Eight Ways to Insti-
tutionalise Deliberative Democracy.

by governments is giving their decisions a more direct path to policy impact.
For example, two recent citizens’ assemblies commissioned by Ireland’s national
legislature led to the legalization of same-sex marriage and abortion [Iri19a].

[Iri19a] Irish Citizens’ Assembly Project
(2019): Irish citizens’ assembly (2019–2020).

Ideally, a citizens’ assembly selected via sortition acts as a microcosm of society:
its participants are representative of the population, and thus its deliberation
simulates the entire population convening “under conditions where it can really
consider competing arguments and get its questions answered from different
points of view” [Fis18]. Whether this goal is realized in practice, however, depends

[Fis18] Fishkin (2018):Democracy When the
People Are Thinking.

on exactly how assembly members are chosen.

As we sketched in the introduction, panel selection is generally done in three
stages: first, thousands of randomly chosen constituents are invited to participate.
Second, a subset of the invited constituents opt into a pool of volunteers. Third,
a panel of pre-specified size is randomly chosen from the pool via some fixed
procedure, which we call a selection algorithm. As the final and most complex

[Cit20] Citizens’ Panel on COVID-19
(2020): Final report.

[Jac19] Jacquet (2019): The Role and the Fu-
ture of Deliberative Mini-Publics.

[NEK+10] Neblo et al. (2010): Who Wants
to Deliberate—and Why?

[Ofb20] Of By For * (2020): Democratic lot-
tery— the citizens’ panel on COVID-19.

component of the selection process, the selection algorithm has great power
in deciding who will be chosen to represent the population. In this chapter,
we introduce selection algorithms that preserve the key desirable property of
existing algorithms, while also more fairly distributing the sought-after opportu-
nity [Cit20; Jac19; NEK+10; Ofb20] of being a representative.

Of the several selection algorithms used in practice prior to this work,1 all aim

1: See supplementary information 12 of the
full version.

to satisfy one particular property: descriptive representation, the idea that the
panel should reflect the composition of the population [Fis18]. Unfortunately,

[Fis18] Fishkin (2018):Democracy When the
People Are Thinking.

the pool from which the panel is chosen tends to be far from representative.
Specifically, it tends to overrepresent groups whose members are more likely to
accept an invitation to participate, such as high educational attainment. To ensure
descriptive representation despite the biases of the pool, selection algorithms

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=32
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require that the panels they output satisfy upper and lower quotas on a set of
specified features, which are roughly proportional to each feature’s population
rate (e.g. quotas might require that a 40-person panel contain between 20 and 21
women). These quotas are generally imposed on feature categories delineated by
gender, age, education level, and other attributes relevant to the policy issue at
hand. We note that quota constraints of this form are more general than those
achievable via stratified sampling, a common technique for drawing representative
samples.2 2: See supplementary information 3 of the

full version and Chapter 4.
The selection algorithms pre-dating this work focused solely on satisfying quotas,
leaving unaddressed a second property that is also central to sortition: that all
individuals should have an equal chance of being chosen for the panel. Several
political theorists present equality of selection probabilities as a central advan-
tage of sortition, stressing its role in promoting the ideals such as equality of
opportunity [CM99; Par11], democratic equality [Fis09; Fis18; Par11; Sto16], and [CM99] Carson andMartin (1999): Random

Selection in Politics.
[Par11] Parker (2011): Randomness and Le-
gitimacy in Selecting Democratic Represen-
tatives.
[Fis09] Fishkin (2009): When the People
Speak.

[Fis18] Fishkin (2018):Democracy When the
People Are Thinking.
[Sto16] Stone (2016): Sortition, Voting, and
Democratic Equality.

allocative justice [Sto11; Sto16]. In fact, Engelstad, who introduced an influential

[Sto11] Stone (2011): The Luck of the Draw.

model of sortition’s benefits, argues that this form of equality constitutes “The
strongest normative argument in favour of sortition” [Eng89]. (In Appendix A.1,

[Eng89] Engelstad (1989): The Assignment
of Political Office by Lot.

we explore desiderata from political theory in more detail.) In addition to politi-
cal theorists, major practitioner groups have also advocated for equal selection
probabilities [AB18; MAS17]. However, they face the fundamental hurdle that, in

[AB18] Allianz Vielfältige Demokratie and
Bertelsmann Foundation (2018): Citizens’
participation using sortition.
[MAS17] MASS LBP (2017): How to Run a
Civic Lottery.

practice, the quotas almost always necessitate selecting people with somewhat
unequal probabilities, as individuals from groups that are underrepresented in
the pool must be chosen with disproportionately high probabilities to satisfy the
quotas.

Though it is generally impossible to achieve perfectly equal probabilities, the
reasons to strive for equality also motivate a more gradual version of this goal:
making probabilities as equal as possible, subject to the quotas. We refer to this
goal as maximal fairness. We find that our benchmark, a selection algorithm
representing the previous state of the art, falls far short of this goal, giving volun-
teers drastically unequal probabilities across several real-world instances. This
algorithm even consistently selects certain types of volunteers with near-zero
probability, thereby excluding them in practice from the chance to serve. We fur-
ther show that, in these instances, it is possible to give all volunteers probability
well above zero while still satisfying the quotas, demonstrating that the level of
inequality produced by the benchmark is avoidable.

In this chapter, we close the gaps we have identified, both in theory and in prac-
tice. We first introduce not just one selection algorithm that achieves maximal
fairness, but a more general (I) algorithmic framework for producing such al-
gorithms. Motivated by the multitude of possible ways to quantify the fairness
of an allocation of selection probabilities, our framework gives a maximally fair
selection algorithm for any measure of fairness with a certain functional form.
Notably, such measures include the most prominent from the literature on fair
division [BT96; Mou04], and we show that these well-established metrics can be [BT96] Brams and Taylor (1996): Fair Divi-

sion.
[Mou04] Moulin (2004): Fair Division and
Collective Welfare.

applied to our setting by casting the problem of assigning selection probabilities
as one of fair resource allocation.3 Then, to bring this innovation into practice,

3: See supplementary information 9 of the
full version.

we implement a (II) deployable selection algorithm, which is maximally fair ac-
cording to one specific measure of fairness. We evaluate this algorithm and find
that it is substantially fairer than the benchmark on several real-world datasets
and by multiple fairness measures. Our algorithm is now in use by a growing

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=6
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=22
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number of sortition organizations around the world, making it one of only a
few [BCKO17; Faind; GP14; Sun14] deployed applications of fair division. [BCKO17] Budish et al. (2017): Course

Match.
[Faind] Fair Outcomes (n.d.): Fair Propos-
als.
[GP14] Goldman and Procaccia (2014):
Spliddit.
[Sun14] Sun (2014): Divide your rent fairly.

2.1.1 Related Work

Besides the work in this thesis, three computer science papers study selection
algorithms for citizens’ assemblies. The first paper, by Do et al. [DALU21], inves- [DALU21] Do et al. (2021): Online Selection

of Diverse Committees.tigates selection algorithms in an “online” model. In this model, the panel is not
selected from a pool of volunteers; instead, volunteers present themselves to the
algorithm sequentually, and the algorithm must immediately and irrevocably
decide whether the current volunteer should be included in the panel.4 In this 4: This model does not apply when con-

stituents are simultaneously invited by mail,
which is the case in most organizations we
talked to. Instead, it seems like an accurate
model for recruitment by phone, which is
also used for citizens’ assemblies.

model, Do et al. study three selection algorithms and characterize the represen-
tativeness achieved by the algorithms as a function of the number of volunteers
(equality is not considered). In the second paper, Flanigan et al. [FKP21] design

[FKP21] Flanigan et al. (2021): Fair Sortition
Made Transparent.

postprocessing algorithms that allow to apply the selection algorithms from this
chapter in lotteries with physical randomness. We describe these lotteries in
Sections 1.2 and 2.5, and discuss their work in Section 2.5. Finally, a third paper
by Meir et al. [MST21] studies a social choice model in which society must make [MST21] Meir et al. (2021): Representative

Committees of Peers.a sequence of binary decisions, while only eliciting the preferences of a fixed num-
ber 𝑘 of agents. In this context, Meir et al. find that “𝑘-sortition”, i.e., uniformly
selecting 𝑘 agents from the population and holding majority votes among the 𝑘
agents, is a good approximation of a majority vote among the entire population,
and is optimal when many decisions are made with worst-case preferences.

2.2 Contribution I: Algorithmic Framework

2.2.1 Definitions

We begin by introducing necessary terminology. We refer to the input to a
selection algorithm — a pool of size 𝑛, a set of quotas, and the desired panel size
𝑘— as an instance of the panel selection problem. Given an instance, a selection
algorithm randomly selects a panel, which is a quota-compliant set of 𝑘 pool
members. We define the algorithm’s output distribution on an instance as the
distribution specifying the probabilities with which the algorithm outputs each
possible panel. Then, a pool member’s selection probability is the probability that
they are on a panel randomly drawn from the output distribution. We refer to the
mapping from pool members to their selection probabilities as the probability
allocation, which we aim to make as fair as possible. Finally, a fairness measure is a
function that maps a probability allocation to a fairness “score” (e.g. the geometric
mean of probabilities, where higher is fairer). An algorithm is called optimal with
respect to a fairness measure if, on any instance, the fairness of the algorithm’s
probability allocation is at least as high as that of any other algorithm.

2.2.2 Formulating the Optimization Task

To inform our approach, we first analyze the algorithms pre-dating ours. Those
we have seen in use all have the same high-level structure: they select individuals
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𝒟

Output distribution (𝒟)
given by our algorithm

Probability allocation
given by our algorithm

Each pool member is
on the selected panel
with the probability
they are given in the
probability allocation

Using ILP, check:
is 𝒫 an optimal
portfolio?

Initial portfolio
(depends on
fairness
measure F)

If 𝒫 is optimal, then 𝒟
is maximally fair (F)

Sample panel
from output
distribution

𝒫 (current portfolio)

(1) Compute a maximally fair output distribution 𝒟 over an optimal portfolio 𝒫
of quota-compliant panels

(2) Select panel

Calculate 𝒟, the
fairest (F)
distribution
over 𝒫

If 𝒫 is not optimal, ILP
provides new panel to add:
𝒫 ← +

Figure 2.1:The steps of the algorithm optimizing the fairness measure 𝐹. The left-hand panel shows the implementation of step (1): constructing a
maximally fair output distribution over panels (denoted by white boxes), which is done by iteratively building an optimal portfolio of panels and
computing the fairest distribution over that portfolio. The right-hand panel shows step (2): sampling the distribution to select a final panel.

for the panel one-by-one, in each step randomly choosing whom to add next from
among those who, according to a myopic heuristic, seem unlikely to produce a
quota violation later. Since finding a quota-compliant panel is an algorithmically
hard problem,5 it is already an achievement that such simple algorithms find 5: See supplementary information 6 of the

full version.any panel in most practical instances. Due to their focus on finding any panel at
all, however, these algorithms do not tightly control which panel they output, or
more precisely, their output distribution (the probabilities with which they output
different panels). Since an algorithm’s output distribution directly determines
its probability allocation, existing algorithms’ probability allocations are also
uncontrolled, leaving room for them to be highly unfair.

While existing algorithms allow their output distribution to arise implicitly from
a sequence of myopic steps, we design the algorithms in our framework to (1)
explicitly compute their own output distribution, and then (2) sample from that
distribution to select the final panel (Figure 2.1). Crucially, the output distribution
found in the first step is maximally fair to pool members, making our algorithms
optimal. To see why, note that the behavior of any selection algorithm on a given
instance is described by some output distribution; thus, since our algorithm finds
the fairest possible output distribution, it is always at least as fair as any other
algorithm.

Since step (2) of our selection algorithm is simply a random draw, we have re-
duced the problem of finding an optimal selection algorithm to the optimization
problem in step (1) — finding a maximally fair distribution over panels. Now, to
fully specify our algorithm, it remains only to solve this optimization problem.

2.2.3 Solving the Optimization Task

A priori, it would seem that computing a maximally fair distribution might
require constructing all possible panels, since achieving optimal fairness might
necessitate assigning non-zero probability to all of them. Such an approach

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=13
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would be impracticable, however, as the number of panels in most instances
is intractably large. Fortunately, since we measure fairness according to only
individual selection probabilities, there must exist an optimal portfolio — a set of
panels over which there exists a maximally fair distribution — containing few
panels by Carathéodory’s theorem:

Proposition 2.1 Fix an arbitrary instance and a fairness measure 𝐹 for this
instance. If there exists any maximally fair distribution over panels for 𝐹, there
exists a maximally fair output distribution whose support includes at most 𝑛 + 1
panels.

Proof. Consider the hypercube [0, 1]𝑛, and associate each dimension with one
pool member. A panel 𝑃 can be embedded into this space by its characteristic
vector �⃗�𝑃 ∈ {0, 1}𝑛, whose 𝑖th component is one exactly if pool member 𝑖 is
contained in 𝑃.

Fix a maximally fair output distribution, let𝒫 denote its support, and let {𝜆𝑃}𝑃∈𝒫
denote its probability mass function. Note that

�⃗� ≔ �
𝑃∈𝒫

𝜆𝑃 �⃗�𝑃

is a probability allocation maximizing 𝐹, and that it is a convex combination
of the {�⃗�𝑃}𝑃∈𝒫. By Carathéodory’s theorem, there is a subset 𝒫 ′ ⊆ 𝒫 of size at
most 𝑛 + 1 such that �⃗� still lies in the convex hull of this smaller set. Thus, there
are nonnegative real numbers {𝜆′𝑃}𝑃∈𝒫 ′ adding up to one such that

�⃗� = �
𝑃∈𝒫 ′

𝜆′𝑃 �⃗�𝑃.

These 𝜆′𝑃 form the probability mass function of a distribution over at most 𝑛 + 1
panels, which has the same probability allocation �⃗� as the original maximally
fair distribution, which implies that the new distribution is also maximally fair
for 𝐹.

This result brings a practical algorithm within reach, and shapes the goal of
our algorithm: to find an optimal portfolio while constructing as few panels as
possible.

We accomplish this goal using an algorithmic technique called column generation,
where, in our case, the “columns” being generated correspond to panels. A more
in-depth discussion and formal description of this algorithm, as well as proofs
of correctness, can be found in supplementary information 8 of the full version.
As shown in Figure 2.1, our algorithms find an optimal portfolio by iteratively
adding panels to a portfolio𝒫, in each iteration alternating between two subtasks:
(i) finding the optimal distribution 𝒟 over only the panels currently in 𝒫 and
(ii) adding a panel to 𝒫 that, based on the gradient of the fairness measure,
will move the portfolio furthest towards optimality. This second subtask makes
use of integer linear programming , which we use to generate quota-compliant
panels despite the theoretical hardness of the problem. Eventually, the panel with
the most promising gradient will already be in 𝒫, in which case 𝒫 is provably

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=15


2 Fair Algorithms for Selecting Citizens’ Assemblies 18

optimal and 𝒟 must be a maximally fair distribution. In practice, we observe
that this procedure terminates after few iterations.

Our techniques extend column generation methods that are typically applied
to linear programs, allowing them to be used to solve a large set of convex pro-
grams.6 This extension allows our framework to be used with a wide range of 6: See supplementary information 8.1 of the

full version.fairness measures — essentially any for which the fairest distribution over a port-
folio can be found via convex programming. Supported measures include those
most prominent in the fair division literature: egalitarian welfare [End10], Nash [End10] Endriss (2010): Lecture Notes on

Fair Division.welfare [Mou04], Gini inequality [End13; LP10], and the Atkinson indices [End13;
[Mou04] Moulin (2004): Fair Division and
Collective Welfare.

[End13] Endriss (2013): Reduction of Eco-
nomic Inequality in Combinatorial Domains.
[LP10] Lesca and Perny (2010): LP Solvable
Models for Multiagent Fair Allocation Prob-
lems.

SDE17]. Our algorithmic approach also has the benefit of easily extending to

[SDE17] Schneckenburger et al. (2017): The
Atkinson Inequality Index in Multiagent Re-
source Allocation.

organization-specific constraints beyond quotas; for example, practitioners can
prevent multiple members of the same household from appearing on the same
panel. Due to its generality, our framework even applies to domains outside of
sortition, including the allocation of classrooms to charter schools [KPS18] and

[KPS18] Kurokawa et al. (2018): Leximin Al-
locations in the Real World.

kidney exchange [RSÜ05].7

[RSÜ05] Roth et al. (2005): Pairwise Kidney
Exchange.

7: See supplementary information 8.2 of the
full version.

2.3 Contribution II: Deployable Selection Algorithm

To bring fair panel selection into practice, we develop an efficient implementation
of one specific selection algorithm, which we call LexiMin (formally defined in
supplementary information 10 of the full version). LexiMin optimizes the well-
established fairness measure leximin [BM04; KPS18; Mou04], a fairness measure [BM04] Bogomolnaia and Moulin (2004):

Random Matching under Dichotomous Pref-
erences.

that is sensitive to the very lowest selection probabilities. In particular, leximin
is optimized by maximizing the lowest selection probability, then breaking ties
between solutions in favor of probability allocations with highest second-lowest
probability, and so on. This choice of fairness measure is motivated by the fact
that, as we show in this section and in supplementary information 13 of the full
version, Legacy gives some pool members a near-zero probability when much
more equal probabilities are possible. This type of unfairness is especially pressing
because, if it consistently impacted pool members with certain combinations of
features, these individuals and their distinct perspectives would be “systematically
excluded from participation” [Smi09], which runs counter to a key promise of [Smi09] Smith (2009): Democratic Innova-

tions.random selection.

To increase the accessibility of LexiMin, we made its implementation avail-
able through an existing open-source panel selection tool [HG21] and on Pan- [HG21] Hennig and Gölz (2021): StratifySe-

lect.elot [GR20], a website where anyone can run the algorithm without installation.
[GR20] Gölz and Rusak (2020): Panelot.LexiMin has since been deployed by several organizations, including Cascadia

(US), the Danish Board of Technology (Denmark), Nexus (Germany), of by for *
(US), Particitiz (Belgium), and the Sortition Foundation (UK). As of July 2021,
the Sortition Foundation alone had already used LexiMin to select more than
40 panels.

We measure the impact of adopting LexiMin over pre-existing algorithms by
comparing its fairness to that of a benchmark, Legacy (described in supple-
mentary information 11 of the full version), the algorithm used by the Sortition
Foundation prior to their adoption of LexiMin. We choose Legacy as a bench-
mark because it was widely used prior to this work, it is similar to several other
selection algorithms used in practice,8

8: See supplementary information 13 of the
full version.and it is the only existing algorithm we

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=15
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=16
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=28
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=33
https://panelot.org
https://panelot.org
https://panelot.org
https://panelot.org
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=32
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=32
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=32
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Table 2.1: List of instances used in our experiments. At the request of practitioners, topics, dates, and locations of the panels are not identified.

instancea pool
size 𝑛

panel
size 𝑘

number
of quota

categories

Mean selection
probability 𝑘/𝑛

Legacy min.
probability
(sampled)b

LexiMin min.
probability

(exact)

LexiMin
running time

sf(a) 312 35 6 11.2% ≤ 0.32% 6.7% 20 s
sf(b) 250 20 6 8.0% ≤ 0.17% 4.0% 9 s
sf(c) 161 44 7 27.3% ≤ 0.15% 8.6% 6 s
sf(d) 404 40 6 9.9% ≤ 0.11% 4.7% 46 s
sf(e) 1727 110 7 6.4% ≤ 0.03% 2.6% 67 min
cca 825 75 4 9.1% ≤ 0.03% 2.4% 7 min
hd 239 30 7 12.6% ≤ 0.09% 5.1% 37 s
mass 70 24 5 34.3% ≤ 14.9% 20.0% 1 s
nexus 342 170 5 49.7% ≤ 2.24% 32.5% 1 min
obf 321 30 8 9.3% ≤ 0.03% 4.7% 3 min

a For the instances we study, panels were recruited by the following organisations. sf(a–e): Sortition Foundation; cca: Center for Climate
Assemblies; hd: Healthy Democracy; mass: MASS LBP; nexus: Nexus; obf: of by for *.

b 99� confidence bound, see methods section “Statistics” of the full version.

found that was fully specified by an official implementation. We compare the
LexiMin and Legacy on ten datasets from real-world panels, with respect to
several fairness measures including the minimum probability (Table 2.1), the
Gini coefficient, and the geometric mean. In this analysis, we find that LexiMin
is fairer on all instances we examine, and substantially so in nine out of ten.

2.4 Effect of Adopting LexiMin over Legacy

We study datasets from ten sortition panels, organized by six different sortition
organizations in Europe and North America. As Table 2.1 shows, our instances
are diverse in panel size (range: 20–170, median: 37.5) and number of quota
categories (range: 4–8). On consumer hardware, the run-time of our algorithm
is well within the time available in practice.

Out of concern about low selection probabilities, we first compare the minimum
selection probabilities given by Legacy and LexiMin, summarized in the second
and third columns from the right in Table 2.1. Strikingly, in all instances except
mass (an outlier in that its quotas only mildly restrict the fraction of panels
that are feasible), Legacy chooses some pool members with probability close to
zero. In fact, we can identify combinations of features that lead to low selection
probabilities across all instances,9 raising the concern that Legacy may in fact 9: See methods section “Individuals rarely

selected by Legacy” of the full version.systematically exclude some groups from participation. By contrast, LexiMin
selects no one nearly so infrequently, with minimum selection probabilities
ranging from 26% to 65% (median: 49%) of 𝑘/𝑛, the “ideal” probability individuals
would receive in the absence of quotas.

One might wonder whether this increased minimum probability achieved by
LexiMin affects only a few pool members most disadvantaged by Legacy. This
is not the case: As shown in Figure 2.2 by the shaded boxes, between 13% and
56% of pool members (median 46%) across instances receive probability from
Legacy lower than the minimum given to anyone by LexiMin (Table A.2 in

https://www.nature.com/articles/s41586-021-03788-6#Sec16
https://www.nature.com/articles/s41586-021-03788-6#Sec11
https://www.nature.com/articles/s41586-021-03788-6#Sec11
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Figure 2.2: Selection probabilities given by Legacy and LexiMin to the bottom 60� of pool members on six representative instances, where pool
members are ordered in order of increasing probability given by the respective algorithms. Shaded boxes denote the range of pool members whose
selection probability given by Legacy is lower than the minimum probability given by LexiMin. Legacy probabilities are estimated over 10 000
random panels and are indicated with 99� confidence intervals (see methods section “Statistics” of the full version). For corresponding graphs for
all other instances and up to the 100th percentile, see Figures A.1 and A.2 in Appendix A.2.

Appendix A.2). Thus, even just the first stage of LexiMin, i.e., maximizing the
minimum probability, provides a sizable section of the pool with more equitable
access to the panel.

We have so far compared Legacy and LexiMin over only the lower end of
selection probabilities, as this is the range in which LexiMin prioritizes being
fair. However, even considering the entire range of selection probabilities, we
find that LexiMin is quantifiably fairer than Legacy on all instances by two
established metrics of fairness, the Gini Coefficient and the geometric mean
(Table A.1 in Appendix A.2). For example, across instances excluding mass,
LexiMin decreases the Gini coefficient, a standard measure of inequality, by
between 5 and 16 percentage points (median: 12; negligible improvement on
mass). Strikingly, the 16-point improvement in the Gini coefficient achieved by
LexiMin on the instance obf (from 59% to 43%) approximately reflects the gap
between relative income inequality in Namibia (59% in 2015) and the United
States (42% in 2019) [Wor22]. [Wor22] World Bank Group (2022): GINI

index.

2.5 Discussion

As the recommendations made by citizens’ assemblies increasingly impact public
decision-making, so grows the urgency that selection algorithms distribute this
power fairly across constituents. We have made substantial progress on this front:
the optimality of our algorithmic framework conclusively resolves the search
for fair algorithms for a broad class of fairness measures, and the deployment of
LexiMin puts an end to some pool members being virtually never selected in
practice.

Beyond these immediate benefits to fairness, the exchange of ideas we have
initiated between practitioners and theorists presents continuing opportunities
to improve panel selection in areas such as transparency. For example, for an
assembly in Michigan, we assisted of by for * in selecting their panel via a live
lottery in which participants could easily observe the probabilities with which

https://www.nature.com/articles/s41586-021-03788-6#Sec16
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the number of panels out of 1 000 they are on, allowing them to verify their own and others’ selection probabilities. Screenshots credit: of by for *.

each pool member was selected. This is an advance over the transparency possible
with previous selection algorithms. We found that, in this instance, the output
distribution of LexiMin could be transformed into a simple lottery without
meaningful loss of fairness (Figure 2.3). Subsequent work by Flanigan et al.
[FKP21] developed general procedures and bounds for this transformation. [FKP21] Flanigan et al. (2021): Fair Sortition

Made Transparent.
The Organisation for Economic Co-operation and Development (OECD) describes
citizens’ assemblies as part of a broader democratic movement to “give citizens a
more direct role in […] shaping the public decisions that affect them” [OEC20]. [OEC20] OECD (2020): Innovative Citizen

Participation and New Democratic Institu-
tions.

By bringing mathematical structure, increased fairness, and greater transparency
to the practice of sortition, research in this area promises to put practical sortition
on firmer foundations, and to promote citizens’ assemblies’ mission to give
everyday people a greater voice.
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3.1 Introduction

Owing to its focus on practical applicability, the previous section approached
the problem of panel-selection from a narrow perspective: out of the three stages
of sortition (invitation, self-selection, and selection algorithm, Figure 1.1), our
analysis considered a setting in which the former two had already occurred and
in which the quotas were already set by practitioners. We pursued the most
natural objective from this perspective, namely, selecting the pool members with
equal probability (or, at least, as equal as possible). Fundamentally, however,
we primarily care about equality between all members of the population rather
than between the members of a pool. From a member of the population, the
guarantees of the previous chapter are somewhat unwieldy: if a constituent
randomly receives an invitation (and opts into the pool), then the remainder of
the random process (i.e., the selection algorithm) will treat the constituent as
equally as possible to their fellow pool members.

In this chapter, we aim to design a selection process with a more direct guaran-
tee for constituents: constituents should have equal end-to-end probabilities, by
which we mean their probabilities of going from population to panel, across the
intermediate steps of being invited, opting into the pool, and being selected for
the panel. At the same time, panels should still be representative in the sense that
they satisfy quotas such as those in the previous chapter.

The main hurdle to both equalizing end-to-end probabilities and representa-
tiveness is the second step of the sortition process, self-selection. Not only is
nonresponse prevalent — practitioners tell us that response rates between 2 and
5% are typical — but, more importantly, different groups participate at different
rates. These disparate response rates produce self-selection bias, which means that
the pool composition is not representative of the population, but rather skews
toward groups with certain features. Our selection algorithm will counteract self-
selection both on the level of groups and of individuals: to obtain representative
panels, our selection algorithm must select groups that are underrepresented in
the pool at higher rates, and, to equalize end-to-end probabilities, individuals
who are unlikely to respond must be selected with higher probability if they
respond against the odds.

End-to-end probabilities are not straight-forward to define because they do not
only depend on the selection procedure, but also on whether and when the
agent decides to opt into the pool. For this reason, we will design our selection
process for equalizing end-to-end probabilities in a mathematical model in which
constituents’ decision of participating is also random, and we will assume that
the selection algorithm knows each individual’s probability of responding to the
invitation. We will then propose a way of applying this process in practice by
learning from data; we leave the question of whether the resulting process is
desirable in practice for interdisciplinary discussion.
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The main contribution of this chapter is a selection algorithm that, in the random
model, equalizes end-to-end probabilities while also allowing the determinis-
tic satisfaction of quotas. In particular, our algorithm satisfies the following
desiderata:

▶ End-to-End Fairness: The algorithm selects the panel via a process such that
all members of the population appear on the panel with probability asymptot-
ically close to 𝑘/𝑛. By linearity of expectation, this also implies that all groups
in the population, including those defined by intersections of arbitrarily many
features, will be near-proportionally represented in expectation.

▶ Deterministic Quota Satisfaction: The selected panel satisfies certain upper
and lower quotas enforcing approximate representation for a set of specified
features.

▶ Computational Efficiency: The algorithm returns a valid panel (or fails) in
polynomial time.

As the last point indicates, the process might not return a representative panel
with some small positive probability, which is unavoidable in our model. Indeed,
since agents independently decide whether to respond to the invitation, the pool
might end up so skewed that it contains no representative panel — in fact, the
pool might even contain fewer members than the panel size. Nonetheless, we
are able to give an algorithm that succeeds with probability converging to one,
under weak assumptions mainly relating the number of invitation letters sent
out to 𝑘 and the minimum participation probability over all agents.

The main guiding principle underlying our selection algorithm is that it should
reverse the self-selection bias occurring in the formation of the pool. We formal-
ize this self-selection bias by assuming that each agent 𝑖 in the population agrees
to join the pool with some positive participation probability 𝑞𝑖 when invited. If
these 𝑞𝑖 values are known for all members of the pool, our selection algorithm can
use them to neutralize self-selection bias. To do so, our algorithm selects agent 𝑖
for the panel with a probability (close to) proportional to 1/𝑞𝑖, conditioned on 𝑖
being in the pool. This compensates for agents’ differing likelihoods of entering
the pool, thereby giving all agents an equal end-to-end probability. On a given
pool, the algorithm assigns marginal selection probabilities to every agent in
the pool. Then, to find a distribution over valid panels that implements these
marginals, the algorithm randomly rounds a linear program using techniques
based on discrepancy theory. Since our approach aims for a fair distribution of
valid panels rather than just a single panel, we can give probabilistic fairness
guarantees.

As we mentioned, our theoretical and algorithmic results, presented in Sec-
tion 3.3, take the probabilities 𝑞𝑖 of all pool members 𝑖 as given in the input.
While these values are not observed in practice, we show in Section 3.4 that
they can be estimated from available data. We cannot directly train a classifier
predicting participation, however, because practitioners collect data only on
those who do join the pool, yielding only positively labeled data. In place of a
negatively labeled control group, we use publicly available survey data, which
is unlabeled (i.e., includes no information on whether its members would have
joined the pool). To learn in this more challenging setting, we use techniques
from contaminated controls, which combine the pool data with the unlabeled
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sample of the population to learn a predictive model for agents’ participation
probabilities. In Section 3.5, we use data from a real-world citizens’ assembly
to show that plausible participation probabilities can be learned and that the
algorithm produces panels that are close to proportional across features. For a
synthetic population produced by extrapolating the real data, we show that our
algorithm obtains fair end-to-end probabilities.

3.1.1 Related Work

Our work is broadly related to existing literature on fairness in the areas of
machine learning, statistics, and social choice. Through the lens of fair machine
learning, our quotas can be seen as enforcing approximate statistical fairness
for protected groups, and our near-equal selection probability as a guarantee
on individual fairness. Achieving simultaneous group- and individual-level fair-
ness is a commonly discussed goal in fair machine learning [Bin20; GKP19; [Bin20] Binns (2020): On the Apparent Con-

flict between Individual and Group Fairness.

[GKP19] Gölz et al. (2019): Paradoxes in Fair
Machine Learning.

[HC20] Hu and Chen (2020): Fair Classifi-
cation and Social Welfare.

HC20], but one that has proven somewhat elusive. To satisfy fairness constraints
on orthogonal protected groups, we draw upon techniques from discrepancy
theory [Ban19; BF81], which we hope to be more widely applicable in this area.

[Ban19] Bansal (2019): On a Generalization
of Iterated and Randomized Rounding.
[BF81] Beck and Fiala (1981): “Integer-
making” Theorems.

This chapter addresses self-selection bias, which is routinely faced in statistics
and usually addressed by sample reweighting. Indeed, our selection algorithm
can be seen as a way of reweighting the pool members under the constraint that
weights must correspond to the marginal probabilities of a random distribution.
While reweighting is typically done by the simpler methods of post-stratification,
calibration [HE91], and sometimes regression [RBPW09], we use the more pow- [HE91] Holt and Elliot (1991): Methods of

Weighting for Unit Non-Response.

[RBPW09] Raab et al. (2009): Adjusting for
Non-Response by Weighting.

erful tool of learning with contaminated controls [LI96; WHB+09] to determine

[LI96] Lancaster and Imbens (1996): Case-
Control Studies with Contaminated Controls.
[WHB+09] Ward et al. (2009): Presence-
Only Data and the EM Algorithm.

weights on a more fine-grained level.

3.2 Model

Agents. Let 𝑁 be a set of 𝑛 agents, constituting the underlying population. Let
𝐹 be a set of features, where feature 𝑓 ∈ 𝐹 is a function 𝑓 ∶ 𝑁 → 𝑉𝑓, mapping
the agents to a set 𝑉𝑓 of possible values of feature 𝑓. For example, for the feature
gender, we could have𝑉gender = {male, female, non-binary}. Let the feature-value
pairs be ⋃𝑓∈𝐹{(𝑓, 𝑣) ∣ 𝑣 ∈ 𝑉𝑓}. In our example, the feature-value pairs are
(gender,male), (gender, female), and (gender,non-binary). Denote the number of
agents with a particular feature-value pair (𝑓, 𝑣) by 𝑛𝑓,𝑣.

Each agent 𝑖 ∈ 𝑁 is described by their feature vector 𝐹(𝑖) ∶= {(𝑓, 𝑓(𝑖)) ∣ 𝑓 ∈ 𝐹}, the
set of all feature-value pairs pertaining to this agent. Building on the example in-
stance, suppose we add the feature educationlevel, so 𝐹 = {gender, educationlevel}.
If educationlevel can take on the values college and no college, a college-educated
woman would have the feature-vector {(gender, female), (educationlevel, college)}.

Panel selection process. Before starting the selection process, organizers of a
citizens’ assembly must commit to the panel’s parameters. First, they must choose
the number of recipients 𝑟 who will be invited to potentially join the panel, and
the required panel size 𝑘. Moreover, they must choose a set of features 𝐹 and
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values {𝑉𝑓}𝑓∈𝐹 over which quotas will be imposed. Finally, for all feature-value
pairs (𝑓, 𝑣), they must choose a lower quota ℓ𝑓,𝑣 and an upper quota 𝑢𝑓,𝑣, implying
that the eventual panel of 𝑘 agents must contain at least ℓ𝑓,𝑣 and at most 𝑢𝑓,𝑣
agents with value 𝑣 for feature 𝑓. Once these parameters are fixed, the panel
selection process proceeds in the familiar three stages, reproduced on the side
from Figure 1.1.

population

recipients

pool

panel

invitation

self-selection

selection algorithm

In the first stage (“invitation”), the organizer of the panel sends out 𝑟 letters,
inviting a subset of the population — sampled with equal probability and without
replacement — to volunteer for serving on the panel. We refer to the random
set of agents who receive these letters as Recipients. Only the agents in Recipients
will have the opportunity to advance in the process toward being on the panel.

In the third stage (“self-selection”), each letter recipient may respond affirmatively
to the invitation, thereby opting into the pool of agents from which the panel will
be chosen. These agents form the random set Pool, defined as the set of agents
who received a letter and agreed to serve on the panel if ultimately chosen. We
assume that each agent 𝑖 joins the pool with some participation probability 𝑞𝑖 > 0.
Let 𝑞∗ be the lowest value of 𝑞𝑖 across all agents 𝑖 ∈ 𝑁. A key parameter of an
instance is 𝛼 ≔ 𝑞∗ 𝑟/𝑘, which measures how large the number of recipients is
relative to the other parameters. Larger values of 𝛼 will allow us the flexibility to
satisfy stricter quotas.

In the third stage (“selection algorithm”), the panel organizer runs a selection
algorithm, which selects the panel from the pool. This panel, denoted as the set
Panel, must be of size 𝑘 and satisfy the predetermined quotas for all feature-value
pairs. The selection algorithm may also fail without producing a panel.

We consider the first two steps of the process to be fully prescribed. The focus of
this chapter is to develop a selection algorithm for the third step that satisfies the
three desiderata listed in the introduction: end-to-end fairness, deterministic
quota satisfaction, and computational efficiency.

3.3 Selection algorithm

In this section, we give an algorithm which ensures, under natural assumptions,
that every agent ends up on the panel with probability at least (1 − 𝑜(1)) 𝑘/𝑛 as 𝑛
goes to infinity.1 Furthermore, the panels produced by this algorithm satisfy non- 1: We allow 𝑘 ≥ 1 and 𝑟 ≥ 1 to vary arbitrar-

ily in 𝑛 and assume that the feature-value
pairs are fixed.

trivial quotas, which ensure that the ex-post representation of each feature-value
pair cannot be too far from being proportional.

Our algorithm proceeds in two phases: (I) assignment of marginals, during
which the algorithm assigns a marginal selection probability to every agent in
the pool, and (II) rounding of marginals, in which the marginals are dependently
rounded to 0 or 1, the agents’ indicators of being chosen for the panel. As we
discussed previously, our algorithm succeeds only with high probability, rather
than deterministically; it may fail in phase I if the desired marginals do not satisfy
certain conditions. We refer to pools on which our algorithm succeeds as good
pools. A pool is good, to be defined precisely later, if its size and the prevalence of
all feature values within it are close to their respective expected values. We leave
the behavior of our algorithm on bad pools unspecified: while the algorithm
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may try its utmost on these pools, we give no guarantees in these cases, so the
probability of representation guaranteed to each agent must come only from good
pools and valid panels. Fortunately, under reasonable conditions, we show that
the pool will be good with high probability, i.e., with probability converging to
one as 𝛼 → ∞. When the pool is good, our algorithm always succeeds, meaning
that our algorithm is successful overall with high probability.

Our algorithm satisfies the following theorem, guaranteeing close-to-equal end-
to-end selection probabilities for all members of the population as well as the
satisfaction of quotas.

Theorem 3.1 Suppose that 𝛼 → ∞ and 𝑛𝑓,𝑣 ≥ 𝑛/𝑘 for all feature-value pairs
𝑓, 𝑣. Consider a selection algorithm that, on a good pool, selects a random panel,
Panel, via the randomized version of Lemma 3.3, and else does not return a
panel. This process satisfies, for all 𝑖 in the population, that

ℙ[𝑖 ∈ Panel] ≥ (1 − 𝑜(1)) 𝑘/𝑛.

All panels produced by this process satisfy the quotas ℓ𝑓,𝑣 ≔ (1−𝛼−.49) 𝑘 𝑛𝑓,𝑣/𝑛−|𝐹|
and 𝑢𝑓,𝑣 ≔ (1 + 𝛼−.49) 𝑘 𝑛𝑓,𝑣/𝑛 + |𝐹| for all feature-value pairs 𝑓, 𝑣.

The guarantees of the theorem grow stronger as the parameter 𝛼 = 𝑞∗ 𝑟/𝑘 tends
toward infinity, i.e., as the number 𝑟 of invitations grows. Note that, since 𝑟 ≤ 𝑛,
this assumption requires that 𝑞∗ ≫ 𝑘/𝑛. We defer all proofs to Appendix B of the
full version and discuss the preconditions in Appendix B.1.

3.3.1 Algorithm Part I: Assignment of Marginals

To afford equal probability of panel membership to each agent 𝑖, we would like
to select agent 𝑖 with probability inversely proportional to their probability 𝑞𝑖
of being in the pool. For ease of notation, let 𝑎𝑖 ≔ 1/𝑞𝑖 for all 𝑖. Specifically, for
agent 𝑖, we want ℙ[𝑖 ∈ Panel ∣ 𝑖 ∈ Pool] to be proportional to 𝑎𝑖. Achieving
this exactly is tricky, however, because each agent’s selection probability from
pool 𝑃, call it 𝜋𝑖,𝑃, must depend on those of all other agents in the pool, since
their marginals must add to the panel size 𝑘. Thus, instead of reasoning about an
agent’s probability across all possible pools at once, we take the simpler route of
setting agents’ selection probabilities for each pool separately, guaranteeing that
ℙ[𝑖 ∈ Panel ∣ 𝑖 ∈ 𝑃] is proportional to 𝑎𝑖 across all members 𝑖 of a good pool 𝑃.
For any good pool 𝑃, we select each agent 𝑖 ∈ 𝑃 for the panel with probability

𝜋𝑖,𝑃 ≔ 𝑘
𝑎𝑖

∑
𝑗∈𝑃 𝑎𝑗

.

Note that this choice ensures that the marginals always sum up to 𝑘.

Definition of good pools. For this choice of marginals to be reasonable and
useful for giving end-to-end guarantees, the pool 𝑃must satisfy three conditions,
whose satisfaction defines a good pool 𝑃. First, the marginals do not make much

https://arxiv.org/pdf/2006.10498v2.pdf#page=13
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sense unless all 𝜋𝑖,𝑃 lie in [0, 1]:

0 ≤ 𝜋𝑖,𝑃 ≤ 1 ∀𝑖 ∈ 𝑃. (3.1)

Second, the marginals summed up over all pool members of a feature-value pair
𝑓, 𝑣 should not deviate too far from the proportional share of the pair:

(1 − 𝛼−.49) 𝑘 𝑛𝑓,𝑣/𝑛 ≤ ∑𝑖∈𝑃∶𝑓(𝑖)=𝑣 𝜋𝑖,𝑃 ≤ (1 + 𝛼
−.49) 𝑘 𝑛𝑓,𝑣/𝑛 ∀𝑓, 𝑣. (3.2)

Third, we also require that the term∑
𝑖∈𝑃 𝑎𝑖 is not much larger than𝔼[∑𝑖∈Pool 𝑎𝑖] =

∑
𝑖∈𝑁(𝑞𝑖

𝑟
𝑛 ) ⋅ 𝑎𝑖 = 𝑟, which ensures that the 𝜋𝑖,𝑃 do not become to small:

∑
𝑖∈𝑃 𝑎𝑖 ≤ 𝑟/(1 − 𝛼

−.49). (3.3)

Under the assumptions of our theorem, pools are good with high probability,
even if we condition on a given agent 𝑖 being in the pool:

Lemma 3.2 Suppose that 𝛼 → ∞ and 𝑛𝑓,𝑣 ≥ 𝑛/𝑘 for all 𝑓, 𝑣. Then, for all agents
𝑖 ∈ Population, ℙ[Pool is good ∣ 𝑖 ∈ Pool] → 1.

Note that only constraint (3.1) prevents Phase II of the algorithm from running;
the other two constraints just make the resulting distribution less useful for our
proofs. In practice, if it is possible to rescale the 𝜋𝑖,𝑃 and cap them at 1 such that
their sum is 𝑘, running phase II on these marginals seems reasonable.

3.3.2 Algorithm Part II: Rounding of Marginals

The proof of Theorem 3.1 now hinges on our ability to implement the chosen 𝜋𝑖,𝑃
for a good pool 𝑃 as marginals of a distribution over panels. This phase can be
expressed in the language of randomized dependent rounding: we need to define
random variables𝑋𝑖 = 1{𝑖 ∈ Panel} for each 𝑖 ∈ Pool such that𝔼[𝑋𝑖] = 𝜋𝑖,𝑃. This
difficulty of this task stems from the ex-post requirements on the pool, which
require that ∑𝑖𝑋𝑖 = 𝑘 and that ∑𝑖∶𝑓(𝑖)=𝑣𝑋𝑖 is close to 𝑘 𝑛𝑓,𝑣/𝑛 for all feature-value
pairs 𝑓, 𝑣. While off-the-shelf dependent rounding [CVZ10] can guarantee the [CVZ10] Chekuri et al. (2010): Dependent

Randomized Rounding via Exchange Proper-
ties of Combinatorial Structures.

marginals and the sum-to-𝑘 constraint, it cannot simultaneously ensure small
deviations in terms of the representation of all 𝑓, 𝑣.

Our algorithm uses an iterative rounding procedure based on a celebrated the-
orem by Beck and Fiala [BF81]. We sketch here how to obtain a deterministic [BF81] Beck and Fiala (1981): “Integer-

making” Theorems.rounding satisfying the ex-post constraints; the argument can be randomized
using results by Bansal [Ban19] or via column generation.2 The iterated round- [Ban19] Bansal (2019): On a Generalization

of Iterated and Randomized Rounding.

2: We describe the column-generation algo-
rithm in Appendix B.4.2 of the full version.
Bansal’s randomized rounding procedure
runs in polynomial time, but we found it to
be very slow in practice. Our column gener-
ation procedure is faster in practice (but not
formally polynomial time), and provides the
same guarantees on representativeness.

ing procedure manages a variable 𝑥𝑖 ∈ [0, 1] for each 𝑖 ∈ Pool, which is ini-
tialized as 𝜋𝑖,𝑃. As the 𝑥𝑖 are repeatedly updated, more of them are fixed as
either 0 or 1 until the 𝑥𝑖 ultimately correspond to indicator variables of a panel.
Throughout the rounding procedure, it is preserved that ∑𝑖 𝑥𝑖 = ∑

𝑖 𝜋𝑖,𝑃 = 𝑘,
and the equalities ∑𝑖∶𝑓(𝑖)=𝑣 𝑥𝑖 = ∑𝑖∶𝑓(𝑖)=𝑣 𝜋𝑖,𝑃 are preserved until at most |𝐹| vari-
ables 𝑥𝑖 in the sum are yet to be fixed. As a result, the final panel has exactly
𝑘 members, and the number of members from a feature-value pair 𝑓, 𝑣 is at
least ∑𝑖∶𝑓(𝑖)=𝑣 𝜋𝑖,𝑃 − |𝐹| ≥ (1 − 𝛼−.49) 𝑘 𝑛𝑓,𝑣/𝑛 − |𝐹| (symmetrically for the upper
bound). Observe that our Beck-Fiala-based rounding procedure only increases

https://arxiv.org/pdf/2006.10498v2.pdf#page=19
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the looseness of the quotas by a constant additive term beyond the losses to
concentration. The concentration properties of standard dependent randomized
rounding do not guarantee such a small gap with high probability. Moreover, our
bound does not directly depend on the number of quotas (i.e., twice the number
of feature-value pairs) but only depends on the number of features, which are
often much fewer.

As we show in Appendix B.4 of the full version,

Lemma 3.3 There is a polynomial-time selection algorithm that, given a good
pool 𝑃, produces a random panel Panel such that (1) ℙ[𝑖 ∈ Panel] = 𝜋𝑖,𝑃 for
all 𝑖 ∈ 𝑃, (2) |Panel| = 𝑘, and (3)∑𝑖∶𝑓(𝑖)=𝑣 𝜋𝑖,𝑃 − |𝐹| ≤ |{𝑖 ∈ Panel ∣ 𝑓(𝑖) = 𝑣}| ≤
∑
𝑖∶𝑓(𝑖)=𝑣 𝜋𝑖,𝑃 + |𝐹|.

Our main theorem (Theorem 3.1) follows from a simple argument combining
Lemmas 3.2 and 3.3 (Appendix B.5 of the full version).

While this theorem is asymptotic in the growth of 𝛼, the same proof gives bounds
on the end-to-end probabilities for finite values of 𝛼. If one wants bounds for
a specific instance, however, bounds uniquely in terms of 𝛼 tend to be loose,
and one might want to relax Condition (3.2) of a good pool in exchange for
more equal end-to-end probabilities. In this case, plugging the specific values
of 𝑛, 𝑟, 𝑘, 𝑞∗, 𝑛𝑓,𝑣 into the proof allows to make better trade-offs and to extract
sharper bounds.

3.4 Learning Participation Probabilities

The algorithm presented in the previous section relies on knowing 𝑞𝑖 for all
agents 𝑖 in the pool. While these 𝑞𝑖 are not directly observed, we can estimate
them from data available to practitioners.

First, we assume that an agent 𝑖’s participation probability 𝑞𝑖 is a function of
their feature vector 𝐹(𝑖). Furthermore, we assume that 𝑖 makes their decision to
participate through a specific generative model known as simple independent
action ([Fin71], as cited by [Wei86]). First, 𝑖 flips a coin with probability 𝛽0 of [Fin71] Finney (1971): Probit Analysis.

[Wei86] Weinberg (1986): Applicability of
the Simple Independent Action Model to Epi-
demiologic Studies Involving Two Factors
and a Dichotomous Outcome.

landing on heads. Then, 𝑖 flips a coin for each feature 𝑓 ∈ 𝐹, where the coin
pertaining to 𝑓 lands on heads with probability 𝛽𝑓,𝑓(𝑖). They participate in the
pool if and only if all coins they flip land on heads, leading to the following
functional dependency:

𝑞𝑖 = 𝛽0 ⋅ ∏𝑓∈𝐹 𝛽𝑓,𝑓(𝑖).

We think of 1−𝛽𝑓,𝑣 as the probability that a reason specific to the feature-value pair
𝑓, 𝑣 prevents the agent from participating, and of 1−𝛽0 as the baseline probability
of them not participating for reasons independent of their features. The simple
independent action model assumes that these reasons occur independently
between features, and that the agent participates iff none of the reasons occur.

If we had a representative sample of agents — say, the recipients of the invitation
letters — labeled according to whether they decided participate (“positive”) or
not (“negative”), learning the parameters 𝛽 would be straightforward. However,
the organizers of a citizens’ assembly only have access to the features of those

https://arxiv.org/pdf/2006.10498v2.pdf#page=17
https://arxiv.org/pdf/2006.10498v2.pdf#page=20
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who enter the pool, and not of those who never respond. Without a control
group, it is impossible to distinguish a feature that is prevalent in the population
and associated with low participation rate from a rare feature associated with
a high participation rate. Thankfully, we can use additional information: in
place of a negatively-labeled control group, we use a background sample — a
dataset containing the features for a uniform sample of agents, but without labels
indicating whether they would participate. Since this control group contains
both positives and negatives, this setting is known as contaminated controls. A
final piece of information we use for learning is the fraction 𝑞 ≔ |Pool|/𝑟, which
estimates the mean participation probability across the population. In other
applications with contaminated controls, including 𝑞 in the estimation increased
model identifiability [WHB+09]. [WHB+09] Ward et al. (2009): Presence-

Only Data and the EM Algorithm.
To learn our model, we apply methods for maximum likelihood estimation (MLE)
with contaminated controls introduced by Lancaster and Imbens [LI96]. By [LI96] Lancaster and Imbens (1996): Case-

Control Studies with Contaminated Controls.reformulating the simple independent action model in terms of the logarithms of
the 𝛽 parameters, their estimation (with a fixed value of 𝑞) reduces to maximizing
a concave function.

Theorem3.4 The log-likelihood function for the simple independent actionmodel
under contaminated controls is concave in the model parameters.

By this theorem, proved in Appendix C of the full version, we can directly
and efficiently estimate 𝛽. Logistic models, by contrast, require more involved
techniques for efficient estimation [WHB+09].

3.5 Experiments

Data. We validate our 𝑞𝑖 estimation and selection algorithm on pool data from
Climate Assembly UK [Cli20], a national-level citizens’ assembly co-organized [Cli20] Climate Assembly UK (2020): The

path to net zero: Full report.by the Sortition Foundation in 2020. The panel consisted of 𝑘 = 110 many UK
residents aged 16 and above. The Sortition Foundation invited all members of
30 000 randomly selected households, which reached an estimated 𝑟 = 60 000
eligible participants.3 Of these letter recipients, 1 715 participated in the pool,4 3: Note that every person in the population

has equal probability (30 000/#households)
of being invited. We ignore correlations be-
tween members of the same household.
4: Excluding 12 participants with gender
“other” as no equivalent value is present in
the background data.

corresponding to a mean participation probability of 𝑞 ≈ 2.9%. The feature-
value pairs used for this panel can be read off the axis of Figure 3.1. We omit
an additional feature climate concern level in our main analysis because only 4
members of the pool have the value not at all concerned, whereas this feature-
value pair’s proportional number of panel seats is 6.5. To allow for proportional
representation of groups with such low participation rates, 𝑟 should have been
chosen to be much larger. We believe that the merits of our algorithm can be
better observed in parameter ranges in which proportionality can be achieved.
For the background sample, we used the 2016 European Social Survey [NSD16], [NSD16] NSD (2016): European Social Sur-

vey Round 8 Data.which contains 1 915 eligible individuals, all with features and values matching
those from the panel. Our implementation is based on PyTorch and Gurobi, runs
on consumer hardware, and its code is available at https://github.com/pgoelz/en
dtoend. Appendix D of the full version contains details on Climate Assembly
UK, data processing, the implementation, and further experiments (including
the climate concern feature).

https://arxiv.org/pdf/2006.10498v2.pdf#page=21
https://github.com/pgoelz/endtoend
https://github.com/pgoelz/endtoend
https://arxiv.org/pdf/2006.10498v2.pdf#page=22
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Legend: proportional no. seats expectated no. seats range in no. seats over all panels in distribution
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Figure 3.1: Expected and realized numbers of panel seats our algorithm gives each feature-value pair in the Climate Assembly pool.

Estimation of 𝜷 parameters. We find that the baseline probability of partici-
pation is 𝛽0 = 8.8%. Our 𝛽𝑓,𝑣 estimates suggest that (from strongest to weakest
effect) highly educated, older, urban, male, and non-white agents participate
at higher rates. These trends reflect these groups’ respective levels of represen-
tation in the pool compared to the underlying population, suggesting that our
estimated 𝛽 values fit our data well. Different values of the remaining feature,
region of residence, seem to have heterogeneous effects on participation, where
being a resident of the South West gives substantially increased likelihood of
participation compared to other areas. The lowest participation probability of
any agent in the pool, according to these estimates, is 𝑞∗ = 0.78%, implying that
𝛼 ≈ 4.25. See Appendix D.4 of the full version for detailed estimation results and
validation.

Running the selection algorithm on the pool. The estimated 𝑞𝑖 allow us to
run our algorithm on the Climate Assembly pool and thereby study its fairness
properties for non-asymptotic input sizes. We find that the Climate Assembly
pool is good relative to our 𝑞𝑖 estimates, i.e., that it satisfies Equations (3.1) to (3.3).
As displayed in Figure 3.1, the marginals produced by Phase I of our algorithm
give each feature-value pair 𝑓, 𝑣 an expected number of seats, ∑𝑖∈𝑃,𝑓(𝑖)=𝑣 𝜋𝑖,𝑃,
within one seat of its proportional share of the panel, 𝑘 𝑛𝑓,𝑣/𝑛. By Lemma 3.3,
Phase II of our algorithm then may produce panels from these marginals in which
𝑓, 𝑣 receives up to |𝐹| = 6 fewer or more seats than its expected number. However,
as the black bars in Figure 3.1 show, the actual number of seats received by any
𝑓, 𝑣 across any panel produced by our algorithm on this input never deviates
from its expectation by more than 4 seats. As a result, while Theorem 3.1 only
implies lower quotas of 0.51 𝑘 𝑛𝑓,𝑣/𝑛− |𝐹| and upper quotas of 1.49 𝑘 𝑛𝑓,𝑣/𝑛+|𝐹| for
this instance, the shares of seats our algorithm produces lie in the much narrower
range 𝑘 𝑛𝑓,𝑣/𝑛 ± 5 (and even 𝑘 𝑛𝑓,𝑣/𝑛 ± 3 for 18 out of 25 feature-value pairs). This
suggests that, while the quotas guaranteed by our theoretical results are looser
than the quotas typically set by practitioners, our algorithm will often produce
substantially better ex-post representation than required by the quotas.

https://arxiv.org/pdf/2006.10498v2.pdf#page=25
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End-to-end probabilities. In the previous experiments, we were only able to
argue about the algorithm’s behavior on a single pool. To validate our guarantees
on individual end-to-end probabilities, we construct a synthetic population of
size 60 million by duplicating the ESS participants, assuming our estimated 𝑞𝑖 as
their true participation probabilities. Then, for various values of 𝑟, we sample
a large number of pools. By computing 𝜋𝑖,𝑃 values for all agents 𝑖 in each pool,
we can estimate each agent’s end-to-end probability of ending up on the panel.
Crucially, we assume that our algorithm does not produce any panel for bad
pools, analogously to Theorem 3.1. As shown in the following graph, if 𝑟 is 60 000
(as was used in Climate Assembly UK), all agents in our synthetic population,
across the full range of 𝑞𝑖, receive probability that are barely distinguishible from
𝑘/𝑛 (averaged over 100 000 random pools):

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

.5 k/n

k/n

1.5 k/n

end -to-end
probability

qi

That these end-to-end probabilities are so close to 𝑘/𝑛 also implies that bad
pools are exceedingly rare for this value of 𝑟. As we show in Appendix D.6 of
the full version, we see essentially the same behavior for values of 𝑟 down to
roughly 15 000, when 𝛼 ≈ 1. For even lower 𝑟, most pools are bad, so end-to-end
probabilities are close to zero under our premise that no panels are produced
from bad pools.

As a baseline, we re-run the experiment above, this time using the Legacy
algorithm to select a panel from each generated pool. Since their algorithm
requires explicit quotas as input, we set the lower and upper quotas for each
feature-value group to be the floor and ceiling of that group’s proportional share
of seats. This is a popular way of setting quotas in current practice.
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k/n

1.5 k/n

end -to-end
probability

qi

The results of this experiment show that the individual end-to-end probabilities
generated by Legacy range from below 0.5 𝑘/𝑛 up to 1.3 𝑘/𝑛. In comparison to
the end-to-end probabilities generated by our algorithm, those generated by Le-
gacy are substantially skewed, and tend to disadvantage individuals with either
low or high participation probabilities. One might argue that the comparison
between our algorithm and Legacy is not quite fair, since the latter is required
to satisfy stronger quotas. However, looser quotas do not improve the behavior
of Legacy; they simply make it behave more similarly to uniform sampling from
the pool, which further disadvantages agents with low participation probability
(for details, see Appendix D.5 of the full version).

https://arxiv.org/pdf/2006.10498v2.pdf#page=29
https://arxiv.org/pdf/2006.10498v2.pdf#page=28
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Taken together, these results illustrate that, although greedy algorithms like the
one we examined achieve proportional representation of a few pre-specified
groups via quotas, they do not achieve end-to-end fairness. Compared to the
naive solution of uniform sampling from the pool, greedily striving for quota sat-
isfaction does lead to more equal end-to-end probabilities, as pool members with
underrepresented features are more likely to be selected for the panel than pool
members with overrepresented features. However, this effect does not neutralize
self-selection bias when there are multiple features, even when selection bias acts
through the independent-action model as in our simulated population. Indeed,
in this experiment, the greedy algorithm insufficiently boosts the probabilities
of agents in the intersection of multiple low-participation groups (the agents
with lowest 𝑞𝑖), while also too heavily dampening the selection probability of
those in the intersection of multiple high-participation groups (with highest
𝑞𝑖). These observations illustrate the need for panel selection algorithms that
explicitly control individual probabilities.

We cannot repeat the same experiment for LexiMin since its running time is
prohibitively large for this setup. Based on our experiments in the previous
chapter, we would expect the corresponding graph to slope less downward for
agents with high participation probability (i.e., those with many overrepresented
features). We would still expect to see some form of upward slope on the left,
since LexiMin does not intentionally select underrepresented pool members
with higher probability. But the left side of the plot is harder to predict because
the highest selection probabilities from LexiMin are less structured than the
smallest one, and since it is uncertain how these effects aggregate over different
random pools.

3.6 Discussion

Deterministic model. In a model in which agents stochastically decide whether
to participate, our algorithm guarantees similar end-to-end probabilities to
all members of the population. In reality, however, some might argue that an
agent’s decision to participate when invited might not be random, but rather
deterministically predetermined.

From the point of view of such an agent 𝑖, does our algorithm, based on a model
that doesn’t accurately describe their (and their peers’) behavior, still grant them
individual fairness? If 𝑖 deterministically participates, the answer is yes (if not, of
course they cannot be guaranteed anything). To see why, first observe that, insofar
as it concerns 𝑖’s chance of ending up on the panel, all other agents might as well
participate randomly.5 Indeed, from agent 𝑖’s perspective, the process looks like 5: Fix a group of agents who, assuming the

stochastic model, will participate if invited
with probability 𝑞. Then, sampling letter re-
cipients from this set of agents in the sto-
chastic model is practically equivalent to
sampling recipients from this group in the
deterministic model, if a 𝑞 fraction of the
group deterministically participate.

the stochastic process where every other agent 𝑗 participates with probability
𝑞𝑗, where 𝑖 herself always participates, and where the algorithm erroneously
assumes that 𝑖 joins only with some probability 𝑞𝑖. Therefore, the pool is still
good with high probability conditioned on 𝑖 being in it, as argued in Lemma 3.2.
Even if the algorithm knew that 𝑞𝑖 = 1, 𝑖’s end-to-end probability would be at
least (1 − 𝑜(1)) 𝑘/𝑛, and the fact that the algorithm underestimates their 𝑞𝑖 only
increases their probability of being selected from the pool. It follows that 𝑖’s
end-to-end probability in this setting still must be at least around 𝑘/𝑛.
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Thus, in a deterministic model of participation, our individual guarantees are
reminiscent of the axiom of population monotonicity in fair division: If the whole
population always participated when invited, every agent would reach the panel
with probability 𝑘/𝑛. The fact that some agents do not participate cannot (up to
lower-order terms) decrease the selection probabilities for those who do.

Desirability of algorithm in practice. If we model the agents as random, and
if the machine learning can recover the 𝑞𝑖, should the algorithm we developed
in this chapter be used in practice? One big advantage is the representation
of groups that are not protected by quotas, such as for example intersectional
groups: Since the agents’ end-to-end probabilities are approximate equal, any
subset of the population will, in expectation, be represented by a number of
assembly members proportional to its size (and, we conjecture, this number
will be concentrated around its expectation). Since other algorithms, including
LexiMin, do not provide such guarantees, citizens assemblies selected via this
chapter’s algorithm might be more richly representative. In general, using panel
selection algorithms that come with mathematical fairness guarantees can also
give added legitimacy to the recommendations made by citizens’ assemblies.

Our main point of uncertainty is about the transparency of the sampling process.
Since an individual’s probability of selection from the pool depends on the esti-
mated 𝑞𝑖, the fairness of the process hinges on the entire machine-learning
pipeline — data used, choice of model, and estimation methods — which is
opaque to most of the population. More discussion, which ought to include
practitioners and social scientists, seems necessary to tell whether these concerns
can be overcome, and whether the benefits outweigh the drawbacks.
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4.1 Introduction

In the last two chapters, our selection procedures were heavily marked by self
selection. This is perhaps more obvious in Chapter 3, where the main principle
underlying the selection algorithm was to counter self-selection bias. But self
selection was also the cause for much of the complexity in Chapter 2: self-selection
bias caused pools to be highly unrepresentative of the population, which gave rise
to the tensions between representativeness and equality that earlier algorithms
struggled to navigate. Since self selection plays an outsize role in the recruitment
of citizens’ assemblies, our focus on self selection allowed us to address and
contribute to citizens’ assemblies in practice. But this focus also caused us to
develop selection processes that were far more complex than those envisaged in
much of the literature justifying citizens’ assemblies.

In this chapter, we study panel selection in a much simpler model without self
selection, which we refer to as idealized sortition. In this model, the familiar
three stages of sortition are replaced by a single stage, in which the selection
algorithm chooses panel members directly from the population. As we discuss in
Appendix A.1, idealized sortition is the foundation of much of the political theory
justifying the merits of citizens’ assemblies [CM99; Sto11], and it will allow us to [CM99] Carson andMartin (1999): Random

Selection in Politics.
[Sto11] Stone (2011): The Luck of the Draw.

study much simpler selection algorithms than those in previous sections. The
most natural selection algorithm is uniform sampling , i.e., selecting 𝑘 members
from the population uniformly and without replacement.

A simple but powerful property of uniform sampling is that it affords fair repre-
sentation to all possible groups in the population, in expectation. Since every agent
has the same probability of being selected, any subpopulation 𝑀 is expected to
send |𝑀|

𝑛 𝑘 representatives to a panel of size 𝑘, where 𝑛 is the total number of
agents. This is a advantage over elected legislatures, in which women or racial
minorities are often underrepresented, and over panels such as those generated
by Legacy and LexiMin, in which no such guarantee holds for any subgroups
that is not protected by quotas.

Still, these representation guarantees for arbitrary groups only hold ex ante, i.e.,
in expectation over the random selection. By concentration of measure, any given
group should be unlikely to be grossly over- or underrepresented if the panel
is large enough, but realistic panel sizes still allow for nonnegligible deviations
from the proportional share.1 To mitigate these deviations, a second selection 1: For example, when uniformly sampling

30 panel members from a large population
of half women, halfmen, there is a 20�prob-
ability that one gender has at most 11 seats
rather than the proportional 15 seats.

algorithm is stratified sampling — for example, one might choose half of the
representatives among women and half among men. Assuming that this reflects
the composition of the population, each individual’s probability of being selected
remains equal under stratified sampling, and therefore the ex-ante represen-
tation of groups continues to be proportional. In addition, stratified sampling
guarantees ex-post fair representation to the strata, i.e., to women and men.
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But what if the stratified aims to protect the representation of a group whose com-
position they do not know? In particular, we would argue that the representation
of groups defined by common opinions, values, or experiences are particularly
relevant to the outcome of the deliberation. Often, we cannot directly stratify for
such groups since they might only emerge in the course of deliberation. Further-
more, we might not even know which of these groups will be relevant, and the
groups could be too numerous to stratify for all of them.

Nonetheless, we show that stratification is an effective tool for promoting fair
representation of such groups, by reducing the variance of their representation.
Taking the perspective of the organizer of a citizens’ panel, our aim is to charac-
terize the effect of stratification on the variance of the number of representatives
from unknown groups, and to demonstrate that this knowledge can help more
accurately represent opinion holders.

4.1.1 Our Approach and Results

The key insight underlying our work is that the benefits of stratification extend,
beyond the strata themselves, to all groups which correlate with the strata. In-
formally, this observation has been made as early as 1972 [MTW72]. Consider [MTW72] Mueller et al. (1972): Representa-

tive Democracy via Random Selection.our earlier example of stratification by gender. Let 𝑀 capture a certain political
opinion held by, say, half of the population, and let a random variable 𝐴 denote
the number of agents from 𝑀 in the panel. If the opinion is highly prevalent
among women and rare among men, the distribution of 𝐴 is more concentrated
with stratification than without, as can be seen in Figure 4.1a. Surprisingly, there
is virtually nothing to be lost in stratifying: If, as in Figure 4.1b, 𝑀 is equally split
between the strata — which is the worst case — stratification only increases the
variance by a minuscule amount.
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(a)𝑀 contains 90� of women, 10� of men.
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(b)𝑀 contains 50� of women, 50� of men.

Figure 4.1: Probabilities of different num-
bers of agents from𝑀 in the panel.The pop-
ulation consists of 500 women and 500men;
the panel has size 20; 500 agents are in𝑀,
distributed among genders as indicated.

Transcending our toy example, these observations suggest a strategy of more
elaborate stratification than is common today: When planning a citizens’ panel,
an organizer can use public data to partition the population into many small
strata, each corresponding to a small number of seats in the panel. The goal is to
group together citizens who are as similar as possible. Since demographic data is
predictive of political views [Pew14, p. 92], most 𝑀 of interest should “polarize”
the strata, i.e., most strata should either have a very high or very low prevalence
of 𝑀, in which case we profit from the reduction in variance observed above. To
do so, a panel organizer needs to reason about the variance of 𝐴, which can be
difficult.

Our main contribution is a tight bound showing that — up to a factor very close
to one — stratification cannot increase variance. Crucially, we propose a way of
rounding seat allocations for the strata, which maintains equal probability of
participation for all agents, and still satisfies the above guarantee. To gauge the [Pew14] Pew Research Center (2014): Be-

yond Red vs. Blue: The Political Typology.benefits of stratification, we give a second upper bound which characterizes the
reduction in variance due to stratification in terms of the concentration of 𝑀 in
every stratum.

Next, we explore the space of selection algorithms that uphold expected repre-
sentation for all groups, but are not necessarily based on stratification. We show
that no such algorithm dominates any other algorithm; thus, we need to assume
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that relevant 𝑀 will correlate with visible features. Finally, we show that uniform
sampling is optimal from a worst-case perspective. Since stratified sampling
can never increase variance by more than a minuscule amount, all our selection
algorithms provide close-to-optimal worst-case guarantees.

Finally, we investigate the effect of stratification on variance using a large dataset
containing information about demographic features and political attitudes. We
find that random stratifications are helpful overall, but that only a few of them
lead to significant reductions. In a case study simulating the situation of a panel
organizer, we find that, using insights from our theoretical analysis, a human
stratifier can simultaneously reduce the variance with respect to multiple un-
known, attitude-based groups. Compared to uniform sampling, these decreases
in variances correspond to an increase in panel size by multiple seats. Manual
stratification also clearly outperforms a simple stratification by gender and race.
Stratifications automatically generated via 𝑘-means clustering fall short of the
manual stratification, but show promise.

4.1.2 Background on Stratified Sampling

It is worth pointing out that stratified sampling is less flexible in expressing
ex-post representativeness constraints than the quotas we considered in the
previous two sections. To understand why such quotas are more general than
those implied by stratified sampling, we first note that the constraints expressed
by a stratification can directly be expressed as a system of quotas. This is done by
turning the strata into the values of a single feature, and then setting each value’s
lower and upper quota to the floor and ceiling of the stratum’s proportional
share of panel seats. By contrast, not every system of quotas can be expressed
as a stratification. This is for two reasons: first, whereas the quotas imposed by
practitioners can permit an arbitrary tolerance between a feature’s upper and
lower quota, stratified sampling requires specifying the exact number of people
to be chosen from each stratum. Second, and more fundamentally, quotas are
often imposed on overlapping groups (e.g., the groups women and young people,
where individuals can belong to both groups at once), whereas all strata must be
disjoint.

To see why this restriction limits the generality of stratified sampling, consider
an example in which we have overlapping categories gender and age, and want
to impose quotas on women, men, people of non-binary gender, young people,
and old people. In stratified sampling, one would define six disjoint strata: young
women, young men, young people of nonbinary gender, old women, old men,
and old people of nonbinary gender. One would then have to specify some exact
number of people from each stratum; by contrast, the constraints expressed by
quotas on the feature can be much more flexible since they, for example, do not
directly constrain the age composition within the group of women.

As illustrated in the above example, one can implement quotas in practical
settings by defining the strata to be all intersectional groups. However, this
strategy does not extend practicably to the number of feature categories on which
quotas are imposed in practice (in our instances, between 4 and 8). This is because
imposing quotas on many orthogonal features (e.g, gender, age, region, and
education level) would require setting aside a number of seats for exponentially
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many combinations of these features (e.g., “female, 18–25 years old, London, no
diploma”), which would quickly exceed the number of panel seats.

Our work is connected to questions of (stratified) sampling in statistics [Dal50;
HT52]

[Dal50] Dalenius (1950): The Problem of Op-
timum Stratification.
[HT52] Horvitz and Thompson (1952): A
Generalization of Sampling Without Replace-
ment From a Finite Universe.

. Whereas we want a proportional representation of a certain feature in our
sample, pollsters use the sample to obtain an accurate estimate of the prevalence
of the feature. In this framework, our requirement of fair expected representa-
tion translates into requiring an unbiased estimator. In both cases, mechanisms
leading to lower variance are preferred, and it is known that sampling from a con-
tinuous pool cannot increase variance, which we will show again in Section 4.3.
Despite these similarities, our setting is more restrictive, since we cannot weight
agents differently, which is an important technique in polling. While, in final
votes, weighting representatives might be defensible, a representative’s influence
on a debate cannot be weighted.

4.2 Model

Denote the population by 𝑁 ≔ [𝑛], by which we mean the set {1, … , 𝑛} for some
𝑛 ∈ ℕ≥1. Out of these 𝑛 agents, we will randomly sample a panel of size 𝑘. An
unknown set of agents 𝑀 ⊆ 𝑁 with |𝑀| = 𝑚 share a hidden feature, which we
hope to represent as fairly as possible.

Let 𝒰(𝑁, 𝑘) be the uniform sampling algorithm, which returns a uniformly ran-
dom subset of 𝑘 agents. Notice thatℙ[𝑥 ∈ 𝒰(𝑁, 𝑘)] = 𝑘/𝑛 for all 𝑥 ∈ 𝑁. We denote
the representation of 𝑀 under uniform sampling, i.e., the number of agents with
the hidden feature selected by 𝒰, by 𝑈𝑛,𝑘

𝑀 ≔ |𝒰(𝑁, 𝑘) ∩𝑀|. Since 𝒰𝑛,𝑘
𝑀 follows a

hypergeometric distribution,

Var(𝑈𝑛,𝑘
𝑀 ) = 𝑘

𝑚
𝑛
�1 −

𝑚
𝑛
�
𝑛 − 𝑘
𝑛 − 1

.

In general, 𝒜 (𝑁, 𝑘) will denote a random process which generates subsets of 𝑁
of size 𝑘. As above, we set 𝐴𝑛,𝑘𝑀 for the representation |𝒜 (𝑁, 𝑘) ∩𝑀| of 𝑀 in the
panel. To ensure fair representation to every possible subset 𝑀 ⊆ 𝑁 of agents,
we constrain such processes to satisfy 𝔼[𝐴𝑛,𝑘𝑀 ] = 𝑚

𝑛 𝑘 for all 𝑀 ⊆ 𝑁. By linearity
of expectation, this is equivalent to every agent 𝑥 ∈ 𝑁 being selected with equal
probability

ℙ[𝑖 ∈ 𝒜 (𝑁, 𝑘)] = 𝑘/𝑛. (4.1)

Our goal is to find selection algorithms 𝒜 which, for unknown and arbitrary 𝑀,
reduce the variance of 𝐴𝑛,𝑘𝑀 , compared to 𝑈𝑛,𝑘

𝑀 .

We will be particularly interested in stratified sampling algorithms. Such an
algorithm defines a partition of 𝑁 into ℓ strata, i.e., 𝑁 = 𝑁1 ∪̇ 𝑁2 ∪̇ ⋯ ∪̇ 𝑁ℓ.
Let 𝑛𝑖 ≔ |𝑁𝑖| and 𝑚𝑖 ≔ |𝑁𝑖 ∩ 𝑀| for all 𝑖 ∈ [ℓ]. If the agents with the hidden
feature were proportionally distributed across strata, we would expect stratum 𝑖 to
contain 𝑛𝑖

𝑛 𝑚 of them. Define 𝜖𝑖 as the difference between the actual and expected
number of agents with the hidden feature in stratum 𝑖, i.e., 𝑚𝑖 =

𝑛𝑖
𝑛 𝑚 + 𝜖𝑖. Note

that ∑𝑖∈[ℓ] 𝜖𝑖 = 0.
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After stratification, we assume that 𝒜 will select ∼𝑘𝑖 agents out of each stratum 𝑖
uniformly at random. Conceptually, ∼𝑘𝑖 should be 𝑘𝑖 ≔

𝑛𝑖
𝑛 𝑘, which would guar-

antee that every agent is selected with the appropriate probability. However, 𝑘𝑖
may not be integer, in which case it is necessary to randomly “round”2 𝑘𝑖 to get 2: In the rounding scheme proposed in Sec-

tion 4.4, ∼𝑘𝑖 can take on integer values be-
tween ⌊𝑘𝑖⌋ − 1 and ⌈𝑘𝑖⌉ + 1, so our use of the
term is slightly non-standard.

∼𝑘𝑖. Because the sampling happens independently in each stratum, the variance of
𝐴𝑛,𝑘𝑀 is

ℓ
�
𝑖=1

∼𝑘𝑖
𝑚𝑖
𝑛𝑖

�1 −
𝑚𝑖
𝑛𝑖
�
𝑛𝑖 −

∼𝑘𝑖
𝑛𝑖 − 1

,

conditioned on the choice of the ∼𝑘𝑖.

4.3 Warming Up in a Continuous Setting

We hope to employ stratification to decrease the variance of the number of
selected agents possessing a hidden feature. There are two ways in which the
discrete nature of our setting complicates studying this variance, however.

First, the ∼𝑘𝑖 draws from a single stratum (or the 𝑘 draws for uniform sampling)
are not independent, since the same agent cannot be chosen multiple times. This
leads to variance terms of the form ∼𝑘𝑖

𝑚𝑖
𝑛𝑖
(1 − 𝑚𝑖

𝑛𝑖
) 𝑛𝑖−

∼𝑘𝑖
𝑛𝑖−1

rather than ∼𝑘𝑖
𝑚𝑖
𝑛𝑖
(1 − 𝑚𝑖

𝑛𝑖
).

Since the ∼𝑘𝑖 are typically much smaller than the 𝑛𝑖, these correction factors have
a modest impact, but they suffice to make the variances less well-behaved.

Second, the indivisibility of agents forces us to round the 𝑘𝑖. Again, this rounding
should not change the big picture, but showing this requires careful analysis.

To understand the high-level impact of rounding on variance, we will for now
ignore these complications. We study a setting in which the agents form a con-
tinuum. To make the connections between the models more suggestive, we reuse
the notation from our standard model, but would like to point out where the con-
tinuous setting differs: Algorithms can now return any multiset with cardinality 𝑘
and support 𝑁. Accordingly, the uniform mechanism now returns the collection
of 𝑘 independent uniform draws3 from 𝑁 and has a variance of 𝑘 𝑚𝑛 (1 −

𝑚
𝑛 ). Each 3: This is not equivalent to returning a uni-

formly chosen multiset. For example, the
multiset {1, … , 𝑘} is 𝑘! times more likely than
the multiset containing the first agent 𝑘
times.

agent 𝑥 is expected to appear 𝑘/𝑛 times in the panel, and this is what we require of
all algorithms in this setting. All stratified-sampling algorithms will simply have
∼𝑘𝑖 = 𝑘𝑖 (i.e., we ignore that this number might not be integer) and sample from
every stratum as the uniform algorithm samples from the whole population.
Thus, the variance of stratified sampling is ∑𝑖 𝑘𝑖

𝑚𝑖
𝑛𝑖
(1 − 𝑚𝑖

𝑛𝑖
).

Surprisingly, in this setting, the benefits of stratification come entirely for free!
More precisely, stratification never increases the variance over uniform sam-
pling — but can bring it all the way down to zero if every stratum contains either
only members of 𝑀, or only members of its complement. The same argument
can be applied to any preexisting stratum to argue for further subdivision, down
to the level of individual agents. Notably, this observation does not extend to
the discrete case, where we will see that such extreme stratification leads to a
potentially large increase in variance due to rounding.

Proposition 4.1 In the continuous setting, for any stratified-sampling algorithm
𝒜 and any𝑀, it holds that Var(𝐴𝑛,𝑘𝑀 ) ≤ Var(𝑈𝑛,𝑘

𝑀 ).
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Proof. We bound

Var(𝐴𝑛,𝑘𝑀 ) =
ℓ
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where 𝜇 is the optimal value of

max
𝑚𝑖

�
ℓ
�
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𝑖
𝑛𝑖
� �

ℓ
�
𝑖=1
𝑚𝑖 = 𝑚� .

In our setting, the𝑚𝑖 must be integers between 0 and 𝑛𝑖, but relaxing this require-
ment to 𝑚𝑖 ∈ ℝ can only make the term larger, so the above inequality continues
to hold.

Since the maximized function is concave (and smooth), and since the equality
constraint is affine, the KKT conditions are sufficient for a global maximum. For
this, we need a real constant 𝜆 which equals −1 + 2 𝑚𝑖

𝑛𝑖
for all 𝑖, which means

that 𝑚𝑖
𝑛𝑖
=

𝑚𝑗
𝑛𝑗

for all 𝑖, 𝑗 ∈ [ℓ]. This can easily be reconciled with the constraint

∑
𝑖𝑚𝑖 = 𝑚 by choosing the common value of the 𝑚𝑖

𝑛𝑖
as 𝑚

𝑛 . In other words, the
worst case variance occurs when the hidden feature appears in every stratum
with the same density as in the overall population. It follows that

Var(𝐴𝑛,𝑘𝑀 ) ≤
𝑘
𝑛
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𝑀 ).

For the rest of the chapter, we return to our standard discrete setting.

4.4 Main Result: The Variance of Stratified Sampling

In this section, we transport the result of Proposition 4.1 from the continuous
utopia to our discrete reality. We first discuss rounding, then turn to establishing
an upper bound on the variance of stratified sampling.

4.4.1 Block Rounding

Arguably the most significant obstacle to studying the variance of stratified
sampling is the construction of a rounding mechanism. How should we round
𝑘𝑖 to get ∼𝑘𝑖? To satisfy Equation (4.1), every stratum 𝑖 must satisfy 𝔼[∼𝑘𝑖] = 𝑘𝑖.
Simultaneously, the rounding must be dependent to ensure that ∑𝑖

∼𝑘𝑖 = 𝑘.

How we do this can seriously affect the variance. Consider the case where half of
the strata are full of agents in 𝑀 and the other half contain none of them. Then,
after rounding, 𝐴𝑛,𝑘𝑀 is deterministic and has zero variance. All variance comes
from the rounding process, which directly assigns between 0 and𝑂(ℓ) additional
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𝑛1𝑛1 𝑛2𝑛2 𝑛3𝑛3 𝑛4𝑛4

𝑛/𝑘 𝑛/𝑘 𝑛/𝑘 𝑛/𝑘 𝑛/𝑘 𝑛/𝑘 𝑛/𝑘

𝜌1 𝜆2 𝜌2 𝜆3 𝜌3 𝜆4

Figure 4.2: Example illustrating block
rounding, with ℓ = 4 strata (boxes) and 𝑘 =
7many blocks (areas between dashed lines).
The indicated 𝜆𝑖 and 𝜌𝑖 should be divided
by 𝑛/𝑘 such that, for example, 𝜌1 + 𝜆2 = 1.
Both 𝜆1 and 𝜌4 are zero.

seats to 𝑀. Since the rounding decisions are not independent, the introduced
variance may be in 𝑂(ℓ2), which can drastically exceed the variance of uniform
sampling. Ideally, our rounding mechanism would never add more variance than
what lies between the real variance and the variance of uniform sampling on the
same 𝑀.

Since we were not able to make such an argument for off-the-shelf dependent
randomized rounding mechanisms as defined by Chekuri et al. [CVZ09], we [CVZ09] Chekuri et al. (2009): Dependent

Randomized Rounding forMatroid Polytopes
and Applications.

propose our own rounding mechanism, which we refer to as block rounding .
Imagine lining up the agents, stratum by stratum, in the order of strata. As shown
in Figure 4.2, draw a line every 𝑛/𝑘 agents to obtain a block for each of the 𝑘 open
seats.

Some of these blocks only contain agents from a single stratum (for example, the
first, third, fourth, and seventh blocks in Figure 4.2). Such a seat will certainly be
filled with an agent from that stratum. For each stratum 𝑖, denote the number of
seats guaranteed to be filled by one of its members by 𝑔𝑖.

We make the innocuous assumption (as explicitly done in Theorem 4.2) that
𝑛𝑖 ≥ 𝑛/𝑘, i.e., each stratum is large enough that it is entitled to at least one seat
in expectation. It follows that blocks of size 𝑛/𝑘 can intersect at most two strata.
Consider a block that intersects two strata 𝑖 and 𝑖 + 1. Let the fraction of the
block intersecting stratum 𝑖 be 𝜌𝑖 and the fraction intersecting stratum 𝑖 + 1,
𝜆𝑖+1. The seat corresponding to this block’s seat will be drawn from stratum 𝑖
with probability 𝜌𝑖 and else (with probability 𝜆𝑖+1) from stratum 𝑖 + 1, and this
decision is made independently for each block. We will record these options
through binary random variables 𝑅𝑖 and 𝐿𝑖+1, specifically, 𝑅𝑖 = 1with probability
𝜌𝑖 and 𝐿𝑖+1 = 1 − 𝑅𝑖. When the end of a stratum lines up with the border of a
block, the corresponding variables are zero.

Thus, we choose ∼𝑘𝑖 ≔ 𝑔𝑖 + 𝐿𝑖 + 𝑅𝑖 many agents from stratum 𝑖.4 It is easy to 4: Going forward, we assume that this is
indeed feasible, i.e., that ∼𝑘𝑖 never exceeds
𝑛𝑖. This can be enforced through extremely
mild assumptions, e.g., by requiring 𝑘 ≤ 𝑛/3
for all 𝑖.

see that 𝔼[∼𝑘𝑖] = 𝑘𝑖 and that ∑𝑖
∼𝑘𝑖 = 𝑘. Furthermore, all 𝐿𝑖 and 𝑅𝑗 belonging to

different blocks are independent, whereas for all 𝑖,

CoVar(𝑅𝑖, 𝐿𝑖+1) = 𝔼[𝑅𝑖 𝐿𝑖+1] − 𝔼[𝑅𝑖] 𝔼[𝐿𝑖+1] = 𝔼[0] − 𝜌𝑖 𝜆𝑖+1 = −𝜌𝑖 (1 − 𝜌𝑖).

4.4.2 Variance Upper Bound

Using the foregoing rounding scheme construction, we are able to formulate and
prove our main result.

Theorem 4.2 For some 𝑛 and 𝑘, let 𝒜 (𝑁, 𝑘) be a stratifying algorithm based
on block rounding. Suppose that every stratum 𝑖 has size 𝑛𝑖 ≥ 𝑛/𝑘, i.e., that the
expected number 𝑘𝑖 of selected representatives from 𝑖 is at least 1. Then, for any



4 Benefits of Stratified Sampling 41

𝑀 ⊆ 𝑁,
Var �𝐴𝑛,𝑘𝑀 � ≤

𝑛 − 1
𝑛 − 𝑘

Var �𝑈𝑛,𝑘
𝑀 � .

If we assume that 𝑘 grows much slower than 𝑛, 𝑛−1𝑛−𝑘 is essentially 1 for large 𝑛. For
example, for the UK Climate Assembly [Cli20], this number is around 1.000 002. [Cli20] Climate Assembly UK (2020): The

path to net zero: Full report.Thus, we nearly recover what we found in the continuous case: that stratification
can only decrease variance.

Turning to the theorem’s proof, we advise the interested reader to pay attention to
the 𝜖𝑖 terms, as defined in Section 4.2. We find their appearance, and subsequent
disappearance, particularly satisfying.

Proof of Theorem 4.2. Since we fix the algorithm and 𝑀, we will simplify the
notation by setting 𝐴 ≔ 𝐴𝑛,𝑘𝑀 and 𝑈 ≔ 𝑈𝑛,𝑘

𝑀 . By the law of total variance,

Var(𝐴) = 𝔼[Var(𝐴 ∣ 𝐿1, … , 𝐿ℓ, 𝑅1, … , 𝑅ℓ)] + Var(𝔼[𝐴 ∣ 𝐿1, … , 𝐿ℓ, 𝑅1, … , 𝑅ℓ]),
(4.2)

where the outer expectation and variance range over the choices of the 𝐿𝑖 and 𝑅𝑖.

Recall that ∼𝑘𝑖 = 𝑔𝑖 + 𝐿𝑖 + 𝑅𝑖 ∈ ℕ is the (rounded) number of agents sampled
from stratum 𝑖. We bound the first summand:

𝔼[Var(𝐴 ∣ 𝐿1, … , 𝐿ℓ, 𝑅1, … , 𝑅ℓ)]
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𝑖
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.
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Recall that the uniform algorithm had a variance of

Var(𝑈) = 𝑘
𝑚
𝑛
�1 −

𝑚
𝑛
�
𝑛 − 𝑘
𝑛 − 1

.

Thus, the first summand of Equation (4.2) can be bounded as

𝔼[Var(𝐴 ∣ 𝐿1, … , 𝐿ℓ, 𝑅1, … , 𝑅ℓ)] ≤
𝑛 − 1
𝑛 − 𝑘

Var(𝑈) −
𝑘
𝑛
�
𝑖

𝜖2𝑖
𝑛𝑖
. (4.3)

Now, consider the second summand of Equation (4.2), which was Var(𝔼[𝐴 ∣
𝐿1, … , 𝐿ℓ, 𝑅1, … , 𝑅ℓ]).

Var(𝔼[𝐴 ∣ 𝐿1, … , 𝐿ℓ, 𝑅1, … , 𝑅ℓ])

= Var ��
𝑖

𝑚𝑖
𝑛𝑖

∼𝑘𝑖�
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𝑖
�
𝑚
𝑛
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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+
𝑚
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𝜖𝑖
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𝑖
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𝑅𝑖� .

We can rewrite the latter variance of a linear combination as

=�
𝑖
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𝑛𝑖
�
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Var(𝐿𝑖) +�
𝑖
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≤
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𝑖
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+ 2 �
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𝑛𝑖

𝜖𝑗
𝑛𝑗

CoVar(𝑅𝑖, 𝑅𝑗),

where the last step used the fact that binary variables have variance of at most 1
4 .

As noted, nearly all of these 𝐿𝑖 and 𝑅𝑖 are independent, and thus, their covariance
is zero. This allows us to drop most covariance terms, with only ℓ − 1 many
remaining. All other rounding methods we considered correlate more pairs of
variables, leading to bounds on the second term that might far exceed the first
term.5 Block rounding allows us to continue 5: While dependent rounding [CVZ09]

guarantees negative correlation, this is not
helpful when two strata have different
sgn(𝜖𝑖).

Var(𝔼[𝐴 ∣ 𝐿1, … , 𝐿ℓ, 𝑅1, … , 𝑅ℓ]) (4.4)

=
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𝜌𝑖 (1 − 𝜌𝑖)
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≤
1
2
�
𝑖
�
𝜖𝑖
𝑛𝑖
�
2

+ 2
ℓ−1
�
𝑖=1

|𝜖𝑖|
𝑛𝑖

|𝜖𝑖+1|
𝑛𝑖+1

𝜌𝑖 (1 − 𝜌𝑖)

≤
1
2
�
𝑖
�
𝜖𝑖
𝑛𝑖
�
2

+
1
2

ℓ−1
�
𝑖=1

|𝜖𝑖|
𝑛𝑖

|𝜖𝑖+1|
𝑛𝑖+1

.

For all real numbers 𝑎 and 𝑏, 𝑎2+𝑏2−2 𝑎 𝑏 = (𝑎−𝑏)2 ≥ 0, and thus, 12 (𝑎
2+𝑏2) ≥ 𝑎 𝑏.

Accordingly,
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, (4.5)

where the final step uses the assumption 𝑛𝑖 ≥ 𝑛/𝑘. Inserting this bound and
Equation (4.3) into Equation (4.2), we obtain the desired bound of

Var(𝐴) ≤
𝑛 − 1
𝑛 − 𝑘

Var(𝑈).

As we mentioned above, the theorem shows only a small multiplicative loss. Can
we make it even smaller? No: The following example shows that the bound given
by Theorem 4.2 is tight.

Example 4.1 Let 𝑘 divide 𝑛, and let all ℓ ≔ 𝑘 strata have equal size 𝑛/𝑘. Note
that this setting will not lead to rounding. Furthermore, let all strata have
equal 𝑚𝑖 ≕ 𝑚0. Under uniform sampling, the variance is 𝑘 𝑚0 𝑘𝑛 (1 − 𝑚0 𝑘

𝑛 ) 𝑛−𝑘𝑛−1 .
Under stratification, the variance is

ℓ �1
𝑚0
𝑛/𝑘 �

1 −
𝑚0
𝑛/𝑘�

𝑛/𝑘 − 1
𝑛/𝑘 − 1�

= 𝑘
𝑚0 𝑘
𝑛 �1 −

𝑚0 𝑘
𝑛 � .

We conclude that there are instances where Theorem 4.2 is tight.

If we ignore the 𝑛−1
𝑛−𝑘 factor, stratification does not increase the variance. This is

reassuring, but we consider stratification in the hope that it will reduce variance.
If we stratified well and managed to concentrate the hidden feature in some strata
and not in others, we would like a guaranteed improvement in variance over
uniform sampling. As it turns out, the proof of Theorem 4.2 immediately gives
us such a bound, just by assuming slightly larger strata.

Corollary 4.3 In the setting of Theorem 4.2, assume furthermore that every
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stratum has size 𝑛𝑖 ≥ 𝛼
𝑛
𝑘 for some constant 𝛼 ≥ 1. Then, for any𝑀 ⊆ 𝑁,

Var �𝐴𝑛,𝑘𝑀 � ≤
𝑛 − 1
𝑛 − 𝑘

Var �𝑈𝑛,𝑘
𝑀 � − �1 −

1
𝛼�

𝑘
𝑛
�
𝑖

𝜖2𝑖
𝑛𝑖
.

Proof. In Equation (4.5) in the proof of Theorem 4.2, use 𝑛𝑖 ≥ 𝛼 𝑛
𝑘 instead of

𝑛𝑖 ≥
𝑛
𝑘 .

This bound generalizes the previous one and, as all 𝜖𝑖 are 0 in Example 4.1, it is also
tight. But it is more interesting to look at this bound in settings with rounding.
In the proof of Theorem 4.2, we saw that the expectation of the variance was
essentially6 6: Up to factors of 𝑛𝑖−

∼𝑘𝑖
𝑛𝑖−1

, which are essen-
tially 1 for large 𝑛/𝑘.𝑛 − 1

𝑛 − 𝑘
Var �𝑈𝑛,𝑘

𝑀 � −
𝑘
𝑛
�
𝑖

𝜖2𝑖
𝑛𝑖
.

The additional 1𝛼
𝑘
𝑛
∑
𝑖
𝜖2𝑖
𝑛𝑖

in the bound of Corollary 4.3 accounts for the variance
of expectation, i.e., for the increase in variance caused by rounding. The following
example demonstrates that this treatment is nearly tight.

. . .𝑛1𝑛1 𝑛2𝑛2 𝑛3𝑛3 𝑛ℓ−1𝑛ℓ−1 𝑛ℓ𝑛ℓ

(𝛼 + 1
2 ) 𝑛/𝑘(𝛼 + 1
2 ) 𝑛/𝑘 𝛼 𝑛/𝑘 𝛼 𝑛/𝑘 𝛼 𝑛/𝑘 (𝛼 + 1

2 ) 𝑛/𝑘(𝛼 + 1
2 ) 𝑛/𝑘

Figure 4.3: Example 4.2 for 𝛼 = 2. All agents
in hatched strata are in𝑀; none of those in
dotted strata are.

Example 4.2 For a given integer 𝛼 ≥ 1, let ℓ ≔ 𝑘−1
𝛼 be an even integer. Set

𝑛1 = 𝑛ℓ = (𝛼 + 1
2 )
𝑛
𝑘 and all other 𝑛𝑖 to 𝛼 𝑛

𝑘 , and assume that these numbers
are integers as well. Let 𝑀 be exactly all strata with odd indices. This implies
that 𝑚 = 𝑛

2 , thus 𝑛−1
𝑛−𝑘 Var(𝑈𝑛,𝑘

𝑀 ) = 𝑘
4 . The strata are laid out as in Figure 4.3:

ℓ − 1 of the blocks of Section 4.4.1 are split half-half between an all-in-𝑀 and
a none-in-𝑀 stratum while all other blocks are fully in 𝑀 or not in 𝑀. The
variance is the same as that of a sum of ℓ − 1 independent Bernoulli trials with
probability 1/2, which is ℓ−1

4 = 𝑘
4 𝛼 −

1+𝛼
4𝛼 .

Since the 𝜖𝑖
𝑛𝑖

alternate between 1
2 and − 12 , the bound of Corollary 4.3 reduces to

𝑘
4
− �1 −

1
𝛼�

𝑘
𝑛
�
𝑖
𝑛𝑖 �

𝜖𝑖
𝑛𝑖
�
2

=
𝑘
4
− �1 −

1
𝛼�

𝑘
4 𝑛

�
𝑖
𝑛𝑖 =

𝑘
4𝛼

,

which only leaves an additive gap of 1+𝛼
4𝛼 ∈ (1/4, 1/2] to the actual variance of

𝐴𝑛,𝑘𝑀 . This gap is independent of the instance size, so if we fix 𝛼 and let 𝑘 go to
infinity, the ratio between our bound and the actual variance converges to 1.

4.5 General Selection Algorithms

So far, we have compared stratified sampling to the baseline of uniform sampling.
Since these are the options widely discussed in the literature, this was a natural
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choice. Nevertheless, we should reassure ourselves that we do not overlook novel
selection algorithms that might surpass both in terms of variance.

In this section, we consider general algorithms 𝒜 (𝑁, 𝑘), not necessarily based
on sampling, for some 𝑘 ≥ 2. Every such algorithm is uniquely defined by
probabilities 𝑝𝐶 for all 𝐶 ∈ �𝑁𝑘�, where each 𝑝𝐶 gives the probability of choosing
the panel 𝐶.7 In the following, 𝐶 always ranges over �𝑁𝑘�. We continue to require 7: For a set 𝑁 and an integer 𝑘, �𝑁𝑘� denotes

the set of all subsets of 𝑁 with cardinality 𝑘.that the algorithm preserve expectations, which is equivalent to selecting each
agent 𝑥 ∈ 𝑁 with probability ∑𝐶∋𝑥 𝑝𝐶 = 𝑘/𝑛.

After fixing𝒜, fix a subset𝑀 of𝑁. Since𝑁 and 𝑘 are clear, we drop the superscript
from 𝐴𝑛,𝑘𝑀 and extend the notation 𝐴𝑀′ ≔ |𝒜 ∩𝑀′| to other subsets 𝑀′ of 𝑁.
Furthermore, we set 𝐴𝑥 ≔ 𝐴{𝑥} for all 𝑥 ∈ 𝑁. Then, we can write the variance of
𝐴𝑀 as

Var(𝐴𝑀) = Var ��
𝑥∈𝑀

𝐴𝑥� = �
𝑥∈𝑀

Var(𝐴𝑥)���������

= 𝑘
𝑛 �1−

𝑘
𝑛 �

+2 �
𝑥<𝑦∈𝑀

CoVar(𝐴𝑥, 𝐴𝑦)�������������������

=ℙ[𝐴𝑥∧𝐴𝑦]−�
𝑘
𝑛 �
2

= |𝑀|
𝑘
𝑛
− |𝑀|2 �

𝑘
𝑛�

2

+ 2 �
𝑥<𝑦∈𝑀

ℙ[𝐴𝑥 ∧ 𝐴𝑦]. (4.6)

For specific priors on𝑀, some complicated𝒜might reduce the expected variance
better than any algorithm based on stratification. In general, however, we show
that no such algorithm is a clearly superior choice. For this, we show that no
algorithm𝒜 dominates another algorithm𝒜 ′, i.e., strictly decreases the variance
on some 𝑀 without increasing the variance on any 𝑀; the proof is relegated to
Appendix A.1 of the full version.

Proposition 4.4 Let there be two algorithms𝒜 (𝑁, 𝑘) and𝒜 ′(𝑁, 𝑘), and let their
corresponding randomvariables be called𝐴𝑀 and𝐴′𝑀, respectively. IfVar(𝐴𝑀) <
Var(𝐴′𝑀) for some𝑀, there is an𝑀′ such that Var(𝐴𝑀′) > Var(𝐴′𝑀′).

Thus, no matter how we choose to stratify, we have the peace of mind that no
other selection algorithm is universally preferable.

Another reason for selecting an algorithm outside of stratification might be if
it had a much better worst-case guarantee. In other words, such a hypothetical
algorithm would guarantee a low variance to all groups 𝑀 in the population,
which might be attractive in the absence of much information about 𝑀. As we
show in Proposition 4.5 (whose proof is relegated to Appendix A.2 of the full
version), uniform sampling turns out to be optimal from this worst-case perspec-
tive. By extension, since Theorem 4.2 guarantees that stratified sampling can only
be marginally worse on any 𝑀, stratified sampling must also be competitive.

Proposition 4.5 Uniform sampling minimizes max𝑀⊆𝑁Var(𝐴𝑀) among all al-
gorithms.

Interestingly, uniform sampling is not the only algorithm with this property: As
shown by the following example, there are non-uniform selection algorithms

https://dl.acm.org/doi/pdf/10.1145/3328526.3329578#page=20
https://dl.acm.org/doi/pdf/10.1145/3328526.3329578#page=20
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that have the same variance as uniform sampling on every 𝑀 ⊆ 𝑁, at least for
some values of 𝑛 and 𝑘.

16

5

4 3

2

16

5

4 3

2

16

5

4 3

2

16

5

4 3

2

Figure 4.4: Specification of the selection al-
gorithm in Example 4.3.

Example 4.3 Let 𝑛 ≔ 6 and 𝑘 ≔ 3. Let 𝒜 (𝑁, 𝑘) be the algorithm which picks
one of the ten triangles displayed in Figure 4.4, uniformly at random, and
returns its vertices. In this representation, we can see that it is obtained from
the uniform mechanism by dropping every second rotation of the sets, for
instance, the set {1, 2, 3}.

One can verify that every 1 ≤ 𝑥 ≤ 6 appears in the result with probability
𝑘/𝑛 = 1/2. Furthermore, every set 𝑥, 𝑦 is jointly selected with probability
�𝑘2�/�

𝑛
2� = 1/5, just as by the uniform algorithm. Thus, by Equation (4.6), the

variance equals the variance of the uniform algorithm for every 𝑀.

4.6 Experiments

As we showed in the previous sections, there is practically no harm in stratifying
to a very fine granularity. If the strata correlate well with all relevant 𝑀, the
variance can be reduced considerably.

In this section, we investigate how such stratifications can be found without
knowing 𝑀. Any such argument need rely on the correlation between visible
features and 𝑀 in a population. We explore these relationships using data from
the General Social Survey (GSS) [SDFH18] of the years 2014 and 2016.8 The

[SDFH18] Smith et al. (2018): General Social
Surveys, 2014 and 2016.

8: The GSS is representative of the adult
population living in US households (subject
to being able to complete the survey in En-
glish or Spanish). Because we do not weight
participants, we cannot claim representa-
tiveness. Our sample likely underrepresents
individuals living in large households and
individuals who initially refuse to partici-
pate in the survey.

subpopulations that we use of each year contain 1 714 and 1 956 agents, respectively.
In all of our experiments, we set 𝑘 to 50. This is a compromise between having
a reasonably large panel without the panel being too large of a fraction of the
population.

Since ratios of variances are hard to interpret, we benchmark stratifications by
their equivalent panel size. For a given stratification and group ∅ ⊊ 𝑀 ⊊ 𝑁, we
can compute its normalized variance Var (𝐴𝑛,𝑘𝑀 /𝑘). Its equivalent panel size 𝑘′
is the panel size such that the uniform mechanism has the same normalized
variance Var (𝑈𝑛,𝑘′

𝑀 /𝑘′).9

9: We allow equivalent panel sizes to be frac-
tional, interpolating the uniform variance
using the formula 𝑘𝑚/𝑛 (1 −𝑚/𝑛) (𝑛 − 𝑘)/(𝑛 −
1).

Figure 4.5 shows the conversion between ratios of variances and equivalent panel
sizes for our choice of 𝑛 and 𝑘. As shown in Appendix A.3 of the full version, the
equivalent panel size can be directly computed as

𝑛 𝑘
(𝑛 − 𝑘)Var(𝐴𝑛,𝑘𝑀 )/Var(𝑈𝑛,𝑘

𝑀 ) + 𝑘
.

If a stratification has an equivalent panel size of 50+ 𝑥 on a relevant𝑀, the strati-
fication saved 𝑥 seats without reducing the accuracy of𝑀’s representation. Based
upon the Irish Citizens’ Assembly’s cost of roughly €10 000 per participant,10 10: The Assembly spent around €1 million

in the categories “conference/catering and
accommodation”, “reimbursement of travel
and other expenses”, and “recruitment of
members/facilitation and notetaking ser-
vices” [Iri19b].

high equivalent panel sizes imply a significant reduction in the cost of a citizens’
panel due to stratification.

Our simulation code, along with the exact experimental setup as an IPython
notebook, are available at https://github.com/pgoelz/sortition.

https://dl.acm.org/doi/pdf/10.1145/3328526.3329578#page=20
https://github.com/pgoelz/sortition
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Figure 4.5:Conversion between ratio of vari-
ances and equivalent panel size for 𝑘 = 50,
independent of 𝑚.

4.6.1 Random Stratification

We begin with a quantitative overview over the effect of fine-grained stratifi-
cation on variance. For this, we benchmark random stratifications based on
demographic features with respect to groups 𝑀 induced by random other fea-
tures of the GSS dataset.

We identify 14 “demographic” features, capturing age, gender, race, social class,
education, region of living, general happiness, religion, party affiliation, num-
ber of children, marital state, veteran status, urban-rural divide, and whether
the individual was born abroad.11. Our stratifications are induced by a random 11: See Appendix D.1 of the full version.
permutation of these features. We traverse the features in order, in every step sub-
dividing every stratum greedily by the current feature, subject to the constraint
that no stratum be smaller than 𝑛/𝑘. The groups 𝑀 are determined by a random
column other than the demographic features. We pick a random individual, and
define 𝑀 to either be all agents with lower or larger value in this column.12 Since 12: We do not consider columns with more

than 10� missing entries, agents who do
not have a value in the given column, and
groups𝑀 containing no or all agents.

similar features are usually encoded with sequential numbers, we hope that this
will lead to relatively coherent groups.
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Figure 4.6: Equivalent panel size for 250 ran-
dom stratifications per year. Omitting three
outliers per year above 68. Triangles mark
means.

As guaranteed by Theorem 4.2, no stratification increases variance by more than a
factor of 𝑛−1𝑛−𝑘 , which is approximately 1.03 for both years. Expressed in equivalent
panel sizes, this guarantees sizes of at least 48.6 in 2014 and of 48.8 in 2016. As
shown in Figure 4.6, we did not observe any panel sizes close to this theoretical
lower bound, with all values staying above 49.7. A large fraction of equivalent
panel sizes are above 50, implying that even random stratification is more likely
to be beneficial than harmful. The mean equivalent panel size is about 51.5 (2014)
and 54.0 (2016), but the latter is skewed by a few large outliers. Still, a majority of
stratifications give modest improvements — around one seat-equivalent — over
uniform distributions.

Clearly, it is possible to increase the equivalent panel size further. It remains to
be seen, however, whether targeted stratification can achieve this simultaneously
for a broad set of unknown features.

4.6.2 Case Study: Comparison of Stratification Methods

To show this, we recreate the situation of a panel organizer. Hopefully, using
insights from our theoretical analysis, a human stratifier can decrease the variance
for unknown groups 𝑀, and go beyond uninformed stratification, say by the

https://dl.acm.org/doi/pdf/10.1145/3328526.3329578#page=24
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intersections of gender and race. We also experiment with automatic stratification
based on 𝑘-means clustering (where the number of clusters is ℓ, not 𝑘).

One collaborator took the role of the stratifier. Until the stratification was com-
plete, we isolated them from information about the dataset (including the anal-
yses of the previous section). Our pre-committed experimental setup can be
found in Appendix C of the full version.

We want to benchmark the different approaches on groups 𝑀 that might be
relevant in a political context. Thus, we identified 10 “attitude” features for each of
the years and projected them into binary features.13 These attitude features reflect 13: See Appendix D.2 of the full version.
opinions touching a wide range of issues, including social liberties, economic
policy, penal law, and trust in institutions. No pair of attitude features has a higher
(anti-)correlation than 37%, with most pairs being well below that. For each year,
a random subset of five attitude features was made available to the stratifier
and the clustering algorithm. Their stratifications should have low variance for
the remaining attitude features, of which the stratifier does not even know the
category name. The revealed attitudes allow the stratifier to build an intuition
for the political topology and to get an impression of the kinds of groups they
will have to accommodate. In practice, similar information (and likely more) is
available from experience, polling, and knowledge about upcoming issues. The
rationale for the manual stratification is documented in Appendix E of the full
version. Important elements of the high-level approach — such as the granularity
of stratification, the goal of polarizing strata, and the sequential ordering of the
strata — were directly motivated by our technical analysis.

We also consider a stratification based on 𝑘-means clustering. Since the de-
mographic and revealed features form a high-dimensional space, a clustering
algorithm might be better at identifying coherent subgroups than a human. We
request ℓ ≔ 48 clusters, the maximum number for which each stratum can still
have a size of at least 𝑛/𝑘. As documented in the experimental setup, we translate
the features into real vectors in a relatively naïve way. We do not attempt to
scale features differently and simply optimize the squared Euclidean distance. A
more principled approach to clustering might lead to better results, but is outside
of the scope of this work. We slightly deviated from our experimental setup
by using constrained 𝑘-means clustering [BBD00] instead of balanced 𝑘-means [BBD00] Bradley et al. (2000): Constrained

K-Means Clustering.clustering. While balanced clustering constrains all clusters to have size between
⌊𝑛/ℓ⌋ and ⌈𝑛/ℓ⌉, we only require the lower bound. We decided to do so after
observing strongly non-contiguous clusters formed by balanced clustering even
on two-dimensional toy examples.

Finally, the gender-race stratification gives one stratum to each combination of
white/black/other and male/female. Stratifying by these categories can be easily
implemented, and the features of race and gender are often controlled by quotas
in practice.

As displayed in Figure 4.7, we find that manual stratification clearly outperforms
all other stratification approaches. For all tested groups, variance of distribution
decreases over the baseline of uniform sampling. In four out of the six cases, this
increase corresponds to an increase in panel size of more than four seats, i.e.,
by 8%. Clustering performs second best and marginally beats manual stratifica-
tion for two attitude groups. For several groups 𝑀 however, clustering performs

https://dl.acm.org/doi/pdf/10.1145/3328526.3329578#page=22
https://dl.acm.org/doi/pdf/10.1145/3328526.3329578#page=26
https://dl.acm.org/doi/pdf/10.1145/3328526.3329578#page=29
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Figure 4.7: Equivalent panel size for differ-
ent attitude groups and different stratifica-
tion mechanisms.
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Figure 4.8: Equivalent panel size for differ-
ent attitude groups and different stratifica-
tion mechanisms, based only on the expec-
tation of variance, ignoring the variance of
expectation.

comparably to simple gender-race stratification, even though the manual strati-
fication was able to make larger gains. Stratifying by race and gender leads to
a slight increase in variance for one group, but still looks worthwhile given the
improvements on other groups. Nevertheless, both manual or clustering-based
stratification are clearly preferable when possible.

How would these results improve in absence of rounding? Depending on how
much the equivalent panel size increases without rounding, it might be more or
less worthwhile to optimize future stratifications in this direction. To examine
this, we decompose the variance as in Equation (4.2) and completely ignore the
variance of expectation. As can be seen in Figure 4.8, this leads to significant gains
for both manual stratification and clustering. While the overall ordering of ap-
proaches remains the same, the clustering approach clearly profits more, with an
average gain of about 1.3 seat-equivalents as compared to the 0.8 seat-equivalents
gained by manual stratification. At first glance, this might be surprising because
𝑘-means leads to near-equal strata sizes. However, this does not imply that the
strata boundaries line up nicely with the blocks since (due to divisibility issues)
there can be at most 48 strata with size at least 𝑛/𝑘. The variance of expectations
is driven by terms of the shape 𝜌𝑖 (1 − 𝜌𝑖) and of the shape (𝑚𝑖/𝑛𝑖 − 𝑚𝑖+1/𝑛𝑖+1)2.
The distribution of these terms for both approaches is displayed in Appendix
B.2 of the full version. The lining up of strata with blocks is reflected in the first
kind of terms; neither kind of stratification has a clear edge there. Instead, the
large rounding losses of 𝑘-means match its significantly higher terms of the sec-
ond kind, which implies that it could profit from optimizing the order of strata.
Adjacent strata should be similar because rounding between strata with similar
concentrations of 𝑀 adds less to the variance of expectation. Our manual strati-
fier explicitly tried to do this, and seems to have been successful. In Appendix
B.3 of the full version, we illustrate this difference for the feature homosex. In
general, we see that rounding should be considered when stratifying, both with
respect to block alignment and ordering.

https://dl.acm.org/doi/pdf/10.1145/3328526.3329578#page=21
https://dl.acm.org/doi/pdf/10.1145/3328526.3329578#page=21
https://dl.acm.org/doi/pdf/10.1145/3328526.3329578#page=22
https://dl.acm.org/doi/pdf/10.1145/3328526.3329578#page=22
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(a)𝑀: “Government should reduce income inequality: response be-
tween in favor and indifferent” (eqwlth).
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(b)𝑀: “US spending too little on parks and recreation” (natpark).

Figure 4.9: Distribution of different𝑀 over manual 2016 stratification. Overall height of bars is strata size 𝑛𝑖, height of green part (lower end to
diamond) is 𝑚𝑖. Position of black diamonds corresponds to 𝜖𝑖.

We predicted that the key to low variance would be that relevant 𝑀 polarize
as many strata as possible. We inspect the manual stratification of the 2016
dataset to see whether different levels of polarization explain the difference in
success between attitudes like eqwlth (high equivalent panel size) and natpark

(low equivalent panel size). Looking at Figure 4.9, we indeed see a pronounced
difference. For the feature eqwlth (Figure 4.9a), a substantial number of strata
are polarized in each direction. By contrast, the feature natpark (Figure 4.9b)
appears in many strata in a concentration𝑚𝑖/𝑛𝑖 similar to the global concentration
𝑚/𝑛. In the continuous setting, the relative reduction in variance is given by the
ratio between 𝑘

𝑛
∑
𝑖
𝜖2𝑖
𝑛𝑖

and 𝑘 𝑚𝑛 (1 −
𝑚
𝑛 ). This indicator for the polarization in both

stratifications captures the superior performance on eqwlth (14.9%) over that
on natpark (3.7%). Corresponding values for all stratifications and features are
available in Appendix B.1 of the full version.
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Figure 4.10: Equivalent panel sizes for differ-
ent stratifications, including manual stratifi-
cation when knowing category description.

Finally, we wanted to see whether our human stratifier can stratify better when
given the question defining a group 𝑀, without having information about which
individuals belong to this group. The previous experiment models the situation
of a general-purpose panel whose topics of discussion are not fixed at selection
time. Revealing the question defining𝑀 could then reflect the situation of a panel
convening to debate a fixed issue without specialized polling information on this
issue. For each year, we revealed one random category description: tax in 2014
and helpsick in 2016. In both cases, our stratifier adapted the general-purpose
stratification created earlier, and attempted to stratify on available features that
seemed most relevant to the revealed category. While the specialized stratification
added around one seat-equivalent for the helpsick group, variance slightly
increased on the tax group. Further experimentation will be needed to see
whether knowing the category consistently helps in manual stratification.

4.7 Discussion

In this chapter, we examined the effect of stratification in the idealized sortition
setting. We formulated the goal of minimizing the variance for opinion groups,
proposed a low-variance rounding scheme, and characterized the variance un-
der stratification. We have applied these contributions in a case study, and our
results suggest that stratification indeed has positive effects on representation

https://dl.acm.org/doi/pdf/10.1145/3328526.3329578#page=21
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in a realistic setting. It seems to us that there is more potential for the fields of
artificial intelligence and computational social choice to contribute to sortition,
starting with the following issues:

Stratification by machine learning. While our clustering approach fell short
of manual stratifications, there is ample room for improvement. A principled
distance measure in the space of demographics and attitudes and a better treat-
ment of rounding may allow automated clustering to surpass manual approaches.
Beyond that, a better solution to the machine learning problem in Section 4.6.2
should distinguish between the demographic and revealed attitude features and
leverage the different types of information they offer.

Optimal stratification and selection. Say that our belief about 𝑀 is given as
an independent probability of membership for every agent. Which stratification
has the lowest expected variance over 𝑀? To decrease variance, it may be useful
not only to negatively correlate similar agents — as we do by placing them in the
same stratum — but also to positively correlate agents at opposite ends of the
opinion spectrum. Even if this is optimal, will the fairness of such an approach
still be convincing? Otherwise stratification, which is already in wide use, might
be the better choice.
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5.1 Introduction

Having studied the random selection of citizens’ assemblies in depth in the pre-
ceding chapters, we now turn our focus to what happens once a citizens assembly
convenes. The most important aspect of a citizens assembly’s work is delibera-
tion — the extensive discussion between assembly members, which ultimately
allows an assembly composed of laypeople to reach judicious recommendations
on a complex issue. Though deliberation lies at the heart of a citizens’ assembly’s
purpose, almost no work so far supports deliberation through computer science.
Deliberation in a citizens’ assembly takes place over a number of sessions, where
in each session, participants are divided into discussion groups, which we refer to
as tables. For example, the Citizens’ Assembly of Scotland, which was convened
by the Scottish Government in 2019–2020, ran over 16 sessions spread across 8
weekends; in each session, the 104 participants were divided across 12 tables.

The work underlying this chapter arises out of a collaboration with the Sortition
Foundation on the design and implementation of algorithms for managing delib-
eration. One problem that our contacts brought up is scheduling the assignment
of participants to tables, which we address in this chapter. The practitioners’
primary goal is find a schedule that, over the course of the process, allows partic-
ipants to exchange ideas with as many other participants as possible. In addition,
tables must be demographically diverse; in the Citizens’ Assembly of Scotland,
they were diversified based on political view, age, and gender.

Currently, the Sortition Foundation as well as other nonprofits use a heuristic
algorithm called GroupSelect [Ver22] to allocate tables, which the Sortition [Ver22] Verpoort (2022): GroupSelect.
Foundation developed. Internally, this algorithm optimizes the objective of max-
imizing the number of pairs of participants who meet at least once, assigning
no value to subsequent meetings. We see two shortcoming with this current ap-
proach: First, as we show in Section 5.6, GroupSelect performs quite poorly in
terms of its chosen objective. Second, the objective itself often fails to encourage
good schedules. We elaborate on this problem in Section 5.3, but an example of
such a problematic situation is when all participants have met each other. At that
point, the objective is indifferent between all possible assignments, and thus even
a schedule repeating the same table assignment across all remaining sessions
would be optimal.

To overcome these shortcomings, we must address several challenges. On a con-
ceptual level, we need a principled measure of interaction between participants,
which we seek to maximize. If interaction is measured as a function of the num-
ber of times each pair of participants meets, how much value should the first
meeting between Alice and Bob have relative to the second, third, or fourth? On
a technical level, we aim to develop a theoretically sound and practical algorith-
mic framework for optimizing our measure of interaction, with an eye towards
real-world deployment.
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5.1.1 Our Approach and Results

It is intuitive that meetings between the same participants have diminishing
marginal returns, e.g., the third meeting does not carry as much value as the
second. We express this idea through what we call a saturation function 𝑓: for
a monotone nondecreasing and concave function 𝑓 ∶ ℕ → ℝ≥0, we model the
goal of maximizing interaction between participants through the submodular
objective ̂𝑓 = ∑{𝑖,𝑗} 𝑓(𝑚𝑖,𝑗), where the sum ranges over all pairs of agents 𝑖, 𝑗 and𝑚𝑖,𝑗

is the number of sessions in which 𝑖 and 𝑗 are assigned to the same table. For any
choice of saturation function 𝑓, we obtain a practical algorithm that maximizes
the corresponding objective ̂𝑓 within an approximation factor of 1 − 1/𝑒 ≈ 63%,
building on a classical result in submodular maximization [NWF78] and using [NWF78] Nemhauser et al. (1978): An Anal-

ysis of Approximations for Maximizing Sub-
modular Set Functions—I.

ILP solver as a subroutine.

But which saturation function 𝑓 should we use? Given that no objective seems
universally better than the others, we pursue an approach of simultaneous approx-
imation [SW97]. Specifically, we design an algorithm that produces schedules [SW97] Stein and Wein (1997): On the Ex-

istence of Schedules That Are Near-Optimal
for Both Makespan and Total Weighted Com-
pletion Time.

that Ω(1/ log𝑇)-approximate the objectives ̂𝑓 for all saturation functions 𝑓 at
once, where 𝑇 is the number of sessions.

We also compare our different optimization algorithms with GroupSelect
on data from seven real citizens’ assemblies. We find that all our algorithms
outperform GroupSelect by a wide margin, including when measured by its
own objective. Two saturation functions, based on the harmonic and geometric
series, seem promising options for optimizing schedules in practice.

5.1.2 Related Work

To our knowledge, one other paper seeks to support deliberation in citizens’
assemblies through a practical, computational approach: Fishkin et al. [FGG+18] [FGG+18] Fishkin et al. (2018): Delibera-

tive Democracy with the Online Deliberation
Platform.

develop a system that automatically manages speaking times and speaker order
in online deliberation. Clearly, this work addresses an orthogonal aspect of the
deliberation process, and their platform could be combined with our algorithms
for table allocation.

From a more theoretical perspective, an extensive line of work [CD20; FGMS17;
GL16; PP15; ZLT21]

[CD20] Chung and Duggan (2020): A For-
mal Theory of Democratic Deliberation.
[FGMS17] Fain et al. (2017): Sequential De-
liberation for Social Choice.
[GL16] Goel and Lee (2016): Towards Large-
Scale Deliberative Decision-Making.
[PP15] Perote-Peña and Piggins (2015):
A Model of Deliberative and Aggregative
Democracy.
[ZLT21] Zvi et al. (2021): Iterative Delibera-
tion via Metric Aggregation.

proposes and analyzes mathematical models for deliberation,
which we see as complementary to our approach. Whereas these papers capture
the dynamics of deliberation with much more nuance than us, this chapter
approaches deliberation through the lens of a practical problem, table allocation,
and its interaction with deliberation.

Our use of submodular objectives follows a long tradition in AI of maximizing [CG98] Carbonell andGoldstein (1998):The
Use of MMR, Diversity-Based Reranking for
Reordering Documents and Producing Sum-
maries.
[LB11] Lin and Bilmes (2011): A Class of Sub-
modular Functions for Document Summa-
rization.

submodular functions to obtain diverse solutions. For example, this methodology
encourages different parts of a multi-document summary to refer to different
sources [CG98; LB11], sensors to be placed where they can collect complemen-
tary information [KSG08], or papers to be assigned to reviewers with different

[KSG08] Krause et al. (2008):Near-Optimal
Sensor Placements in Gaussian Processes.

expertise [ADF17]. In our application, the submodular objective encourages

[ADF17] Ahmed et al. (2017): Diverse
Weighted Bipartite B-Matching.

schedules to vary which pairs of assembly members meet across the sessions.

Finally, our setup resembles a classic problem in combinatoric optimization
known as the social golfer problem:
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𝑛 golfers must be repeatedly partitioned into 𝑘 groups, each of equal
size 𝑠. Find a schedule of maximum length given that no two golfers
may be placed in the same group twice.

Much work in this space has either analyzed the solutions for specific 𝑛 and
𝑘, or optimized Boolean satisfiability formulations to find long schedules (e.g.,
[LMCS15; SSV22; TM12]). Our problem differs from the social golfer problem [LMCS15] Lardeux et al. (2015): Set Con-

straint Model and Automated Encoding into
SAT.
[SSV22] Schmand et al. (2022): A Greedy
Algorithm for the Social Golfer and the Ober-
wolfach Problem.
[TM12] Triska and Musliu (2012): An Effec-
tive Greedy Heuristic for the Social Golfer
Problem.

in two ways. First, the social golfer problem maximizes the number of sessions
subject to a hard constraint on repeated meetings, whereas we minimize repeated
meetings subject to a fixed schedule length. Second, whereas the social golfer
problem allows to group any 𝑠 golfers together, our representativeness constraints
make the problem no longer symmetric and even less combinatorically tractable
than the social golfer problem.

5.2 Model

Table allocation problem. An instance of the table allocation problem is a
tuple consisting of a set of agents 𝑁 = [𝑛], a number 𝑘 of tables, a number of
sessions 𝑇 ≥ 2, and a set of representativeness constraints. These representativeness
constraints are given as a set 𝐹 of features, where each feature 𝜑 ∈ 𝐹 is defined by
a set of agents 𝐴𝜑 ⊆ 𝑁 possessing this feature, a lower quota ℓ𝜑, and an upper
quota 𝑢𝜑 such that 0 ≤ ℓ𝜑 ≤ 𝑢𝜑 ≤ ⌈𝑛/𝑘⌉.

A partition for this instance partitions the agents into 𝑘 disjoint tables 𝑁 =
Δ1 ∪̇ ⋯ ∪̇ Δ𝑘, subject to two constraints: (1) each table Δ𝑖 has size either ⌊𝑛/𝑘⌋
or ⌈𝑛/𝑘⌉, and (2) each table Δ𝑖 satisfies all representativeness constraints, in the
sense that ℓ𝜑 ≤ |Δ𝑖 ∩ 𝐴𝜑| ≤ 𝑢𝜑 for all features 𝜑.1 Throughout this chapter, we 1: In some assemblies in practice, partitions

are further constrained by clustering con-
straints, which require that some partici-
pants be grouped together due to logistical
reasons. Examples of such constraints in-
clude participants who are unwilling to be
photographed, those who need translation
services, and those who require disability
accommodations. Given that our approach
in Section 5.4 generalizes to clustering in
a straight-forward way, we omit these con-
straints for ease of exposition.

will assume that a given instance allows for at least one partition; whether this
is the case can be easily checked using an ILP solver. Given a table allocation
instance, our aim is to construct a schedule, which is a multiset 𝑍 over partitions
containing 𝑇 elements.2

2: A multiset over a finite support 𝑋 is a
function ms ∶ 𝑋 → ℕ, where ms(𝑥) indi-
cates how many copies of some 𝑥 ∈ 𝑋 are
contained in the multiset. We write |ms| =
∑
𝑥∈𝑋ms(𝑥) for the cardinality of a multiset

and denote multiset addition by +, multiset
difference by −, and multiset inclusion by ⊑.

Concave balancing problem. In Section 5.3 below, we will cast table allocation
in terms of a more abstract problem, which we call the concave balancing problem.
This framing will make explicit that, in much of our analysis, the meetings
between pairs of agents — not the agents and tables themselves — are the primary
object of study. This setup also highlights parts of our analysis that are not
specifically tied to table allocation and might be of use in other contexts.

An instance of the concave balancing problem consists of a finite ground set 𝐺, a
collection 𝒵 of sets 𝑆 ⊆ 𝐺 of ground elements, a number of sessions 𝑇 ≥ 2, and
a saturation function 𝑓 ∶ ℕ → ℝ≥0 that is monotone nondecreasing, concave,
and satisfies 𝑓(0) = 0. For a given instance of the concave balancing problem, a
selection is a multiset over 𝒵, and a solution is a selection of cardinality 𝑇. The
goal of the concave balancing problem is to find a solution 𝑍 that maximizes the
objective ̂𝑓, which is a function mapping selections 𝑍 to ℝ≥0 defined in terms of
𝑓 such that

̂𝑓(𝑍) ≔ �
𝑔∈𝐺

𝑓(number of sets in 𝑍 that contain 𝑔)
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= �
𝑔∈𝐺

𝑓 ��
𝑆∈𝒵 ∶𝑔∈𝑆

𝑍(𝑆)� .

For the saturation function 𝑓1(𝑥) ≔ 1{𝑥 ≥ 1} = min{𝑥, 1}, the concave balancing
problem coincides with the classic maximum coverage problem [HP98] of select- [HP98]HochbaumandPathria (1998):Anal-

ysis of the Greedy Approach in Problems of
Maximum K-Coverage.

ing 𝑇 sets such that maximally many ground elements 𝑔 appear in at least one set.
The saturation function 𝑓 adds expressivity beyond maximizing coverage; e.g.,
the objective assigns value to second appearances of 𝑔 if 𝑓(2) > 𝑓(1). Generally,
the concavity of 𝑓 promotes schedules that contain ground elements similar
numbers of times.

A function 𝑠 that maps selections to ℝ≥0 satisfies diminishing returns if, for any
two selections𝑍1 ⊑ 𝑍2 and for any 𝑆 ∈ 𝒵, 𝑠(𝑍1+{𝑆})−𝑠(𝑍1) ≥ 𝑠(𝑍2+{𝑆})−𝑠(𝑍2).
We call 𝑠monotone if, for all selections 𝑍1 ⊑ 𝑍2, 𝑠(𝑍1) ≤ 𝑠(𝑍2). One easily verifies
that all objectives ̂𝑓 have diminishing returns and are monotone. Finally, for
some 𝛼 ∈ (0, 1), a solution 𝑍 𝛼-approximates an objective ̂𝑓 if

̂𝑓(𝑍) ≥ 𝛼 ⋅ max
solution 𝑍′

̂𝑓(𝑍′).

A solution𝑍 is a simultaneous𝛼-approximation if it𝛼-approximates the objectives
̂𝑓 for all saturation functions 𝑓 at once.

5.3 Expressing the Table Allocation Problem as
Concave Balancing

Looking at the table allocation problem by itself, it is not obvious what makes one
schedule more conducive to deliberation than another, other than an intuition
that it is desirable to “mix up” discussion groups between sessions. The Sorti-
tion Foundation’s work on GroupSelect makes an important contribution by
highlighting a single, mathematically precise objective: maximizing how many
pairs of assembly members meet at least once. This objective is an incomplete
perspective on what makes a schedule conducive to deliberation, but it is distin-
guished by virtue of coming from an organization with first-hand experience
and in close contact with other nonprofits organizing citizens’ assemblies.

We can express the objective optimized by GroupSelect by casting a given table
allocation instance as a concave balancing problem: Let the ground set 𝐺 be the
set �𝑁2� of all unordered pairs of agents, and let the collection𝒵 contain, for each
partition 𝑆 = Δ1 ∪̇ ⋯ ∪̇ Δ𝑘 of the table allocation instance, the set ⋃1≤𝑖≤𝑘 �

Δ𝑖
2
�

of all pairs sitting at the same table in 𝑆. We will use this reduction to optimize
different objectives ̂𝑓 for the table allocation problem throughout the chapter.
GroupSelect’s objective reduces to the concave balancing problem if we choose
the saturation function 𝑓1(𝑥) = min{𝑥, 1} since each pair 𝑖, 𝑗 that does not meet
contributes 0 to the objective ̂𝑓1 and all other pairs contribute 1, whether they
meet once or more often.

As mentioned in the introduction, optimizing GroupSelect’s objective ̂𝑓1 does
raise some concerns. One obvious pitfall is that ̂𝑓1 does not express any prefer-
ence between schedules in which all pairs meet. This is an obstacle in realistic
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instances, and we will indeed see this occurring in our empirical evaluation (see
the appendix of the full version).

A more subtle issue with optimizing ̂𝑓1 is that prioritizing first meetings might
not be worth an arbitrarily high cost in terms of which other pairs meet. In
appendix of the full version, we present a table allocation problem in which it is
difficult to arrange meetings for a subset 𝑃 of the pairs, in the sense that (1) at
most one pair in 𝑃 can meet per partition without violating representativeness,
(2) whenever a pair in 𝑃 meets, representativeness implies that the other pairs
meeting each other are essentially always the same ones, and (3) if no pair in
𝑃 meets, there is a lot of freedom in who meets whom. In this instance, an
algorithm optimizing ̂𝑓1 will expend most sessions to make pairs in 𝑃 meet one
by one, even if this means that the overwhelming majority of pairs meet either
excessively often or just once. In this instance, it seems preferable to forgo some
first meetings in 𝑃 in order to make most pairs meet a more balanced number of
times.

Motivated by the above limitations of ̂𝑓1, we generalize the optimization problem
proposed by the Sortition Foundation by considering saturation functions other
than 𝑓1. Each saturation function has its distinct advantages and disadvantages,
which might matter to different degrees depending on the instance. For example,
for any 𝑟 ≥ 2, consider the saturation function 𝑓𝑟(𝑥) ≔ min{𝑥, 𝑟}, for which each
pair’s contribution to ̂𝑓𝑟 increases by 1 per meeting up to the 𝑟’th meeting, and
does not increase beyond that. On the one hand, the objective ̂𝑓𝑟 pushes the
schedule towards an ideal point in which each pair meets 𝑟 times with maximum
vigor. On the other hand, if the representativeness constraints force some pairs
to meet fewer than 𝑟 times (or more than 𝑟 times), ̂𝑓𝑟 is indifferent between how
equally the number of meetings below 𝑟 (or above 𝑟, respectively) are spread.

In search of saturation functions whose marginal returns diminish more smoothly,
two kinds of saturation functions strike us as promising. The first are the ge-
ometric saturation functions 𝑔𝛽 (for some 0 < 𝛽 < 1), where 𝑔𝛽(𝑥) ≔ ∑𝑥

𝑖=1 𝛽
𝑖.

Given that the marginals 𝛽𝑚𝑖,𝑗 decay exponentially in the number 𝑚𝑖,𝑗 of previous
meetings of the pair, the geometric objectives �̂�𝛽 should still put much weight
on the first meeting. Geometric objectives possess the intuitively appealing “self-
similarity” property that, if we fix a partial schedule in which all pairs appear
equally often, the problem of optimizing the remaining partitions looks just like
optimizing a shorter schedule, with the objective multiplied by a constant. A
final example is the harmonic saturation function ℎ(𝑥) ≔ ∑𝑥

𝑖=1 1/𝑖. Since this
function’s marginals decrease more slowly, we would expect the objective ℎ̂ to
prioritize earlier meetings less radically. Note that the “self-similarity” property
is not satisfied by this objective.3

3: Consider a setting where we can achieve
all pairs meeting exactly ten times. In an
ideal setting, the problem would “reset” as if
nobody had met: the trade-off between par-
ticipants meeting for the 𝑛th and (𝑛 + 1)th
times should be constant regardless of 𝑛.
This property is satisfied by the geomet-
ric utility function, but for a harmonic util-
ity function we will have a decreasing dif-
ference in utilities as 𝑛 increases. For ex-
ample, three third meetings have the same
marginal utility as two second meetings
(3/3 = 2/2), but once every pair has met ten
times, three twelfth meetings have a higher
marginal utility than two eleventh meetings
(3/12 > 2/11).

5.4 Optimizing a Specific Saturation Function

Having built some intuition about the preference over allocation trade-offs ex-
pressed by a saturation function, we now investigate how an objective ̂𝑓 can be
approximately optimized.

One immediate obstacle is that already the problem of simply deciding whether
any partition exists for the given representativeness constraints is NP-hard (see
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the appendix of the full version). From a theoretical angle, this shuts the door
to any prospect of developing polynomial-time algorithms, which is why we
will search for algorithms that run sufficiently fast on inputs encountered in
practice. Fortunately, state-of-the-art ILP solvers can reliably find a representative
partition in little time. Though ILP solvers are powerful, formulating the entire
maximization of the objective over schedules as an ILP would require a vast
number of variables and constraints, and thus seems hopeless to solve. Therefore,
our algorithmic approach will use ILP as a powerful subroutine for finding
partitions, but our approach will handle in outside logic how the contributions
of different partitions interact in the objective.

What will enable us to break down the optimization into generating partitions one
at a time are the properties of the objectives ̂𝑓 we consider, namely diminishing
returns, monotonicity, and that ̂𝑓(∅) = 0. These properties are useful since, for
any multiset function over𝒵 satisfying them, Nemhauser et al. [NWF78] showed [NWF78] Nemhauser et al. (1978): An Anal-

ysis of Approximations for Maximizing Sub-
modular Set Functions—I.

that a simple greedy algorithm returns a multiset of cardinality 𝑇whose objective
value is at least a 1−1/𝑒 fraction of the optimal objective value across all multisets
of cardinality 𝑇.4 This greedy algorithm iteratively constructs a multiset 𝑍 by 4: Technically, Nemhauser et al. [NWF78]

prove this for submodular set functions. Our
setting differs slightly from theirs since we
allow sets to be selected multiple times, but
the claimed result for multiset functions fol-
lows directly by duplicating all sets 𝑇 times.
Whereas diminishing returns and submod-
ularity are equivalent for set functions, sub-
modularity is a strictly weaker property
than diminishing returns for multiset func-
tions [KPV13].

starting from the empty multiset and 𝑇 times adding the set 𝑆 ∈ 𝒵 with largest
marginal increase ̂𝑓(𝑍 + {𝑆}) − ̂𝑓(𝑍). In most cases where this greedy algorithm
is run, the collection of sets 𝒵 is not too large and explicitly given, which allows
to identify 𝑆 by enumerating 𝒵. By contrast, the set of all partitions might be
exponentially large, so enumerating all of them is not an option.

Instead, we implement each step of the greedy algorithm by solving an ILP that
will yield the partition with largest marginal increase. This ILP formulation
makes use of the specific shape of our objectives, which decompose into a sum
over pairs of agents, and which have the property that any partition’s marginal
contribution to a pair {𝑖, 𝑗}’s summand is either zero (if 𝑖 and 𝑗 do not meet) or a
constant value 𝑓(𝑚𝑖,𝑗+1)−𝑓(𝑚𝑖,𝑗) (if 𝑖 and 𝑗meet), where𝑚𝑖,𝑗 denotes the number
of times 𝑖 and 𝑗 have met before. Below we describe the ILP, whose variables are
𝑥𝑖,𝜏 (“agent 𝑖 is allocated to table 𝜏”) and 𝑦{𝑖,𝑗},𝜏 (“agents 𝑖 and 𝑗 are both allocated
to table 𝜏”), for all 𝑖 ≠ 𝑗 ∈ 𝑁 and 1 ≤ 𝜏 ≤ 𝑘:

maximize �
{𝑖,𝑗}∈(𝑁2)
1≤𝜏≤𝑘

�𝑓(𝑚𝑖,𝑗 + 1) − 𝑓(𝑚𝑖,𝑗)� ⋅ 𝑦{𝑖,𝑗},𝜏 (maximize ̂𝑓(𝑍+{𝑆}) − ̂𝑓(𝑍))

subject to �
1≤𝜏≤𝑘

𝑥𝑖,𝜏 = 1 ∀𝑖 ∈ 𝑁, (each agent on one table)

⌊𝑛/𝑘⌋ ≤ �
𝑖∈𝑁

𝑥𝑖,𝜏 ≤ ⌈𝑛/𝑘⌉ ∀1≤𝜏≤𝑘, (constrain table sizes)

ℓ𝜑 ≤ �
𝑖∈𝐴𝜑

𝑥𝑖,𝜏 ≤ 𝑢𝜑 ∀1≤𝜏≤𝑘, 𝜑 ∈ 𝐹, (representativeness)

𝑦{𝑖,𝑗},𝜏 ≥ 𝑥𝑖,𝜏 + 𝑥𝑗,𝜏 − 1
𝑦{𝑖,𝑗},𝜏 ≤ 𝑥𝑖,𝜏
𝑦{𝑖,𝑗},𝜏 ≤ 𝑥𝑗,𝜏

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∀{𝑖, 𝑗} ∈ �𝑁2�,

1≤𝜏≤𝑘,
(𝑦{𝑖,𝑗},𝜏 = 𝑥𝑖,𝜏 ∧ 𝑥𝑗,𝜏)

𝑥𝑖,𝜏 ∈ {0, 1}, 𝑦{𝑖,𝑗},𝜏 ∈ {0, 1} ∀{𝑖, 𝑗} ∈ �𝑁2�, 1≤𝜏≤𝑘.

Observe that, for each pair {𝑖, 𝑗}, at most one variable 𝑦{𝑖,𝑗},𝜏 can be nonzero, which
means that the pair contributes at most 𝑓(𝑚𝑖,𝑗 + 1) − 𝑓(𝑚𝑖,𝑗) to the objective, as
intended. Due to the quadratically many 𝑦{𝑖,𝑗},𝜏 variables and the constraints tying
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them to the 𝑥𝑖,𝜏, this ILP is substantially more difficult to solve than just finding
a valid partition, but we will show in Section 5.6 that an off-the-shelf ILP solver
can optimize these programs to sufficient accuracy.

We can run the greedy maximization algorithm by iterating the following steps 𝑇
times: solving the ILP, extracting the new partition from the 𝑥𝑖,𝜏, adding the new
partition to 𝑍, and updating the 𝑚𝑖,𝑗. If the ILP solver optimizes all subproblems
to optimality, the resulting schedule will (1 − 1/𝑒)-approximate the objective ̂𝑓
as proved by Nemhauser et al. [NWF78], and the greedy algorithm is known to [NWF78] Nemhauser et al. (1978): An Anal-

ysis of Approximations for Maximizing Sub-
modular Set Functions—I.

outperform this approximation factor in many cases [PST20]. Even if we should

[PST20] Pokutta et al. (2020): On the Un-
reasonable Effectiveness of the Greedy Algo-
rithm.

be forced to terminate some ILP calls before reaching optimality, our guarantees
degrade smoothly: If all ILPs return a partition whose marginal increase is at
least an 𝛼 > 0 fraction of the optimal marginal increase, the resulting schedule is
still at least a (1 − 1/𝑒𝛼)-approximation [GS07]. [GS07] Goundan and Schulz (2007): Revisit-

ing the Greedy Approach to Submodular Set
Function Maximization.

5.5 Simultaneously Optimizing All Saturation
Functions

Even though we have found a way to optimize the objective for any given satu-
ration function 𝑓, such an approach remains not entirely satisfying given that
we chose the saturation function somewhat arbitrarily. As we discussed in Sec-
tion 5.3, how much the saturation function should encourage pairs to meet for
the 𝑖’th time across the different 𝑖 seems to depend on which distribution of
meeting numbers are possible, which is hard to predict for a given instance.

This challenge of settling on a single saturation function raises the question
of whether it is possible to produce schedules that perform well relative to the
objectives belonging to all saturation functions simultaneously. Since we have
seen that different objective can lead to starkly different schedules, and since
there is an infinite variety of saturation functions, it might seem that finding
an simultaneous 𝛼-approximation might only be possible for extremely small
values of 𝛼. Nonetheless, Algorithm 1 describes an algorithm, SimApprox, which
is a simultaneous Ω(1/ log𝑇)-approximation to all objectives. This algorithm
and our analysis apply not just to table allocation problems but to any concave
balancing problem; however, in the table allocation setting, the ILP from the
previous section allows us to efficiently implement Line 4.

The structure of SimApprox closely resembles that of greedy maximization
in that (using the terminology of table allocation) it constructs a schedule 𝑍
partition by partition, greedily adds partitions whose marginal increase relative
to some objective ̂𝑓 is largest, and uses the same ILP formulation to identify

Algorithm 1: SimApprox
1 𝑍 ← ∅
2 for 𝑡 = 0, 1, … , 𝑇 − 1 do
3 𝑝 ← ⌊(𝑡/𝑇) ⋅ (1 + log2 𝑇)⌋
4 𝑍 ← 𝑍 + �argmax𝑆∈𝒵

̂𝑓2𝑝�𝑍 + {𝑆}�� ▷ Use ILP from Section 5.4

5 return 𝑍
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these partitions. The big difference between both algorithms is that SimApprox
does not optimize marginals of the same objective in each iteration. Instead, it
first optimizes marginals for ̂𝑓20 for some number of steps, then marginals for
̂𝑓21, then for ̂𝑓22, through the powers of two up to around ̂𝑓𝑇, each for a roughly

equal number of steps. In particular, SimApprox is computationally no more
complex than the greedy maximization algorithm.

The key insight of this algorithm is that 𝛼-approximating the logarithmically
many objectives of the form ̂𝑓2𝑝 (for some 𝑝) suffices to approximate all objectives
within a constant factor of 𝛼. Thus, our proof that SimApprox is a simultane-
ous Ω(1/ log𝑇)-approximation proceeds in three steps: First, we show that the
schedule returned by the algorithm Ω(1/ log𝑇)-approximates all ̂𝑓𝑟 where 𝑟 is a
power of two (Lemma 5.1). Second, we show that the solution approximates the
objectives ̂𝑓𝑟 for all 𝑟 (Lemma 5.2). Finally, we prove that this implies simultane-
ous approximation for all objectives ̂𝑓 (Theorem 5.3). We sketch these arguments
below and defer the formal proofs to the appendix of the full version.

Lemma 5.1 For each 0 ≤ 𝑝 ≤ log2 𝑇, the solution 𝑍 returned by SimApprox
approximates ̂𝑓2𝑝 within a factor of (1 − 1/𝑒) ⋅ ( 1

1+log2 𝑇
− 1
𝑇 ).

Proof sketch. Since ̂𝑓2𝑝 is greedily optimized in roughly 𝑇/ log𝑇 of the steps, the
objective value is at least a (1−1/𝑒) fraction of the optimal objective value obtained
by any schedule of length 𝑇/ log𝑇, and this holds despite the steps optimizing
other objectives coming before and after. Since ̂𝑓2𝑝 has diminishing returns,
the optimal objective value for a schedule of length 𝑇/ log𝑇 is at least a 1/ log𝑇
fraction of the optimal objective value for a schedule of full length 𝑇.

Lemma 5.2 For each 1 ≤ 𝑟 ≤ 𝑇, the solution 𝑍 returned by SimApprox approxi-
mates ̂𝑓𝑟 within a factor of 1−1/𝑒2 ⋅ ( 1

1+log2 𝑇
− 1
𝑇 ).

Proof sketch. For two values 𝑟1 ≈ 𝑟2, the objectives ̂𝑓𝑟1 and ̂𝑓𝑟2 are close together
to the point that, if 𝑟1 ≤ 𝑟2, any schedule that 𝛼-approximates ̂𝑓𝑟1 must at least
𝛼 ⋅ 𝑟1𝑟2 -approximate ̂𝑓𝑟2. For a given 𝑟, let 2𝑝 denote its next-lower power of two.

By Lemma 5.1, ̂𝑓2𝑝 is Ω(1/ log𝑇)-approximated by 𝑍; so 𝑍 must 2𝑝

𝑟 ⋅ Ω(1/ log𝑇) ≥
1/2 ⋅ Ω(1/ log𝑇)-approximate ̂𝑓𝑟.

Theorem 5.3 The solution 𝑍 returned by SimApprox is a simultaneous 𝛼-
approximation, for 𝛼 = 1−1/𝑒

2 ⋅ ( 1
1+log2 𝑇

− 1
𝑇 ) ∈ Ω(1/ log𝑇).

Proof sketch. As we show in the appendix of the full version, the 𝑓𝑟 form a
sort of “basis” of the space of saturation functions in the sense that, for any
saturation function 𝑓 and any 𝑇, there exist nonnegative weights {𝑤𝑖}1≤𝑖≤𝑇 such
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that 𝑓(𝑥) = ∑𝑇
𝑖=1𝑤𝑖 ⋅ 𝑓

𝑖(𝑥) for all 0 ≤ 𝑥 ≤ 𝑇. Note that it must then also hold that
̂𝑓 = ∑𝑇

𝑖=1𝑤𝑖 ⋅ ̂𝑓𝑖. For any saturation function 𝑓, by Lemma 5.2, it holds that

̂𝑓(𝑍) = �
𝑇

𝑖=1
𝑤𝑖 ⋅ ̂𝑓𝑖(𝑍) ≥ �

𝑇

𝑖=1
𝑤𝑖 ⋅ 𝛼 ⋅ max

solution 𝑍′
̂𝑓𝑖(𝑍′)

= 𝛼 ⋅�
𝑇

𝑖=1
max

solution 𝑍′
𝑤𝑖 ⋅ ̂𝑓𝑖(𝑍′) ≥ 𝛼 ⋅ max

solution 𝑍′
�𝑇

𝑖=1
𝑤𝑖 ⋅ ̂𝑓𝑖(𝑍′)

= 𝛼 ⋅ max
solution 𝑍′

̂𝑓(𝑍′).

In the appendix of the full version, we show that SimApprox’s simultaneous
approximation ratio of Ω(1/ log𝑇) is nearly optimal for the concave balancing
problem, up to a log log factor:

Theorem 5.4 There exists a family of concave balancing instances such that no
solution has a simultaneous approximation ratio larger than𝑂(log log𝑇/ log𝑇).
This holds even if all sets 𝑆 ∈ 𝒵 have equal cardinality as in the table allocation
problem.

In these instances, the ground elements are partitioned into multiple blocks, and
each block represents a different tradeoff between (a) how many ground elements
of the block are included in a set in 𝒵 and (b) how many ground elements are in
the block overall. For large values of 𝑟, ̂𝑓𝑟 is maximized by choosing sets from
blocks scoring high on (a) because they cover many ground elements per set. For
small 𝑟, by contrast, blocks scoring high on (b) allow to avoid selecting ground
elements more than 𝑟 times, which would not help ̂𝑓𝑟. Since scoring high on
different objectives ̂𝑓𝑟 requires selecting disjoint sets, no solution can simultane-
ously approximate them within a high factor. We conjecture that Theorem 5.4’s
impossibility on simultaneous approximation extends to the table allocation
problem; however, the symmetry between tables and the transitivity between
which pairs can simultaneously meet make constructing analogous instances
highly cumbersome.

5.6 Implementation and Empirical Results

We have implemented all algorithms developed in this chapter in Python, using
Gurobi as our ILP solver. We include our implementation in the supplemen-
tary material and will release it as open source. Currently, we are working with
the Sortition Foundation to incorporate our algorithms into the tool that hosts
GroupSelect [Ver22], which will allow users to switch to our improved algo- [Ver22] Verpoort (2022): GroupSelect.
rithms with little effort.

We perform our experiments on seven datasets, each based on data from a real
citizens’ assembly. Two of these datasets, sf_e and sf_f, directly correspond
to assemblies coorganized by the Sortition Foundation. The other five datasets,
sf_a through sf_d and hd, are based on data from other assemblies that we
already used in Chapter 2. For these latter events, we do not have access to the
members who ended up being drawn for the assembly, but we can “re-run” the
lottery process using the selection software Panelot [GR20] to obtain an assembly [GR20] Gölz and Rusak (2020): Panelot.
that satisfies the actual representativeness constraints. In the appendix of the full
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Figure 5.1: Approximation certificates for
the greedy algorithm on �̂�1/2, guaranteeing
near-optimality. The dashed line marks 1 −
1/𝑒.

version, we describe the processing of these datasets and the experimental setup
in more detail. To compute experiments in parallel, we run them on an AWS
EC2 C5 instance with a 3.6 GHz processor, 16 threads, and 32 GB of RAM. Given
that we limit each experiment to a single thread, individual running times of our
algorithms are comparable to consumer hardware.

5.6.1 How Well Does the Greedy Algorithm Optimize Its
Objective?

Since our greedy optimization approach is predicated on an ILP solver’s ability
to solve ILPs of the form presented in Section 5.4 in reasonable time, we first
evaluate how much time the ILP solver needs to be given per session for the
greedy algorithm to optimize its submodular objective well. In the appendix of
the full version, we show that when optimizing ̂𝑓1, �̂�1/2, and ℎ̂, increasing the
timeouts generally leads to higher objective values, but that these increases level
off after around 60 seconds. On instance sf_c, however, optimizing ̂𝑓1 still leads
to erratic optimization behavior at this timeout, which is indicative of insufficient
optimization time. In order to increase the clarity of our empirical results, we
thus set the optimization timeout to 120 seconds from here on, a running time
which we believe to still be acceptable in practice.5

5: For an assembly with a high number of
sessions (say, 30), the total optimization
runs in around one hour, which is the run-
time of LexiMin for large assemblies (Ta-
ble 2.1).

Ideally, we want to know how close the schedules produced by the greedy algo-
rithm are to optimal, but this is impossible to exactly evaluate because we see no
way of finding the optimal schedules for nontrivial instances. We can, however,
modify the greedy algorithms to produce, in addition to a schedule, what we
call a certificate of approximation, which is a fraction 𝛼 such that the produced
schedule is guaranteed to be at least an 𝛼-approximation of the optimal sched-
ule.6

6: Calculating these certificates is possible
since (1) the ILP solver returns, in every
step, not only a new partition but also an up-
per bound on the largest possible marginal
increase, and since (2) these bounds natu-
rally fit into the approximation bound by
Nemhauser et al. [NWF78]. This ex post
analysis combines the strengths of ILP and
submodular maximization and is, to our
knowledge, novel.

As shown in Figure 5.1, for example, greedily optimizing the objective �̂�1/2
produces schedules that are a 0.45-approximation or better across all instances
and numbers of sessions we study. We stress that these certificates are lower
bounds, and that the schedules are likely to be much closer to optimal than is
guaranteed by the certificates. For example, the perfect greedy algorithm (i.e.,
with perfectly optimal ILP solutions) would have a certificate of 1−(1−1𝑇 )

𝑇 ≈ 0.63,
but typically performs much closer to optimal.7

7: A second place where the certificates are
conservative is that the ILP solver often
struggles with tightening the upper bounds.
Thus, each partition’s marginals are proba-
bly closer to optimal than reflected in our
bounds.The proximity of the certificates
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Figure 5.2: Performance of different algo-
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schedule.

to this number suggests to us that terminating the ILP solver yields schedules
that are nearly as good as those of the perfect greedy algorithm and not far from
the optimal objective value.

5.6.2 Comparison across Table-Allocation Algorithms

After having measured the greedy algorithm in terms of the objective it specifi-
cally aims to optimize, we now compare the performance of different algorithms
on a given instance and according to the same metric. In Figure 5.2, we show such
results for sf_f and ̂𝑓1; experiments for other instances and objectives can be
found in the appendix of the full version. This scenario is particularly interesting
to investigate, since the Sortition Foundation did, in fact, maximize ̂𝑓1 using
GroupSelect for this assembly, and since we know the table allocation (for
𝑇 = 4 sessions) determined at the time. As the figure shows quite dramatically,
GroupSelect cannot compete with our other algorithms. Indeed, the Sortition
Foundation chose a schedule with 164 distinct meetings for four sessions. By
contrast, greedily maximizing ̂𝑓1 yields an objective value of nearly twice that, at
320 distinct meetings. Across our datasets and objective functions, GroupSe-
lect leads to objective values that stagnate at a much lower level than what our
algorithms can achieve. This observation is a powerful argument for practitioners
to move away from GroupSelect.

As is not very surprising, greedily optimizing ̂𝑓1 produces schedules with many
unique meetings. Given that sf_f has �402 � = 780 pairs of agents, around 90% of
pairs meet at least once within the first 20 sessions. More surprisingly, greedily
optimizing a geometric objective or the harmonic objective leads to numbers
of distinct meetings that are nearly as high, across all numbers of sessions 𝑇
we study. Indeed, throughout our experiments, we see that greedily optimizing
�̂�1/2 or ℎ̂ leads to “well-rounded” schedules in the sense that they perform well
according to other objective metrics, which makes either algorithm an attractive
option for adoption in practice. Optimizing ̂𝑓1 tends to perform very well on
other objectives when 𝑇 is small but falls behind for larger 𝑇, when encouraging,
say, second meetings becomes an important aspect of what makes a partition
contribute to the objective.
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A straight-forward implementation of SimApprox does not perform as well as
the above-mentioned algorithms, even if still much better than GroupSelect.
A possible explanation is that SimApprox spends much of its time optimizing
objectives ̂𝑓𝑟 for fairly large 𝑟. If most pairs have met more rarely than 𝑟 times at
that point, the ILP might have a large number of optimal solutions, between which
the ILP has no preference. To mitigate this problem, we test a variant of SimAp-
prox called SimApprox+, which spends an extra 30 seconds after each ILP call to
break ties in favor of partitions with better objective �̂�1/2. As shown in the figure,
SimApprox+ gets substantially closer to the performance of the best greedy
algorithms. While such variants of the simultaneous-approximation algorithm
might have value for highly constrained table allocation problems or for large
numbers of sessions, greedily optimizing �̂�1/2 or ℎ̂ seems more worthwhile on
the practical instances we study.

5.7 Discussion

As the last section shows, our algorithms produce schedules that excel in terms
of the objective chosen by the practitioners, as well as in terms of the gen-
eralized objectives we introduced. The fundamental research problem, how-
ever — optimizing the group assignment in a way that increases the quality of
deliberation — remains wide open and will require a multi-faceted approach.
According to a handbook for assembly organizers, mixing groups up has a whole
range of benefits: it helps assembly members “find common ground across the
whole diverse group” (emphasis added), avoids situations where they “form
cliques,” breaks up unproductive group dynamics, and overall “keeps things ener-
gised” [nU18]

[nU18] newDemocracy Foundation and
UnitedNations Democracy Fund (2018): En-
abling National Initiatives to Take Democ-
racy Beyond Elections.. Not only might each of these benefits suggest a different schedule,

but predicting how well a schedule promotes each of these effects is also an
open question. We believe that an approach combining optimization, behavioral
research, and dynamic models of deliberation [CD20; FGMS17]

[CD20] Chung and Duggan (2020): A For-
mal Theory of Democratic Deliberation.
[FGMS17] Fain et al. (2017): Sequential De-
liberation for Social Choice.

can substantially
support citizens’ assemblies and, by extension, democratic innovation.
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6.1 Introduction

Moving on from citizens’ assemblies, this chapter studies another democratic
innovation, liquid democracy. Like direct democracy, liquid democracy allows
agents to vote on every issue by themselves. Alternatively, however, agents may
delegate their vote, i.e., entrust it to any other agent who then votes on their
behalf. Delegations are transitive; for example, if agents 2 and 3 delegate their
votes to 1, and agent 4 delegates to 3, then agent 1 would vote with the weight of
all four agents (themselves included). Just like representative democracy, this
system allows for separation of labor, but provides for stronger accountability:
each delegator is connected to their transitive delegate by a path of personal trust
relationships, and each delegator on this path can withdraw their delegation at
any time if they disagree with their delegate’s choices.

Although the roots of liquid democracy can be traced back to the work of Miller
[Mil69], it is only in recent years that it has gained recognition among prac- [Mil69] Miller (1969): A Program for Direct

and Proxy Voting in the Legislative Process.titioners. Most prominently, the German Pirate Party adopted the platform
LiquidFeedback for internal decision-making in 2010. At the highest point, their
installation counted more than 10 000 active users [KKH+15]. More recently, [KKH+15] Kling et al. (2015): Voting Be-

haviour and Power in Online Democracy.two parties — the Net Party in Argentina, and Flux in Australia — have run in
national elections on the promise that their elected representatives would vote
according to decisions made via their respective liquid-democracy-based sys-
tems. Although neither party was able to win any seats in parliament, their bids
enhanced the promise and appeal of liquid democracy.

However, these real-world implementations also exposed a weakness in the liquid
democracy approach: Certain individuals, the so-called super-voters, seem to
amass enormous weight, whereas most agents do not receive any delegations.
In the case of the Pirate Party, this phenomenon is illustrated by an article in
Der Spiegel [Bec12], according to which one particular super-voter’s “vote was [Bec12] Becker (2012): Web Platform Makes

Professor Most Powerful Pirate.like a decree,” although he held no office in the party. As Kling et al. [KKH+15]
describe, super-voters were so controversial that “the democratic nature of the
system was questioned, and many users became inactive.” Besides the negative
impact of super-voters on perceived legitimacy, super-voters might also be more
exposed to bribing. Although delegators can retract their delegations as soon as
they become aware of suspicious voting behavior, serious damage might be done
in the meantime. Furthermore, if super-voters jointly have sufficient power, they
might find it more efficient to organize majorities through deals between super-
voters behind closed doors, rather than to try to win a broad majority through
public discourse. Finally, recent work by Kahng et al. [KMP18] indicates that, even [KMP18] Kahng et al. (2018): Liquid Democ-

racy.if delegations go only to more competent agents, a high concentration of power
might still be harmful for social welfare, by neutralizing benefits corresponding
to the Condorcet Jury Theorem.
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While all these concerns suggest that the weight of super-voters should be limited,
the exact metric to optimize for varies between them and is often not even clearly
defined. For the purposes of this chapter, we choose to minimize the weight of the
heaviest voter. As is evident in the Spiegel article, the weight of individual voters
plays a direct role in the perception of super-voters. But even beyond that, we are
confident that minimizing this measure will lead to substantial improvements
across all presented concerns.

Just how can the maximum weight be reduced? One approach might be to restrict
the power of delegation by imposing caps on the weight. However, as argued
by Behrens et al. [BKNS14], delegation is always possible by coordinating out- [BKNS14] Behrens et al. (2014): The Princi-

ples of LiquidFeedback.side of the system and copying the desired delegate’s ballot. Pushing delegations
outside of the system would not alleviate the problem of super-voters, just re-
duce transparency. Therefore, we instead adopt a voluntary approach: If agents
are considering multiple potential delegates, all of whom they trust, they are
encouraged to leave the decision for one of them to a centralized mechanism.
With the goal of avoiding high-weight agents in mind, our research challenge is
twofold:

First, investigate the algorithmic problem of selecting delegations to
minimize the maximum weight of any agent, and, second, show that
allowing multiple delegation options does indeed provide a significant
reduction in the maximum weight compared to the status quo.

6.1.1 Our Approach and Results

We formally define our problem in Section 6.2. In addition to minimizing the
maximum weight of any voter, we specify how to deal with delegators whose
vote cannot possibly reach any voter. In general, our problem is closely related to
minimizing congestion for confluent flow as studied by Chen et al. [CKL+07]. [CKL+07] Chen et al. (2007): (Almost) Tight

Bounds and Existence Theorems for Single-
Commodity Confluent Flows.

Not only does this connection suggest an optimal algorithm based on mixed
integer linear programming, but we also get a polynomial-time (1 + ln |𝑉|)-
approximation algorithm, where 𝑉 is the set of voters. In addition, we show that
approximating our problem to within a factor of 1

2 log2 |𝑉| is NP-hard.

In Section 6.3, to evaluate the benefits of allowing multiple delegations, we pro-
pose a probabilistic model for delegation behavior — inspired by the well-known
preferential attachment model [BA99] — in which we add agents successively. [BA99] Barabási and Albert (1999): Emer-

gence of Scaling in Random Networks.With a certain probability 𝑑, a new agent delegates; otherwise, they vote them-
selves. If the agent delegates, they choose 𝑘 many delegation options among the
previously inserted agents. A third parameter 𝛾 controls the bias of this selection
towards agents who already receive many delegations. Assuming 𝛾 = 0, i.e., that
the choice of delegates is unbiased, we prove that allowing two choices per dele-
gator (𝑘 = 2) asymptotically leads to dramatically lower maximum weight than
classical liquid democracy (𝑘 = 1). In the latter case, with high probability, the
maximum weight is at least Ω(𝑡𝛽) for some 𝛽 > 0, whereas the maximum weight
in the former case is only 𝑂(log log 𝑡) with high probability, where 𝑡 denotes si-
multaneously the time step of the process and the number of agents. Our analysis
draws on a phenomenon called the power of choice that can be observed in many
different load balancing models. In fact, even a greedy mechanism that, as agents
arrive, myopically selects the delegation option whose transitive delegate has the
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least weight so far exhibits this asymptotic behavior, which upper-bounds the
maximum weight for optimal resolution.

In Section 6.4, we complement our theoretical findings with empirical results.
Our simulations demonstrate that our approach continues to outperform classi-
cal preferential attachment for higher values of 𝛾. We also show that the most
substantial improvements come from increasing 𝑘 from one to two, i.e., that
increasing 𝑘 even further only slightly reduces the maximum weight. We con-
tinue to see these improvements in terms of maximum weight even if just some
fraction of delegators give two options while the others specify a single delegate.
Finally, we compare the optimal maximum weight with the maximum weight
produced by the approximation algorithm and greedy heuristics.

6.1.2 Related Work

Kling et al. [KKH+15] conduct an empirical investigation of the existence and [KKH+15] Kling et al. (2015): Voting Be-
haviour and Power in Online Democracy.influence of super-voters. The analysis is based on daily data dumps, from 2010

until 2013, of the German Pirate Party installation of LiquidFeedback. As noted
above, Kling et al. find that super-voters exist, and have considerable power. The
results do suggest that super-voters behave responsibly, as they “do not fully
act on their power to change the outcome of votes, and they vote in favour of
proposals with the majority of voters in many cases.” Of course, this does not
contradict the idea that a balanced distribution of power would be desirable.

In recent years, there has been an increasing number of theoretical analyses of
liquid democracy. In the field of political theory, Blum and Zuber [BZ16] give [BZ16] Blum and Zuber (2016): Liquid

Democracy.a normative justification of liquid democracy. They consider two accounts of
democracy, which differ in the stated goal of a democratic system. In the epistemic
framework, the success of a democratic system should lead to good decisions with
respect to some objective notion of quality, whereas, in the egalitarian framework,
a democratic system should allow each individual to impose their particular
interests to the same degree. Blum and Zuber conclude that liquid democracy
improves upon purely representative democracy with respect to both metrics.
They see unequal voting weights as problematic and suggest public deliberation
before a vote to attenuate this problem.

In the spirit of the egalitarian framework, Green-Armytage [Gre15] justifies liquid [Gre15] Green-Armytage (2015): Direct Vot-
ing and Proxy Voting.democracy in a spatial model of political preferences similar to facility placement.

When an agent has incomplete information about a topic, transitive delegations
can help to express the agent’s preferences more accurately by harnessing the
expertise of like-minded, more qualified agents.

While delegations to more qualified agents can lead to better decisions in certain
situations, Kahng et al. [KMP18] show that such delegations do not always im- [KMP18] Kahng et al. (2018): Liquid Democ-

racy.prove upon the baseline of direct democracy. They assume an epistemic model,
where a single binary issue has one “correct” and one “incorrect” outcome. Vot-
ers are modeled as biased coins that each choose the correct outcome with an
individually assigned probability, or competence level. Agents can either vote
themselves or delegate to one of their neighbors in a social network. Assuming
that agents only delegate to more qualified agents, Kahng et al. show that no
local delegation policy (in which an agent’s delegate is selected based on the
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agent’s competence level and that of their neighbors) universally increases the
probability of making the right decision. In a very similar model, Caragiannis
and Micha [CM19] point out further situations in which local delegation mecha- [CM19] Caragiannis and Micha (2019):

A Contribution to the Critique of Liquid
Democracy.

nisms fail to promote the socially preferable choice. In contrast to these papers,
our work fits better into the egalitarian approach. Furthermore, it is completely
independent of the (strong) assumptions underlying the aforementioned results.
In particular, our approach is agnostic to the final outcome of the voting process,
does not assume access to competence information that would be inaccessible
in practice, and is compatible with any number of alternatives and choice of
voting rule used to aggregate votes. In other words, the goal is not to use liquid
democracy to promote a particular outcome, but rather to adapt the process of
liquid democracy so that more voices will be heard.

In this chapter, we consider a single delegation network. Other works allow
agents to specify different delegations for multiple interconnected issues, where
the binary preferences and outcomes are restricted to satisfy a propositional
formula [CG17] or to correspond to binary comparisons in a ranking [BT18]. [CG17] Christoff and Grossi (2017): Binary

Voting with Delegable Proxy.

[BT18] Brill and Talmon (2018): Pairwise
Liquid Democracy.

Both papers propose ways of reconciling contradictory choices made by different
delegates.

We also highlight related work that considers models of network formation
and influence attenuation in the context of liquid democracy. Bloembergen et
al. [BGL19] introduce a game-theoretic model of delegation in order to study [BGL19] Bloembergen et al. (2019): On Ra-

tional Delegations in Liquid Democracy.rational delegation behavior in liquid-democracy networks. In their model,
delegation networks might be formed by a best-response dynamic or as Nash
equilibria of a delegation game. Escoffier et al. [EGP19] study a similar delegation [EGP19] Escoffier et al. (2019): The Con-

vergence of Iterative Delegations in Liquid
Democracy in a Social Network.

game with different incentives.

Boldi et al. [BBCV11] study a variant of liquid democracy in which a voter’s weight [BBCV11] Boldi et al. (2011): Viscous Democ-
racy for Social Networks.decreases by a discount factor every time their vote is transitively delegated,

penalizing long delegation chains. They argue that this variant is more appropriate
in online communities, where trust relationships are typically less deep than
in the real world. While not intended as such, this variant of liquid democracy
can also reduce the weight of super-voters, at least of those who receive most of
their delegations indirectly. However, such a variant violates the principle of “one
person, one vote” and incentivizes delegation outside of the system [BKNS14]. [BKNS14] Behrens et al. (2014): The Princi-

ples of LiquidFeedback.By contrast, our approach reduces the weight of super-voters while preserving
each voter’s individual influence.

6.2 Algorithmic Model and Results

Let us consider a delegative voting process where agents may specify multiple
potential delegations. This gives rise to a directed graph, whose nodes represent
agents and whose edges represent potential delegations. In the following, we will
conflate nodes and the agents they represent. A distinguished subset of nodes
corresponds to agents who have voted directly, the voters. Since voters forfeit
the right to delegate, the voters are a subset of the sinks of the graph. We call all
non-voter agents delegators.

Each agent has an inherent voting weight of 1. When the delegations will have
been resolved, the weight of every agent will be the sum of weights of their
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delegators plus their inherent weight. We aim to choose a delegation for every
delegator in such a way that the maximum weight of any voter is minimized.

This task closely mirrors the problem of congestion minimization for confluent
flow (with infinite edge capacity): There, a flow network is also a finite directed
graph with a distinguished set of graph sinks, the flow sinks. Every node has a
non-negative demand. If we assume unit demand, this demand is 1 for every
node. Since the flow is confluent, for every non-sink node, the algorithm must
pick exactly one outgoing edge, along which the flow is sent. Then, the congestion
at a node 𝑛 is the sum of congestions at all nodes who direct their flow to 𝑛
plus the demand of 𝑛. The goal in congestion minimization is to minimize the
maximum congestion at any flow sink.1 1: The close connection between our prob-

lem and confluent flow immediately sug-
gests a variant corresponding to splittable
flow; we discuss this variant at length in Sec-
tion 6.5.

In spite of the similarity between confluent flow and resolving potential delega-
tions, the two problems differ when a node has no path to a voter / flow sink.
In confluent flow, the result would simply be that no flow exists. In our setting
however, this situation can hardly be avoided. If, for example, several friends
assign all of their potential delegations to each other, and if all of them rely on
the others to vote, their weight cannot be delegated to any voter. Our mechanism
cannot simply report failure as soon as a small group of voters behaves in an
unexpected way. Thus, it must be allowed to leave these votes unused. At the
same time, of course, our algorithm should not exploit this power to decrease
the maximum weight, but must primarily maximize the number of utilized votes.
We formalize these issues in the following section.

6.2.1 Problem Statement

All graphs 𝐺 = (𝑁, 𝐸) mentioned in this section will be finite and directed.
Furthermore, they will be equipped with a set 𝑉 of distinguished sinks in the
graph. For the sake of brevity, these assumptions will be implicit in the notion
“graph 𝐺 with 𝑉”.

Some of these graphs represent situations in which all delegations have already
been resolved and in which each vote reaches a voter: We call a graph (𝑁, 𝐸)
with 𝑉 a delegation graph if it is acyclic, its sinks are exactly the set 𝑉, and every
other vertex has outdegree one. In such a graph, define the weight 𝑤(𝑛) of a node
𝑛 ∈ 𝑁 as

𝑤(𝑛) ≔ 1 + �
(𝑚,𝑛)∈𝐸

𝑤(𝑚).

This is well-defined because 𝐸 is a well-founded relation on 𝑁.

Resolving the delegations of a graph 𝐺 with 𝑉 can now be described as the
MinMaxWeight problem: Among all delegation subgraphs (𝑁′, 𝐸′) of 𝐺 with
voting vertices𝑉 of maximum |𝑁′|, find one that minimizes the maximum weight
of the voting vertices.

6.2.2 Connections to Confluent Flow

We recall definitions from the flow literature as used by Chen et al. [CKL+07]
[CKL+07] Chen et al. (2007): (Almost) Tight
Bounds and Existence Theorems for Single-
Commodity Confluent Flows.

.
We slightly simplify the exposition by assuming unit demand at every node.
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Given a graph (𝑁, 𝐸)with𝑉, a flow is a function 𝑓 ∶ 𝐸 → ℝ≥0. For any node 𝑛, set
in(𝑛) ≔ ∑

(𝑚,𝑛)∈𝐸 𝑓(𝑚, 𝑛) and out(𝑛) ≔ ∑
(𝑛,𝑚)∈𝐸 𝑓(𝑛,𝑚). At every node 𝑛 ∈ 𝑁 ⧵𝑉,

a flow must satisfy flow conservation:

out(𝑛) = 1 + in(𝑛).

Note that all nodes in 𝑉 are sinks in the graph, and thus have no outflow. The
congestion at any node 𝑛 is defined as 1 + in(𝑛). A flow is confluent if every node
has at most one outgoing edge with positive flow. We define MinMaxConges-
tion as the problem of finding a confluent flow on a given graph such that the
maximum congestion is minimized.

To relate the two presented problems, we need to refer to the parts of a graph
(𝑁, 𝐸) with 𝑉 from which 𝑉 is reachable: The active nodes active𝑉(𝑁, 𝐸) are all
𝑛 ∈ 𝑁 such that there exists a path from 𝑛 to a sink 𝑣 ∈ 𝑉 using edges in 𝐸. The
active subgraph is the restriction of (𝑁, 𝐸) to active𝑉(𝑁, 𝐸). In particular, 𝑉 is
part of this subgraph.

Lemma 6.1 Let 𝐺 = (𝑁, 𝐸) with 𝑉 be a graph. Its delegation subgraphs (𝑁′, 𝐸′)
thatmaximize |𝑁′| are exactly the delegation subgraphs with𝑁′ = active𝑉(𝑁, 𝐸).
At least one such subgraph exists.

Proof. First, we show that all nodes of a delegation subgraph are active. Indeed,
consider any node 𝑛1 in the subgraph. By following outgoing edges, we obtain a
sequence of nodes 𝑛1 𝑛2… such that 𝑛𝑖 delegates to 𝑛𝑖+1. Since the graph is finite
and acyclic, this sequence must end with a vertex 𝑛𝑗 without outgoing edges. This
must be a voter; thus, 𝑛1 is active.

Furthermore, there exists a delegation subgraph of (𝑁, 𝐸) with nodes exactly
active𝑉(𝑁, 𝐸). Indeed, the shortest-paths-to-set-𝑉 forest (with edges pointed in
the direction of the paths) on the active subgraph is a delegation graph.

By the first argument, all delegation subgraphs must be subgraphs of the active
subgraph. By the second argument, to have the maximum number of nodes, they
must include all nodes of this subgraph.

Lemma 6.2 Let (𝑁, 𝐸) with 𝑉 be a graph and let 𝑓 ∶ 𝐸 → ℝ≥0 be a confluent
flow (for unit demand). By eliminating all zero-flow edges from the graph, we
obtain a delegation graph.

Proof. We first claim that the resulting graph is acyclic. Indeed, for the sake of
contradiction, suppose that there is a cycle including some node 𝑛. Consider
the flow out of 𝑛, through the cycle and back into 𝑛. Since the flow is confluent,
and thus the flow cannot split up, the demand can only increase from one node
to the next. As a result, in(𝑛) ≥ out(𝑛). However, by flow conservation and unit
demand, out(𝑛) = in(𝑛) + 1, which contradicts the previous statement.

Furthermore, the sinks of the graph are exactly 𝑉: By assumption, the nodes of
𝑉 are sinks in the original graph, and thus in the resulting graph. For any other
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node, flow conservation dictates that its outflow be at least its demand 1, thus
every other node must have outgoing edges.

Finally, every node not in 𝑉 must have outdegree 1. As detailed above, the outde-
gree must be at least 1. Because the flow was confluent, the outdegree cannot be
greater.

As a result of these three properties, we have a delegation graph.

Lemma 6.3 Let (𝑁, 𝐸) with 𝑉 be a graph in which all vertices are active, and
let (𝑁, 𝐸′) be a delegation subgraph. Let 𝑓 ∶ 𝐸 → ℝ≥0 be defined such that, for
every node 𝑛 ∈ 𝑁 ⧵ 𝑉 with (unique) outgoing edge 𝑒 ∈ 𝐸′, 𝑓(𝑒) ≔ 𝑤(𝑛). On all
other edges 𝑒 ∈ 𝐸 ⧵ 𝐸′, set 𝑓(𝑒) ≔ 0. Then, 𝑓 is a confluent flow.

Proof. For every non-sink, flow conservation holds by the definition of weight
and flow. By construction, the flow must be confluent.

6.2.3 Algorithms

The observations made above allow us to apply algorithms — even approximation
algorithms — for MinMaxCongestion to our MinMaxWeight problem; that
is, we can reduce the latter problem to the former.

Theorem 6.4 Let𝒜 be an algorithm for MinMaxCongestion with approxi-
mation ratio 𝑐 ≥ 1. Let𝒜 ′ be an algorithm that, given (𝑁, 𝐸) with 𝑉, runs𝒜
on the active subgraph, and translates the result into a delegation subgraph by
eliminating all zero-flow edges. Then 𝒜 ′ is a 𝑐-approximation algorithm for
MinMaxWeight.

Proof. By Lemma 6.1, removing inactive parts of the graph does not change the
solutions to MinMaxWeight, so we can assume without loss of generality that
all vertices in the given graph are active.

Suppose that the optimal solution for MinMaxCongestion on the given in-
stance has maximum congestion 𝛼. By Lemma 6.2, it can be translated into a
solution for MinMaxWeight with maximum weight 𝛼. By Lemma 6.3, the latter
instance has no solution with maximum weight less than 𝛼, otherwise it could
be used to construct a confluent flow with the same maximum congestion. It
follows that the optimal solution to the given MinMaxWeight instance has
maximum weight 𝛼.

Now, 𝒜 returns a confluent flow with maximum congestion at most 𝑐 ⋅ 𝛼. Using
Lemma 6.2,𝒜 ′ constructs a solution to MinMaxWeight with maximum weight
at most 𝑐 ⋅ 𝛼. Therefore, 𝒜 ′ is a 𝑐-approximation algorithm.

Note that Theorem 6.4 works for 𝑐 = 1, i.e., even for exact algorithms. Therefore,
it is possible to solve MinMaxWeight by adapting any exact algorithm for
MinMaxFlow. In particular, congestion minimization for confluent flow can
be expressed as a mixed integer linear program (MILP).
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To stress the connection to MinMaxWeight, denote the congestion at a voter 𝑖 by
𝑤(𝑖). For each potential delegation (𝑢, 𝑣), 𝑓(𝑢, 𝑣) gives the amount of flow between
𝑢 and 𝑣. This flow must be nonnegative (6.2) and satisfy flow conservation (6.3).
Congestion is defined in Equation (6.4). To minimize maximum congestion, we
introduce a variable 𝑧 that is higher than the congestion of any voter (6.5), and
minimize 𝑧 (6.1).

So far, we have described a Linear Program for optimizing splittable flow. To
restrict the solutions to confluent flow, we must enforce an ‘all-or-nothing’ con-
straint on outflow from any node, i.e. at most one outgoing edge per node can
have positive flow. We express this using a convex-hull reformulation. We in-
troduce a binary variable 𝑥𝑢,𝑣 for each edge Equation (6.6), and set the sum of
binary variables for all outgoing edges of a node to 1 (6.7). If 𝑀 is a constant
larger than the maximum possible flow, we can then bound 𝑓(𝑢, 𝑣) ≤ 𝑀𝑥𝑢,𝑣 (6.8)
to have at most one positive outflow per node.

The final MILP is thus

minimize 𝑧 (6.1)
subject to 𝑓(𝑚, 𝑛) ≥ 0 ∀(𝑚, 𝑛) ∈ 𝐸, (6.2)

�
(𝑛,𝑚)∈𝐸

𝑓(𝑛,𝑚) = 1 + �
(𝑚,𝑛)∈𝐸

𝑓(𝑚, 𝑛) ∀𝑛 ∈ 𝑁 ⧵ 𝑉, (6.3)

𝑤(𝑣) = 1 + �
(𝑛,𝑣)∈𝐸

𝑓(𝑛, 𝑣) ∀𝑣 ∈ 𝑉, (6.4)

𝑧 ≥ 𝑤(𝑣) ∀𝑣 ∈ 𝑉, (6.5)
𝑥𝑚,𝑛 ∈ {0, 1} ∀(𝑚, 𝑛) ∈ 𝐸, (6.6)
�

(𝑛,𝑚)∈𝐸
𝑥𝑛,𝑚 = 1 ∀𝑛 ∈ 𝑁 ⧵ 𝑉, (6.7)

𝑓(𝑚, 𝑛) ≤ 𝑀 ⋅ 𝑥𝑚,𝑛 ∀(𝑚, 𝑛) ∈ 𝐸. (6.8)

Since the foregoing algorithm is based on solving an NP-hard problem, it might be
too inefficient for typical use cases of liquid democracy with many participating
agents. Fortunately, it might be acceptable to settle for a slightly non-optimal
maximum weight if this decreases computational cost. To our knowledge, the
best polynomial approximation algorithm for MinMaxCongestion is due to
Chen et al. [CKL+07] and achieves an approximation ratio of 1 + ln |𝑉|. Their [CKL+07] Chen et al. (2007): (Almost) Tight

Bounds and Existence Theorems for Single-
Commodity Confluent Flows.

algorithm starts by computing the optimal solution to the splittable-flow version
of the problem, by solving a linear program. The heart of their algorithm is a non-
trivial, deterministic rounding mechanism. This scheme drastically outperforms
the natural, randomized rounding scheme, which leads to an approximation
ratio of Ω(|𝑁|1/4) with arbitrarily high probability [CRS06]. [CRS06] Chen et al. (2006): Meet and

Merge.

6.2.4 Hardness of Approximation

In this section, we demonstrate the NP-hardness of approximating the Min-
MaxWeight problem to within a factor of 1

2 log2 |𝑉|. On the one hand, this
justifies the absence of an exact polynomial-time algorithm. On the other hand,
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this shows that the approximation algorithm is optimal up to a multiplicative
constant.

Theorem 6.5 It is NP-hard to approximate the MinMaxWeight problem to a
factor of 12 log2 |𝑉|, even when each node has outdegree at most 2.

Not surprisingly, we derive hardness via a reduction from MinMaxCongestion,
i.e., a reduction in the opposite direction from the one given in Theorem 6.4.
As shown by Chen et al. [CKL+07], approximating MinMaxCongestion to [CKL+07] Chen et al. (2007): (Almost) Tight

Bounds and Existence Theorems for Single-
Commodity Confluent Flows.

within a factor of 1
2 log2 |𝑉| is NP-hard. However, in our case, nodes have unit

demands. Moreover, we are specifically interested in the case where each node
has outdegree at most 2, as in practice we expect outdegrees to be very small,
and this case plays a special role in Section 6.3.

We begin with a lemma that slightly strengthens a hardness result by Fortune et
al. [FHW80]: [FHW80] Fortune et al. (1980):The Directed

Subgraph Homeomorphism Problem.

Lemma 6.6 Let 𝐺 be a directed graph in which all vertices have an outdegree of
at most 2. Given vertices 𝑠1, 𝑠2, 𝑡1, 𝑡2, it is NP-hard to decide whether there exist
vertex-disjoint paths from 𝑠1 to 𝑡1 and from 𝑠2 to 𝑡2.

Proof. Without the restriction on the outdegree, the problem is NP-hard [FHW80].
We reduce the general case to our special case.

Let 𝐺′ be an arbitrary directed graph; let 𝑠′1, 𝑠′2, 𝑡′1, 𝑡′2 be distinguished vertices. To
restrict the outdegree, replace each node 𝑛 with outdegree 𝑑 by a binary arbores-
cence (directed binary tree with edges facing away from the root) with 𝑑 sinks.
All incoming edges into 𝑛 are redirected towards the root of the arborescence;
outgoing edges from 𝑛 instead start from the different leaves of the arborescence.
Call the new graph 𝐺, and let 𝑠1, 𝑠2, 𝑡1, 𝑡2 refer to the roots of the arborescences
replacing 𝑠′1, 𝑠′2, 𝑡′1, 𝑡′2, respectively.

Clearly, our modifications to𝐺′ can be carried out in polynomial time. It remains
to show that there are vertex-disjoint paths from 𝑠1 to 𝑡1 and from 𝑠2 to 𝑡2 in 𝐺
iff there are vertex-disjoint paths from 𝑠′1 to 𝑡′1 and from 𝑠′2 to 𝑡′2 in 𝐺′.

If there are disjoint paths in𝐺′, we can translate these paths into𝐺 by visiting the
arborescences corresponding to the nodes on the original path one after another.
Since both paths visit disjoint arborescences, the new paths must be disjoint.

Suppose now that there are disjoint paths in 𝐺. Translate the paths into 𝐺′ by
visiting the nodes corresponding to the sequence of visited arborescences. Since
each arborescence can only be entered via its root, disjointness of the paths in 𝐺
implies disjointness of the translated paths in 𝐺′.

Now, we can strengthen the hardness of approximation for MinMaxCongestion
by Chen et al. [CKL+07]. We believe the lemma is of independent interest, as it
shows a surprising separation between the case of outdegree 1 (where the problem
is moot) and outdegree 2, and that the asymptotically optimal approximation
ratio is independent of degree. But it also allows us to prove Theorem 6.5 almost
directly.
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𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1

𝑠1 𝑠2

𝑡2 𝑡1 Figure 6.1: Auxiliary network generated
from 𝐺, here for 𝑘 = 16. Recreation of
[CKL+07, Fig. 2].

Lemma 6.7 It is NP-hard to approximate the MinMaxCongestion problem
to a factor of 12 log2 𝑘, where 𝑘 is the number of sinks, even when each node has
unit demand and outdegree at most 2.

Proof of Lemma 6.7. We adapt the proof of Theorem 1 of Chen et al. [CKL+07]. [CKL+07] Chen et al. (2007): (Almost) Tight
Bounds and Existence Theorems for Single-
Commodity Confluent Flows.Let 𝐺 = (𝑉, 𝐸), 𝑠1, 𝑠2, 𝑡1, 𝑡2 be given as in Lemma 6.6. Without loss of generality,

𝐺 only contains nodes from which 𝑡1 or 𝑡2 is reachable, 𝑡1 and 𝑡2 are sinks and
all four vertices are distinct. Let ℓ = ⌈log2 |𝑉|⌉ and 𝑘 = 2ℓ. Build the same
auxiliary network as that built by Chen et al. [CKL+07], which consists of a
binary arborescence whose 𝑘 − 1 nodes are copies of 𝐺. The construction is
illustrated in Figure 6.1. For more details, refer to their paper.

For ease of exposition, we describe our reduction as returning a flow network
with polynomially-bounded positive integer demands. Implicitly, the described
network is subsequently translated into one with unary demand; to express a
demand of 𝑑 at a node 𝑛 in our unit-demand setting, add 𝑑 − 1 fresh nodes with
a single outgoing edge to 𝑛.

Denote the number of nodes in the network by 𝜙 ≔ (𝑘 − 1) ⋅ |𝑉| + 𝑘, and set
Φ ≔ ℓ ⋅ 𝜙 + 1. In the proof by Chen et al. [CKL+07], every copy of 𝑠2 and 𝑡2
has demand 1, the copy of 𝑠1 at the root has demand 2, and all other nodes have
demand 0. Instead, we give these nodes demands of Φ, 2Φ and 1, respectively.
Note that the size of the generated network2 is polynomial in the size of 𝐺 and 2: Even after unfolding our non-unitary-

demand nodes.that the outdegree of each node is at most 2. From every node, one of the sinks 𝑆
displayed as rectangles in Figure 6.1 is reachable. Since the minimum-distance-
to-𝑆 spanning forest describes a flow, a flow in the network exists.

Suppose that 𝐺 contains vertex-disjoint paths 𝑃1 from 𝑠1 to 𝑡1 and 𝑃2 from 𝑠2 to
𝑡2. In each copy of 𝐺 in the network, route the flow along these paths. We can
complete the confluent flow inside of this copy in such a way that the demand of
every node is routed to 𝑡1 or 𝑡2: By assumption, each of the nodes can reach one
of these two path endpoints. Iterate over all nodes in order of ascending distance
to the closest endpoint and make sure that their flow is routed to an endpoint. For
the endpoints themselves, there is nothing to do. For positive distance, a node
might be part of a path and thus already connected to an endpoint. Else, look at
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its successor in a shortest path to an endpoint. By the induction hypothesis, all
flow from this successor is routed to an endpoint, so route the node’s flow to this
successor. If we also use the edges between copies of 𝐺 and between the copies
and the sinks, we obtain a confluent flow. Each sink except for the rightmost
one can only collect the demand of two nodes with demand Φ plus a number of
nodes with demand 1. The rightmost sink collects the demand from the single
node with demand 2Φ plus some unitary demands. Thus, the congestion of the
system can be at most 2Φ + 𝜙.

Now, consider the case in which 𝐺 does not have such vertex-disjoint paths. In
every confluent flow and in every copy, there are three options:

▶ the flow from 𝑠1 flows to 𝑡2 and the flow from 𝑠2 flows to 𝑡1,

▶ the flow from 𝑠1 and 𝑠2 flows to 𝑡1, or

▶ the flow from 𝑠1 and 𝑠2 flows to 𝑡2.

In each case, the flow coming in through 𝑠1 is joined by additional demand of at
least Φ. Consider the path from the copy of 𝑠1 at the root to a sink. By a simple
inductive argument, the congestion at the endpoint of the 𝑖th copy of 𝐺 on this
path is at least (𝑖 + 1) ⋅ Φ. Thus, the total congestion at the sink must be at least
(ℓ + 1) ⋅ Φ. The lemma now follows from the fact that

log2 𝑘
2

(2Φ + 𝜙) =
ℓ
2
(2Φ + 𝜙) < (ℓ + 1) ⋅ Φ.

Proof of Theorem 6.5. We reduce (gap) MinMaxCongestion with unit demand
and outdegree at most 2 to (gap) MinMaxWeight with outdegree at most 2.
First, we claim that if there are inactive nodes, there is no confluent flow. Indeed,
let 𝑛1 be an inactive node. For the sake of contradiction, suppose that there exists
a flow 𝑓. Follow the positive flow to obtain a sequence 𝑛1 𝑛2… . By definition,
none of the nodes reachable from 𝑛1 can be a voter. Since, by flow conservation
and unit demand, each node must delegate, the sequence must be infinite. As
detailed in the proof of Lemma 6.2, a confluent flow with unit demand cannot
contain cycles. Thus, the sequence contains infinitely many different nodes, which
contradicts the finiteness of 𝐺.

Therefore, we can assume without loss of generality that in the given instance of
MinMaxCongestion, all nodes are active (as the problem is still NP-hard). The
reduction creates an instance of MinMaxWeight that has the same graph as
the given instance of MinMaxCongestion. Using an argument analogous to
the proof of Theorem 6.4 (reversing the roles of Lemma 6.2 and Lemma 6.3 in
its proof), we see that this is a strict approximation-preserving reduction.

6.3 Probabilistic Model and Results

Our generalization of liquid democracy to multiple potential delegations aims to
decrease the concentration of weight. Accordingly, the success of our approach
should be measured by its effect on the maximum weight in real elections. Since,
at this time, we do not know of any available datasets,3

3: There is one relevant dataset that we
know of, which was analyzed by Kling et al.
[KKH+15]. However, due to stringent pri-
vacy constraints, the data privacy officer of
the German Pirate Party was unable to share
this dataset with us.we instead propose a

probabilistic model for delegation behavior, which can serve as a credible proxy.
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Our model builds on the well-known preferential attachment model, which
generates graphs possessing typical properties of social networks.

The evaluation of our approach will be twofold: In Sections 6.3.2 and 6.3.3, for
a certain choice of parameters in our model, we establish a striking separation
between traditional liquid democracy and our system. In the former case, the
maximum weight at time 𝑡 isΩ(𝑡𝛽) for a constant 𝛽with high probability, whereas
in the latter case, it is in 𝑂(log log 𝑡) with high probability, even if each delegator
only suggests two options. For other parameter settings, we empirically corrobo-
rate the benefits of our approach in Section 6.4.

6.3.1 The Preferential Delegation Model

Many real-world social networks have degree distributions that follow a power
law [KNT10; New01]. Additionally, in their empirical study, Kling et al. [KKH+15] [KNT10] Kumar et al. (2010): Structure and

Evolution of Online Social Networks.
[New01] Newman (2001): Clustering and
Preferential Attachment in Growing Net-
works.
[KKH+15] Kling et al. (2015): Voting Be-
haviour and Power in Online Democracy.

observed that the weight of voters in the German Pirate Party was “power law-like”
and that the graph had a very unequal indegree distribution. In order to meld the
previous two observations in our liquid democracy delegation graphs, we adapt
a standard preferential attachment model [BA99] for this specific setting. At a

[BA99] Barabási and Albert (1999): Emer-
gence of Scaling in Random Networks.

high level, our preferential delegation model is characterized by three parameters:
0 < 𝑑 < 1, the probability of delegation; 𝑘 ≥ 1, the number of delegation options
from each delegator; and 𝛾 ≥ 0, an exponent that governs the probability of
delegating to nodes based on current weight.

At time 𝑡 = 1, we have a single node representing a single voter. In each subsequent
time step, we add a node for agent 𝑖 and flip a biased coin to determine the agent’s
delegation behavior. With probability 𝑑, they delegate to other agents. Else, they
vote independently. If 𝑖 does not delegate, their node has no outgoing edges.
Otherwise, add edges to 𝑘 many independently selected, previously inserted
nodes, where the probability of choosing node 𝑗 is proportional to (indegree(𝑗) +
1)𝛾. Note that this model might generate multiple edges between the same pair of
nodes, and that all sinks are voters. Figure 6.2 shows example graphs for different
settings of 𝛾.

(a) 𝛾 = 0

(b) 𝛾 = 1

Figure 6.2: Example graphs generated by
the preferential delegation model for 𝑘 = 2
and 𝑑 = 0.5.

In the case of 𝛾 = 0, which we term uniform delegation, a delegator is equally
likely to attach to any previously inserted node. Already in this case, a “rich-get-
richer” phenomenon can be observed, i.e., voters at the end of large networks of
potential delegations will likely see their network grow even more. Indeed, a larger
network of delegations is more likely to attract new delegators. In traditional
liquid democracy, where 𝑘 = 1 and all potential delegations will be realized,
this explains the emergence of super-voters with excessive weight observed by
Kling et al. [KKH+15]. We aim to show that for 𝑘 ≥ 2, the resolution of potential
delegations can strongly outweigh these effects. In this, we profit from an effect
known as the “power of two choices” in load balancing described by Azar et
al. [ABKU94].

[ABKU94] Azar et al. (1994): Balanced Allo-
cations.

For 𝛾 > 0, the “rich-get-richer” phenomenon additionally appears at the degrees
of nodes. Since the number of received potential delegations is a proxy for an
agent’s competence and visibility, new agents are more likely to attach to agents
with high indegree. In total, this is likely to further strengthen the inherent
inequality between voters. For increasing 𝛾, the graph becomes increasingly flat,
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as a few super-voters receive nearly all delegations. This matches observations
from the LiquidFeedback dataset [KKH+15] that “the delegation network is slowly [KKH+15] Kling et al. (2015): Voting Be-

haviour and Power in Online Democracy.becoming less like a friendship network, and more like a bipartite networks of
super-voters connected to normal voters.” The special case of 𝛾 = 1 corresponds
to preferential attachment as described by Barabási and Albert [BA99]. [BA99] Barabási and Albert (1999): Emer-

gence of Scaling in Random Networks.
The most significant difference we expect to see between graphs generated by the
preferential delegation model and real delegation graphs is the assumption that
agents always delegate to more senior agents. In particular, this causes generated
graphs to be acyclic, which need not be the case in practice. It does seem plausible
that the majority of delegations goes to agents with more experience on the
platform. Even if this assumption should not hold, there is a second interpretation
of our process if we assume — as do Kahng et al. [KMP18] — that agents can [KMP18] Kahng et al. (2018): Liquid Democ-

racy.be ranked by competence and only delegate to more competent agents. Then,
we can think of the agents as being inserted in decreasing order of competence.
When a delegator chooses more competent agents to delegate to, the delegator’s
choice would still be biased towards agents with high indegree, which is a proxy
for popularity.

It may be useful to note that the MinMaxWeight approach based on conflu-
ent flow does not require the underlying delegation graph to be acyclic, as the
objective tries to minimize the maximum weight of any voter over all possible
delegation choices that maximize the total number of utilized votes. In this sense,
unavoidable cycles result in lost voting power.

In our theoretical results, we focus on the cases of 𝑘 = 1 and 𝑘 = 2, and assume
𝛾 = 0 to make the analysis tractable. The parameter 𝑑 can be chosen freely
between 0 and 1. Note that our upper bound for 𝑘 = 2 directly translates into an
upper bound for larger 𝑘, since the resolution mechanism always has the option
of ignoring all outgoing edges except for the first two. Therefore, to understand
the effect of multiple delegation options, we can restrict our attention to 𝑘 = 2.
This crucially relies on 𝛾 = 0, where potential delegations do not influence the
probabilities of choosing future potential delegations. Based on related results
by Malyshkin and Paquette [MP15], it seems unlikely that increasing 𝑘 beyond 2 [MP15] Malyshkin and Paquette (2015): The

Power of Choice over Preferential Attach-
ment.

will reduce the maximum weight by more than a constant factor.

6.3.2 Lower Bounds for Single Delegation (𝑘 = 1, 𝛾 = 0)

As mentioned above, we first assume uniform delegation and a single delegation
option per delegator, and derive a lower bound on the maximum weight. To state
our results rigorously, we say that a sequence (ℰ𝑚)𝑚 of events happens with high
probability if ℙ[ℰ𝑚] → 1 for 𝑚 → ∞. Since the parameter going to infinity is
clear from the context, we omit it.

Theorem 6.8 In the preferential delegation model with 𝑘 = 1, 𝛾 = 0, and
𝑑 ∈ (0, 1), with high probability, the maximum weight of any voter at time 𝑡 is in
Ω(𝑡𝛽), where 𝛽 > 0 is a constant that depends only on 𝑑.

Proof. It suffices to show that, with high probability, there exists a voter at every
time 𝑡 whose weight is bounded from below by a function in Ω(𝑡𝛽).
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For ease of exposition, we pretend that 𝑖max ≔ log2
𝑡
ln 𝑡 is an integer.4 We divide 4: The same argument works for 𝑖max ≔

�log2
𝑡
ln 𝑡
� if we appropriately bound the

term.
the 𝑡 agents into 𝑖max + 1 blocks 𝐵0, … , 𝐵𝑖max . The first block 𝐵0 contains agents 1
to 𝜏 ≔ ln 𝑡, and every subsequent block 𝐵𝑖 contains agents (𝜏 2𝑖−1, 𝜏 2𝑖].

We keep track of the total weight 𝑆𝑖 of all voters in 𝐵0 after the entirety of block
𝐵𝑖 has been added. Furthermore, we define an event𝑋𝑖 saying that a high enough
number of agents in block 𝐵𝑖 transitively delegate into 𝐵0. If all 𝑋𝑖 hold, 𝑆𝑖max
scales like a power function. Then, we show that, as 𝑡 increases, the probability of
any 𝑋𝑖 failing goes to zero. Thus, our bound on 𝑆𝑖max holds with high probability.
The total weight of 𝐵0 and the weight of the maximum-weight voter in 𝐵0 can
differ by at most a factor of 𝜏, which is logarithmic in 𝑡. Thus, with high probability,
there is a voter in 𝐵0 whose weight is a power function.

In more detail, let 𝜀 ≔ 1
2 and let 𝑑′ ≔ (1 − 𝜀) 𝑑 = 𝑑

2 . For each 𝑖 ≥ 0, let 𝑌𝑖 denote
the number of votes from block 𝑖 transitively going into 𝐵0. Clearly, 𝑆𝑖 = ∑

𝑖
𝑗=0 𝑌𝑖.

For 𝑖 > 0, let 𝑋𝑖 denote the event that

𝑌𝑖 > 𝑑′
𝜏 �1 + 𝑑′

2
�
𝑖−1

2
.

Bounding the Expectation of 𝑌𝑖 We first prove by induction on 𝑖 that, if 𝑋1
through 𝑋𝑖 hold, then

𝑆𝑖 ≥ 𝜏 �1 +
𝑑′

2 �
𝑖

. (6.9)

For 𝑖 = 0, 𝑆0 = 𝜏 and the claim holds. For 𝑖 > 0, by the induction hypothesis,

𝑆𝑖−1 ≥ 𝜏 �1 +
𝑑′

2
�
𝑖−1

. By the assumption 𝑋𝑖,

𝑌𝑖 > 𝑑′
𝜏 �1 + 𝑑′

2
�
𝑖−1

2
.

Thus,

𝑆𝑖 = 𝑆𝑖−1 + 𝑌𝑖 ≥ 𝜏 �1 +
𝑑′

2 �
𝑖−1

+ 𝑑′
𝜏 �1 + 𝑑′

2
�
𝑖−1

2

= 𝜏 �1 +
𝑑′

2 �
𝑖−1

�1 +
𝑑′

2 �
= 𝜏 �1 +

𝑑′

2 �
𝑖

.

This concludes the induction and establishes Equation (6.9).

Now, for any agent 𝑗 in 𝐵𝑖, the probability of transitively delegating into 𝐵0 is

𝑑
∑
𝑣∈𝑉∩𝐵0

𝑤𝑗−1(𝑣)
𝑗 − 1

≥ 𝑑
𝑆𝑖−1
𝜏 2𝑖

.

Conditioned on 𝑋1, … , 𝑋𝑖−1, we can thus lower-bound 𝑌𝑖 by a binomial variable
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Bin �𝜏 2𝑖−1, 𝑑 𝑆𝑖−1
𝜏 2𝑖
� to obtain

𝔼[𝑌𝑖 | 𝑋1, … , 𝑋𝑖−1] ≥ 𝜏 2𝑖−1 𝑑
𝑆𝑖−1
𝜏 2𝑖

= 𝑑
𝑆𝑖−1
2

≥ 𝑑
𝜏 �1 + 𝑑′

2
�
𝑖−1

2
.

Denoting the right hand side by

𝜇 ≔ 𝑑
𝜏 �1 + 𝑑′

2
�
𝑖−1

2
,

note that 𝑋𝑖 holds if 𝑌𝑖 > (1 − 𝜀) 𝜇.

Failure Probability Goes to 0 Now, we must show that, with high probability,
all 𝑋𝑖 hold. By underapproximating the probability of delegation by a binomial
random variable as before and by using a Chernoff bound, we have for all 𝑖 > 0

ℙ[𝑋𝑖 ∣ 𝑋1, … , 𝑋𝑖−1] ≥ ℙ
⎡
⎢⎢⎢⎣Bin

⎛
⎜⎜⎜⎝𝜏 2𝑖−1, 𝑑

𝜏 (1 + 𝑑′/2)𝑖−1

𝜏 2𝑖

⎞
⎟⎟⎟⎠ > (1 − 𝜀) 𝜇

⎤
⎥⎥⎥⎦ ≥ 1 − 𝑒

− 𝜀
2 𝜇
2 .

By the union bound,

ℙ[∃𝑖, 1 ≤ 𝑖 ≤ 𝑖max such that 𝑋𝑖 fails] ≤
𝑖max
�
𝑖=1

𝑒−
𝜀2 𝑑 𝜏 �1+𝑑′/2�

𝑖−1

4 .

We wish to show that the right hand side goes to 0 as 𝑡 increases. We have

𝑖max
�
𝑖=1

𝑒−
𝜀2 𝑑 𝜏 �1+𝑑′/2�

𝑖−1

4 ≤ 𝑖max �𝑒
− 𝜀

2 𝑑 𝜏
4 � (by monotonicity)

= �log2
𝑡

ln 𝑡
� �𝑡−

𝜀2 𝑑
4 � , (by definitions of 𝑖max, 𝜏)

which indeed approaches 0 as 𝑡 increases.

Bounding the Maximum Weight Note that the weight of 𝐵0 at time 𝑡 is exactly
𝑆𝑖max . Set 𝑥 ≔ 1 + 𝑑′/2 > 1, which is a constant. With high probability, by
Equation (6.9),

𝑆𝑖max

𝜏
≥ �1 +

𝑑′

2 �
𝑖max

= 𝑥log2
𝑡
ln 𝑡 = �

𝑡
ln 𝑡

�
log2 𝑥

.

Since 𝑥 > 1, log2 𝑥 > 0. For any 0 < 𝛽 < log2 𝑥,
𝑆𝑖max
𝜏 ∈ Ω(𝑡𝛽)with high probability.

Since 𝐵0 has weight 𝑆𝑖max and contains at most 𝜏 voters, with high probability
there is some voter in 𝐵0 with that much weight.

Before proceeding to the upper bound and showing the separation, we would
like to point out that — with a minor change to our model — these lower bounds
also hold for 𝛾 = 1. Consider a model in which the probability of attaching
to a delegator 𝑛 remains proportional to (1 + indegree(𝑛))𝛾, but the probability
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for voters 𝑛 is now proportional to (2 + indegree(𝑛))𝛾.5 If we represent voters 5: Clearly, our results for 𝛾 = 0 hold for
both variants.with a self-loop edge, both terms just equal degree(𝑛)𝛾, which arguably makes

this implementation of preferential attachment cleaner to analyze (e.g., [BR04]). [BR04] Bollobás and Riordan (2004): Math-
ematical Results on Scale-Free Random
Graphs.

Thus, we can interpret preferential attachment for 𝛾 = 1 as uniformly picking an
edge and then flipping a fair coin to decide whether to attach the new node to
the edge’s start or endpoint. Since every node has exactly one outgoing edge, this
is equivalent to uniformly choosing a node and then, with probability 1

2 , instead
picking its successor. This has the same effect on the distribution of weights as just
uniformly choosing a node in uniform delegation, so Theorem 6.8 also holds for
𝛾 = 1 in our modified setting. Real-world delegation networks, which we suspect
to resemble the case of 𝛾 = 1, should therefore exhibit similar behavior.

6.3.3 Upper Bound for Double Delegation (𝑘 = 2, 𝛾 = 0)

Analyzing cases with 𝑘 > 1 is considerably more challenging. One obstacle is
that we do not expect to be able to incorporate optimal resolution of potential
delegations into our analysis, because the computational problem is hard even
when 𝑘 = 2 (see Theorem 6.5). Therefore, we give a pessimistic estimate of
optimal resolution via a greedy delegation mechanism, which we can reason
about alongside the stochastic process. Clearly, if this stochastic process can
guarantee an upper bound on the maximum weight with high probability, this
bound must also hold if delegations are optimally resolved to minimize maximum
weight.

In more detail, whenever a new delegator is inserted into the graph, the greedy
mechanism immediately selects one of the delegation options. As a result, at any
point during the construction of the graph, the algorithm can measure the weight
of the voters. Suppose that a new delegator suggests two delegation options, to
agents 𝑎 and 𝑏. By following already resolved delegations, the mechanism obtains
voters 𝑎∗ and 𝑏∗ such that 𝑎 transitively delegates to 𝑎∗ and 𝑏 to 𝑏∗. The greedy
mechanism then chooses the delegation whose voter currently has lower weight,
resolving ties arbitrarily.

This situation is reminiscent of a phenomenon known as the “power of choice.”
In its most isolated form, it has been studied in the balls-and-bins model, for
example by Azar et al. [ABKU94]. In this model, 𝑛 balls are to be placed in 𝑛 bins. [ABKU94] Azar et al. (1994): Balanced Allo-

cations.In the classical setting, each ball is sequentially placed into a bin chosen uniformly
at random. With high probability, the fullest bin will contain Θ(log 𝑛/ log log 𝑛)
balls at the end of the process. In the choice setting, two bins are independently
and uniformly selected for every ball, and the ball is placed into the emptier one.
Surprisingly, this leads to an exponential improvement, where the fullest bin will
contain at most Θ�log log 𝑛� balls with high probability.

We show that, at least for 𝛾 = 0 in our setting, this effect outweighs the “rich-get-
richer” dynamic described earlier:

Theorem 6.9 In the preferential delegation model with 𝑘 = 2, 𝛾 = 0, and
𝑑 ∈ (0, 1), the maximum weight of any voter at time 𝑡 is log2 ln 𝑡 + Θ(1) with
high probability.
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Because the proof of Theorem 6.9 is quite intricate and technical, we only present
a sketch of its structure in this thesis. In our proof we build on work by Malyshkin
and Paquette [MP15], who study the maximum degree in a graph generated by [MP15] Malyshkin and Paquette (2015): The

Power of Choice over Preferential Attach-
ment.

preferential attachment with the power of choice. In addition, we incorporate
ideas by Haslegrave and Jordan [HJ16].6 Proofs for the individual lemmas can

[HJ16] Haslegrave and Jordan (2016): Pref-
erential Attachment with Choice.
6: More precisely, for the definition of the
sequence (𝛼𝑘)𝑘 as well as in Lemmas 13 and
14 in Appendix A.1 of the full version.

be found in Appendix A of the full version.

For our analysis, it would be natural to keep track of the number of voters 𝑣 with
a specific weight 𝑤𝑗(𝑣) = 𝑘 at a specific point 𝑗 in time. In order to simplify the
analysis, we instead keep track of random variables

𝐹𝑗(𝑘) ≔ �
𝑣∈𝑉

𝑤𝑗(𝑣)≥𝑘

𝑤𝑗(𝑣),

i.e., we sum up the weights of all voters with weight at least 𝑘. Since the total
weight increases by one in every step, we have

∀𝑗. 𝐹𝑗(1) = 𝑗, and (6.10)

∀𝑗, 𝑘. 𝐹𝑗(𝑘) ≤ 𝑗. (6.11)

If 𝐹𝑗(𝑘) < 𝑘 for some 𝑗 and 𝑘, the maximum weight of any voter must be below
𝑘.

If we look at a specific 𝑘 > 1 in isolation, the sequence (𝐹𝑗(𝑘))𝑗 evolves as a Markov
process initialized at 𝐹1(𝑘) = 0 and then governed by the rule

𝐹𝑚+1(𝑘) − 𝐹𝑚(𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 with probability 𝑑 ⋅ � 𝐹𝑚(𝑘)𝑚
�
2

𝑘 with probability 𝑑 ⋅ ��
𝐹𝑚(𝑘−1)

𝑚
�
2
− � 𝐹𝑚(𝑘)𝑚

�
2
�

0 otherwise

. (6.12)

In the first case, both potential delegations of a new delegator lead to voters who
already had weight at least 𝑘. We must thus give the delegator’s vote to one of
them, increasing 𝐹𝑚(𝑘) by one. In the second case, a new delegator offers two
delegations leading to voters of weight at least 𝑘 − 1, at least one of which has
exactly weight 𝑘 − 1. Our greedy algorithm will then choose a voter with weight
𝑘 − 1. Because this voter is counted in the definition of 𝐹𝑗(𝑘), 𝐹𝑚(𝑘) increases by 𝑘.
Finally, if a new voter appears, or if a new delegator can transitively delegate to a
voter with weight less than 𝑘 − 1, then 𝐹𝑚(𝑘) does not change.

In order to bound the maximum weight of a voter, we first need to get a handle on
the general distribution of weights. For this, we define a sequence of real numbers
(𝛼𝑘)𝑘 such that, for every 𝑘 ≥ 1, the sequence 𝐹𝑗(𝑘)/𝑗 converges in probability to
𝛼𝑘. Set 𝛼1 ≔ 1. For every 𝑘 > 1, let 𝛼𝑘 be the unique root 0 < 𝑥 < 𝛼𝑘−1 of the
polynomial

𝑎𝑘(𝑥, 𝑝) ≔ 𝑑 𝑥2 + 𝑘 𝑑 (𝑝2 − 𝑥2) − 𝑥 (6.13)

for 𝑝 set to 𝛼𝑘−1.7 Since 𝑎𝑘(0, 𝛼𝑘−1) > 0 and 𝑎𝑘(𝛼𝑘−1, 𝛼𝑘−1) < 0, such a solution 7: The equation 0 = 𝑎𝑘(𝑥, 𝑝) can be obtained
from Equation (6.12) by naïvely assuming
that 𝐹𝑗(𝑘 − 1)/𝑗 converges to a value 𝑝 and
𝐹𝑗(𝑘)/𝑗 converges to 𝑥, then plugging these
values in the expectation of the recurrence.

exists by the intermediate value theorem. Because the polynomial is quadratic,
such a solution must be unique in the interval. It follows that the 𝛼𝑘 form a
strictly decreasing sequence in the interval (0, 1].

https://dl.acm.org/doi/pdf/10.1145/3485012#appendix.A
https://dl.acm.org/doi/pdf/10.1145/3485012#appendix.A
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The sequence (𝛼𝑘)𝑘 converges to zero, and eventually does so very fast. However,
this is not obvious from the definition and, depending on 𝑑, the sequence can
initially decrease slowly. In Lemma 13 in the full version, we demonstrate con-
vergence to zero, and in Lemma 14 we show that the sequence decreases at a
rate in 𝑂(𝑘−2). Based on this, in Lemma 15, we choose an integer 𝑘0 such that the
sequence decreases very fast from there. In the same lemma, we define a more
nicely behaved sequence (𝑓(𝑘))𝑘≥𝑘0 that is a strict upper bound on (𝛼𝑘)𝑘≥𝑘0 and
that is contained between two doubly-exponentially decaying functions.

Lemma 6.10 For all 𝑘 ≥ 1, 𝜀 > 0 and functions 𝜔(𝑚) such that 𝜔(𝑚) → ∞ and
𝜔(𝑚) < 𝑚 (for sufficiently large 𝑚),

ℙ �∃𝑗, 𝜔(𝑚) ≤ 𝑗 ≤ 𝑚 s.t. 𝐹𝑗(𝑘)/𝑗 > 𝛼𝑘 + 𝜀� → 0.

Proof sketch (detailed in Appendix A.2 of the full version). The proof proceeds by
induction on 𝑘. For 𝑘 = 1, the claim directly holds. For larger 𝑘, we use a suitably
chosen 𝛿 in place of 𝜀 and 𝜔0 in place of 𝜔 for the induction hypothesis. With
the induction hypothesis, we bound the 𝐹𝑚(𝑘−1)

𝑚 term in the recurrence in Equa-

tion (6.12). Furthermore, all increments 𝐹𝑗(𝑘) − 𝐹𝑗−1(𝑘) where
𝐹𝑗−1(𝑘)
𝑗−1 ≥ 𝛼𝑘 holds

can be dominated by independent and identically distributed random variables
𝜂′𝑗 .

Denote by 𝜋 the first point 𝑗 ≥ 𝜔0(𝑚) such that 𝐹𝑗(𝑘)/𝑗 ≤ 𝛼𝑘 + 𝜀/2. The 𝜂′𝑗 then
dominate all increments 𝐹𝑗(𝑘)−𝐹𝑗−1(𝑘) for𝜔0(𝑚) < 𝑗 ≤ 𝜋. Using Chernoff ’s bound
and suitably chosen 𝛿 and 𝜔0, we show that, with high probability, 𝜋 ≤ 𝜔(𝑚).

Because of this, if 𝐹𝑗(𝑘)/𝑗 > 𝛼𝑘 + 𝜀 for some 𝑗 ≥ 𝜔(𝑚), the sequence �𝐹𝑗(𝑘)/𝑗�𝑗
must eventually cross from below 𝛼𝑘 +

𝜀
2 to above 𝛼𝑘 + 𝜀 without in between

falling below 𝛼𝑘. On this segment, we can overapproximate the sequence by
a random walk with increments distributed as 𝜂′𝑗 . Since the sequence might
previously decrease below 𝛼𝑘 an arbitrary number of times, we overapproximate
the probability of ever crossing 𝛼𝑘 +𝜀 for 𝑗 ≥ 𝜔(𝑚) by a sum over infinitely many
random walks. This sum converges to 0 for𝑚 → ∞, which shows our claim.

The above lemma gives us a good characterization of the behavior of (𝐹𝑗(𝑘))𝑗 for
any fixed 𝑘 (and large enough 𝑗). To prove an upper bound on the maximum
weight, however, we are ultimately interested in statements about 𝐹𝑗(𝑘(𝑚)), where
𝑘(𝑚) ∈ Θ(log2 ln𝑚) and the range of 𝑗 varies with 𝑚. In order to obtain such
results, we will first show in Lemma 6.11 that whole ranges of 𝑘 simultaneously
satisfy bounds with high probability.

As in the previous lemma, we can only show our bounds with high probability for
𝑗 past a certain period of initial chaos. We will define a function,𝜙(𝑚, 𝑘), that takes
a role similar to 𝜔(𝑚) in Lemma 6.10. The function 𝜙(𝑚, 𝑘) gives each 𝑘 a certain

amount of time to satisfy the bounds, depending on 𝑚: Let 𝜌(𝑚) ≔ (ln ln𝑚)
1
3

and define 𝜙(𝑚, 𝑘) ≔ 𝜌(𝑚)𝐶2𝑘+1, where 𝐶 is an integer that is sufficiently large
to satisfy

ln𝐶 > max �1, 𝑐1, ln �
2

1 − 𝑑�
+
𝑐1
2 �

. (6.14)

https://dl.acm.org/doi/pdf/10.1145/3485012#lem.13
https://dl.acm.org/doi/pdf/10.1145/3485012#lem.14
https://dl.acm.org/doi/pdf/10.1145/3485012#lem.15
https://dl.acm.org/doi/pdf/10.1145/3485012#subsection.A.2


6 Avoiding the Concentration of Power in Liquid Democracy 83

In the above, 𝑐1 is a positive constant defining the lower bound on 𝑓(𝑘) in Lemma
15 in the full version.

Additionally, let 𝑘∗(𝑚) be the smallest integer such that

𝐶2𝑘∗(𝑚)+1 ≥ √𝑚. (6.15)

Note that 𝐶2𝑘∗(𝑚)+1 < 𝑚 because increasing the double exponent in increments of
1 is equivalent to squaring the term. By applying logarithms to 𝐶2𝑘∗(𝑚)+1 ≥ √𝑚
and 𝐶2𝑘∗(𝑚)+1 < 𝑚, we obtain log2 log𝐶𝑚 − 2 ≤ 𝑘∗(𝑚) < log2 log𝐶𝑚 − 1, from
which it follows that 𝑘∗(𝑚) = log2 ln𝑚 +Θ(1).

Lemma 6.11 With high probability, for all 𝑘0 ≤ 𝑘 ≤ 𝑘∗(𝑚), and for all 𝜙(𝑚, 𝑘) ≤
𝑗 ≤ 𝑚, 𝐹𝑗(𝑘)/𝑗 ≤ 𝑓(𝑘).

Proof sketch (detailed in Appendix A.3 of the full version). Let 𝒢𝑘 be the event

𝒢𝑘 ≔ �∀𝑗, 𝜙(𝑚, 𝑘) ≤ 𝑗 ≤ 𝑚. 𝐹𝑗(𝑘)/𝑗 ≤ 𝑓(𝑘)� .

Our goal is to show that𝒢𝑘 holds for all 𝑘 in our range. In the spirit of an inductive
argument, we begin by showing𝒢𝑘0 with high probability and then give evidence
for how, under the assumption 𝒢𝑘, 𝒢𝑘+1 is likely to happen. Instead of an explicit
induction, we piece together these parts in a union bound.

The base case 𝒢𝑘0 follows from Lemma 6.10 with 𝜔(𝑚) ≔ 𝜙(𝑚, 𝑘0) and 𝜀 ≔
𝑓(𝑘0) − 𝛼𝑘0.

For the step, fix some 𝑘 ≥ 𝑘0, and assume𝒢𝑘. We want to give an upper bound on
the probability that 𝒢𝑘+1 happens. We split this into multiple substeps: First, we
prove that, given𝒢𝑘, some auxiliary event ℰ (𝑘+1) happens only with probability
converging to 0. Then, we show that ℰ (𝑘 + 1) ⊆ 𝒢𝑘+1 where ℰ denotes the
complement of an event ℰ. This means that, whenever the unlikely event does
not take place, 𝒢𝑘+1 holds. This allows the step to be repeated.

If 𝒢𝑘 does not hold for any 𝑘0 ≤ 𝑘 ≤ 𝑘∗(𝑚), then 𝒢𝑘0 or one of the ℰ (𝑘) must
have happened. The union bound converges to zero for 𝑚 → ∞, proving our
claim.

As promised, the last lemma enables us to speak about the behavior of 𝐹𝑗(𝑘(𝑚)).
We will use a sequence of such statements to show that, with high probability,
𝐹𝑗(𝑘(𝑚)) for some 𝑘(𝑚) does not change over a whole range of 𝑗:

Lemma 6.12 There exists 𝑀 > 0 and an integer 𝑟 > 0 such that, for 𝑗0(𝑚) ≔
(ln ln𝑚)𝑀, 𝐹𝑚(𝑘∗(𝑚) + 𝑟) = 𝐹𝑗0(𝑚)(𝑘∗(𝑚) + 𝑟) holds with high probability. In
addition, there is 𝛽 > 1

2 such that, with high probability,

𝐹𝑗0(𝑚)(𝑘∗(𝑚) + 𝑟 − 1) ≤ 𝑗0(𝑚)
1−𝛽. (6.16)

Proof sketch (detailed in Appendix A.4 of the full version). In Lemma 17 in the
full version, we finally get a statement about 𝐹𝑗(𝑘∗(𝑚)): By choosing different

https://dl.acm.org/doi/pdf/10.1145/3485012#lem.15
https://dl.acm.org/doi/pdf/10.1145/3485012#lem.15
https://dl.acm.org/doi/pdf/10.1145/3485012#subsection.A.3
https://dl.acm.org/doi/pdf/10.1145/3485012#subsection.A.4
https://dl.acm.org/doi/pdf/10.1145/3485012#lem.17
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𝑘 for different 𝑗 in Lemma 6.11, we obtain a constant 𝛽0 > 0 such that, with high
probability,

∀𝑗, ln ln𝑚 ≤ 𝑗 ≤ 𝑚. 𝐹𝑗(𝑘∗(𝑚))/𝑗 ≤ 𝑗−𝛽0.

We now increase 𝛽0 until it is larger than 1
2 . Set 𝑟′0 ≔ 0 and 𝑀0 ≔ 1. In Lemma

18 in the full version, we obtain a stronger proposition of the form

∀𝑗, (ln ln𝑚)𝑀𝑖 ≤ 𝑗 ≤ 𝑚. 𝐹𝑗(𝑘∗(𝑚) + 𝑟′𝑖 )/𝑗 ≤ 𝑗−𝛽𝑖

holding with high probability to obtain, for some 𝑀𝑖+1 > 0 and with high
probability,

∀𝑗, (ln ln𝑚)𝑀𝑖+1 ≤ 𝑗 ≤ 𝑚. 𝐹𝑗(𝑘∗(𝑚) + 𝑟′𝑖 + 1)/𝑗 ≤ 𝑗
− 32 𝛽𝑖.

If we set 𝑟′𝑖+1 ≔ 𝑟′𝑖 + 1 and 𝛽𝑖+1 ≔
3
2 𝛽𝑖, we can repeatedly apply this argument

until some 𝛽𝑖 >
1
2 . Let 𝑀, 𝑟′ and 𝛽 denote 𝑀𝑖, 𝑟′𝑖 and 𝛽𝑖, respectively, for this 𝑖. If,

furthermore, 𝑟 ≔ 𝑟′ + 1, Equation (6.16) follows as a special case.

We then simply union-bound the probability of 𝐹𝑗(𝑘∗(𝑚) + 𝑟) increasing for any
𝑗 between 𝑗0(𝑚) and 𝑚. Using the above over-approximation in Equation (6.12)
gives us an over-harmonic series, whose value goes to zero with 𝑚 → ∞.

We can now prove Theorem 6.9. Let 𝑄𝑖 denote the maximum weight after 𝑖 time
steps.

Proof of Theorem 6.9. By Lemma 6.12, with high probability, 𝐹𝑚(𝑘∗(𝑚) + 𝑟) =
𝐹𝑗0(𝑚)(𝑘∗(𝑚) + 𝑟). Therefore, we have that with high probability

𝐹𝑚(𝑘∗(𝑚) + 𝑟) = 𝐹𝑗0(𝑚)(𝑘∗(𝑚) + 𝑟)

≤ 𝐹𝑗0(𝑚)(𝑘∗(𝑚) + 𝑟 − 1) (by monotonicity)

≤ 𝑗0(𝑚)1−𝛽 (by Equation (6.16))

= �(ln ln𝑚)𝑀�
1−𝛽

≤ (ln ln𝑚)𝑀+1.

For any 𝑗 and 𝑘, 𝑄𝑗 ≤ max{𝑘, 𝐹𝑗(𝑘)}. Since, for large enough 𝑚, 𝑘∗(𝑚) + 𝑟 <
(ln ln𝑚)𝑀+1, the maximum weight𝑄𝑚 is at most (ln ln𝑚)𝑀+1 with high probabil-
ity. This result holds for general𝑚, so we are allowed to plug in 𝑗0(𝑚) for𝑚. Then,

𝑄𝑗0(𝑚) ≤ �ln ln 𝑗0(𝑚)�
𝑀+1

. Moreover, �ln ln 𝑗0(𝑚)�
(𝑀+1)2

< 𝑗0(𝑚) for sufficiently
large 𝑚 because 𝑀 is a constant and polylogarithmic terms grow asymptotically
slower than polynomial terms. Rewriting this yields

𝑄𝑗0(𝑚) ≤ �ln ln 𝑗0(𝑚)�
𝑀+1

< 𝑗0(𝑚)1/(𝑀+1). (6.17)

Now, note that 𝑘∗(𝑚) + 𝑟 ≥ �𝑗0(𝑚)1/(𝑀+1)� for large enough 𝑚. Therefore, Equa-
tion (6.17) implies that, with high probability, a graph generated in 𝑗0(𝑚) time
steps has no voters of weight 𝑘∗(𝑚) + 𝑟 or higher. In other words, with high prob-
ability, 𝐹𝑗0(𝑚)(𝑘∗(𝑚) + 𝑟) = 0, so with high probability 𝐹𝑚(𝑘∗(𝑚) + 𝑟) = 0 (again by

https://dl.acm.org/doi/pdf/10.1145/3485012#lem.18
https://dl.acm.org/doi/pdf/10.1145/3485012#lem.18
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Lemma 6.12). This means that the maximum weight after 𝑚 time steps is also
upper-bounded by 𝑘∗(𝑚) + 𝑟 = log2 ln𝑚 +Θ(1).

6.4 Empirical Results

In this section, we present our simulation results, which support the two main
messages of this chapter: that allowing multiple delegation options significantly
reduces the maximum weight, and that it is computationally feasible to resolve
delegations in a way that is close to optimal.

Our simulations were performed on a MacBook Pro (2017) on MacOS 10.12.6
with a 3.1 GHz Intel Core i5 and 16 GB of RAM. All running times were measured
with at most one process per processor core. Our simulation software is written
in Python 3.6 using Gurobi 8.0.1 to solve MILPs. All of our simulation code is
open-source and available at https://github.com/pgoelz/fluid.

6.4.1 Multiple vs. Single Delegations

For the special case of 𝛾 = 0, we have established a doubly exponential, asymp-
totic separation between single delegation (𝑘 = 1) and two delegation options
per delegator (𝑘 = 2). While the strength of the separation suggests that some of
this improvement will carry over to the real world, we still have to examine via
simulation whether improvements are visible for realistic numbers of agents and
other values of 𝛾.

To this end, we empirically evaluate two different mechanisms for resolving
delegations. First, we optimally resolve delegations by solving the MILP for
confluent flow with the Gurobi optimizer. Our second mechanism is the greedy
“power of choice” algorithm used in the theoretical analysis and introduced in
Section 6.3.3.

In Figure 6.3, we compare the maximum weight produced by a single-delegation
process to the optimal maximum weight in a double-delegation process, for
different values of 𝛾 and 𝑑. Since our theoretical analysis used a greedy over-
approximation of the optimum, we also run the greedy mechanism on the double-
delegation process. Corresponding figures for 𝛾 = 0.5 can be found in Appendix
B.1 of the full version.

These simulations show that our asymptotic findings translate into consider-
able differences even for small numbers of agents, across different values of 𝑑.
Moreover, these differences remain nearly as pronounced for values of 𝛾 up to 1,
which corresponds to classical preferential attachment. This suggests that our
mechanism can outweigh the social tendency towards concentration of votes;
however, evidence from real-world elections is needed to settle this question.
Lastly, we would like to point out the similarity between the graphs for the opti-
mal maximum weight and the result of the greedy algorithm, which indicates
that a large part of the separation can be attributed to the power of choice.

https://github.com/pgoelz/fluid
https://dl.acm.org/doi/pdf/10.1145/3485012#subsection.B.1
https://dl.acm.org/doi/pdf/10.1145/3485012#subsection.B.1
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If we increase 𝛾 to large values, the separation between single and double del-
egation disappears. In Figure 6.4a, for 𝛾 = 2, all three curves are hardly dis-
tinguishable from the linear function 𝑑 ⋅ time, meaning that one voter receives
nearly all the weight. The reason is simple: In the simulations used for that figure,
99% of all delegators give two identical delegation options, and 99.8% of these
delegators (98.8% of all delegators) give both potential delegations to the heaviest
voter in the graph. There are even values of 𝛾 > 1 and 𝑑 such that the curve for
single delegation falls below the ones for double delegation. This can be seen in
Figure 6.4b, where 87.7% of voters give two identical delegation options. Since
adding two delegation options per step makes the indegrees grow faster, the
delegations concentrate toward a single voter more quickly, and again lead to a
wildly unrealistic concentration of weight. Thus, it seems that large values of 𝛾
do not actually describe our scenario of multiple delegations.

As we have seen, switching from single delegation to double delegation greatly
improves the maximum weight in plausible scenarios. It is natural to wonder
whether increasing 𝑘 beyond 2 will yield similar improvements. As Figure 6.5
shows, however, the returns to increasing 𝑘 quickly diminish, which is common
to many incarnations of the power of choice [ABKU94]. [ABKU94] Azar et al. (1994): Balanced Allo-

cations.

6.4.2 Evaluating Mechanisms

Already the case of 𝑘 = 2 appears to have great potential; but how easily can we
tap it?

We have observed that, on average, the greedy “power of choice” mechanism
comes surprisingly close to the optimal solution. However, this greedy mecha-
nism depends on seeing the order in which our random process inserts agents
and on the fact that all generated graphs are acyclic, which need not be true in
practice. If the graphs were acyclic, we could simply first sort the agents topolog-
ically and then present the agents to the greedy mechanism in reverse order. On
arbitrary active graphs, we instead proceed through the strongly connected com-
ponents in reverse topological order, breaking cycles and performing the greedy
step over the agents in the component. To avoid giving the greedy algorithm
an unfair advantage, we use this generalized greedy mechanism throughout
this section. Thus, we compare the generalized greedy mechanism, the optimal
solution, the (1 + ln |𝑉|)-approximation algorithm8 and a random mechanism 8: For one of their subprocedures, instead of

directly optimizing a convex program, Chen
et al. [CKL+07] reduce this problem to find-
ing a lexicographically optimal maximum
flow in 𝑂(𝑛5). We choose to directly opti-
mize the convex problem in Gurobi, hoping
that this will increase efficiency in practice.

that chooses a uniformly chosen option per delegator.

At a high level, we find that both the generalized greedy algorithm and the
approximation algorithm perform comparably to the optimal confluent flow
solution, as shown in Figure 6.6 for 𝑑 = 0.5 and 𝛾 = 1. As Figure 6.7 suggests, all
three mechanisms seem to exploit the advantages of double delegation, at least
on our synthetic benchmarks. These trends persist for other values of 𝑑 and 𝛾, as
presented in Appendix B.3 of the full version.

The similar success of these three mechanisms might indicate that our proba-
bilistic model for 𝑘 = 2 generates delegation networks that have low maximum
weights for arbitrary resolutions. However, this is not the case: The random
mechanism does quite poorly on instances with as few as 𝑡 = 100 agents, as
shown in Figure 6.6a. With increasing 𝑡, the gap between random and the other

https://dl.acm.org/doi/pdf/10.1145/3485012#subsection.B.3
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mechanisms only grows further, as indicated by Figure 6.7. In general, the graph
for random delegations looks more similar to single delegation than to the other
mechanisms on double delegation. Indeed, for 𝛾 = 0, random delegation is
equivalent to the process with 𝑘 = 1, and, for higher values of 𝛾, it performs even
slightly worse since the unused delegation options make the graph more central-
ized (see Appendix B.2 of the full version). Because of the poor performance of
random delegation, if simplicity is a primary desideratum, we recommend using
the generalized greedy algorithm instead.

As Figure 6.8 demonstrates, all three other mechanisms, including the optimal
solution, easily scale to input sizes as large as the largest implementations of
liquid democracy to date. Whereas the three mechanisms were close with respect
to maximum weight, our implementation of the approximation algorithm is
typically slower than the optimal solution (which requires a single call to Gurobi),
and the generalized greedy algorithm is blazing fast. These results suggest that
it would be possible to resolve delegations almost optimally even at a national
scale.

https://dl.acm.org/doi/pdf/10.1145/3485012#subsection.B.2
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(a) 𝛾 = 0, 𝑑 = 0.25
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(b) 𝛾 = 1, 𝑑 = 0.25
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(c) 𝛾 = 0, 𝑑 = 0.5
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(d) 𝛾 = 1, 𝑑 = 0.5
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(e) 𝛾 = 0, 𝑑 = 0.75
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(f) 𝛾 = 1, 𝑑 = 0.75

Figure 6.3:Maximum weight averaged over 100 simulations of length 5 000 time steps each. Maximum weight has been computed every 50 time
steps.
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(a) 𝛾 = 2, 𝑑 = 0.5
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(b) 𝛾 = 1.5, 𝑑 = 0.5

Figure 6.4:Maximum weight averaged over 100 simulations, computed every 50 time steps.
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Figure 6.5: Optimal maximum weight for
different 𝑘 averaged over 100 simulations,
computed every 10 steps. 𝛾 = 1, 𝑑 = 0.5.
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Figure 6.6: Frequency of maximum weights
at time 𝑡 over 1 000 runs. 𝛾 = 1, 𝑑 = 0.5,
𝑘 = 2. The black lines mark the medians.
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Figure 6.7:Maximum weight per algorithm
for 𝑑 = 0.5, 𝛾 = 1, 𝑘 = 2, averaged over 100
simulations.
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6.5 Discussion

The approach we have presented and analyzed revolves around the idea of allow-
ing agents to specify multiple delegation options, and selecting one such option
per delegator. As mentioned in Section 6.2, a natural variant of this approach
corresponds to splittable — instead of confluent — flow. In this variant, the mech-
anism would not have to commit to a single outgoing edge per delegator. Instead,
a delegator’s weight could be split into arbitrary fractions between their potential
delegates. Indeed, such a variant would be computationally less expensive, and
the maximum voting weight can be no higher than in our setting. However, we
view our concept of delegation as more intuitive and transparent: Whereas, in the
splittable setting, a delegator’s vote can disperse among a large number of agents,
our mechanism assigns just one representative to each delegator. As suggested
in the introduction, this is needed to preserve the high level of accountability
guaranteed by classical liquid democracy.

We find that this fundamental shortcoming of splittable delegations is not coun-
terbalanced by a marked decrease in maximum weight. Indeed, representative
empirical results given in Figure 6.9 show that the maximum weight trace is
almost identical under splittable and confluent delegations. Figure 6.9a plots a
single run of the two solutions over time and suggests that the confluent solution
is very close to the ceiling of the fractional LP solution. Figure 6.9b averages
the optimal confluent and splittable solutions over 100 traces to demonstrate
that, in our setting, the solution for confluent flow closely approximates the less
constrained solution to splittable flow on average. This conclusion is supported
by additional results in Appendix B.3 of the full version.

Furthermore, note that in the preferential delegation model with 𝑘 = 1, splittable
delegations do not make a difference, so the lower bound given in Theorem 6.8
goes through. And, when 𝑘 ≥ 2, the upper bound of Theorem 6.9 directly applies
to the splittable setting. Therefore, our main technical results in Section 6.3 are
just as relevant to splittable delegations.

To demonstrate the benefits of multiple delegations as clearly as possible, we
assumed that every agent provides two possible delegations. In practice, of course,
we expect to see agents who want to delegate but only trust a single person to
a sufficient degree. This does not mean that delegators should be required to
specify multiple delegations. For instance, if this was the case, delegators might be
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(b) Averaged over 100 traces Figure 6.9:Confluent vs. splittable flow: 𝛾 =
1, 𝑑 = 0.5, 𝑘 = 2.
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Figure 6.10: Optimal maximum weight av-
eraged over 100 simulations. Voters give
two delegations with probability 𝑝; else one.
𝛾 = 1, 𝑑 = 0.5.

incentivized to pad their delegations with very popular agents who are unlikely to
receive their votes. Instead, we encourage voters to specify multiple delegations
on a voluntary basis, and we hope that enough voters participate to make a
significant impact. Fortunately, as demonstrated in Figure 6.10, most of the
benefits of multiple delegation options persist even if only a fraction of delegators
specify two delegations.

The question remains whether sufficiently many agents will indeed be sufficiently
close to indifferent between multiple delegates for these benefits to be relevant
in practice. Leaving individual incentives aside, how should one trade off the
limitation of super-voters against the level of trust in realized delegations? Such
questions can be posed in models like the one by Kahng et al. [KMP18], which [KMP18] Kahng et al. (2018): Liquid Democ-

racy.we leave for future work.

Without doubt, a centralized mechanism for resolving delegations wields con-
siderable power. Even though we only use this power for our specific goal of
minimizing the maximum weight, agents unfamiliar with the employed algo-
rithm might suspect it of favoring specific outcomes. To mitigate these concerns,
we propose to divide the voting process into two stages. In the first, agents either
specify their delegation options or register their intent to vote. Since the votes
themselves have not yet been collected, the algorithm can resolve delegations
without seeming partial. In the second stage, voters vote using the generated
delegation graph, just as in classic liquid democracy, which allows for transparent
decisions on an arbitrary number of issues. Additionally, we also allow delegators
to change their mind and vote themselves if they are dissatisfied with how dele-
gations were resolved. This gives each agent the final say on their share of votes,
and can only further reduce the maximum weight achieved by our mechanism.
We believe that this process, along with education about the mechanism’s goals
and design, can win enough trust for real-world deployment.

Beyond our specific extension, one can consider a variety of different approaches
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that push the current boundaries of liquid democracy. For example, in a recent
position paper, Brill [Bri18] raises the idea of allowing delegators to specify a [Bri18] Brill (2018): Interactive Democracy.
ranked list of potential representatives. His proposal is made in the context of
alleviating delegation cycles, whereas our focus is on avoiding excessive con-
centration of weight. But, at a high level, both proposals envision centralized
mechanisms that have access to richer inputs from agents. Making and evaluating
such proposals now is important, because, at this early stage in the evolution
of liquid democracy, scientists can still play a key role in shaping this exciting
paradigm.
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7.1 Introduction

Whereas the previous chapters all investigated new additions to representative
democracies, the next two chapters develop new approaches to an element of
representative with a long and colorful history: legislative apportionment, the
allocation of seats in a legislature to states or political parties. The main principle
underlying apportionment is proportional representation, which means that the
number of representatives in a legislature should be proportional to the number
of constituents the represent.1

1: We saw a closely related notion of pro-
portional representation in our work on citi-
zens’ assemblies in the first part of this thesis.
From a mathematical angle, these notions
seem very similar, but there are differences
in the conception of “representation” from
the perspective of political theory [Pit67].

Apportionment is used in two major ways: to rep-
resent regions in proportion to their populations as in Chapter 8, or to represent
political parties in proportion to their electoral support as in this chapter.

In this chapter, we consider apportionment in electoral systems based on the
proportional representation of parties, the so-called, “party-list proportional
representation” systems [ACE22]. In these systems, candidates are members of
political parties and voters are asked to choose their favorite party; each party
is then allocated a number of seats that is (approximately) proportional to the
number of votes it received. We will refer to such elections as party-choice elections
to stress that voters can only vote for a single party. The problem of transforming a
voting outcome into a distribution of seats is known as apportionment. Analyzing
the advantages and disadvantages of different apportionment methods has a long
and illustrious political history and has given rise to an elegant mathematical
theory [BY01; Puk14]. (We will touch more on this background in Chapter 8.) [ACE22] ACE Electoral Knowledge Net-

work (2022): Electoral System (Chamber 1).

[BY01] Balinski and Young (2001): Fair Rep-
resentation.
[Puk14] Pukelsheim (2014): Proportional
Representation.

[BF07] Brams and Fishburn (2007): Ap-
proval Voting.

[LS10] Laslier and Sanver (2010): Handbook
on Approval Voting.

[KM12] Kilgour and Marshall (2012): Ap-
proval Balloting for Fixed-Size Committees.

[Aló06] Alós-Ferrer (2006): A Simple Char-
acterization of Approval Voting.

[BP21] Brandl and Peters (2021): Approval
Voting under Dichotomous Preferences.

[Fis78] Fishburn (1978): Axioms for Ap-
proval Voting.

[Fis79] Fishburn (1979): Symmetric andCon-
sistent Aggregation with Dichotomous Vot-
ing.

Forcing voters to choose a single party prevents them from communicating
any preferences beyond their most preferred alternative. For example, if a voter
feels equally well represented by several political parties, there is no way to
express this preference within the voting system. In the context of single-winner
elections, approval voting has been put forward as a solution to this problem as
it strikes an attractive compromise between simplicity and expressivity [BF07;
LS10]. Under approval voting, each voter is asked to specify a set of candidates she
“approves,” i. e. voters can arbitrarily partition the set of candidates into approved
candidates and disapproved ones. Proponents of approval voting argue that its
introduction could increase voter turnout, “help elect the strongest candidate,”
and “add legitimacy to the outcome” of an election [BF07, p. 4–8].

The practical and theoretical appeal of approval voting in single-winner elections
has led a number of scholars to suggest to also use approval voting for multiwinner
elections, in which a fixed number of candidates need to be elected [KM12].
Whereas, in the single-winner setting, the straightforward voting rule “choose the
candidate approved by the highest number of voters” enjoys a strong axiomatic
foundation [Aló06; BP21; Fis78; Fis79], several ways of aggregating approval
ballots have been proposed for the multiwinner setting [KM12; LS22]. [LS22] Lackner and Skowron (2022): Multi-

Winner Voting with Approval Preferences.
Most studies of approval-based multiwinner elections assume that voters di-
rectly express their preference over individual candidates; we refer to this setting
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as candidate-approval elections. This assumption runs counter to widespread
democratic practice, in which candidates belong to political parties and voters
indicate preferences over these parties (which induce implicit preferences over
candidates). In this chapter, we therefore study party-approval elections, in which
voters express approval votes over parties and a given number of seats must be
distributed among the parties. We refer to the process of allocating these seats as
approval-based apportionment.

Throughout this chapter, we interpret a ballot that approves a set 𝑆 of parties
as a preference for legislatures with a larger total number of members from
parties in 𝑆. This interpretation generalizes the natural interpretation of party-
choice ballots as preferences for legislatures with a larger number of members
of the chosen party. Our interpretation implicitly imputes perfect indifference
between approved parties. This means that we assume voters to be indifferent to
the distribution of seats between approved parties. For example, consider only
legislatures with a fixed total number of seats given to approved parties. Then a
voter would be indifferent between a legislature where the approved parties all
get an equal number of seats, and a legislature where just one of the approved
parties obtains all those seats. While this assumption is restrictive, it does allow
for a simple voting process, and the additional expressivity of approval ballots
compared to party-choice ballots seems attractive.

Indeed, we believe that party-approval elections are a promising framework for
legislative elections in the real world, especially since allowing voters to approve
multiple parties enables the aggregation mechanism to coordinate like-minded
voters. For example, under party-choice elections, two groups of voters might
vote for parties that they mutually disapprove. Approval ballots could reveal that
both groups approve a third party of more general appeal. Given this information,
a voting rule could then allocate more seats to this third party, leading to mutual
gain. This cooperation is particularly necessary for small minority opinions that
are not centrally coordinated. In such cases, finding a commonly approved party
can make the difference between being represented or votes being wasted because
the individual parties receive insufficient support.

One aspect that makes it easier to transition from party-choice elections to party-
approval elections (rather than to candidate-approval elections) is that party-
approval elections can be implemented as closed-list systems. That is, parties can
retain the power to choose the ordering in which their candidates are allocated
seats, as they do in many current democratic systems. By contrast, candidate-
approval elections necessarily confer this power to the voters (leading to an
open-list system), which might give parties an incentive to oppose a change
of the voting system. Of course, party-approval elections are compatible with
an open-list approach, since we can run a secondary mechanism alongside the
party-approval election to determine the order of party candidates.

7.1.1 Related Work

To the best of our knowledge, this work is the first to formally develop and sys-
tematically study approval-based apportionment. That said, several scholars have
previously explored possible generalizations of existing aggregation procedures
to allow for approval votes over parties.
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For instance, Brams et al. [BKP19] study multiwinner approval rules that are [BKP19] Brams et al. (2019): Multiwinner
Approval Voting.inspired by classical apportionment methods. Besides the setting of candidate

approval, they explicitly consider the case where voters cast party-approval
votes. They conclude that these rules could “encourage coalitions across party or
factional lines, thereby diminishing gridlock and promoting consensus.”

Such desire for compromise is only one motivation for considering party-approval
elections, as exemplified by recent work by Speroni di Fenizio and Gewurz [SG19]. [SG19] Speroni di Fenizio and Gewurz

(2019): The Space of All Proportional Voting
Systems and the Most Majoritarian among
Them.

To allow for more efficient governing, they aim to concentrate the power of a leg-
islature in the hands of few big parties, while nonetheless preserving the principle
of proportional representation. To this end, they let voters cast party-approval
votes and transform these votes into a party-choice election by assigning each
voter to one of her approved parties. Specifically, they propose to assign voters
to parties so that the strongest party has as many votes as possible. We later call
this method majoritarian portioning.

Several other papers consider extensions of approval-based voting rules to ac-
commodate party-approval elections. In their paper introducing the satisfaction
approval voting rule, Brams and Kilgour [BK14] discuss a variant of this rule [BK14] Brams and Kilgour (2014): Satisfac-

tion Approval Voting.adapted for party-approval votes. Mora and Oliver [MO15] and Camps et al.
[MO15] Mora and Oliver (2015): Eleccions
Mitjançant El Vot d’aprovació. El Mètode de
Phragmén i Algunes Variants.

[CMS19] study two approval-based multiwinner rules due to Phragmén and

[CMS19] Camps et al. (2019): The Method of
Eneström and Phragmén for Parliamentary
Elections by Means of Approval Voting.

Eneström, and note that they also work for party-approval elections (which is
true for any multiwinner rule using the embedding that we discuss in Section 7.3).
Both papers consider a monotonicity axiom for party-approval elections (“if
a party receives additional approvals, it should receive additional seats”) but
find that their two methods fail it. For the case of two parties, they analyze the
behavior of these rules as the house size approaches infinity. They find that both
rules fail to converge to the most natural seat distribution. Janson and Öberg
[JÖ19] analyze the limit behavior in more detail, and also show that Thiele’s [JÖ19] Janson andÖberg (2019):APiecewise

Contractive Dynamical System and Phrag-
mén’s Election Method.

sequential rule (also known as SeqPAV) does converge to the ideal value.

Candidate-approval elections
[KM12; LS22]

Party-approval elections
(approval-based apportionment)

Party-choice elections (apportionment)
[BY01; Puk14]

(i)

(ii)

(iii)

Figure 7.1: Relations between the different
settings of multiwinner elections. An arrow
from 𝑋 to 𝑌 signifies that 𝑋 is a generaliza-
tion of 𝑌. The relationship corresponding
to arrow (iii) has been explored by Brill et
al. [BLS18]. We establish and explore the
relationship (i) in Section 7.3 and the rela-
tionship (ii) in Section 7.4.

7.1.2 Relation to Other Settings

We can position party-approval elections between two well-studied voting set-
tings (see Figure 7.1).

First, our setting can be viewed as a special case of approval-based multiwinner
voting, in which voters cast candidate-approval votes. A party-approval election
can be embedded in this setting by replacing each party by multiple candidates be-
longing to this party, and by interpreting a voter’s approval of a party as approval
of all of its candidates. This embedding establishes party-approval elections as
a subdomain of candidate-approval elections (see arrow (i) in Figure 7.1). In
Section 7.3, we explore the axiomatic and computational ramifications of this
domain restriction.

Second, approval-based apportionment generalizes standard apportionment (ar-
row (ii)), which corresponds to party-approval elections in which all approval
sets are singletons (i.e., party-choice elections). In Section 7.4, we propose a
method to generalize apportionment methods to the party-approval setting
using so-called portioning methods.
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7.1.3 Contributions

In this whapter, we formally introduce the setting of approval-based apportion-
ment and explore different possibilities of constructing axiomatically desirable
aggregation methods for this setting. Besides its conceptual appeal, this setting
is also interesting from a technical perspective.

Exploiting the relations described in Section 7.1.2, we resolve problems that re-
main open in the more general setting of candidate-approval elections. First,
we show that the core of an approval-based apportionment problem is always
nonempty, and that a popular multiwinner rule known as Proportional Ap-
proval Voting (PAV) always returns a core-stable committee. We also present a
polynomial-time variant of PAV that is also core stable. Second, we prove that
house monotonicity is compatible with extended justified representation (a rep-
resentation axiom proposed by Aziz et al. [ABC+17]) by providing a rule that [ABC+17] Aziz et al. (2017): Justified Repre-

sentation in Approval-Based Committee Vot-
ing.

satisfies both properties.

Some familiar multiwinner rules (in particular, PAV) provide stronger repre-
sentation guarantees when applied in the party-approval setting. However, for
many standard multiwinner voting rules, we give examples that show that their
axiomatic guarantees do not improve in the party-approval setting. From a
computational complexity perspective, we show that some rules known to be
NP-hard in the candidate-approval setting remain NP-hard to evaluate in the
party-approval setting. However, it becomes computationally easier to reason
about proportionality axioms. Specifically, we show that it is tractable to check
whether a given committee satisfies extended justified representation (or the
weaker axiom of proportional justified representation). The analogs of these
problems for candidate-approval elections are coNP-hard. These tractability re-
sults do not extend to checking whether a committee is core-stable: we show that
this problem is coNP-complete for both party-approval and candidate-approval
elections.

7.2 Model

A party-approval election is a tuple (𝑁, 𝑃,𝐴, 𝑘) consisting of a set of voters 𝑁 =
{1,… , 𝑛}, a finite set of parties 𝑃, a ballot profile 𝐴 = (𝐴1, … ,𝐴𝑛) where each
ballot 𝐴𝑖 ⊆ 𝑃 is the set of parties approved by voter 𝑖, and the committee size
𝑘 ∈ ℕ. We assume that 𝐴𝑖 ≠ ∅ for all 𝑖 ∈ 𝑁. When considering computational
problems, we assume that 𝑘 is encoded in unary (see Remark 7.1). This is a mild
restriction since in most applications (such as legislative elections), 𝑘 is smaller
than the number of voters.

A committee in this setting is a multiset 𝑊 ∶ 𝑃 → ℕ over parties, which de-
termines the number of seats 𝑊(𝑝) assigned to each party 𝑝 ∈ 𝑃. The size of
a committee 𝑊 is |𝑊| = ∑𝑝∈𝑃𝑊(𝑝), and we denote multiset addition and sub-
traction by + and −, respectively. For a voter 𝑖 and a committee 𝑊, we write
𝑢𝑖(𝑊) = ∑𝑝∈𝐴𝑖

𝑊(𝑝) for the number of seats in𝑊 that are allocated to parties ap-
proved by voter 𝑖. A party-approval rule is a function that takes a party-approval
election (𝑁, 𝑃,𝐴, 𝑘) as input and returns a committee𝑊 of valid size |𝑊| = 𝑘.2

2: This definition implies that rules are reso-
lute, i.e., they only return a single committee.
In the case of a tie betweenmultiple commit-
tees, a tiebreaking mechanism is necessary.
Our results hold independently of the choice
of a specific tiebreaking mechanism.
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In our axiomatic study of party-approval rules, we focus on two axioms cap-
turing proportional representation: extended justified representation and core
stability. Both are derived from their analogs in candidate-approval elections (see
Section 7.3.2) where they were proposed by Aziz et al. [ABC+17]. To state these [ABC+17] Aziz et al. (2017): Justified Repre-

sentation in Approval-Based Committee Vot-
ing.

axioms, it is helpful to define the quota of a subset 𝑆 of voters as 𝑞(𝑆) = ⌊𝑘 ⋅ |𝑆|/𝑛⌋.
Intuitively, 𝑞(𝑆) corresponds to the number of seats that the group 𝑆 “deserves”
to be represented by (rounded down).

Definition 7.1 A committee𝑊 ∶ 𝑃 → ℕ provides extended justified represen-
tation (EJR) for a party-approval election (𝑁, 𝑃,𝐴, 𝑘) if there is no subset 𝑆 ⊆ 𝑁
of voters such that⋂𝑖∈𝑆𝐴𝑖 ≠ ∅ and 𝑢𝑖(𝑊) < 𝑞(𝑆) for all 𝑖 ∈ 𝑆.

In words, EJR requires that for every voter group 𝑆 with a commonly approved
party, at least one voter of the group must approve at least 𝑞(𝑆) committee mem-
bers. A party-approval rule is said to satisfy EJR if it only produces committees
providing EJR.

We can obtain a stronger representation axiom by removing the requirement of
a commonly approved party.

Definition 7.2 A committee 𝑊 ∶ 𝑃 → ℕ is core stable for a party-approval
election (𝑁, 𝑃,𝐴, 𝑘) if there is no nonempty subset 𝑆 ⊆ 𝑁 and committee 𝑇 ∶
𝑃 → ℕ of size |𝑇| ≤ 𝑞(𝑆) such that 𝑢𝑖(𝑇) > 𝑢𝑖(𝑊) for all 𝑖 ∈ 𝑆. The core of a
party-approval election is the set of all core-stable committees.

Core stability requires adequate representation even for voter groups that cannot
agree on a common party, by ruling out the possibility that the group can deviate
to a smaller committee that represents all voters in the group strictly better. It
follows from the definitions that core stability is a stronger requirement than EJR:
If a committee violates EJR, there is a group 𝑆 that would prefer any committee
of size 𝑞(𝑆) that assigns all seats to the commonly approved party.

Besides these representation axioms, a final axiom that we will discuss is house
monotonicity [BC08; EFSS17].3 A party-approval rule 𝑓 satisfies this axiom if, for [BC08] Barberà and Coelho (2008): How

to Choose a Non-Controversial List with k
Names.
[EFSS17] Elkind et al. (2017): Properties of
Multiwinner Voting Rules.

3: In the multi-winner elections literature,
this axiom is called committee monotonicity.
We adopt the term from the apportionment
literature, in part to stress the connection to
our work on house monotonicity in Chap-
ter 8.

all party-approval elections (𝑁, 𝑃,𝐴, 𝑘), it holds that 𝑓(𝑁, 𝑃,𝐴, 𝑘) ⊆ 𝑓(𝑁, 𝑃,𝐴, 𝑘+
1). house monotonic rules avoid the so-called Alabama paradox, in which a party
loses a seat when the committee size increases. They can also be used to construct
proportional rankings [IB21; SLB+17].

[IB21] Israel and Brill (2021): Dynamic Pro-
portional Rankings.
[SLB+17] Skowron et al. (2017): Proportional
Rankings.

7.3 Constructing Party-Approval Rules via Multiwinner
Voting Rules

In this section, we show how party-approval elections can be translated into
candidate-approval elections. This embedding allows us to apply established
candidate-approval rules to our setting. Exploiting this fact, we will prove the
existence of core-stable committees for party-approval elections.
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7.3.1 Preliminaries

A candidate-approval election is a tuple (𝑁, 𝐶,𝐴, 𝑘). Just as for party-approval elec-
tions,𝑁 = {1, … , 𝑛} is a set of voters, 𝐶 is a finite set,𝐴 is an 𝑛-tuple of nonempty
subsets of 𝐶, and 𝑘 ∈ ℕ is the committee size. The conceptual difference is that
𝐶 is a set of individual candidates rather than parties. This difference manifests
itself in the definition of a committee because a single candidate cannot receive
multiple seats. That is, a candidate committee𝑊 is now simply a subset of 𝐶 with
cardinality 𝑘. (Therefore, it is usually assumed that |𝐶| ≥ 𝑘.) A candidate-approval
rule is a function that maps each candidate-approval election to a candidate
committee.

A diverse set of such voting rules has been proposed since the late 19th cen-
tury [Jan18a; KM12; LS22], out of which we will only introduce the one which [Jan18a] Janson (2018): Phragmén’s and

Thiele’s Election Methods.
[KM12] Kilgour and Marshall (2012): Ap-
proval Balloting for Fixed-Size Committees.
[LS22] Lackner and Skowron (2022): Multi-
Winner Voting with Approval Preferences.

we use for our main positive result. Let 𝐻𝑗 denote the 𝑗th harmonic number, i. e.
𝐻𝑗 = ∑𝑗

𝑡=1 1/𝑡. Given (𝑁, 𝐶,𝐴, 𝑘), the candidate-approval rule proportional ap-
proval voting (PAV), introduced by Thiele [Thi95], chooses a candidate committee

[Thi95] Thiele (1895): Om flerfoldsvalg.
𝑊 maximizing the PAV score 𝑃𝐴𝑉(𝑊) = ∑𝑖∈𝑁𝐻|𝑊∩𝐴𝑖|.

We now describe EJR and core stability in the candidate-approval setting, from
which we derived our versions. Recall that 𝑞(𝑆) = ⌊𝑘 |𝑆|/𝑛⌋. A candidate com-
mittee 𝑊 provides EJR if there is no subset 𝑆 ⊆ 𝑁 and no integer ℓ > 0 such
that 𝑞(𝑆) ≥ ℓ, | ⋂𝑖∈𝑆𝐴𝑖| ≥ ℓ, and |𝐴𝑖 ∩ 𝑊| < ℓ for all 𝑖 ∈ 𝑆. (The requirement
| ⋂𝑖∈𝑆𝐴𝑖| ≥ ℓ is often called cohesiveness.) A candidate-approval rule satisfies EJR
if it always produces EJR committees.

The definition of core stability is even closer to the version in party-approval
elections: A candidate committee 𝑊 is core stable if there is no nonempty group
𝑆 ⊆ 𝑁 and no set 𝑇 ⊆ 𝐶 of size |𝑇| ≤ 𝑞(𝑆) such that |𝐴𝑖 ∩ 𝑇| > |𝐴𝑖 ∩𝑊| for all
𝑖 ∈ 𝑆. The core consists of all core-stable candidate committees.

7.3.2 Embedding Party-Approval Elections

We have informally argued in Section 7.1.2 that party-approval elections consti-
tute a subdomain of candidate-approval elections. We formalize this notion by
providing an embedding of party-approval elections into the candidate-approval
domain. Our approach is similar to that of Brill et al. [BLS18], who have for- [BLS18] Brill et al. (2018): Multiwinner Ap-

proval Rules as Apportionment Methods.malized how apportionment problems can be phrased as candidate-approval
elections.

For a given party-approval election (𝑁, 𝑃,𝐴, 𝑘), we define a corresponding candidate-
approval election (𝑁, 𝐶,𝐴′, 𝑘) with the same set of voters 𝑁 and the same com-
mittee size 𝑘. The set of candidates contains 𝑘many “clone” candidates 𝑝(1), … , 𝑝(𝑘)
for each party 𝑝 ∈ 𝑃, so 𝐶 = ⋃𝑝∈𝑃{𝑝

(1), … , 𝑝(𝑘)}. Voter 𝑖 approves a candidate 𝑝(𝑗)

in the candidate-approval election if and only if she approves the corresponding
party 𝑝 in the party-approval election. Thus, 𝐴′𝑖 = ⋃𝑝∈𝐴𝑖

{𝑝(1), … , 𝑝(𝑘)}.

A candidate committee 𝑊′ ⊆ 𝐶 corresponds to a committee 𝑊 ∶ 𝑃 → ℕ for the
party-approval election with 𝑊(𝑝) = |𝑊′ ∩ {𝑝(1), … , 𝑝(𝑘)}|. One can also convert
in the other direction: a committee 𝑊 ∶ 𝑃 → ℕ for the party-approval election
corresponds to the candidate committee 𝑊′ = ⋃𝑝∈𝑃{𝑝

(1), … , 𝑝(𝑊(𝑝))}.
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This embedding establishes party-approval elections as a subdomain of candidate-
approval elections. As a consequence, we can apply rules from the more general
candidate-approval setting to the party-approval setting, by

1. translating the party-approval election into a candidate-approval election,
2. applying the candidate-approval rule, and
3. converting its chosen candidate committee into a committee over parties.

Any axiom for candidate-approval rules implies an axiom for the derived party-
approval rule. One can check that if a candidate-approval rule satisfies EJR or
core stability (as defined in Section 7.3.1) then the derived party-approval rule
satisfies the respective axiom (as defined in Section 7.2). In particular, note that
by restricting our view to party approval, the cohesiveness requirement of EJR is
reduced to requiring a single commonly approved party.

Remark 7.1 By our assumption that 𝑘 is encoded in unary for the purpose
of complexity analysis (see Section 7.2), the translation of a party-approval elec-
tion yields a polynomial-sized candidate-approval election. Thus, a polynomial-
time candidate-approval rule applied to the party-approval election runs in
polynomial time as well. If 𝑘 was instead encoded in binary, elections with
large 𝑘 and few parties could be described so concisely that even straightfor-
ward candidate-approval algorithms would formally have exponential running
time.a (The same issue does not appear in candidate-approval elections, where
we need to list at least 𝑘 candidates, which makes the description verbose.)
a However, some rules may admit implementations that remain efficient for binary 𝑘. For
example, Rule X [PS20], also known as the Method of Equal Shares, will repeatedly assign
seats to the same party until one of its supporters runs out of virtual money. Since this happens
at most 𝑛 times, this observation can be used to design an efficient algorithm (with runtime
depending on log 𝑘 instead of 𝑘). Still, a linear time dependence on 𝑘 is acceptable in most
applications.

In practice, rather than explicitly going via the embedding, it can be useful to
write down the induced party-approval rule directly in terms of a party-approval
election. For example, the party-approval version of PAV chooses a committee
𝑊 ∶ 𝑃 → ℕ that maximizes 𝑃𝐴𝑉(𝑊) = ∑𝑖∈𝑁𝐻𝑢𝑖(𝑊).

7.3.3 PAV Guarantees Core Stability

A powerful stability concept in economics, core stability is a natural extension
of EJR. It is particularly attractive because blocking coalitions do not need to
unanimously approve any party; they only need to be able to coordinate for
mutual gain.

Unfortunately, it is still unknown whether core-stable candidate committees
exist for all candidate-approval elections.4

4: However, it is known that approximately
core-stable committees exist, for several dif-
ferent ways of approximating the core no-
tion [CJMW19; FMS18; JMW20; PS20].All standard candidate-approval rules

either already fail weaker representation axioms such as EJR, or are known to fail [ABC+17] Aziz et al. (2017): Justified Repre-
sentation in Approval-Based Committee Vot-
ing.

[PS20] Peters and Skowron (2020): Propor-
tionality and the Limits of Welfarism.

core stability. In particular, PAV satisfies EJR, but may produce non-core-stable
committees for candidate-approval elections [ABC+17]. Peters and Skowron
[PS20] show that a large class of candidate-approval rules (so-called welfarist
rules) must all fail core stability.
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For our main result, we show that core stability can always be achieved in the
party-approval setting. Specifically, the committee selected by PAV is core stable
for party-approval elections. Our proof uses a similar technique to the proof that
PAV satisfies EJR for candidate-approval elections [ABC+17, Theorem 10]; we [ABC+17] Aziz et al. (2017): Justified Repre-

sentation in Approval-Based Committee Vot-
ing.

discuss the essential difference in Remark 7.3.

Theorem 7.1 For every party-approval election, PAV chooses a core-stable com-
mittee. Hence, the core of a party-approval election is nonempty.

Proof. Consider a party-approval election (𝑁, 𝑃,𝐴, 𝑘) and let 𝑊1 ∶ 𝑃 → ℕ be
the committee selected by PAV. Assume for a contradiction that 𝑊1 is not core
stable. Then there is a nonempty coalition 𝑆 ⊆ 𝑁 and a committee 𝑇 ∶ 𝑃 → ℕ
such that |𝑇| ≤ 𝑞(𝑆) ≤ 𝑘 |𝑆|/𝑛 and 𝑢𝑖(𝑇) ≥ 𝑢𝑖(𝑊1) + 1 for every voter 𝑖 ∈ 𝑆.

For each party 𝑝, we let Δ+(𝑝,𝑊1) denote the marginal increase of the PAV score
when we allocate an extra seat to 𝑝. Thus,

Δ+(𝑝,𝑊1) = 𝑃𝐴𝑉(𝑊1 + {𝑝}) − 𝑃𝐴𝑉(𝑊1) = �
𝑖∈𝑁𝑝

1
𝑢𝑖(𝑊1) + 1

,

where 𝑁𝑝 = {𝑖 ∈ 𝑁 ∣ 𝑝 ∈ 𝐴𝑖}. Let us calculate the average marginal increase
when adding an elements of 𝑇:

1
|𝑇|

�
𝑝∈𝑃

𝑇(𝑝) Δ+(𝑝,𝑊1) =
1
|𝑇|

�
𝑖∈𝑁

�
𝑝∈𝐴𝑖

𝑇(𝑝)
𝑢𝑖(𝑊1) + 1

≥
1
|𝑇|

�
𝑖∈𝑆

�
𝑝∈𝐴𝑖

𝑇(𝑝)
𝑢𝑖(𝑊1) + 1

≥
1
|𝑇|

�
𝑖∈𝑆

�
𝑝∈𝐴𝑖

𝑇(𝑝)
𝑢𝑖(𝑇)

=
1
|𝑇|

�
𝑖∈𝑆

𝑢𝑖(𝑇)
𝑢𝑖(𝑇)

=
|𝑆|
|𝑇|

≥
𝑛
𝑘
.

Thus, there is a party 𝑝1 with Δ+(𝑝1,𝑊1) ≥ 𝑛/𝑘. Let 𝑊2 = 𝑊1 + {𝑝1}.

Next, for each party 𝑝 with 𝑊2(𝑝) > 0, let Δ−(𝑝,𝑊2) be the marginal decrease of
the PAV score if we take away a seat from 𝑝 in 𝑊2. Thus,

Δ−(𝑝,𝑊2) = 𝑃𝐴𝑉(𝑊2) − 𝑃𝐴𝑉(𝑊2 − {𝑝}) = �
𝑖∈𝑁𝑝

1
𝑢𝑖(𝑊2)

.

The average marginal decrease of taking away a seat from 𝑊2 is

1
𝑘 + 1

�
𝑝∈𝑃

𝑊2(𝑝) Δ−(𝑝,𝑊2) =
1

𝑘 + 1
�
𝑝∈𝑃

�
𝑖∈𝑁𝑝

𝑊2(𝑝)
𝑢𝑖(𝑊2)

=
1

𝑘 + 1
�
𝑖∈𝑁

�
𝑝∈𝐴𝑖

𝑊2(𝑝)
𝑢𝑖(𝑊2)

=
1

𝑘 + 1
|{𝑖 ∈ 𝑁 ∶ 𝑢𝑖(𝑊2) > 0}| ≤

𝑛
𝑘 + 1

.

Thus, there is some party 𝑝2 with 𝑊2(𝑝2) > 0 such that Δ−(𝑝2,𝑊2) ≤
𝑛
𝑘+1 . Write

𝑊3 = 𝑊2 − {𝑝2} = 𝑊1 + {𝑝1} − {𝑝2}. Then

𝑃𝐴𝑉(𝑊3) = 𝑃𝐴𝑉(𝑊2) − Δ−(𝑝2,𝑊2)
= 𝑃𝐴𝑉(𝑊1) + Δ+(𝑝1,𝑊1) − Δ−(𝑝2,𝑊2)

≥ 𝑃𝐴𝑉(𝑊1) +
𝑛
𝑘 −

𝑛
𝑘+1
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> 𝑃𝐴𝑉(𝑊1),

contradicting the optimality of 𝑊1.

Remark 7.2 Our proof of Theorem 7.1 can be easily adapted to show that
PAV satisfies the stronger version of core defined with respect to the Droop
quota [Dro81; Jan18b] [Dro81] Droop (1881): On Methods of Elect-

ing Representatives.
[Jan18b] Janson (2018): Thresholds Quanti-
fying Proportionality Criteria for Election
Methods.

, by assuming |𝑇| < (𝑘 + 1)|𝑆|/𝑛 rather than |𝑇| ≤ 𝑘|𝑆|/𝑛.

Remark 7.3 For candidate-approval elections, the proof of Theorem 7.1 shows
that PAV satisfies core stability restricted to “disjoint objections”: if 𝑊 is the
committee selected by PAV, then there can be no set 𝑇 with 𝑇 ∩𝑊 = ∅ such
that there is a coalition 𝑆 with 𝑇 ≤ 𝑞(𝑆) and 𝑢𝑖(𝑇) > 𝑢𝑖(𝑊) for all 𝑖 ∈ 𝑆. Note
that with our embedding of party-approval elections into candidate-approval
elections, the disjointness assumption is without loss of generality if there are
enough virtual candidates representing each party, and hence PAV satisfies
core stability for party-approval elections. The disjoint objections property also
implies the result of Peters and Skowron [PS20, Thm. 6] [PS20] Peters and Skowron (2020): Propor-

tionality and the Limits of Welfarism.
that PAV satisfies the

“2-core” property in the candidate-approval context: If there was an objection
𝑇 that more than doubled the utility of each coalition member, then 𝑇 ⧵ 𝑊
would be a disjoint core deviation, which is a contradiction.

Remark 7.4 Because 𝐻𝑗 = Θ(log 𝑗), the PAV objective is closely related to the
classical maximum Nash welfare (MNW) solution [KN79; Nas50] [KN79] Kaneko and Nakamura (1979): The

Nash Social Welfare Function.
[Nas50] Nash (1950): The Bargaining Prob-
lem.

. One can see
PAV as a discretization of the MNW solution for selecting a probability distri-
bution 𝜎 ∶ 𝑃 → [0, 1] over parties, where we can interpret 𝜎(𝑝) as the fraction of
seats that should be allocated to party 𝑝. That rule satisfies a continuous analog
of the core condition [ABM19; FGM16] [ABM19] Aziz et al. (2019): Fair Mixing.

[FGM16] Fain et al. (2016): The Core of the
Participatory Budgeting Problem.

. However, other natural discretizations
of the Nash rule do not satisfy the core condition. In the next section, we will
see that discretizing the Nash rule using common apportionment methods
leads to violations of core stability. Furthermore, selecting a committee that
maximizes Nash welfare (rather than the PAV objective function) may fail
core stability, even in party-choice elections [BLS18, Theorem 2]

[BLS18] Brill et al. (2018): Multiwinner Ap-
proval Rules as Apportionment Methods.

.

Given that PAV satisfies core stability in party-approval elections but not in
candidate-approval elections, do other candidate-approval rules satisfy stronger
representation axioms when restricted to the party-approval subdomain? We
have studied this question for various rules besides PAV, and the answer was
always negative; see Appendix B of the full version for details.5

5: We present relevant counterexamples for
the candidate-approval rules seq-Phragmén,
leximax-Phragmén, Eneström-Phragmén,
Rule X, and the Maximin Support Method.
In addition, we verified for the candidate-
approval rules SeqPAV, RevSeqPAV,
var-Phragmén, Approval Voting (AV),
SatisfactionAV, MinimaxAV, MonroeAV,
GreedyMonroeAV, GreedyAV, HareAV,
and Chamberlin–CourantAV that existing
counterexamples can easily be adjusted to
the party-approval setting.A major drawback of PAV is that it fails house monotonicity, and PAV continues

to fail this axiom in the party-approval setting.6 Therefore, parties may lose 6: Existing counterexamples for the
candidate-approval setting [LS22] can be
adapted in a straight-forward way.

seats when the committee size is increased. In the next section, we construct
party-approval rules that avoid this undesirable behavior.

https://arxiv.org/pdf/1911.08365v2.pdf#page=24


7 Party-List Apportionment with Approval Votes 102

7.4 Constructing Party-Approval Rules via Portioning
and Apportionment

Party-approval elections are a generalization of party-choice elections, which
can be thought of as party-approval elections in which all approval sets are sin-
gletons. Since there is a rich body of research on apportionment methods [BY01;
Puk14] which act on party-choice elections, it is natural to examine whether we [BY01] Balinski and Young (2001): Fair Rep-

resentation.
[Puk14] Pukelsheim (2014): Proportional
Representation.

can employ these methods for our setting as well. To use them, we will need
to translate party-approval elections into the party-choice domain on which
apportionment methods operate. This translation thus needs to transform a col-
lection of approval votes over parties into vote shares for each party. Motivated
by time sharing, Bogomolnaia et al. [BMS05] have developed a theory of such [BMS05] Bogomolnaia et al. (2005): Collec-

tive Choice under Dichotomous Preferences.transformation rules, further studied by Duddy [Dud15], Aziz et al. [ABM19],
[Dud15] Duddy (2015): Fair Sharing under
Dichotomous Preferences.

[ABM19] Aziz et al. (2019): Fair Mixing.

and Brandl et al. [BBPS21]. We will refer to this framework as portioning.

[BBPS21] Brandl et al. (2021): Distribution
Rules Under Dichotomous Preferences.

The approach explored in this section, then, divides the construction of a party-
approval rule into two independent steps: (1) portioning, which maps a party-
approval election to a vector of parties’ shares; followed by (2) apportionment,
which transforms the shares into a seat distribution.

Both the portioning and the apportionment literature have discussed representa-
tion axioms similar in spirit to EJR and core stability. For both settings, several
rules have been found to satisfy these properties. One might hope that by com-
posing two rules that are each representative, we obtain a party-approval rule that
is also representative (and satisfies, say, EJR). If we succeed in finding such a com-
bination, it is likely that the resulting voting rule will automatically satisfy house
monotonicity since most apportionment methods satisfy this property. In the
general candidate-approval setting (considered in Section 7.3), the existence of a
rule satisfying both EJR and house monotonicity is an open problem [LS22]. [LS22] Lackner and Skowron (2022): Multi-

Winner Voting with Approval Preferences.

7.4.1 Preliminaries

We start by introducing relevant notions from the portioning literature [ABM19;
BMS05] and apportionment [BY01; Puk14], with notation suitably adjusted to
our setting.

Portioning.

A portioning problem is a triple (𝑁, 𝑃,𝐴), just as in party-approval voting but with-
out a committee size. A portioning is a function 𝑟 ∶ 𝑃 → [0, 1] with ∑𝑝∈𝑃 𝑟(𝑝) = 1.
We interpret 𝑟(𝑝) as the vote share of party 𝑝. A portioning method maps each
portioning problem (𝑁, 𝑃,𝐴) to a portioning.

Our minimum requirement on portioning methods will be that they uphold
proportionality if all approval sets are singletons, i.e. if we are already in the
party-choice domain. Formally, we say that a portioning method is faithful if
for all (𝑁, 𝑃,𝐴) with |𝐴𝑖| = 1 for all 𝑖 ∈ 𝑁, the resulting portioning 𝑟 satisfies
𝑟(𝑝) = |{𝑖 ∈ 𝑁 ∣ 𝐴𝑖 = {𝑝}}| / 𝑛 for all 𝑝 ∈ 𝑃. Among the portioning methods
considered by Aziz et al. [ABM19], only the following three are faithful:
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Conditional utilitarian portioning selects, for each voter 𝑖, 𝑝𝑖 as a party in 𝐴𝑖
approved by the highest number of voters. Then, 𝑟(𝑝) = |{𝑖 ∈ 𝑁 ∣ 𝑝𝑖 = 𝑝}|/𝑛
for all 𝑝 ∈ 𝑃.

Random priority computes 𝑛! portionings, one for each permutation 𝜎 of 𝑁,
and returns their average. The portioning for𝜎 = (𝑖1, … , 𝑖𝑛)maximizes∑𝑝∈𝐴𝑖1

𝑟(𝑝),
breaking ties by maximizing ∑𝑝∈𝐴𝑖2

𝑟(𝑝), and so forth.

Nash portioning selects the portioning 𝑟 that maximizes the Nash welfare, i.e.,
∏

𝑖∈𝑁 �∑𝑝∈𝐴𝑖
𝑟(𝑝)�.

When computing the outcomes of these rules, ties may occur. For our results it
will not matter how ties are broken: we only use these rules in counterexamples
in which no ties occur.

On first sight, Nash portioning seems particularly promising because it satisfies
portioning versions of core stability and EJR [ABM19; GN14]. Concretely, it [ABM19] Aziz et al. (2019): Fair Mixing.

[GN14] Guerdjikova and Nehring (2014):
Weighing Experts, Weighing Sources: The Di-
versity Value.

satisfies a property called average fair share introduced by Aziz et al. [ABM19],

[ABM19] Aziz et al. (2019): Fair Mixing.

which requires that there is no subset 𝑆 ⊆ 𝑁 of voters such that ⋂𝑖∈𝑆𝐴𝑖 ≠ ∅
and 1

|𝑆|
∑
𝑖∈𝑆
∑
𝑝∈𝐴𝑖

𝑟(𝑝) < |𝑆|/|𝑁|. However, despite these promising properties,
we will see that Nash portioning does not work for our purposes. Instead, we will
need to make use of a more recent portioning approach, which was proposed by
Speroni di Fenizio and Gewurz [SG19] in the context of party-approval voting. [SG19] Speroni di Fenizio and Gewurz

(2019): The Space of All Proportional Voting
Systems and the Most Majoritarian among
Them.

Majoritarian portioning proceeds in rounds 𝑗 = 1, 2, … . Initially, all parties and
voters are active. In iteration 𝑗, select the active party 𝑝𝑗 that is approved by
the highest number of active voters. Let 𝑁𝑗 be the set of active voters who
approve 𝑝𝑗. Then, set 𝑟(𝑝𝑗) to |𝑁𝑗|/𝑛, and mark 𝑝𝑗 and all voters in𝑁𝑗 as inactive.
If active voters remain, start the next iteration; otherwise, return 𝑟.

Under majoritarian portioning, we ignore the approval preferences of voters after
they have been “assigned” to a party. Note that conditional utilitarian portioning
is a similar sequential method which does, however, not ignore the preferences
of inactive voters.

Apportionment.

An apportionment problem is a tuple (𝑃, 𝑟, 𝑘), which consists of a finite set of
parties 𝑃, a portioning 𝑟 ∶ 𝑃 → [0, 1] specifying the vote shares of parties, and a
committee size 𝑘 ∈ ℕ. Committees are defined as for party-approval elections,
and an apportionment method maps apportionment problems to committees 𝑊
of size 𝑘.

An apportionment method satisfies lower quota if each party 𝑝 is always allocated
at least ⌊𝑘 ⋅ 𝑟(𝑝)⌋ seats in the committee. Furthermore, an apportionment method
𝑓 is house monotonic if 𝑓(𝑃, 𝑟, 𝑘) ⊆ 𝑓(𝑃, 𝑟, 𝑘+1) for every apportionment problem
(𝑃, 𝑟, 𝑘).

Among the standard apportionment methods, only two satisfy both lower quota
and house monotonicity: the D’Hondt method (also known as the Jefferson
method) and the quota method.7 The D’Hondt method assigns the 𝑘 seats it- 7: All other divisor methods fail lower quota,

and the Hamilton method is not house
monotonic [BY01].

eratively, each time giving the next seat to the party 𝑝 with the largest quotient
𝑟(𝑝)/(𝑠(𝑝) + 1), where 𝑠(𝑝) denotes the number of seats already assigned to 𝑝. The
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quota method [BY75] is identical to the D’Hondt method, except that, in the 𝑗th [BY75] Balinski and Young (1975): The
Quota Method of Apportionment.iteration, only parties 𝑝 satisfying 𝑠(𝑝)/𝑗 < 𝑟(𝑝) are eligible for the allocation of

the next seat. Ties should be broken in a consistent fashion so as to ensure house
monotonicity, for example using a fixed tie-breaking order over parties.

Composition.

If we take any portioning method and any apportionment method, we can
compose them to obtain a party-approval rule. Formally, the composition of
portioning method 𝑅 and apportionment method 𝑀 maps each party-approval
election (𝑁, 𝑃,𝐴, 𝑘) to a committee 𝑀(𝑃, 𝑅(𝑁, 𝑃,𝐴), 𝑘). Note that if the appor-
tionment method is house monotonic then so is the composed rule, since the
portioning is independent of 𝑘.

7.4.2 Composed Rules That Fail EJR

Perhaps surprisingly, many pairs of portioning and apportionment methods fail
EJR. This is certainly true if the individual parts are not representative themselves.
For example, if an apportionment method 𝑀 “properly” fails lower quota (in the
sense that there is a rational-valued input 𝑟 on which lower quota is violated),
then one can construct an example profile on which any composed rule using
𝑀 fails EJR: Construct a party-approval election with singleton approval sets in
which the voter counts are proportional to the shares in the counterexample 𝑟.
Then any faithful portioning method, applied to this election, must return 𝑟. Since
𝑀 fails lower quota on 𝑟, the resulting committee will violate EJR. By a similar
argument, suppose that an apportionment method violates house monotonicity,
and that there is a rational-valued counterexample. Then the apportionment
method, when composed with a faithful portioning method, will give rise to a
party-approval rule that fails house monotonicity.

As mentioned above, D’Hondt and the quota method are the only standard
apportionment methods to satisfy both lower quota and house monotonicity.
However, the composition of either option with the conditional utilitarian, ran-
dom priority, or Nash portioning methods fails EJR, as the following examples
show.

Example 7.1 Let 𝑛 = 𝑘 = 6, 𝑃 = {𝑝0, 𝑝1, 𝑝2, 𝑝3}, and consider the ballot profile
𝐴 = ({𝑝0}, {𝑝0}, {𝑝0, 𝑝1, 𝑝2}, {𝑝0, 𝑝1, 𝑝2}, {𝑝1, 𝑝3}, {𝑝2, 𝑝3}).

Then, the conditional utilitarian solution sets 𝑟(𝑝0) = 4/6, 𝑟(𝑝1) = 𝑟(𝑝2) = 1/6,
and 𝑟(𝑝3) = 0. Any apportionment method satisfying lower quota allocates
four seats to 𝑝0, one each to 𝑝1 and 𝑝2, and none to 𝑝3. The resulting committee
does not provide EJR since the last two voters, who jointly approve 𝑝3, have a
quota of 𝑞({5, 6}) = 2 that is not met.

Example 7.2 Let 𝑛 = 𝑘 = 6, 𝑃 = {𝑝0, 𝑝1, 𝑝2, 𝑝3}, and consider the ballot profile
𝐴 = ({𝑝0}, {𝑝0}, {𝑝0, 𝑝1, 𝑝2}, {𝑝0, 𝑝1, 𝑝3}, {𝑝1}, {𝑝2, 𝑝3}).

Random priority chooses the portioning 𝑟(𝑝0) = 23/45, 𝑟(𝑝1) = 23/90, and



7 Party-List Apportionment with Approval Votes 105

𝑟(𝑝2) = 𝑟(𝑝3) = 7/60. Both D’Hondt and the quota method allocate four seats
to 𝑝0, two seats to 𝑝1, and none to the other two parties. This violates the claim
to representation of the sixth voter (with 𝑞({6}) = 1).

Nash portioning produces a fairly similar portioning, with 𝑟(𝑝0) ≈ 0.5302,
𝑟(𝑝1) ≈ 0.2651, and 𝑟(𝑝2) = 𝑟(𝑝3) ≈ 0.1023. D’Hondt and the quota method
produce the same committee as above, leading to the same EJR violation.

It might be surprising that Nash portioning combined with a lower-quota appor-
tionment method violates EJR. After all, Nash portioning satisfies core stability
in the portioning setting, which is a strong notion of proportionality, and the
lower-quota property limits the rounding losses when moving from the por-
tioning to a committee. As expected, in the election of Example 7.2, the portion-
ing produced by Nash gives sufficient representation to the sixth voter since
𝑟(𝑝2) + 𝑟(𝑝3) ≈ 0.2047 > 1/6. However, since both 𝑟(𝑝2) and 𝑟(𝑝3) are below 1/6
on their own, lower quota does not apply to either of the two parties, and the
sixth voter loses all representation in the apportionment step.8 8: There are similar examples where Nash

portioning with D’Hondt apportionment vi-
olates EJR even though every party receives
at least one seat, and examples where EJR is
violated by a margin of more than one seat.7.4.3 Composed Rules That Satisfy EJR

As we have seen, several initially promising portioning methods fail to compose
to a rule that satisfies EJR. One reason is that these portioning methods are
happy to assign small shares to several parties. The apportionment method
may round several of those small shares down to zero seats. This can lead to
a failure of EJR when not enough parties obtain a seat. It is difficult for an
apportionment method to avoid this behavior since the portioning step obscures
the relationships between different parties that are apparent from the approval
ballots of the voters.

Since majoritarian portioning maximizes the seat allocations to the largest parties,
it tends to avoid the problem we have just identified. While it fails the strong
representation axioms that Nash portioning satisfies, this turns out not to be
crucial: Composing majoritarian portioning with any apportionment method
satisfying lower quota yields an EJR rule. If we use an apportionment method
that is also house monotonic, such as D’Hondt or the quota method, we obtain a
party-approval rule that satisfies both EJR and house monotonicity.

Theorem 7.2 Let 𝑀 be a house monotonic apportionment method satisfying
lower quota. Then, the party-approval rule composing majoritarian portioning
and𝑀 satisfies EJR and house monotonicity.

Proof. Consider a party-approval election (𝑁, 𝑃,𝐴, 𝑘) and let 𝑟 be the outcome
of majoritarian portioning applied to (𝑁, 𝑃,𝐴). Let 𝑁1, 𝑁2, … and 𝑝1, 𝑝2, … be
the voter groups and parties in the construction of majoritarian portioning, so
that 𝑟(𝑝𝑗) = |𝑁𝑗|/𝑛 for all 𝑗.

Consider the committee 𝑊 = 𝑀(𝑃, 𝑟, 𝑘) and suppose that EJR is violated, i.e.,
that there exists a group 𝑆 ⊆ 𝑁 with ⋂𝑖∈𝑆𝐴𝑖 ≠ ∅ and 𝑢𝑖(𝑊) < 𝑞(𝑆) for all 𝑖 ∈ 𝑆.

Let 𝑗 be minimal such that 𝑆 ∩ 𝑁𝑗 ≠ ∅. We now show that |𝑆| ≤ |𝑁𝑗|. By the
definition of 𝑗, no voter in 𝑆 approves any of the parties 𝑝1, 𝑝2, … 𝑝𝑗−1; thus, all
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those voters remain active in round 𝑗. Consider a party 𝑝∗ ∈ ⋂𝑖∈𝑆𝐴𝑖. In the 𝑗th
iteration of majoritarian portioning, this party had an approval score (among
active voters) of at least |𝑆|. Therefore, the party 𝑝𝑗 chosen in the 𝑗th iteration has
an approval score that is at least |𝑆| (of course, 𝑝∗ = 𝑝𝑗 is possible). The approval
score of party 𝑝𝑗 equals |𝑁𝑗|. Therefore, |𝑁𝑗| ≥ |𝑆|.

Since |𝑁𝑗| ≥ |𝑆|, we have 𝑞(𝑁𝑗) ≥ 𝑞(𝑆). Since 𝑀 satisfies lower quota, it assigns at
least ⌊𝑘 ⋅ 𝑟(𝑝𝑗)⌋ = ⌊𝑘 (|𝑁𝑗|/𝑛)⌋ = 𝑞(𝑁𝑗) seats to party 𝑝𝑗. Now consider a voter 𝑖 ∈
𝑆∩𝑁𝑗. Since this voter approves party 𝑝𝑗, we have 𝑢𝑖(𝑊) ≥ 𝑊(𝑝𝑗) ≥ 𝑞(𝑁𝑗) ≥ 𝑞(𝑆),
a contradiction.

This shows that EJR is indeed satisfied; house monotonicity follows from the
house monotonicity of 𝑀.

While the party-approval rules identified by Theorem 7.2 satisfy EJR and house
monotonicity, they do not reach our gold standard of representation, i.e., core
stability:

Example 7.3 Let 𝑛 = 𝑘 = 16, 𝑃 = {𝑝0, … , 𝑝4}, and consider the following ballot
profile:

4 × {𝑝0, 𝑝1}, 3 × {𝑝1, 𝑝2}, 1 × {𝑝2}
4 × {𝑝0, 𝑝3}, 3 × {𝑝3, 𝑝4}, 1 × {𝑝4}

Majoritarian portioning allocates 1/2 to 𝑝0 and 1/4 each to 𝑝2 and 𝑝4. Any
lower-quota apportionment method must translate this into 8 seats for 𝑝0
and 4 seats each for 𝑝2 and 𝑝4. This committee is not in the core: Let 𝑆 be the
coalition of all 14 voters who approve multiple parties, and let 𝑇 allocate 4 seats
to 𝑝0 and 5 seats each to 𝑝1 and 𝑝3. This gives strictly higher representation to
all members of the coalition.

The example makes it obvious why majoritarian portioning cannot satisfy core
stability: All voters approving of 𝑝0 get deactivated after the first round, which
makes 𝑝2 seem universally preferable to 𝑝1. However, 𝑝1 is a useful vehicle for
cooperation between the group approving {𝑝0, 𝑝1} and the group approving
{𝑝1, 𝑝2}. Since majoritarian portioning is blind to this opportunity, it cannot
guarantee core stability.

The example also illustrates the power of core stability: The deviating coalition
does not agree on any single party they support, but would nonetheless benefit
from the deviation. Core stability is sensitive to this demand for better represen-
tation.

7.5 Computational Aspects

To use a voting rule, we need to compute its output. Ideally, we would like an
efficient (i.e., polynomial-time) algorithm for this task, so that we can announce
the voting outcome soon after all votes have been cast. Fortunately, many rules
admit fast algorithms. For example, the composed rules from Section 7.4.3 can
be computed efficiently as long as the employed portioning and apportionment
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methods are computable in polynomial time (which is the case for majoritarian
portioning as well as for D’Hondt and the quota method). In addition, by our
discussion in Remark 7.1, every multiwinner voting rule that runs in polynomial
time for the candidate-approval setting also runs in polynomial time for the
party-approval setting.

That being said, given our result about core stability in Section 7.3, we are particu-
larly interested in computing the outcome of PAV, which is NP-hard to compute
in the candidate-approval setting [AGG+15]. Since party-approval elections are [AGG+15] Aziz et al. (2015): Computational

Aspects of Multi-Winner Approval Voting.a restricted domain, it is in principle possible that PAV is easier to compute on
that domain, but, as we show in Appendix A of the full version, hardness still
holds for party-approval elections.

Theorem 7.3 For a given party-approval election and threshold 𝑠 ∈ ℝ, deciding
whether there exists a committee with PAV score at least 𝑠 is NP-hard.

Equally confronted with the computational complexity of PAV, Aziz et al. [AEH+18] [AEH+18] Aziz et al. (2018): On the Com-
plexity of Extended and Proportional Justi-
fied Representation.

proposed a local-search variant of PAV, which runs in polynomial time and guar-
antees EJR in the candidate-approval setting. Using the same approach, we can
find a core-stable committee in the party-approval setting.

Theorem 7.4 Given a party-approval election, a core-stable committee can be
computed in polynomial time.

We defer the proof of this theorem to Appendix A of the full version. In Appendix
B.1 of the full version, we additionally show that an optimization variant of Phrag-
mén’s rule [BFJL17] remains intractable in the party-approval subdomain. [BFJL17] Brill et al. (2017): Phragmén’s Vot-

ing Methods and Justified Representation.
Lackner and Skowron [LS22] posed as an open problem to determine the com- [LS22] Lackner and Skowron (2022): Multi-

Winner Voting with Approval Preferences.plexity of checking whether a given committee satisfies core stability. We show
that the problem is coNP-complete. Our proof is written for party-approval elec-
tions, but the result implies hardness for the candidate-approval setting because
party-approval elections are a special case of candidate-approval elections.

Theorem 7.5 For a given party-approval (or candidate-approval) election and a
committee𝑊, it is coNP-complete to decide whether𝑊 satisfies core stability.

Proof. The complement problem is clearly in NP since a core deviation provides
a certificate. We reduce from the NP-complete problem exact cover by 3-sets
(X3C). Here, given a set 𝑋 with |𝑋| = 3𝑟 and a collection ℬ of 3-element subsets
of 𝑋, the question is whether there exists a selection ℬ ′ ⊆ ℬ of 𝑟 of the subsets
such that every element of 𝑋 occurs in one of the sets in ℬ ′.

We construct an instance of our problem as follows: For every set 𝐵 ∈ ℬ we
introduce a set candidate and for every element in 𝑋 we introduce an element
voter. We set 𝑘 = 𝑟 and introduce one special voter, 𝑘 − 1 private candidates and
one dummy candidate. The approval sets are as follows: Each element voter 𝑥 ∈ 𝑋
approves exactly those set candidates 𝐵 ∈ ℬ with 𝑥 ∈ 𝐵 and the special voter
approves all candidates except the dummy candidate. (Thus, no voter approves
the dummy candidate.) Finally, let 𝑊 be the committee consisting of the private

https://arxiv.org/pdf/1911.08365v2.pdf#page=19
https://arxiv.org/pdf/1911.08365v2.pdf#page=19
https://arxiv.org/pdf/1911.08365v2.pdf#page=24
https://arxiv.org/pdf/1911.08365v2.pdf#page=24
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candidates and the dummy candidate.9 Note that |𝑊| = 𝑘. We claim that 𝑊 is 9: The committee 𝑊 assigns seats only to
Pareto-dominated parties, making it clearly
suboptimal. One can adjust the reduction
to show that the problem remains hard for
committees 𝑊 that do not give seats to
Pareto-dominated parties.

not core stable if and only if the X3C instance is a yes instance.

Suppose that 𝑊 is not core stable, and let 𝑆 ⊆ 𝑁 and committee 𝑇 ∶ 𝑃 → ℕ
witness this fact. Without loss of generality, we may assume that 𝑇 only gives
seats to set candidates, since all other candidates are dominated by set candidates.
Suppose |𝑇| = 𝑡. Then 𝑇 provides positive utility to at most 3𝑡 element voters.
These 3𝑡 voters on their own can afford ⌊3𝑡 ⋅ 𝑘/𝑛⌋ ≤ 3𝑡 ⋅ 𝑘/(3𝑘 + 1) < 𝑡 candidates.
Because all element voters in 𝑆 must obtain positive utility from 𝑇, it follows
that the special voter must be part of 𝑆. Because the special voter 𝑖 has 𝑢𝑖(𝑇) >
𝑢𝑖(𝑊) = 𝑘 − 1, we have 𝑢𝑖(𝑇) = 𝑘. Thus |𝑇| = 𝑘, and a committee of this size can
only be afforded by the grand coalition, so 𝑆 = 𝑁. Thus, every element voter is
part of 𝑆 and thus obtains positive utility from 𝑇, and hence for every element, 𝑇
contains at least one set candidate corresponding to a set containing that element.
It follows that the X3C instance has a solution.

Conversely, every solution to the X3C instance induces a committee 𝑇 consisting
of the 𝑘 set candidates chosen by the solution. Then 𝑇 gives positive utility to all
element voters and increases the special voter’s utility from 𝑘 − 1 to 𝑘. Hence 𝑇
together with 𝑆 = 𝑁 show that 𝑊 is not core stable.

In the candidate-approval setting, checking whether a given committee satisfies
EJR is coNP-complete [ABC+17; AEH+18]. In other words, given a committee, it [ABC+17] Aziz et al. (2017): Justified Repre-

sentation in Approval-Based Committee Vot-
ing.
[AEH+18] Aziz et al. (2018): On the Com-
plexity of Extended and Proportional Justi-
fied Representation.

is hard to find a cohesive coalition of voters that is underrepresented. Interestingly,
this task is tractable in party-approval elections. Intuitively, checking becomes
easier in party-approval elections as groups of voters are already cohesive when
they have only a single approved party in common.

Theorem 7.6 Given a party-approval election (𝑁, 𝑃,𝐴, 𝑘) and a committee𝑊 ∶
𝑃 → ℕ, it can be checked in polynomial time whether𝑊 satisfies EJR.

Proof. We describe a procedure to check whether a given committee 𝑊 violates
EJR. For each party 𝑝 ∈ 𝑃 and each ℓ ∈ [𝑘], define

𝑆𝑝,ℓ = {𝑖 ∈ 𝑁 ∣ 𝑝 ∈ 𝐴𝑖 and 𝑢𝑖(𝑊) ≤ ℓ}

and check whether ℓ < 𝑞(𝑆𝑝,ℓ) holds. If so, the set 𝑆𝑝,ℓ induces an EJR violation.
This is because ⋂𝑖∈𝑆𝑝,ℓ

𝐴𝑖 ≠ ∅ and 𝑢𝑖(𝑊) ≤ ℓ < 𝑞(𝑆𝑝, ℓ) holds for all 𝑖 ∈ 𝑆𝑝,ℓ.

Now, assume that the condition is not satisfied for any party 𝑝 ∈ 𝑃 and any
ℓ ∈ [𝑘]. We claim that this proves the nonexistence of an EJR violation. Assume
for contradiction that there exists a group 𝑆 ⊆ 𝑁 inducing an EJR violation. Let
𝑝 ∈ ⋂𝑖∈𝑆𝐴𝑖 and ℓ = max𝑖∈𝑆 𝑢𝑖(𝑊). By definition, 𝑆 ⊆ 𝑆𝑝,ℓ and hence 𝑞(𝑆𝑝,ℓ) ≥
𝑞(𝑆) > ℓ, a contradiction. A straightforward implementation of this algorithm
has polynomial running time 𝑂(|𝑃| 𝑘 𝑛).

We observe a similar effect for proportional justified representation (PJR), a propor-
tionality axiom introduced by Sánchez-Fernández et al. [SEL+17] which is weaker [SEL+17] Sánchez-Fernández et al. (2017):

Proportional Justified Representation.than EJR. While checking whether a committee satisfies PJR is coNP-complete
in the candidate-approval setting, we can solve the problem in polynomial time
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via submodular minimization in our setting. For a formal definition and the
proof, see Appendix A.3 of the full version.

7.6 Discussion

In this chapter, we have initiated the axiomatic analysis of approval-based ap-
portionment. On a technical level, it would be interesting to see whether the
party-approval domain allows us to satisfy other combinations of axioms that
are not known to be attainable in candidate-approval elections. For instance,
the compatibility between strong representation axioms and certain notions of
support monotonicity is an open problem [SF19]. [SF19] Sánchez-Fernández and Fisteus

(2019): Monotonicity Axioms in Approval-
Based Multi-Winner Voting Rules.We have presented our setting guided by the application of apportioning parlia-

mentary seats to political parties. But our formal setting has other interesting
applications. An example would be participatory budgeting settings where items
all have equal costs and come in different types. For instance, a university depart-
ment could decide how to allocate Ph.D. scholarships across different research
projects, in a way that respects the preferences of funding organizations.

As another example, the literature on multiwinner elections suggests many ap-
plications to recommendation problems [SFL16]. For instance, one might want [SFL16] Skowron et al. (2016): Finding a Col-

lective Set of Items.to display a limited number of news articles, movies, or advertisements in a way
that fairly represents the preferences of the audience. These preferences might be
expressed not over individual pieces of content, but over content producers (such
as newspapers, studios, or advertising companies), in which case our setting
provides rules that decide how many items should be contributed by each source.
Expressing preferences on the level of content producers is natural in repeated
settings, where the relevant pieces of content change too frequently to elicit voter
preferences on each occasion. Besides, content producers might reserve the right
to choose which of their content should be displayed.

In the general candidate-approval setting, the search continues for rules that
satisfy EJR and house monotonicity, or core stability. But for the applications
mentioned above, these guarantees are already achievable today.

https://arxiv.org/pdf/1911.08365v2.pdf#page=23
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8.1 Introduction

The Constitution of the United States says that

“Representatives [in the US House of Representatives] shall be appor-
tioned among the several States according to their respective numbers,
counting the whole number of persons in each State …”

These “respective numbers,” or populations, of the states are determined every
decade through the census. For example, on April 1, 2020, the population of
the United States was 331 108 434, and the state of New York had a population
of 20 215 751. New York therefore deserves 6.105% of the 435 seats in the House,
which is 26.56 seats, for the next ten years.

The puzzle of apportionment is what to do about New York’s 0.56 seat — in this
round of apportionment it was rounded down to 0, and New York lost its 27th
seat — or, more generally, how to allocate fractional seats. This mathematical
question has riveted the American political establishment since the country’s
founding [Szp10]

[Szp10] Szpiro (2010): Numbers Rule.

.

In 1792, Congress approved a bill that would enact an apportionment method
proposed by Alexander Hamilton,1

1: In fact, the bill was vetoed by George
Washington and Hamilton’s method was
only adopted in 1850.

the first secretary of the treasury and star of
the eponymous musical. If we denote the standard quota of state 𝑖 by 𝑞𝑖 (𝑞𝑖 = 26.56
in the case of New York in 2020), Hamilton’s method allocates to each state its
lower quota ⌊𝑞𝑖⌋ (26 for NY). Then, Hamilton’s method goes through the states
in order of decreasing residue 𝑞𝑖 − ⌊𝑞𝑖⌋ (0.56 for NY) and allocates an additional
seat to each state until all house seats are allocated.

As sensible as Hamilton’s method appears, it repeatedly led to bizarre results,
which became known as apportionment paradoxes.

The Alabama paradox: Using the 1880 census results, the chief clerk of the Cen-
sus Office calculated the apportionment according to Hamilton’s method
for all House sizes between 275 and 350, and discovered that, as the size in-
creased from 299 to 300, Alabama lost a seat. In 1900, the Alabama paradox
reappeared, this time affecting Colorado and Maine.

The population paradox: In 1900, the populations of Virginia and Maine were
1 854 184 and 694 466, respectively. Over the following year, the populations
of the two states grew by 19 767 and 4 649, respectively. Even though Virginia’s
growth was larger even relative to its population, Hamilton’s method would
have transferred a seat from Virginia to Maine.

Past occurrences of these paradoxes invited partisan strife, which is only natural
since a state’s representatives have a strong personal stake in their state not losing
seats. Both in Congress and the courts, this strife took the form of a tug-of-war
over the choice of apportionment method, the size of the House,2

2: For a long time, the House kept grow-
ing such that no state ever lost a seat, even
though the influence of each seat dimin-
ished.and the census
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numbers, driven by the states’, parties’, and individual representatives’ self-interest
rather than the public good.

This state of affairs improved in 1941 when Congress adopted an apportionment
method that provably avoids the Alabama and population paradoxes, which had
been developed by Edward Huntington, a Harvard mathematician, and Joseph
Hill, the chief statistician of the Census Bureau. While the Huntington–Hill
method is house monotone (i.e., it avoids the Alabama paradox) and population
monotone (i.e., it avoids the population paradox), it has a different, equally bizarre
weakness: it does not satisfy quota, that is, the allocation of some states may
be different from ⌊𝑞𝑖⌋ or ⌈𝑞𝑖⌉. A striking impossibility result by Balinski and
Young [BY01] shows that this tension is inevitable: no apportionment method [BY01] Balinski and Young (2001): Fair Rep-

resentation.can simultaneously satisfy quota and be population monotone.3
3: We will revisit this result in Section 8.3
and show that, while Balinski and Young’s
theorem makes additional implicit assump-
tions, the incompatibility between quota
and population monotonicity continues to
hold without these assumptions.

While the Balinski–Young impossibility is troubling, in our view there is an
even larger source of unfairness that plagues apportionment methods, which is
rooted in their determinism. In addition to introducing bias (the Huntington-
Hill method disadvantages larger states), deterministic methods often lead to
situations where small counting errors can change the outcome.4 For example, 4: A second shortcoming of deterministic

apportionment methods is a lack of fairness
over time: For example, if the states’ popu-
lations remain static, a state with a standard
quota of, say, 1.5might receive a single seat
in every single apportionment and there-
fore only receive 2/3 of its deserved represen-
tation. Using randomized apportionment,
the long-term average of a state’s number of
seats is proportional to the state’s average
share of the total population.

based on the 2020 census, New York lost its 27th House seat, but it would have
kept it had its population count been higher by 89 residents! After the 1990 and
2000 censuses, similar circumstances were the basis for lawsuits brought by
Massachusetts and Utah.

To address these issues, an obvious solution is to use randomization in order to
realize the standard quota of each state in expectation, as Grimmett proposed in
2004 [Gri04]. If such a randomized method was used, 89 additional residents

[Gri04] Grimmett (2004): Stochastic Appor-
tionment.

would have shifted New York’s expected number of seats by a negligible 0.0001,
and the decision between 26 or 27 seats would have been made by an impartial
random process, which is less accessible to political maneuvering than, say, the
census [Sto11]. [Sto11] Stone (2011): The Luck of the Draw.

Grimmett’s proposed apportionment method is easy to describe. First, we choose
a random permutation of the states; without loss of generality, that permutation
is identity. Second, we draw 𝑈 uniformly at random from [0, 1], and let 𝑄𝑖 ≔
𝑈+∑𝑖

𝑗=1 𝑞𝑖. Finally, we allocate to each state 𝑖 one seat for each integer contained
in the interval [𝑄𝑖−1, 𝑄𝑖). (In particular, this implies that the allocation will satisfy
quota.)

Why this particular method? Grimmett writes [Gri04, p. 302]:

“We offer no justification for this scheme apart from fairness and ease
of implementation.”

Grimmett’s method is easy to implement for sure, and what he refers to as “fair-
ness” — realizing the fractional quotas in expectation — is arguably a minimal
requirement for any randomized apportionment method. But his two axioms,
“fairness” and quota, allow for a vast number of randomized methods: Indeed,
after allocating ⌊𝑞𝑖⌋ seats to each agent, the problem of determining which states
to round up reduces to so-called “𝜋ps sampling” (“inclusion probability propor-
tional to size”), and dozens of such schemes have been proposed in the litera-
ture [BH83]. We believe, therefore, that additional criteria are needed to guide [BH83] Brewer and Hanif (1983): An Intro-

duction to Sampling with Unequal Probabili-
ties.

the design of randomized apportionment methods. To identify such criteria, we
return to the classics: house and population monotonicity.
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8.1.1 Our Approach and Results

In this paper, we seek randomized apportionment methods that satisfy natural
extensions of house and population monotonicity to the randomized setting. We
want these monotonicity axioms to hold even ex post, i.e., after the randomization
has been realized. We find such methods by taking a parameterized class of
deterministic methods all of which satisfy the desired ex post axioms (in our
case, subsets of population monotonicity, house monotonicity, and quota), and
to then randomize over the choice of parameters such that ex ante properties
hold (here: ex ante proportionality).5 5: In mechanism design, a similar approach

extends strategyproofness to universal strat-
egyproofness [NR01].Guaranteeing monotonicity axioms ex post is helpful for preventing certain

kinds of manipulation in the apportionment process. For instance, say that the
census concludes and a randomized apportionment is determined, and only
then does a state credibly contest that its population was undercounted (in the
courts or in Congress with the support of a majority). Using an apportionment
method without population monotonicity, states might strategically undercount
their population in the census and only reveal the true count in case this turns
out to be beneficial once the randomness is revealed. When using a population
monotone method, by contrast, any revised apportionment would be made using
the same deterministic and population monotone method, which implies that
immediately revealing the full population count is a dominant strategy, even for
coalitions of states.

In Section 8.3, we first show that no such randomized methods exist for popu-
lation monotonicity. This impossibility is not due to randomization or ex ante
proportionality, but due to the fact that population monotonicity and quota
are outright incompatible. Thus, there do not exist suitable deterministic appor-
tionment methods that a randomized apportionment method could randomize
over. That population monotonicity and quota are incompatible is well-known
from the Balinski–Young impossibility theorem [BY01], but their proof uses [BY01] Balinski and Young (2001): Fair Rep-

resentation.some “mild” background conditions (notably neutrality), which are not mild
for our randomized purposes. We are able to prove a stronger version of their
theorem, which derives the impossibility with no assumptions other than popu-
lation monotonicity and quota. The deterministic apportionment methods that
are most commonly used in practice (so called divisor methods, including the
Huntington–Hill method) satisfy population monotonicity but fail quota. So it
makes sense to ask whether population monotonicity can be combined with ex
ante proportionality (without requiring quota). We construct such a method,
which is reminiscent of the family of divisor methods, except that the so-called
“divisior criterion” [BY01] is specific to each state and is given by a sequence of
Poisson arrivals.

For house monotonicity, we provide in Section 8.4 a randomized apportionment
method that satisfies house monotonicity, quota, and ex ante proportionality.
To obtain this result, we generalize the classic result of Gandhi et al. [GKPS06] [GKPS06] Gandhi et al. (2006): Dependent

Rounding and Its Applications to Approxi-
mation Algorithms.

on dependent rounding in a bipartite graph. We call this method cumulative
dependent randomized rounding or just cumulative rounding (Theorem 8.4). Cu-
mulative rounding allows to correlate dependent-rounding processes in multiple
copies of the same bipartite graph such that the result satisfies an additional
guarantee across copies of the graph. This guarantee, which we describe in the
next paragraph, generalizes the quota axiom of apportionment. As a side product,
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𝑡 = 1
𝑣3 𝑣4

𝑣1 𝑣2

1/4 1/2 1/2

𝑡 = 2
𝑣3 𝑣4

𝑣1 𝑣2

1/2 1/4 1/2

𝑡 = 3
𝑣3 𝑣4

𝑣1 𝑣2

3/4 3/4 1/4
Figure 8.1: Illustration of cumulative round-
ing. Dashed lines indicate edges 𝑒 ∈ 𝐸 in
the bipartite graph (𝑉, 𝐸), which are labeled
with weights𝑤𝑡𝑒.The red lines indicate a pos-
sible random outcome of cumulative round-
ing.

our existence proof for house monotonicity provides a new characterization of
the deterministic apportionment methods satisfying house monotonicity and
quota, which is based on the corner points of a bipartite matching polytope.

To describe cumulative rounding more precisely, we first sketch the result of
Gandhi et al. [GKPS06]. For a bipartite graph (𝑉, 𝐸) and edge weights {𝑤𝑒}𝑒∈𝐸 in [GKPS06] Gandhi et al. (2006): Dependent

Rounding and Its Applications to Approxi-
mation Algorithms.

[0, 1], dependent rounding randomly generates a subgraph (𝑉, 𝐸′) with 𝐸′ ⊆ 𝐸
providing three properties: marginal distribution (each edge 𝑒 ∈ 𝐸 is contained in
𝐸′ with probability𝑤𝑒), degree preservation (in the rounded graph, the degree of a
vertex 𝑣 is the floor or the ceiling of 𝑣’s fractional degree∑𝑣∈𝑒∈𝐸𝑤𝑒), and negative
correlation. Cumulative rounding allows us to randomly round 𝑇 many copies of
(𝑉, 𝐸), where each copy 1 ≤ 𝑡 ≤ 𝑇has its own set of weights {𝑤𝑡𝑒}𝑒∈𝐸. Each copy will
provide marginal distribution, degree preservation, and negative correlation. As
we prove in Section 8.5, cumulative rounding additionally guarantees cumulative
degree preservation: for each vertex 𝑣 and 1 ≤ 𝑡 ≤ 𝑇, the sum of degrees of 𝑣
across copies 1 through 𝑡 equals the sum of fractional degrees of 𝑣 across copies
1 through 𝑡, either rounded up or down. For example, node 𝑣1 in Figure 8.1 is
incident to edges with a total fractional weight of 2 ⋅ 1/4+ 2 ⋅ 1/2 = 1.5 across copies
𝑡 = 1, 2, and must hence be incident to 1 or 2 edges in total across the rounded
versions of copies 𝑡 = 1, 2. Since, across copies 𝑡 = 1, 2, 3, 𝑣1’s total fractional
degree is 1.5 + 2 ⋅ 3/4 = 3, 𝑣1 must be incident to a total of exactly 3 rounded edges
across the copies 𝑡 = 1, 2, 3. Applying cumulative rounding to a star graph yields
the desired randomized apportionment method satisfying house monotonicity,
quota, and ex ante proportionality.

We believe that cumulative rounding is of broader interest, and in Section 8.6, we
present applications of cumulative rounding beyond apportionment. First, we
look at a proposal of Buchstein and Hein [BH09] for a reform of the European [BH09] Buchstein and Hein (2009): Ran-

domizing Europe.Commission of the European Union: They propose to use a weighted lottery
to choose which countries get to nominate commissioners. Using cumulative
rounding to implement this lottery would eliminate two key problems the authors
identified in a simulation study, in particular the possibility that some member
states might go without any commissioners for a long period of time. We also
describe how cumulative rounding can be applied to round fractional allocations
of goods or chores, and we discuss a specific application of assigning faculty to
teach courses.

8.1.2 Related Work

Randomized apportionment was first suggested by Grimmett [Gri04]

[Gri04] Grimmett (2004): Stochastic Appor-
tionment.

, whose pro-
posal we have already discussed. More recently, Aziz et al. [ALM+19]

[ALM+19] Aziz et al. (2019): Strategyproof
Peer Selection Using Randomization, Parti-
tioning, and Apportionment.developed

a randomized rounding scheme as part of a mechanism for strategy-proof peer
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selection, which they simultaneously propose as a randomized apportionment
method. Just like Grimmett’s method, their method satisfies ex ante proportional-
ity and quota. Aziz et al. argue that the main advantage of their method is that its
support consists of only linearly (not exponentially) many deterministic appor-
tionments. This, they claim, is useful in repeated apportionment settings, where
one could repeat a periodic sequence of these deterministic apportionments
and thereby limit the possibility of selecting the same state much too frequently
or much too rarely due to random fluctuations. If this is the goal, cumulative
rounding will arguably give better guarantees (see Section 8.6.1).

As a consequence of the Birkhoff–von Neumann Theorem [Bir46; vNeu53], [Bir46] Birkhoff (1946): Three Observations
on Linear Algebra.
[vNeu53] von Neumann (1953): A Certain
Zero-Sum Two-Person Game Equivalent to
the Optimal Assignment Problem.

any fractional matching in a bipartite graph can be implemented as a lottery
over integral matchings, in the sense that each edge is present in the random
matching with probability equal to its weight in the fractional matching. One
algorithm for rounding a bipartite matching is pipage rounding [AS04], which [AS04] Ageev and Sviridenko (2004): Pi-

page Rounding.Gandhi et al. [GKPS06] randomized in their dependent rounding technique.
[GKPS06] Gandhi et al. (2006): Dependent
Rounding and Its Applications to Approxi-
mation Algorithms.

This rounding technique is powerful since it can directly accommodate fractional
degrees larger than 1 and can provide negative-correlation properties such that
Chernoff concentration bounds apply [PS97]. The technique of Gandhi et al.

[PS97] Panconesi and Srinivasan (1997):
Randomized Distributed Edge Coloring via
an Extension of the Chernoff–Hoeffding
Bounds.

has found many applications in approximation algorithms [BGL+12; GKPS06;
KMPS09] and in fair division [AN20; CJMW19; SS18a].

[BGL+12] Bansal et al. (2012): When LP Is
the Cure for Your Matching Woes.

[KMPS09] Kumar et al. (2009): A Unified
Approach to Scheduling onUnrelated Parallel
Machines.
[AN20] Akbarpour and Nikzad (2020): Ap-
proximate Random Allocation Mechanisms.
[CJMW19] Cheng et al. (2019): Group Fair-
ness in Committee Selection.
[SS18a] Saha and Srinivasan (2018): A
New Approximation Technique for Resource-
Allocation Problems.

Steiner and Yeomans [SY93] study a problem in just-in-time industrial manu-

[SY93] Steiner and Yeomans (1993): Level
Schedules for Mixed-Model, Just-in-Time
Processes.

facturing: how to alternate between the production of different types of goods
in a way that produces each type in specified proportions. As pointed out by
Bautista et al. [BCC96], this problem is related to apportionment. In particular, a

[BCC96] Bautista et al. (1996): A Note on
the Relation between the Product Rate Varia-
tion (PRV) Problem and the Apportionment
Problem.

production schedule resembles a deterministic house monotone apportionment
method: as the available production time increases by one slot, the schedule
needs to decide which type to produce in the next slot. Steiner and Yeomans end
up with a property that nearly guarantees quota because they aim to minimize
how far the prevalence of types among the goods produced so far deviates from
the desired proportions. Now, they only produce deterministic schedules, and the
existence of deterministic house monotone and quota apportionment methods
has long been known [BY75; Sti79]. But we believe that the main construction in

[BY75] Balinski and Young (1975): The
Quota Method of Apportionment.
[Sti79] Still (1979): A Class of New Methods
for Congressional Apportionment.

their proof could be randomized to obtain an alternative proof of Theorem 8.6,
without however providing the generality of cumulative rounding. In fact, a
similar graph construction to that by Steiner and Yeomans is randomly rounded
within a proof by Gandhi et al. [GKPS06] to obtain an approximation result
about broadcast scheduling.

8.2 Model

Throughout this paper, fix a set of 𝑛 ≥ 2 states 𝑁 = {1, 2, … , 𝑛}. For a given
population profile �⃗� ∈ ℕ𝑛

+, which assigns a population of 𝑝𝑖 ∈ ℕ+ to each state
𝑖, and for a house size ℎ ∈ ℕ+, an apportionment solution deterministically
allocates to each state 𝑖 a number 𝑎𝑖 ∈ ℕ of house seats such that the total number
of allocated seats is ℎ. Formally, a solution is a function 𝑓 ∶ ℕ𝑛

+ × ℕ+ → ℕ𝑛

such that, for all �⃗� and ℎ, ∑𝑖∈𝑁 𝑓𝑖(⃗𝑝, ℎ) = ℎ. For a population profile �⃗� and house
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size ℎ, state 𝑖’s standard quota is 𝑞𝑖 ≔
𝑝𝑖

∑𝑖∈𝑁 𝑝𝑖
ℎ. Next, we define three axioms for

solutions:

Quota: A solution 𝑓 satisfies quota if, for any �⃗� and ℎ, it holds that 𝑓𝑖(⃗𝑝, ℎ) ∈
{⌊𝑞𝑖⌋, ⌈𝑞𝑖⌉} for all states 𝑖.

House monotonicity: A solution 𝑓 satisfies house monotonicity if, for any �⃗� and
ℎ, increasing the house size to ℎ + 1 does not reduce any state’s seat number,
i.e., if 𝑓𝑖(⃗𝑝, ℎ) ≤ 𝑓𝑖(⃗𝑝, ℎ + 1) for all 𝑖 ∈ 𝑁.

Population monotonicity:6 We say that a solution 𝑓, some �⃗�, �⃗� ′ ∈ ℕ𝑛
+, and some 6: This definition of population mono-

tonicity, taken from Robinson and Ullman
[RU10], is slightly weaker than the defini-
tion of other authors, whose violation we
describe in the introduction. All results ex-
tend to the alternative notion of relative pop-
ulation monotonicity [RU10]: the proof of
Theorem 8.1 immediately applies, and the
proof of Theorem 8.2 is easy to adapt.

ℎ, ℎ′ ∈ ℕ+ exhibit a population paradox if there are two states 𝑖 ≠ 𝑗 such that
𝑝′𝑖 ≥ 𝑝𝑖, 𝑝′𝑗 ≤ 𝑝𝑗, 𝑓𝑖(⃗𝑝 ′, ℎ′) < 𝑓𝑖(⃗𝑝, ℎ), and 𝑓𝑗(⃗𝑝 ′, ℎ′) > 𝑓𝑗(⃗𝑝, ℎ), or, in words, if
state 𝑖 loses seats and 𝑗 wins seats even though 𝑖’s population weakly grew
and 𝑗’s population weakly shrunk. A solution 𝑓 is population monotone if it
exhibits no population paradoxes for any �⃗�, �⃗� ′, ℎ, ℎ′. By setting �⃗� = �⃗� ′, one
easily verifies that population monotonicity implies house monotonicity.

Finally, we will define randomized apportionment methods. One potential defi-
nition, used by Grimmett [Gri04], is a function that for each �⃗� and ℎ specifies [Gri04] Grimmett (2004): Stochastic Appor-

tionment.a probability distribution over seat allocations (𝑎𝑖)𝑖∈𝑁. Instead, we are looking
for a random process whose outcome 𝜔 ∈ Ω simultaneously determines ap-
portionments for all population vectors �⃗� and house sizes ℎ, which will allow
us to formulate axioms relating these different apportionments. Conceptually,
we think of such a method as a solution-valued random variable. Formally, a
randomized apportionment method, which we will just call a method, consists of
a probability space Ω = (Ω,ℱ ,ℙ) and a function 𝐹 mapping elements of Ω to
solutions such that, for all �⃗� and ℎ, 𝐹(⃗𝑝, ℎ) is a random vector specifying the seat
allocation. Typically, we will not need to think about the internal structure of Ω
and therefore leave it implicit. Using a programming metaphor, the “randomness”
of a program is really determined by an implicit random seed. We can think of a
method 𝐹 as a procedure that is initialized with a seed𝜔 and then takes �⃗� and ℎ as
its input in order to return an apportionment. When𝜔 is chosen at random, then
𝐹 behaves as a random procedure, but for any fixed 𝜔, 𝐹𝜔 is just a deterministic
procedure mapping �⃗�, ℎ to apportionments.7 Our axioms, described in the next 7: This is also how we would implement an

apportionment method on a computer. A
seed obtained using physical randomness
would determine the solution, and the so-
lution would be computed from the seed
using a pseudo-random number generator.

paragraph, constrain both the random behavior of 𝐹 and the consistency of any
𝐹𝜔 across inputs.

A method 𝐹 satisfies ex ante proportionality if, for any �⃗�, ℎ and for any state 𝑖,
𝑖’s expected number of seats equals 𝑖’s standard quota, i.e., if 𝔼[𝐹𝑖(⃗𝑝, ℎ)] = 𝑞𝑖. A
method 𝐹 satisfies quota, house monotonicity, or population monotonicity if all
solutions in the method’s support satisfy the respective axiom. In this paper,
we mainly search for apportionment methods that combine quota and ex ante
proportionality — the two axioms obtained by Grimmett [Gri04] — with either
population or house monotonicity.
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profile �⃗�𝐴 profile �⃗�𝐵 profile �⃗�𝐶

state 𝑖 𝑝𝐴𝑖 𝑞𝐴𝑖 𝑝𝐵𝑖 𝑞𝐵𝑖 𝑝𝐶𝑖 𝑞𝐶𝑖
1 824 8.24 824 6.99 824 9.02
2 44 0.44 44 0.37 1 0.01
3 44 0.44 44 0.37 1 0.01
4 44 0.44 44 0.37 44 0.48
5 44 0.44 222 1.88 44 0.48

Table 8.1: Populations and standard quotas
for three population profiles, used in show-
ing that population monotonicity and quota
are incompatible. The house size is ℎ = 10.

8.3 Population Monotonicity

8.3.1 Population Monotonicity Is Incompatible with Quota

We begin by showing that no apportionment method satisfies population mono-
tonicity, quota, and ex ante proportionality. In fact, quota and population mono-
tonicity alone are incompatible: We will show that no solution satisfies these two
axioms. Since a method satisfying quota and population monotonicity would be
a random choice over such solutions, no such method exists either.

At first glance, the incompatibility of quota and population monotonicity might
seem to follow from existing results, but these results implicitly make neutrality
assumptions that are not appropriate for randomized apportionment. Indeed,
Balinski and Young [BY01], who originally proved this incompatibily, as well [BY01] Balinski and Young (2001): Fair Rep-

resentation.as variations of their proof [El-19; RU10] all assume what Robinson and Ull-
[El-19] El-Helaly (2019): The Mathematics
of Voting and Apportionment.
[RU10] Robinson and Ullman (2010): A
Mathematical Look at Politics.

man [RU10] call the order-preserving property, i.e., if state 𝑖 has strictly larger
population than state 𝑗, then 𝑖 must receive at least as many seats as 𝑗. This prop-
erty is usually proved as a consequence of neutrality together with population
monotonicity.

While the order-preserving property is reasonable for developing deterministic
apportionment methods, it is not desirable for the component solutions of a
randomized apportionment method. This is clear for ℎ = 1: The order-preserving
property would mean that only the very largest state(s) can get a seat with
positive probability; by contrast, the strength of randomization is that it allows us
to allocate the seat to smaller states. To our knowledge, the existence of quota and
population monotone solutions without the assumption of the order-preserving
property was an open problem.

Theorem 8.1 No (deterministic) apportionment solution satisfies population
monotonicity and quota.

Proof. Fix a set of 5 states, and let 𝑓 be a solution satisfying quota. We will
show that 𝑓 must violate population monotonicity by analyzing three types of
population profiles, which are given in Table 8.1, all for house size ℎ = 10. The
starting profile is �⃗�𝐴 in this table. By quota, state 1 must receive either 8 or 9
seats on this profile, but we will show that either choice leads to a violation
of population monotonicity: First, we show that allocating 9 seats implies a
violation of population monotonicity with respect to profile �⃗�𝐵; second, we show
that allocating 8 seats contradicts population monotonicity with respect to �⃗�𝐶.
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Allocating 9 seats contradicts populationmonotonicity. Suppose that 𝑓1(⃗𝑝𝐴, 10) = 9.
Then, the remaining seat must be given to either state 2, 3, 4, or 5. Without loss
of generality, we may assume that 𝑓(⃗𝑝𝐴, 10) = (9, 0, 0, 0, 1).

Next, consider the profile �⃗�𝐵. Since quota prevents us from allocating more than
7 seats to state 1 or more than 2 seats to state 5, at least one of the states 2, 3, and
4 must receive a seat on �⃗�𝐵. Thus, this state’s allocation strictly increases from its
allocation of zero seats on �⃗�𝐴, even though the state’s population has not changed.
Moreover, state 1 can receive at most 7 seats on this profile by quota, which
is strictly below the 9 seats on �⃗�𝐴, and state 1’s population has also remained
the same. But population monotonicity forbids there to be a pair of states with
unchanged population, such that one gains a seat and the other loses a seat.
Hence, if state 1 receives 9 seats on �⃗�𝐴, then 𝑓 violates population monotonicity.

Allocating 8 seats contradicts populationmonotonicity. Suppose that 𝑓1(⃗𝑝𝐴, 10) = 8.
The remaining two seats must be given to two states out of 2, 3, 4, and 5; without
loss of generality, we may assume that 𝑓(⃗𝑝𝐴, 10) = (8, 0, 0, 1, 1).

On profile �⃗�𝐶, quota implies that state 1 receives at least 9 seats — strictly more
than the 8 given on �⃗�𝐴 even though the population has not changed. Given
that there is at most one more seat to hand out, at least one state out of 4 and 5
must receive zero seats on �⃗�𝐶, which is a strict reduction with respect to �⃗�𝐴 even
though the state’s population is the same. Thus, allocating 8 seats to state 1 on �⃗�𝐴
also leads to a violation of population monotonicity.

Since both possible choices for 𝑓1(⃗𝑝𝐴, 10) imply a monotonicity violation, no
solution can satisfy both quota and population monotonicity.

8.3.2 A Population Monotone and Ex Ante Proportional (But
Not Quota) Method

The incompatibility between population monotonicity and quota leaves open
the question of whether there are apportionment methods satisfying population
monotonicity and ex ante proportionality. The answer is positive, as the following
proposition shows:

Theorem 8.2 There exists an apportionment method 𝐹 that satisfies population
monotonicity and ex ante proportionality.

Proof. Which solution is randomly chosen by the method will depend on the
values taken on by 𝑛 independent Poisson arrival processes with rate 1.8 We 8: Hence, we can select Ω as the probabil-

ity space used in any standard construc-
tion [Kin93] of a random variable denoting
a vector whose 𝑛 components are the out-
comes of independent Poisson processes.

fix an outcome 𝜔 ∈ Ω and will construct a solution 𝐹(𝜔). For each state 𝑖, 𝜔
determines an infinite sequence 0 < 𝑥𝑖1 < 𝑥𝑖2 < … of arrival times. We will
describe the apportionment given by 𝐹(𝜔) on input �⃗� and ℎ, which we illustrate
in Figure 8.2: First, we divide each arrival time 𝑥𝑖𝑡 by the corresponding state’s
population, i.e., we set 𝑦𝑖𝑡 ≔ 𝑥𝑖𝑡/𝑝𝑖. Second, we combine the 𝑦𝑖𝑡 for all 𝑡 and 𝑖 in
a single arrival sequence (𝑧1, 𝑖1), (𝑧2, 𝑖2), … labeled with states, i.e., each (𝑧𝑗, 𝑖𝑗)
corresponds to some arrival 𝑦𝑖𝑡 for some 𝑖 and 𝑡, such that 𝑧𝑗 = 𝑦𝑖𝑡 is the arrival
time, 𝑖𝑗 = 𝑖 is the agent label, and the 𝑧𝑗 are sorted in increasing order. Third, we
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state 1:

state 2:

combined:

𝑥11

𝑦11

𝑧3

𝑥12

𝑦12

𝑧6

𝑥13

𝑦13

𝑧7

𝑥21

𝑦21

𝑧1

𝑥22

𝑦22

𝑧2

𝑥23

𝑦23

𝑧4

𝑥24

𝑦24

𝑧5

apportionment for ℎ = 5 Figure 8.2: Illustration of the population-
monotone method in Theorem 8.2.

allocate |{1 ≤ 𝑗 ≤ ℎ ∣ 𝑖𝑗 = 𝑖}| many seats to each state 𝑖, i.e., a number of seats
equal to how many among the ℎ smallest scaled arrival times belonged to 𝑖’s
arrival process. This specifies the solution 𝐹(𝜔), and, moreover, the method 𝐹.

First, we show that 𝐹 satisfies ex ante proportionality. For this, fix some �⃗� and ℎ.
Then, the {𝑦𝑖𝑡}𝑡≥1 for each 𝑖 are distributed as the arrival sequences of independent
Poisson processes, where 𝑖’s arrival process has a rate of 𝑝𝑖. By the coloring
theorem for Poisson processes [Kin93, p. 53], our labeled arrival sequence (𝑧𝑗, 𝑖𝑗) [Kin93] Kingman (1993): Poisson Processes.
has the same distribution as if we had sampled a Poisson arrival process 0 <
𝑧1 < 𝑧2 < … with arrival rate ∑𝑖∈𝑁 𝑝𝑖 and had drawn each 𝑖𝑗 independently,
choosing each 𝑖 ∈ 𝑁 with probability proportional to 𝑝𝑖. Since the 𝑧𝑗 and 𝑖𝑗
are independent in this way, 𝐹(⃗𝑝, ℎ) is distributed as if sampling ℎ states, with
probability proportional to the states’ populations and with replacement. In
particular, this implies ex ante proportionality.

It remains to show that 𝐹 satisfies population monotonicity. Fix an 𝜔, i.e., the 𝑥𝑖𝑡,
as well as two inputs �⃗�, ℎ and �⃗� ′, ℎ′, for which we will show that 𝐹(𝜔) does not
exhibit a population paradox. Denoting the inputs’ respective variables by 𝑦𝑖𝑡, 𝑧𝑗
and 𝑦𝑖𝑡

′, 𝑧′𝑗 , it is easy to see that, for all 𝑖 for which 𝑝′𝑖 ≥ 𝑝𝑖, 𝑦𝑖𝑡
′ ≤ 𝑦𝑖𝑡 for all 𝑡, and

that, for all 𝑖 for which 𝑝′𝑖 ≤ 𝑝𝑖, 𝑦𝑖𝑡
′ ≥ 𝑦𝑖𝑡 for all 𝑡. Observe that each state 𝑖 receives

a number of seats equal to the number of its scaled arrival times 𝑦𝑖𝑡 (resp., 𝑦𝑖𝑡
′)

that are at most 𝑧ℎ (resp., 𝑧′ℎ).

Suppose that 𝑧′ℎ ≥ 𝑧ℎ (the reasoning for the case 𝑧′ℎ ≤ 𝑧ℎ is symmetric). Then,
whenever 𝑦𝑖𝑡 ≤ 𝑧ℎ for a state 𝑖 for which 𝑝′𝑖 ≥ 𝑝𝑖, then 𝑦𝑖𝑡

′ ≤ 𝑦𝑖𝑡 ≤ 𝑧ℎ ≤ 𝑧′ℎ, which
shows that 𝑖’s seat number must weakly increase. One verifies that this rules out
a population paradox on �⃗�, ℎ and �⃗� ′, ℎ′. Together with the symmetric argument
for 𝑧′ℎ ≤ 𝑧ℎ, this establishes population monotonicity.

Though the apportionment solutions used in the last theorem might seem eso-
teric, it is interesting to compare them to divisormethods (for consistency with our
terminology, divisor solutions), which, under widely assumed regularity assump-
tions, exactly characterize the space of all population monotone solutions [BY01]. [BY01] Balinski and Young (2001): Fair Rep-

resentation.A divisor solution is characterized by a divisor criterion, which is a monotone
increasing function 𝑑 ∶ ℕ → ℝ≥0 such that, for all 𝑡 ∈ ℕ, 𝑡 ≤ 𝑑(𝑡) ≤ 𝑡 + 1.
For instance, the Huntington-Hill solution is induced by 𝑑(𝑡) ≔ √𝑡 (𝑡 + 1). For
a population profile �⃗� and house size ℎ, the divisor solution corresponding to
𝑑 can be calculated by considering the sets {𝑝𝑖/𝑑(𝑡) ∣ 𝑡 ∈ ℕ} for each state 𝑖,
determining the ℎ largest values across all sets, and allocating to each state 𝑖 a
number of seats equal to how many of the ℎ largest values came from 𝑖’s set. The
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solutions in the above proof could have been cast in similar terms, where state 𝑖’s
set is {1/𝑦𝑖𝑡 ∣ 𝑡 ∈ ℕ} = {𝑝𝑖/𝑥𝑖𝑡 ∣ 𝑡 ∈ ℕ}, i.e., where, for each state 𝑖, 𝑡 ↦ 𝑥𝑖𝑡 plays the
role of a state-specific divisor criterion.

Clearly, the solutions’ resemblance to divisor solutions enabled our proof of
population monotonicity. At the same time, using different “divisor criteria” for
different states allowed to avoid the order-preserving property, which would have
prevented ex ante proportionality as described in Section 8.3.1. Less satisfying
is that these “divisor criteria” do not satisfy any bounds such as 𝑡 ≤ 𝑑(𝑡) ≤ 𝑡 + 1,
which makes it likely that solutions substantially deviate from proportionality
ex post. An interesting question for future work is whether Theorem 8.2 can
be strengthened to additionally satisfy lower quota (“𝐹𝑖(⃗𝑝, ℎ) ≥ ⌊𝑞𝑖⌋”) or upper
quota (“𝐹𝑖(⃗𝑝, ℎ) ≤ ⌈𝑞𝑖⌉”).

8.4 House Monotonicity

While we cannot obtain population monotonicity without giving up on quota,
we now propose an apportionment method that combines house monotonicity
with quota and ex ante proportionality.

8.4.1 Examples of Pitfalls

An intuitive strategy for constructing a house monotone randomized apportion-
ment methods is to do it inductively, seat-by-seat. Thus, we would need a strategy
for extending a method that works for all house sizes ℎ′ ≤ ℎ to a method that also
works for house size ℎ + 1. In this section, we give examples suggesting that this
does not work, by showing that some reasonable methods cannot be extended
without violating quota or ex ante proportionality. This motivates a search for a
more “global” strategy for constructing a house-monotone method.

Our first example will show that there are apportionments for a given ℎ that
satisfy quota, but that are “toxic” in that they can never be chosen by a house
monotone solution which satisfies quota:

Example 8.1 Suppose that we have four states with populations �⃗� = (1, 2, 1, 2).
The distribution that we will consider is the one given by Grimmett’s method
[Gri04] [Gri04] Grimmett (2004): Stochastic Appor-

tionment.
(as described in the introduction) for these inputs.9

9: It is easy to correlate an outcome for ℎ = 1
with this distribution in a way that preserves
house monotonicity: Draw an apportion-
ment 𝑎 from the ℎ = 2 distribution and then
flip a coin to determine if the seat for ℎ = 1
should go to the smaller or the larger one of
the states receiving a seat in 𝑎. This satisfies
quota, ex ante proportionality, and house
monotonicity across the inputs (⃗𝑝, 1) and
(⃗𝑝, 2).

Let ℎ = 2. Observe
that, if the random permutation chosen by Grimmet’s method is identity and
if furthermore 𝑈 > 2/3, then Grimmett’s method will return the allocation
(1, 0, 1, 0). But we will show that no solution 𝑓 such that 𝑓(⃗𝑝, 2) = (1, 0, 1, 0) can
satisfy house monotonicity and quota. Indeed, if 𝑓 is house monotone, then
at least one out of state 2 or state 4 must still be given zero seats by 𝑓 when
ℎ = 3, but quota requires that both states receive exactly one seat when ℎ = 3.
It follows that Grimmett’s method, or any other method satisfying quota and
whose support contains solutions 𝑓 with 𝑓(⃗𝑝, 2) = (1, 0, 1, 0), cannot be house
monotone.
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Thus, a first challenge that any quota and house monotone method must over-
come is to never produce a toxic apportionment for a specific ℎ that cannot be
extended to all larger house sizes in a house monotone and quota-compliant way.
Still [Sti79] and later Balinski and Young [BY79] give a characterization of non- [Sti79] Still (1979): A Class of New Methods

for Congressional Apportionment.

[BY79] Balinski and Young (1979): Quota-
tone Apportionment Methods.

toxic apportionments, but we found no way of transforming this characterization
into an apportionment method that would be ex ante proportional.

Our second example shows that, even if there are no toxic apportionments in
the support of a distribution, the wrong distribution over apportionments might
still lead to violations of one of the axioms:

Example 8.2 Let there be four states with populations �⃗� = (45, 25, 15, 15) and
let ℎ = 3; thus, the standard quotas are (1.35, 0.75, 0.45, 0.45). We consider the
following distribution over allocations:

𝑎 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(2, 1, 0, 0) with probability 35%,
(1, 1, 1, 0) with probability 20%,
(1, 1, 0, 1) with probability 20%, and
(1, 0, 1, 1) with probability 25%.

As we show in Appendix A of the full version, none of these allocations is toxic,
and the distribution can be part of an apportionment method in which all three
axioms hold for �⃗� and all ℎ′ ≤ 3. Nevertheless, we show in the following that
any apportionment method 𝐹 that satisfies house monotonicity and quota and
that has the above distribution for 𝐹(⃗𝑝, 3) must violate ex ante proportionality.
Indeed, fix such an 𝐹. On the one hand, note that, for ℎ = 4, state 2’s standard
quota is 4 ⋅ 25

100 = 1, so any quota apportionment must give the state 1 seat. Since
any solution 𝑓 in the support of 𝐹 satisfies house monotonicity and quota by
assumption, any 𝑓 such that 𝑓(⃗𝑝, 3) = (1, 0, 1, 1) must satisfy 𝑓(⃗𝑝, 4) = (1, 1, 1, 1).
Thus, with at least 25% probability, 𝐹1(⃗𝑝, 4) = 1. On the other hand, since state
1’s standard quota for ℎ = 4 is 1.8 ≤ 2, 𝐹1(⃗𝑝, 4) ≤ 2 holds deterministically, by
quota. It follows that 𝔼[𝐹1(⃗𝑝, 4)] ≤ 25% ⋅ 1 + 75% ⋅ 2 = 1.75 < 1.8, which means
that 𝐹 must violate ex ante proportionality as claimed. To avoid this kind of
conflict between house monotonicity, ex ante proportionality, and quota, the
distribution of 𝐹(⃗𝑝, 3) must allocate at least 5% combined probability to the
allocations (2, 0, 1, 0) and (2, 0, 0, 1), which to us is not obvious other than by
considering the specific implications on ℎ = 4 as above.

8.4.2 Cumulative Rounding

The examples of the last section showed that it is difficult to construct house
monotone apportionment methods seat-by-seat. In this section, we develop
an approach that is able to explicitly take into account how rounding decisions
constrain each other across house sizes. Our approach will be based on dependent
randomized rounding in a bipartite graph that we construct. First, we state the
main theorem by Gandhi et al. [GKPS06]: [GKPS06] Gandhi et al. (2006): Dependent

Rounding and Its Applications to Approxi-
mation Algorithms.

Theorem 8.3 (Gandhi et al.) Let (𝐴 ∪ 𝐵, 𝐸) be an undirected bipartite graph
with bipartition (𝐴, 𝐵). Each edge 𝑒 ∈ 𝐸 is labeled with a weight 𝑤𝑒 ∈ [0, 1]. For

https://arxiv.org/pdf/2202.11061v1.pdf#page=22
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each 𝑣 ∈ 𝐴 ∪ 𝐵, we denote the fractional degree of 𝑣 by 𝑑𝑣 ≔ ∑
𝑣∈𝑒∈𝐸𝑤𝑒.

Then there is a random process, running in 𝑂�(|𝐴| + |𝐵|) ⋅ |𝐸|� time, that defines
random variables 𝑋𝑒 ∈ {0, 1} for all 𝑒 ∈ 𝐸 such that the following properties hold:

Marginal distribution: for all 𝑒 ∈ 𝐸, 𝔼[𝑋𝑒] = 𝑤𝑒,

Degree preservation: for all 𝑣 ∈ 𝐴 ∪ 𝐵,∑𝑣∈𝑒∈𝐸𝑋𝑒 ∈ {⌊𝑑𝑣⌋, ⌈𝑑𝑣⌉}, and

Negative correlation: for all 𝑣 ∈ 𝐴 ∪ 𝐵 and 𝑆 ⊆ {𝑒 ∈ 𝐸 ∣ 𝑣 ∈ 𝑒}, ℙ[⋀𝑒∈𝑆𝑋𝑒 =
1] ≤ ∏𝑒∈𝑆𝑤𝑒 and ℙ[⋀𝑒∈𝑆𝑋𝑒 = 0] ≤ ∏𝑒∈𝑆(1 − 𝑤𝑒).

If 𝑋𝑒 = 1 for an edge 𝑒, we say that 𝑒 gets rounded up, and if 𝑋𝑒 = 0 then 𝑒
gets rounded down. We do not use the negative correlation property in our
apportionment results, but it is crucial in many other applications of dependent
rounding: It implies that linear combinations of the shape ∑𝑒∈𝑆 𝑎𝑒𝑋𝑒 for some
𝑎𝑒 ∈ [0, 1] obey Chernoff concentration bounds [PS97]. [PS97] Panconesi and Srinivasan (1997):

Randomized Distributed Edge Coloring via
an Extension of the Chernoff–Hoeffding
Bounds.

To see the connection to apportionment, let �⃗� be a population profile. Then to
warm up, the problem of apportioning a single seat can be easily cast as dependent
rounding in a bipartite graph: Indeed, let 𝐴 consist of a single special node 𝑎 and
let 𝐵 contain a node 𝑏𝑖 for each state 𝑖. We draw an edge 𝑒 = {𝑎, 𝑏𝑖} with weight
𝑤𝑒 = 𝑝𝑖/∑𝑗∈𝑁 𝑝𝑗 for each state 𝑖. Apply dependent rounding to this star graph.
Then 𝑎’s fractional degree of exactly 1 means that, by degree preservation, exactly
one edge {𝑎, 𝑏𝑖} gets rounded up, which we interpret as the seat being allocated
to state 𝑖. Moreover, marginal distribution ensures that each state receives the
seat with probability proportional to its population. This shows that randomized
rounding can naturally express ex ante proportionality, which will become a
useful building block in the following.

Next, we will expand our construction to multiple house seats, and to satisfying
house monotonicity across different house sizes. The most natural way is to
duplicate the star-graph structure from the last paragraph, once per house size
ℎ = 1, 2, … 10 with nodes 𝑎ℎ, {𝑏ℎ𝑖 }𝑖∈𝑁 and edges �{𝑎ℎ, 𝑏ℎ𝑖 }�𝑖∈𝑁. If {𝑎ℎ, 𝑏ℎ𝑖 } gets rounded 10: In this intuitive exposition, we will not

consider any explicit upper bound on the
house sizes we consider. Our formal result
inTheorem 8.6 will round a finite graph but
this will suffice to obtain house monotonic-
ity for all house sizes ℎ ∈ ℕ+.

up in the ℎ-th copy of the star graph, we interpret this as the ℎ-th seat going to
state 𝑖. In other words, we determine how many seats get apportioned to state 𝑖
for a house size ℎ by counting how many edges {𝑎ℎ′, 𝑏ℎ′𝑖 } got rounded up across
all ℎ′ ≤ ℎ. This construction automatically satisfies house monotonicity, and
satisfies ex ante proportionality by the marginal distribution property, but it may
violate quota by arbitrary amounts.

To explain how randomized rounding might be useful for guaranteeing quota, let
us give a few details on how Gandhi et al.’s pipage rounding procedure randomly
rounds a bipartite graph. In each step, pipage rounding selects either a cycle or a
maximal path consisting of edges with fractional weights in (0, 1). The edges along
this cycle or path are then alternatingly labeled “even” or “odd”.11 Depending 11: This is possible because, in a bipartite

graph, any cycle has an even number of
edges.

on a biased coinflip and appropriate numbers 𝛼, 𝛽 > 0, the algorithm either
(1) increases all odd edge weights by 𝛼 and decreases all even edge weights by 𝛼,
or (2) decreases all odd edge weights by 𝛽 and increases all even edge weights
by 𝛽. In this process, more and more edge weights become zero or one, which
determines the 𝑋𝑒 once no fractional edges remain.

The cycle/path rounding steps in pipage rounding represent an opportunity to
couple the seat-allocation decisions across ℎ, in a way that ultimately will allow
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us to guarantee quota. In our current graph consisting of disjoint stars, there
are no cycles and the maximal paths are always pairs of edges {𝑎ℎ, 𝑏ℎ𝑖 }, {𝑎ℎ, 𝑏ℎ𝑗 } for
two states 𝑖, 𝑗 and some ℎ. Thus, pipage rounding correctly anti-correlates the
decision of giving the ℎ-th seat to state 𝑖 and the decision of giving the ℎ-th seat
to state 𝑗, but decisions for different seats remain independent. To guarantee
quota, increasing (resp., decreasing) the probability of the ℎ-th seat going to state
𝑖 should also decrease (resp., increase) the probability of some nearby seats ℎ′
going to state 𝑖 and increase (resp., decrease) the probability of seats ℎ′ going
to some other state 𝑗. The difficulty is to choose these ℎ′ and 𝑗 to provide quota,
which is particular tricky since, in the course of running pipage rounding, some
of the edge weights will be rounded to zero and one and no longer be available
for paths or cycles.

Not only are we able to use pipage rounding to guarantee quota, but we will
do so through a general construction that adds quota-like guarantees to an
arbitrary instance of repeated randomized rounding; we refer to this technique
as cumulative rounding. In the following statement, the “time steps” 𝑡 take the
place of our possible house sizes ℎ.

Theorem 8.4 Let (𝐴 ∪ 𝐵, 𝐸) be an undirected bipartite graph. For each time step
𝑡 = 1, … , 𝑇, consider a set of edge weights {𝑤𝑡𝑒}𝑒∈𝐸 in [0, 1] for this bipartite graph.
For each 𝑣 ∈ 𝐴 ∪ 𝐵 and 1 ≤ 𝑡 ≤ 𝑇, we denote the fractional degree of 𝑣 at time 𝑡
by 𝑑𝑡𝑣 ≔ ∑

𝑣∈𝑒∈𝐸𝑤
𝑡
𝑒.

Then there is a random process, running in 𝑂(𝑇2 ⋅ �|𝐴| + |𝐵|) ⋅ |𝐸|� time, that
defines random variables 𝑋𝑡𝑒 ∈ {0, 1} for all 𝑒 ∈ 𝐸 and 1 ≤ 𝑡 ≤ 𝑇, such that
the following properties hold for all 1 ≤ 𝑡 ≤ 𝑇. Let 𝐷𝑡

𝑣 ≔ ∑
𝑣∈𝑒∈𝐸𝑋

𝑡
𝑒 denote the

random degree of 𝑣 at time 𝑡.

Marginal distribution: for all 𝑒 ∈ 𝐸, 𝔼[𝑋𝑡𝑒] = 𝑤𝑡𝑒,

Degree preservation: for all 𝑣 ∈ 𝐴 ∪ 𝐵, 𝐷𝑡
𝑣 ∈ {⌊𝑑𝑡𝑣⌋, ⌈𝑑𝑡𝑣⌉},

Negative correlation: for all 𝑣 ∈ 𝐴 ∪ 𝐵 and 𝑆 ⊆ {𝑒 ∈ 𝐸 ∣ 𝑣 ∈ 𝑒}, ℙ[⋀𝑒∈𝑆𝑋
𝑡
𝑒 =

1] ≤ ∏𝑒∈𝑆𝑤
𝑡
𝑒 and ℙ[⋀𝑒∈𝑆𝑋

𝑡
𝑒 = 0] ≤ ∏𝑒∈𝑆(1 − 𝑤

𝑡
𝑒),

Cumulative degree preservation: for all 𝑣 ∈ 𝐴 ∪ 𝐵, it holds that ∑𝑡
𝑡′=1𝐷

𝑡′
𝑣 ∈

{⌊∑𝑡
𝑡′=1 𝑑

𝑡′
𝑣 ⌋, ⌈∑

𝑡
𝑡′=1 𝑑

𝑡′
𝑣 ⌉}.

The first three properties could be achieved by applying Theorem 8.3 in each
time step independently. Cumulative rounding correlates these rounding pro-
cesses such that cumulative degree preservation (a generalization of quota) is
additionally satisfied.

8.4.3 House Monotone, Quota-Compliant, and Ex Ante
Proportional Apportionment

Before we prove Theorem 8.4, we will explain how cumulative rounding can
be used to construct an apportionment method that is house monotone and
satisfies quota and ex ante proportionality.
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None of these three axioms connects the outcomes at different population profiles
�⃗� and so it suffices to consider them independently. Thus, let us fix a population
profile �⃗�. Denote the total population by 𝑝 ≔ ∑

𝑖∈𝑁 𝑝𝑖. The behavior of a house
monotone solution on inputs with profile �⃗� and arbitrary house sizes can be
expressed through what we call an infinite seat sequence, an infinite sequence
𝛼 = 𝛼1, 𝛼2, … over the states𝑁. We will also define finite seat sequences, which are
sequences 𝛼 = 𝛼1, … , 𝛼𝑝 of length 𝑝 over the states. Either sequence represents
that, for any house size ℎ (in the case of a finite seat sequence ℎ ≤ 𝑝), the sequence
apportions 𝑎𝑖(ℎ) ≔ |{1 ≤ ℎ′ ≤ ℎ ∣ 𝛼ℎ′ = 𝑖}| seats to each state 𝑖. We can naturally
express the quota axiom for seat sequences: 𝛼 satisfies quota if, for all ℎ (ℎ ≤ 𝑝 if
𝛼 is finite) and all states 𝑖, we have 𝑎𝑖(ℎ) ∈ {⌊ℎ 𝑝𝑖/𝑝⌋, ⌈ℎ 𝑝𝑖/𝑝⌉}.

The main obstacle in obtaining a house monotone method via cumulative round-
ing is that we can only apply cumulative rounding to a finite number 𝑇 of copies,
whereas the quota axiom must hold for all house sizes ℎ ∈ ℕ+. However, it
turns out that for our purposes of satisfying quota, we can treat the allocation
of seats 1, 2, … , 𝑝 independently from the allocation of seats 𝑝 + 1,… , 2 𝑝, the
allocation of seats 2 𝑝 + 1,… 3 𝑝, and so forth. The reason is that, when ℎ is a
multiple 𝑘 𝑝 of 𝑝 (for some 𝑘 ∈ ℕ+), each state 𝑖’s standard quota is an integer 𝑘 𝑝𝑖.
Thus, any solution that satisfies quota is forced to choose exactly the allocation
(𝑘 𝑝1, … , 𝑘 𝑝𝑛) for house size ℎ. At this point, the constraints for satisfying quota
and house monotonicity reset to what they were at ℎ = 1. We make this precise
in the following lemma, proved in Appendix B of the full version,

Lemma 8.5 An infinite seat sequence 𝛼 satisfies quota iff it is the concatenation
of infinitely many finite seat sequences 𝛽1, 𝛽2, 𝛽3, … of length 𝑝 each satisfying
quota, i.e.,

𝛼 = 𝛽11, 𝛽12, … , 𝛽1𝑝, 𝛽21, 𝛽22, … , 𝛽2𝑝, 𝛽31, … .

This lemma allows us to apply cumulative rounding to only 𝑇 = 𝑝 many copies
of a star graph. Then, cumulative rounding produces a random matching that
encodes a finite seat sequence satisfying quota, and Lemma 8.5 shows that the
infinite repetition of this finite sequence describes an infinite seat sequence satis-
fying quota. This implies the existence of an apportionment method satisfying
all three axioms we aimed for. The formal proof is in Appendix B of the full
version.

Theorem 8.6 There exists an apportionment method 𝐹 that satisfies house mono-
tonicity, quota, and ex ante proportionality.

Implications for deterministic methods Our construction also increases our
understanding of deterministic apportionment solutions satisfying house mono-
tonicity and quota: Indeed, the possible roundings of the bipartite graph con-
structed for cumulative rounding turn out to correspond one-to-one to the
finite seat sequences satisfying quota. Together with Lemma 8.5, this gives a
characterization of all seat sequences that satisfy quota, providing a geometric
(and graph-theoretic) alternative to the characterizations by Balinski and Young
[BY79] and Still [Sti79]

[BY79] Balinski and Young (1979): Quota-
tone Apportionment Methods.
[Sti79] Still (1979): A Class of New Methods
for Congressional Apportionment..

https://arxiv.org/pdf/2202.11061v1.pdf#page=23
https://arxiv.org/pdf/2202.11061v1.pdf#page=23
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Theorem 8.7 For each population vector �⃗�, we can construct a bipartite graph
(𝐴 ∪ 𝐵, 𝐸) such that the set 𝑆 of all finite seat sequences satisfying quota for �⃗� is
in one-to-one correspondence to the corner points of the polytope of all perfect
fractional matchings on (𝐴 ∪ 𝐵, 𝐸). Together with Lemma 8.5 this characterizes
the set of infinite seat sequences satisfying quota as the set of infinite sequences
over 𝑆.

Since a fractional matching assigning each edge {𝑎, 𝑏𝑖} a weight of 𝑝𝑖/𝑝 > 0 lies
in the interior of this polytope of perfect fractional matchings, one immediate
consequence of this characterization (equivalently, of ex ante proportionality in
Theorem 8.6) is that, for each state 𝑖 and ℎ ∈ ℕ+, there is a house monotone and
quota-compliant solution that assigns the ℎ-th seat to 𝑖. To our knowledge, this
result is not obvious based on the earlier characterizations. More generally, the
polytope characterization might be useful in answering questions such as “For a
set of pairs (ℎ1, 𝑖1), (ℎ2, 𝑖2), … , (ℎ𝑡, 𝑖𝑡), is there a population-monotone and quota-
compliant solution that assigns the ℎ𝑗-th seat to state 𝑖𝑗 for all 1 ≤ 𝑗 ≤ 𝑡?” To answer

this question, one can remove the nodes 𝑎ℎ𝑗 and 𝑏
ℎ𝑗
𝑖𝑗 from the graph (simulating

that they got matched) and check whether the remaining graph still permits a
perfect matching, say, with the help of Hall’s marriage theorem [Hal35]. [Hal35] Hall (1935): On Representatives of

Subsets.

Computation Before we prove the cumulative rounding result in Section 8.5,
let us quickly discuss computational considerations of our house-monotone
apportionment method. While it is possible to run dependent rounding on the
constructed graph (for a given population profile �⃗�), the running time would
scale in 𝑂(𝑝2 𝑛2), and the quadratic dependence on the total population 𝑝 might
be prohibitive. In practice, we see two ways to avoid this computational cost:

First, one might often not require a solution that is house monotone on all possible
house sizes ℎ ∈ ℕ+; instead, it might suffice to rule out Alabama paradoxes for
house sizes up to an upper bound ℎmax. In this case, it suffices to apply cumulative
rounding on ℎmax many copies of the graph, leading to a much more manageable
running time of 𝑂(ℎ2max 𝑛2).

A second option would be to apply cumulative rounding on all 𝑝 copies of the
graph, but to stop pipage rounding once all edge weights in the first ℎ copies of the
graph are integral, even if edge weights for higher house sizes are still fractional.
This would allow to return an apportionment for inputs �⃗�, ℎ while randomly de-
termining not a single house-monotone solution, but a conditioned distribution
𝐹𝑐 over house-monotone solutions, all of which agree on the apportionment for �⃗�
and ℎ. Since all solutions are house monotone, the expected number of seats for a
party will always monotonically increase in ℎ across the conditioned distribution.
Should it become necessary to determine apportionments for larger house sizes,
one can simply continue the cumulative-rounding process where it left off. Since
the pipage rounding used to prove Theorem 8.4 leaves open which cycles or
maximal paths get rounded next, it seems likely that one can deliberately choose
cycles/paths such that the apportionment for the first ℎ seats is determined in
few rounds.
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𝑣𝑡

(𝑣′)𝑡

𝑣𝑡

𝑣𝑡𝑣𝑡−1∶𝑡 𝑣𝑡∶𝑡+1
“up to time 𝑡 − 1, 𝑣’s cumulative
degree was rounded up”
(∑𝑡−1

𝑡′=1𝐷
𝑡′
𝑣 = �∑

𝑡−1
𝑡′=1 𝑑

𝑡′
𝑣 � + 1)

“up to time 𝑡, 𝑣’s cumulative
degree was rounded down”
(∑𝑡

𝑡′=1𝐷
𝑡′
𝑣 = �∑

𝑡
𝑡′=1 𝑑

𝑡′
𝑣 �)

“edge {𝑣, 𝑣′} is rounded up at time 𝑡”
(𝑋𝑡{𝑣,𝑣′} = 1)

“𝑣’s degree is rounded down at time 𝑡”
(𝐷𝑡𝑣 = ⌊𝑑𝑡𝑣⌋)

“𝑣’s degree is rounded up at time 𝑡”
(𝐷𝑡𝑣 = ⌊𝑑𝑡𝑣⌋ + 1)

Figure 8.3: Interpretation of each edge being
rounded up in the constructed graph, for ar-
bitrary nodes 𝑣, 𝑣′ ∈ 𝐴 ∪ 𝐵 and 1 ≤ 𝑡 ≤ 𝑇.
The correctness of this characterization will
be shown along the proof of Theorem 8.4,
specifically in the sections on degree preser-
vation and cumulative degree preservation.

8.5 Proof of Cumulative Rounding

We will now prove Theorem 8.4 on cumulative rounding. Our proof will construct
a weighted bipartite graph including 𝑇 many copies of (𝐴 ∪ 𝐵, 𝐸), connected by
appropriate additional edges and nodes, and then applying dependent rounding
to this constructed graph. The additional edges and vertices ensure that if too
many edges adjacent to some node 𝑣 are rounded up in one copy of the graph,
then this is counterbalanced by rounding down edges adjacent to 𝑣 in another
copy.

Construction 8.1 Let (𝐴 ∪ 𝐵, 𝐸), 𝑇, and {𝑤𝑡𝑒}𝑒,𝑡 be given as in Theorem 8.4.
We construct a new weighted, undirected, and bipartite graph as follows: For
each node 𝑣 ∈ 𝐴 ∪ 𝐵 and for each 𝑡 = 1, … , 𝑇, create four nodes 𝑣𝑡, 𝑣𝑡, 𝑣𝑡,
and 𝑣𝑡∶𝑡+1; furthermore, create a node 𝑣0∶1 for each node 𝑣. For each {𝑎, 𝑏} ∈ 𝐸
and 𝑡 = 1, … , 𝑇, connect the nodes 𝑎𝑡 and 𝑏𝑡 with an edge of weight 𝑤𝑡{𝑎,𝑏}.
Additionally, for each node 𝑣 ∈ 𝐴 ∪ 𝐵 and each 𝑡 = 1, … , 𝑇, insert edges with
the following weights:

𝑣𝑡

𝑣𝑡

𝑣𝑡𝑣𝑡−1∶𝑡 𝑣𝑡∶𝑡+1
∑𝑡−1
𝑡′=1 𝑑

𝑡′
𝑣 − �∑

𝑡−1
𝑡′=1 𝑑

𝑡′
𝑣 � 1 − ∑𝑡

𝑡′=1 𝑑
𝑡′
𝑣 + �∑

𝑡
𝑡′=1 𝑑

𝑡′
𝑣 �

1 − 𝑑𝑡𝑣 + �𝑑𝑡𝑣�

𝑑𝑡𝑣 − �𝑑𝑡𝑣�

Before we go into the proof, we give in Figure 8.3 an interpretation for what it
means for each edge in the constructed graph to be rounded up. One can easily
verify that, under the (premature) assumption that cumulative rounding satisfies
marginal distribution, degree preservation, and cumulative degree preservation,
the edge weights coincide with the probabilities of each interpretation’s event.
We want to stress that it is not obvious that these descriptions will indeed be
consistent for any dependent rounding of the constructed graph, and we will
not make use of these descriptions in the proof of Theorem 8.4. Instead, the
characterizations will follow from intermediate results in the proof. We give these
interpretations here to make the construction seem less mysterious. We begin the
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formal analysis of the construction with a sequence of simple observations about
the constructed graph (proofs are in Appendix C of the full version).

Lemma 8.8 The graph produced by Construction 8.1 is bipartite.

Lemma 8.9 All edge weights lie between 0 and 1.

Lemma 8.10 For each node 𝑣 ∈ 𝐴 ∪ 𝐵, the following table gives the fractional
degrees of various nodes in the constructed graph, all of which are integer:

nodes fractional degree

𝑣𝑡 (∀1≤𝑡≤𝑇) ⌊𝑑𝑡𝑣⌋ + 1
𝑣𝑡 (∀1≤𝑡≤𝑇) �∑𝑡

𝑡′=1 𝑑
𝑡′
𝑣 � − �∑

𝑡−1
𝑡′=1 𝑑

𝑡′
𝑣 � − ⌊𝑑𝑡𝑣⌋ + 1

𝑣𝑡 (∀1≤𝑡≤𝑇) 1
𝑣𝑡∶𝑡+1 (∀1≤𝑡≤𝑇−1) 1
𝑣0∶1 0

Proof of Theorem 8.4. We define cumulative rounding as the random process
that follows Construction 8.1 and then applies dependent rounding (Theorem 8.3)
to the constructed graph, which is valid since the graph is bipartite and all edge
weights lie in [0, 1] (Lemmas 8.8 and 8.9). For an edge 𝑒 in the constructed graph,
let �̂�𝑒 be the random variable indicating whether dependent rounding rounds it
up or down. For any edge {𝑎, 𝑏} ∈ 𝐸 in the underlying graph and some 1 ≤ 𝑡 ≤ 𝑇,
we define the random variable 𝑋𝑡{𝑎,𝑏} to be equal to �̂�{𝑎𝑡,𝑏𝑡}. Recall that we defined
𝐷𝑡
𝑣 = ∑𝑣∈𝑒∈𝐸𝑋

𝑡
𝑒.

To prove the theorem, we have to bound the running time of this process, and
provide the four guaranteed properties: marginal distribution, degree preserva-
tion, negative correlation, and cumulative degree preservation, out of which the
last property takes by far the most work.

Running time. Without loss of generality, we may assume that each vertex 𝑣 ∈
𝐴∪𝐵 is incident to at least one edge, since, otherwise, we could remove this vertex
in a preprocessing step. From this, it follows that |𝐸| ∈ Ω(|𝐴| + |𝐵|). Constructing
the graph takes 𝑂(𝑇 |𝐸|) time, which will be dominated by the time required for
running dependent rounding on the constructed graph. The constructed graph
has (1+4𝑇) (|𝐴|+ |𝐵|) ∈ 𝑂(𝑇 (|𝐴|+ |𝐵|)) nodes and 𝑇 |𝐸|+4𝑇 (|𝐴|+ |𝐵|) ∈ 𝑂(𝑇 |𝐸|)
edges. Since the running time of dependent rounding scales in the product
of the number of vertices and the number of edges, our procedure runs in
𝑂(𝑇2 (|𝐴| + |𝐵|) |𝐸|) time, as claimed.

Marginal distribution. For an edge {𝑎, 𝑏} ∈ 𝐸 and 1 ≤ 𝑡 ≤ 𝑇, 𝔼[𝑋𝑡{𝑎,𝑏}] =
𝔼[�̂�{𝑎𝑡,𝑏𝑡}] = 𝑤𝑡{𝑎,𝑏}, where the last equality follows from the marginal-distribution
property of dependent rounding.

https://arxiv.org/pdf/2202.11061v1.pdf#page=27
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𝑣0∶1 𝑣1 𝑣1∶2 𝑣2 𝑣2∶3 𝑣3 𝑣3∶4 … 𝑣𝑡−1∶𝑡 𝑣𝑡 𝑣𝑡∶𝑡+1

𝑣 1

𝑣1

𝑣 2

𝑣2

𝑣 3

𝑣3

𝑣 𝑡

𝑣𝑡

𝑉′

Legend: : 𝑉 : 𝑉 : 𝑉 : 𝑉 ∶

Figure 8.4: Illustration of the counting argument for proving cumulative degree preservation. Edges in the figure are edges from the constructed
graph, a superset of the edges in the rounded graph. Node color and shape indicate the set that a node belongs to, as indicated in the legend.

Degree preservation. Fix a node 𝑣 ∈ 𝐴 ∪ 𝐵 and 1 ≤ 𝑡 ≤ 𝑇. By Lemma 8.10, the
fractional degree of 𝑣𝑡 is ⌊𝑑𝑡𝑣⌋ + 1, and thus, by degree preservation of dependent
rounding, exactly ⌊𝑑𝑡𝑣⌋ + 1 edges adjacent to 𝑣𝑡 must be rounded up. The only of
these edges that does not count into 𝐷𝑡

𝑣 is {𝑣𝑡, 𝑣𝑡}; depending on whether this
edge is rounded up or down, 𝐷𝑡

𝑣 is either ⌊𝑑𝑡𝑣⌋ or ⌊𝑑𝑡𝑣⌋ + 1. If 𝑑𝑡𝑣 is not integer,
the latter number equals ⌈𝑑𝑡𝑣⌉, which proves degree preservation. Else, if 𝑑𝑡𝑣 is
an integer, the edge weight of {𝑣𝑡, 𝑣𝑡} is 1. Dependent rounding always rounds
up edges with weight 1, which means that 𝐷𝑡

𝑣 is definitely ⌊𝑑𝑡𝑣⌋ in this case. Thus,
degree preservation holds in either case.

Negative correlation. Negative correlation for 𝑣 ∈ 𝐴 ∪ 𝐵, 𝑆 ⊆ {𝑒 ∈ 𝐸 ∣ 𝑣 ∈
𝑒}, and 1 ≤ 𝑡 ≤ 𝑇 directly follows from the negative-correlation property of
dependent rounding for the node 𝑣𝑡 and the edge set 𝑆′ ≔ �{𝑣𝑡, (𝑣′)𝑡} � {𝑣, 𝑣′} ∈ 𝑆�.

Cumulative degree preservation. Fix a node 𝑣 ∈ 𝐴 ∪ 𝐵 and 1 ≤ 𝑡 ≤ 𝑇. We will
consider the “rounded version” of the constructed graph, i.e., the unweighted
bipartite graph over the nodes of the constructed graph in which exactly those
edges are present that got rounded up by the randomized rounding process. We
define five sets of nodes in the rounded graph (Figure 8.4):

𝑉 ≔ {𝑣𝑡′ ∣ 1 ≤ 𝑡′ ≤ 𝑡} 𝑉′ ≔ {(𝑣′)𝑡′ ∣ 𝑣′ ∈ (𝐴 ∪ 𝐵) ⧵ {𝑣}, 1 ≤ 𝑡′ ≤ 𝑡}

𝑉 ≔ {𝑣𝑡
′
∣ 1 ≤ 𝑡′ ≤ 𝑡} 𝑉 ≔ {𝑣𝑡

′
∣ 1 ≤ 𝑡′ ≤ 𝑡}

𝑉 ∶ ≔ {𝑣𝑡∶𝑡+1 ∣ 0 ≤ 𝑡′ ≤ 𝑡}

For any set of nodes 𝑉1 in the rounded graph, we denote its neighborhood by
𝑁(𝑉1), and we will write deg(𝑉1) for the sum of degrees of 𝑉1 in the rounded
graph. For any two sets of nodes 𝑉1, 𝑉2, we write cut(𝑉1, 𝑉2) to denote the
number of edges between 𝑉1 and 𝑉2 in the rounded graph.

Note that∑𝑡
𝑡′=1𝐷

𝑡′
𝑣 , which we must bound, equals cut(𝑉,𝑉′). We will bound this

quantity by repeatedly using the following fact, which we refer to pivoting : For
pairwise disjoint sets of nodes 𝑉0, 𝑉1, 𝑉2, if 𝑁(𝑉0) ⊆ 𝑉1 ∪ 𝑉2, then deg(𝑉0) =
cut(𝑉0, 𝑉1)+cut(𝑉0, 𝑉2). Since Lemma 8.10 gives us a clear view of the fractional
degrees of nodes in the constructed graph, and since, by degree preservation, a
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node’s degree in the rounded graph must equal the fractional degree whenever
the latter is an integer, this property allows us to express cuts in terms of other
cuts. Figure 8.4 illustrates which of these sets border on each other, and helps in
following along with the derivation.

∑𝑡
𝑡′=1𝐷

𝑡′
𝑣

= cut(𝑉,𝑉′)

= deg(𝑉) − cut(𝑉, 𝑉) (pivot 𝑉0 = 𝑉,𝑉1 = 𝑉′, 𝑉2 = 𝑉)

= 𝑡 + ∑𝑡
𝑡′=1⌊𝑑

𝑡′
𝑣 ⌋ − cut(𝑉, 𝑉) (deg(𝑉) = 𝑡 + ∑𝑡

𝑡′=1⌊𝑑
𝑡′
𝑣 ⌋ by Lemma 8.10)

= 𝑡 + ∑𝑡
𝑡′=1⌊𝑑

𝑡′
𝑣 ⌋ − deg(𝑉) + cut(𝑉, 𝑉) (pivot 𝑉0 = 𝑉,𝑉1 = 𝑉,𝑉2 = 𝑉)

= ∑𝑡
𝑡′=1⌊𝑑

𝑡′
𝑣 ⌋ + cut(𝑉, 𝑉) (deg(𝑉) = 𝑡 by Lemma 8.10)

= ∑𝑡
𝑡′=1⌊𝑑

𝑡′
𝑣 ⌋ + deg(𝑉) − cut(𝑉,𝑉 ∶) (pivot 𝑉0 = 𝑉,𝑉1 = 𝑉,𝑉2 = 𝑉 ∶)

= ∑𝑡
𝑡′=1⌊𝑑

𝑡′
𝑣 ⌋ − cut(𝑉,𝑉 ∶) +�

𝑡

𝑡′=1
�⌊∑𝑡′

𝑡″=1 𝑑
𝑡″
𝑣 ⌋ − ⌊∑

𝑡′−1
𝑡″=1 𝑑

𝑡″
𝑣 ⌋ − ⌊𝑑𝑡

′
𝑣 ⌋ + 1�
(Lemma 8.10)

= ∑𝑡
𝑡′=1⌊𝑑

𝑡′
𝑣 ⌋ − cut(𝑉,𝑉 ∶) + ⌊∑𝑡

𝑡″=1 𝑑
𝑡″
𝑣 ⌋ − ∑

𝑡
𝑡′=1⌊𝑑

𝑡′
𝑣 ⌋ + 𝑡 (telescoping sum)

= ⌊∑𝑡
𝑡′=1 𝑑

𝑡′
𝑣 ⌋ + 𝑡 − cut(𝑉,𝑉 ∶).

To bound cut(𝑉,𝑉 ∶) in the last expression, observe that 𝑁(𝑉 ∶ ⧵ {𝑣𝑡∶𝑡+1}) ⊆ 𝑉,
from which it follows that cut(𝑉,𝑉 ∶ ⧵ {𝑣𝑡∶𝑡+1}) = deg(𝑉 ∶ ⧵ {𝑣𝑡∶𝑡+1}) = 𝑡 − 1. Thus,
cut(𝑉,𝑉 ∶) = 𝑡 − 1 + 1{�̂�{𝑣𝑡,𝑣𝑡∶𝑡+1}}, and we resume the above equality

= ⌊∑𝑡
𝑡′=1 𝑑

𝑡′
𝑣 ⌋ + 𝑡 − (𝑡 − 1 + 1{�̂�{𝑣𝑡,𝑣𝑡∶𝑡+1}}) = ⌊∑

𝑡
𝑡′=1 𝑑

𝑡′
𝑣 ⌋ + 1 − 1{�̂�{𝑣𝑡,𝑣𝑡∶𝑡+1}}.

If ∑𝑡
𝑡′=1 𝑑

𝑡′
𝑣 is not an integer, the above shows that ∑𝑡

𝑡′=1𝐷
𝑡′
𝑣 is either the floor or

ceiling of ∑𝑡
𝑡′=1 𝑑

𝑡′
𝑣 , establishing cumulative degree preservation. Else, if ∑𝑡

𝑡′=1 𝑑
𝑡′
𝑣

is integer, note that the weight of the edge {𝑣𝑡, 𝑣𝑡∶𝑡+1} in the constructed graph is 1.
Since dependent rounding always rounds such edges up, ∑𝑡

𝑡′=1𝐷
𝑡′
𝑣 = ⌊∑

𝑡
𝑡′=1 𝑑

𝑡′
𝑣 ⌋.

This establishes cumulative degree preservation, the last of the properties guar-
anteed by the theorem.

8.6 Other Applications of Cumulative Rounding

Our exploration of house monotone randomized apportionment led us to the
more general technique of cumulative rounding, which we believe to be of
broader interest. We next illustrate this by discussing additional applications.

8.6.1 Sortition of the European Commission

The European Commission is one of the main institutions of the European Union,
in which it plays a role comparable to that of a government. The commission
consists of one commissioner from each of the 27 member states, and each com-
missioner is charged with a specific area of responsibility. Since the number of
EU member states has nearly doubled in the past 20 years, so has the size of the
commission. Besides making coordination inside the commission less efficient,
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the enlargement of the commission has led to the creation of areas of responsibil-
ity much less important than others. Since the important portfolios are typically
reserved for the largest member states, smaller states have found themselves with
limited influence on central topics being decided in the commission.

To remedy this imbalance, Buchstein and Hein [BH09] propose to reduce the [BH09] Buchstein and Hein (2009): Ran-
domizing Europe.number of commissioners to 15, meaning that only a subset of the 27 member

states would send a commissioner at any given time. Which states would receive
a seat would be determined every 5 years by a weighted lottery (“sortition”), in
which states would be chosen with degressive proportional weights. Degressive
means that smaller states get non-proportionately high weight; such weights are
already used for apportioning the European parliament. The authors argue that
by the law of large numbers, political representation on the commission would
be essentially proportional to these weights in politically relevant time spans.

However, a follow-up simulation study by Buchstein et al. [BHJ13] challenges [BHJ13] Buchstein et al. (2013): Die „EU-
Kommissionslotterie“.this assertion on two fronts: (1) First, the authors find that their implementation

of a weighted lottery chooses states with probabilities that deviate from propor-
tionality to the weights in a way that is not analytically tractable (see [BH83,
p. 24]). (2) Second, and more gravely, their simulations undermine “a central [BH83] Brewer and Hanif (1983): An Intro-

duction to Sampling with Unequal Probabili-
ties.

argument in favor of legitimacy” in the original proposal, namely, that “in the
long term, the seats on the commission would be distributed approximately like
the share of lots” [BHJ13, own translation]. From a mathematical point of view,
the authors had overestimated the rate of concentration across the independent
lotteries. Instead, in the simulation, it takes 30 lotteries (150 years) until there is a
probability of 99% that all member states have sent at least one commissioner.

These serious concerns could be resolved by using cumulative rounding to imple-
ment the weighted lotteries. Specifically, we would again construct a star graph
with a special node 𝑎 and one node 𝑏𝑖 for each state 𝑖, setting 𝑇 to the desired
number of consecutive lotteries. For each 1 ≤ 𝑡 ≤ 𝑇, each edge {𝑎, 𝑏𝑖} would be
weighted by 15𝑤𝑖

∑𝑗∈𝑁𝑤𝑗
where 𝑤𝑗 is state 𝑗’s degressive weight.12 Degree preservation 12: This assumes that each state’s weight is

at most 1/15 ∑𝑗∈𝑁𝑤𝑗, which is in fact not the
case for the largest member states [BHJ13].
Therefore, proportionality to the weights
is incompatible with Buchstein and Hein’s
requirement that each state may not send
more than a single commissioner. To obtain
proportionality, there are three solutions: in-
creasing the number of commissioners, al-
lowing a state to receive multiple commis-
sioners (which can be expressed in cumu-
lative rounding by splitting the state into
multiple copies), or adjusting the weights.
If desired, cumulative rounding can accom-
modate weights that change across lotteries
according to population projections, which
Buchstein et al. do for some of their experi-
ments.

on 𝑎 would ensure that in each lottery 𝑡, exactly 15 distinct states are selected. By
marginal distribution, the selection probabilities would be exactly proportional
to the degressive weights, resolving issue (1). Furthermore, cumulative degree
preservation on the state nodes would eliminate issue (2). If we take the effective
selection probabilities of Buchstein et al. [BHJ13] as the states’ weights, even
the smallest states 𝑖 would have an edge weight 𝑤𝑡{𝑎,𝑏𝑖} ≈ 0.187. Then, cumu-
lative quota prevents any state from getting rounded down in 11 = ⌈2/0.187⌉
consecutive lotteries: Indeed, fixing any 0 ≤ 𝑡0 ≤ 𝑇 − 11,

∑𝑡0+11
𝑡′=1 𝐷𝑡′

𝑏𝑖 ≥ ⌊(𝑡0 + 11) 0.187⌋ ≥ ⌊𝑡0 0.187⌋ + 2 ≥ ⌈𝑡0 0.187⌉ + 1 ≥ ∑
𝑡0
𝑡′=1𝐷

𝑡′
𝑏𝑖 + 1,

which means that state 𝑖must have been selected at least once between time 𝑡0+1
and 𝑡0 + 11. In political terms, this means that 55, not 150, years would be enough
to deterministically ensure that each member state send a commissioner at least
once in this period.
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8.6.2 Repeated Allocation of Courses to Faculty Or Shifts to
Workers

A common paradigm in fair division is to first create a fractional assignment
between agents and resources, and to then implement this fractional assignment
in expectation, through randomized rounding. Below, we describe a setting
of allocating courses to faculty members in a university department, in which
implementing a fractional assignment using cumulative rounding is attractive.

For a university department, denote its set of faculty members by 𝐴 and the set
of possible courses to be taught by 𝐵. For each faculty member 𝑎 and course 𝑏,
let there be a weight 𝑤{𝑎,𝑏} ∈ [0, 1] indicating how frequently course 𝑏 should be
taught by 𝑎 on average. These numbers could be derived using a process such
as probabilistic serial [BM01], the Hylland-Zeckhauser mechanism [HZ79], or [BM01] Bogomolnaia and Moulin (2001):

A New Solution to the Random Assignment
Problem.
[HZ79] Hylland and Zeckhauser (1979):The
Efficient Allocation of Individuals to Posi-
tions.

the mechanisms by Budish et al. [BCKM13], which would transform preferences

[BCKM13] Budish et al. (2013): Designing
Random Allocation Mechanisms.

of the faculty over which courses to teach into such weights.13 We will allow

13: Although these mechanisms are formu-
lated for goods, they can be applied to bads
when the number of bads allocated to each
agent is fixed, as it is when allocating courses
to faculty or shifts to workers.

arbitrary fractional degrees on the faculty side (so one person can teach multiple
courses) while assuming that the fractional degree of any course 𝑏 is at most 1.

When applying cumulative rounding to this graph (using the same edge weights
in each period) for consecutive semesters 1 ≤ 𝑡 ≤ 𝑇, we observe the following
properties.

▶ Marginal distribution implies that, in each semester, faculty member 𝑎 has a
probability 𝑤{𝑎,𝑏} of teaching course 𝑏.

▶ Degree preservation on the course side means that a course is never taught by
two different faculty members in the same semester.

▶ Degree preservation on the faculty side implies that a faculty member 𝑎’s
teaching load does not vary by more than 1 between semesters; it is either the
floor or the ceiling of 𝑎’s expected teaching load.

▶ Cumulative degree preservation on the course side ensures that courses are
offered with some regularity. For example, if a course’s fractional degree is
1/2, it will be taught exactly once in every academic year (either in Fall or in
Spring).

▶ Cumulative degree preservation on the faculty side allows for non-integer
teaching load. For example, a faculty member with fractional degree 1.5 will
have a “2-1” teaching load, i.e., they will teach 3 courses per year, either 2 in
the Fall and one in the Spring or vice versa.

The same approach is applicable for matching workers to shifts.

One could also use cumulative rounding to repeatedly round a fractional as-
signment of general chores, such as the ones computed by the online platform
spliddit.org [GP14]. In this case, a caveat is that (cumulative) degree preservation [GP14] Goldman and Procaccia (2014):

Spliddit.only ensures that the number of assigned chores is close to its expected num-
ber per time period, not necessarily the cost of the assigned chores. However,
if many chores are allocated per time step, and if costs are additive, then an
agent’s per-timestep cost is well-concentrated, which follows from the negative-
correlation property that permits the application of Chernoff concentration
bounds [PS97]

[PS97] Panconesi and Srinivasan (1997):
Randomized Distributed Edge Coloring via
an Extension of the Chernoff–Hoeffding
Bounds..
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8.7 Discussion

Though our work is motivated by the application of apportioning seats at ran-
dom, the technical questions we posed and addressed are fundamental to the
theoretical study of apportionment. In a sense, any deterministic apportionment
solution is “unproportional” — after all, its role is to decide which agents receive
more or fewer seats than their standard quota. By searching for randomized
methods satisfying ex ante proportionality, we ask whether these unproportional
solutions can be combined (through random choice) such that these deviations
from proportionality cancel out to achieve perfect proportionality, and whether
this remains possible when we restrict the solutions to those satisfying subsets
of the axioms population monotonicity, house monotonicity, and quota. Natu-
rally, this objective pushes us to better understand the whole space of solutions
satisfying these subsets of axioms, including the space’s more extreme elements.
Therefore, it is in hindsight not surprising that our work led to new insights for
deterministic apportionment: a more robust impossibility between population
monotonicity and quota (Theorem 8.1), an exploration of solutions generalizing
the divisor solutions (Theorem 8.2), and a geometric characterization of house
monotone and quota compliant solutions (Theorem 8.7).

Concerning the cumulative rounding technique introduced in this paper, we
have only scratched the surface in exploring its applications. In particular, we
hope to investigate whether cumulative rounding can extend existing algorithmic
results that use dependent rounding, and whether it can be used to construct new
approximation algorithms. For both of these purposes, the negative-correlation
property, which we have not used much so far, will hopefully turn out to be
valuable.

Despite their advantageous properties, randomized mechanisms have in the
past often met with resistance by practitioners and the public [KPS18], but, as [KPS18] Kurokawa et al. (2018): Leximin Al-

locations in the Real World.we described in the first part of this thesis, we see signs of a shift in attitudes
in the area of citizens’ assemblies. These citizens’ assemblies proudly point to
their random selection — and to complex selection algorithms such as the one
we developed in Chapter 2 — as a source of legitimacy. If citizens’ assemblies
continue to become more prominent, randomness will be associated by the
public with neutrality and fairness, not with haphazardness, and randomized
apportionment methods might receive serious consideration.
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9.1 Introduction

There are 27 million refugees around the world [UNH22]. The United Nations
High Commissioner for Refugees (UNHCR) considers over 1.4 million of them
to be in need of resettlement, that is, permanent relocation from a temporary
country of asylum to the country of resettlement [UNH20]. Resettlement is
mainly targeted at the most vulnerable refugees, such as children at risk, survivors
of violence and torture, and those with urgent medical needs. Dozens of countries
around the world resettle refugees; in 2019, for example, around 108 000 refugees
were resettled [UNHnd]. Still, the number of refugees in need of resettlement
far exceeds the number that is actually resettled in every year.

Historically, most countries taking in resettled refugees have paid little atten-
tion to where inside the country these refugees are placed. This policy might be
worth reconsidering, however, since there is ample evidence that the initial local
resettlement destination dramatically affects the outcomes of refugees [ÅEFG11;
ÅF09; ÅÖZ10; ÅR07; BFH+18; Dam14; MHH19]. One specific variable impacted
by community placement is whether and when resettled refugees find employ-
ment. Employment plays a key role in the successful integration of a refugee by [UNH22] UNHCR (2022): Global Trends:

Forced Displacement in 2021.

[UNH20] UNHCR (2020): Global Resettle-
ment Needs 2021.
[UNHnd] UNHCR (n.d.): Refugee Data
Finder.
[ÅEFG11] Åslund et al. (2011): Peers, Neigh-
borhoods, and Immigrant Student Achieve-
ment.
[ÅF09] Åslund and Fredriksson (2009):
Peer Effects in Welfare Dependence Quasi-
Experimental Evidence.

[ÅÖZ10] Åslund et al. (2010): How Impor-
tant Is Access to Jobs?

[ÅR07] Åslund and Rooth (2007):Do When
and Where Matter?
[BFH+18] Bansak et al. (2018): Improving
Refugee Integration through Data-Driven Al-
gorithmic Assignment.

[Dam14] Damm (2014):Neighborhood Qual-
ity and Labor Market Outcomes.

[MHH19] Martén et al. (2019): Ethnic Net-
works Can Foster the Economic Integration
of Refugees.

“promoting economic independence, planning for the future, meeting members
of the host society, providing opportunity to develop language skills, restoring
self-esteem and encouraging self-reliance” [AS08].

[AS08] Ager and Strang (2008):Understand-
ing Integration.

Since promoting employment is so crucial, the American resettlement agency
HIAS began in 2017 to match refugees to communities using the matching
software Annie™ Moore (Matching and Outcome Optimization for Refugee
Empowerment), which is designed to maximize the total number of refugees who
obtain employment soon after arrival [AAM+21]. Each week, the US goverment

[AAM+21] Ahani et al. (2021): Placement
Optimization in Refugee Resettlement.

assigns a new batch of refugees to HIAS, and Annie™ suggests which community
each refugee in the batch should be placed in. Before this work, Annie™ made its
suggestions using a greedy algorithmic approach, that is, each batch of arrivals
was allocated by separately maximizing the expected employment of this batch
(subject to the remaining community capacities and ensuring that refugees have
access to necessary services). Allocating affiliate capacity in such a greedy way will
likely lead to suboptimal employment, however: A placement algorithm could
achieve better employment by weighing in each placement decision whether a
slot of capacity is more beneficial when used by a refugee in the current batch or
when saved up for some refugee potentially arriving later in the year.

In this chapter, we improve the optimization approach of Annie™ by intentionally
incorporating the dynamic nature of the matching problem. For this, we design
two closely related algorithms — one based on stochastic programming and
another based on Walrasian equilibrium — that optimize the dynamic matching
of refugees to communities in the United States. Our focus is to study these
algorithms in a rich model that captures all of the relevant practical features of the
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refugee resettlement process, including indivisible families of refugees, batching,
and unknown numbers of refugee arrivals. We evaluate the performance of our
algorithms on HIAS data from 2014 until 2019. We show that both algorithms
achieve over 98 percent of the hindsight-optimal employment in all years whereas
the greedy baseline achieves only around 90 percent. We then describe how we
implemented our algorithms within Annie™ to create Annie™ 2.0.

9.1.1 Related Work

This chapter extends a line of work initiated by Bansak et al. [BFH+18], which [BFH+18] Bansak et al. (2018): Improving
Refugee Integration through Data-Driven Al-
gorithmic Assignment.

aims to increase refugees’ employment outcomes through data- and optimization-
driven placement. This approach consists of two components: using machine
learning to estimate the probability that a given refugee placed at a given commu-
nity would find employment, and using mathematical programming to perform
the optimization. Ahani et al. [AAM+21] adopted a similar approach to develop [AAM+21] Ahani et al. (2021): Placement

Optimization in Refugee Resettlement.Annie™; they also pointed out the practical relevance of indivisible families and
the possibility of batching. Both papers seek to maximize employment with
respect to a current batch of refugees, without considering future arrivals; it is in
this sense that we think of deployed algorithms as greedy, and that is indeed our
benchmark in this chapter.

Our dynamic refugee placement problem generalizes the classic edge-weighted
online bipartite matching problem, but most algorithms in the theoretical litera-
ture are not promising for our application since they are optimized for overly
pessimistic arrival scenarios. Whereas competitive analysis was quite success-
ful for unweighted online bipartite matching [KVV90], no constant-factor ap- [KVV90] Karp et al. (1990): An Optimal

Algorithm for On-Line Bipartite Matching.proximation algorithm is possible for the weighted setting if arrivals are adver-
sarial [FHTZ20]. In the random-order arrival model, a 1/𝑒-approximation is [FHTZ20] Fahrbach et al. (2020): Edge-

Weighted Online Bipartite Matching.possible [KRTV13], but the algorithm is impractical; in particular, it leaves the
[KRTV13] Kesselheim et al. (2013): An Opti-
mal Online Algorithm for Weighted Bipartite
Matching and Extensions to Combinatorial
Auctions.

first 37% of arrivals entirely unmatched. Even if arrivals are drawn i.i.d. from
a known distribution, Manshadi et al. [MGS12] show that no online algorithm

[MGS12] Manshadi et al. (2012): Online Sto-
chastic Matching.

can obtain a better approximation ratio than 0.823, far below the performance
of even the greedy baseline in our setting. Since this impossibility is based on
contrived arrival distributions, many papers additionally assume that arrivals
belong to finitely many types determining their edge weights. In this setting,
constructing matchings that are optimal up to lower-order terms (with high
probability) is not difficult [AHL13], and multiple papers obtain such results, [AHL13] Alaei et al. (2013): The Online Sto-

chastic Generalized Assignment Problem.often in generalizations of edge-weighted online bipartite matching [AHL12;
[AHL12] Alaei et al. (2012): Online Prophet-
Inequality Matching with Applications to Ad
Allocation.
[VB21] Vera and Banerjee (2021): The
Bayesian Prophet.

AHL13; VB21]. What limits the applicability of these algorithms to our setting,

[BGV20] Banerjee et al. (2020): Constant
Regret in Online Allocation.

[FB19] Freund and Banerjee (2019): Good
Prophets Know When the End Is Near.

[SFCS22] Sinclair et al. (2022): Hindsight
Learning in MDPs with Exogenous Inputs.

[VBG21] Vera et al. (2021):Online Allocation
and Pricing.

however, is that these algorithms require the distribution over types explicitly
in their input, and are often constructed based on the assumption that multiple
arrivals of each type will occur in a single run of the algorithm. By contrast, we
estimate employment scores based on 20 independent features, which means
the number of refugee “types” is too large to enumerate and we do not expect to
see identical refugees.

Our algorithmic approach can be seen as an instantiation of the Bayes Selector,
an algorithmic paradigm that has yielded impressive theoretical and empirical
results across various problems with stochastic online arrivals [BGV20; FB19;
SFCS22; VB21; VBG21]. Conceptually, the Bayes Selector takes in a prediction of
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future arrivals and then performs the action (in our setting: chooses the affiliate
for the current arrival) that seems most likely to coincide with the action taken
by an optimal benchmark. Under some regularity conditions on the arrivals,
algorithms following this methodology have constant regret, that is, the expected
difference between the algorithm’s performance and that of the optimal bench-
mark does not grow with the size of the problem. The prediction of future arrivals
often takes other shapes, but can be a sampled trajectory of arrivals as in our
work [BGV20]. In most papers, the choice of action is based on how often the [BGV20] Banerjee et al. (2020): Constant

Regret in Online Allocation.optimal benchmark would take an action in the simulated future rather than,
as in our work, on the marginal effect of an action on the optimal value. Very
recently, however, Sinclair et al. [SFCS22] analyze the same variant of the Bayes [SFCS22] Sinclair et al. (2022): Hindsight

Learning in MDPs with Exogenous Inputs.Selector (the “hindsight planning policy”) as our Equation (9.1), and show that
it gives constant regret for the problem of stochastic online bin packing. Even
though we do not provide theoretical guarantees in this chapter, the success of
the Bayes Selector across related settings partially explains our good empirical
performance.

Shadow prices have been used to guide decisions in online settings in a va-
riety of contexts, including advertising [DH09; MSVV07; VVS10], revenue [DH09] Devanur and Hayes (2009):The Ad-

words Problem.
[MSVV07] Mehta et al. (2007): Adwords
and Generalized Online Matching.
[VVS10] Vee et al. (2010): Optimal Online
Assignment with Forecasts.

management [TVV04], worker assignment [HV12; JKK21], and resource alloca-

[TVV04] Talluri et al. (2004): The Theory
and Practice of Revenue Management.

[HV12]Ho andVaughan (2012):Online Task
Assignment in Crowdsourcing Markets.
[JKK21] Johari et al. (2021): Matching While
Learning.

tion [AWZ20]. Agrawal et al. [AWY14] develop a dynamic learning approach

[AWZ20] Asadpour et al. (2020): Online Re-
source Allocation with Limited Flexibility.

[AWY14] Agrawal et al. (2014): A Dynamic
Near-Optimal Algorithm for Online Linear
Programming.

where prices are calculated in a similar manner to ours; while they update their
match scores upon every doubling of the arrival history, we update our match
scores upon every batch. Ho and Vaughan [HV12] extend the advertising context
of Devanur and Hayes [DH09] to assign workers to tasks when match scores are
initially unknown and must be learned. Like Ho and Vaughan [HV12], Johari
et al. [JKK21] also consider the worker-to-job context, but learn scores while
matching via an explore-then-exploit approach. In our setting, our scores are
known in advance independent of arrivals [AAM+21].

[AAM+21] Ahani et al. (2021): Placement
Optimization in Refugee Resettlement.

In independent and concurrent work, Bansak [Ban20] also considers dynamic

[Ban20] Bansak (2020): A Minimum-Risk
Dynamic Assignment Mechanism Along with
anApproximation, Heuristics, and Extension
from Single to Batch Assignments.

refugee resettlement; the algorithm obtaining the highest employment in that
study is equivalent to our two-stage stochastic programming formulation in the
simplest setting. Our model is much richer as we include non-unit family sizes,
incompatibilities between families and communities, and allow for uncertain
arrival numbers. A second limitation of their work is that their best algorithm is
prohibitively slow. This lack of computational efficiency pushes them to consider
algorithms with worse employment outcomes, and it limits their empirical evalu-
ation to a single month of arrivals. By contrast, we leverage multiple algorithmic
insights to speed up the algorithm by two orders of magnitude without substan-
tially trading off employment. This speed-up allows us to empirically evaluate
our algorithms for realistic matching periods, which last for an entire fiscal year.
We compare the running times of both algorithms in Section 9.6. Finally, very
recent work by Bansak and Paulson [BP22] extends the earlier work by Bansak [BP22] Bansak and Paulson (2022):

Outcome-Driven Dynamic Refugee
Assignment with Allocation Balancing.

[Ban20] by incorporating a secondary objective that seeks to consume capacity at
similar rates across affiliates, improving case wait times across affiliates without
sacrificing much employment.
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9.1.2 Chapter Outline

In Section 9.2, we provide an overview of the US refugee resettlement process. In
Section 9.3, we outline our model of dynamic refugee matching. In Section 9.4,
we propose our two algorithms and show that they obtain near-optimal employ-
ment in a baseline setting that ignores the indivisibility of families, batching,
and uncertainty about the total number of arrivals. In the next three sections,
we layer on complexity toward the setting encountered in practice: indivisible
families (Section 9.5), batching (Section 9.6), and unknown arrival numbers (Sec-
tion 9.7). In these sections, we demonstrate that indivisible families and batching
do not substantially change our algorithms’ employment performance, and that
employment remains high unless the number of arrivals widely deviates from
the numbers announced by the government. In Section 9.8, we then explain how
we implemented our approach within Annie™ and conclude in Section 9.9.

9.2 Institutional Background

The federal Office of Refugee Resettlement was created by the Refugees Act
in 1980. The Act established funding rules and authorized the President of the
United States to set annual capacities for resettlement. The resettlement process
is managed by the US Refugee Admissions Program (USRAP) of the US Depart-
ment of State, in conjunction with a number of federal agencies across federal
departments as well as the International Organization for Migration and the
UNHCR.

Applications for the resettlement program take place from outside of the US,
typically in refugee camps. The US government conducts security checks, medi-
cal screening, and performs cultural orientation, which can take upwards of 18
months [Jon15]. After clearance, USRAP decentralizes the process of welcoming [Jon15] Jones (2015): Home Away From

Home.refugees to nine NGOs known as resettlement agencies, of which one is HIAS.
Each agency works with their own network of local affiliates, each supported by
local offices as well as religious entities like churches, synagogues, or mosques,
which serve as community liaisons for refugees. Each agency typically works
with dozens of affiliates, though the number of affiliates can fluctuate over time.
Some affiliates lack services to host certain kinds of refugees. For example, cer-
tain affiliates do not have translators for non-English-speaking refugees or lack
support for single-parent families.

Agencies have no influence on which refugees are cleared for resettlement by
USRAP or on when the refugees might arrive. Resettlement agencies meet on a
weekly or fortnightly basis in order to allocate among themselves the refugees
that have been cleared by USRAP. Refugees are usually resettled with members
of their family. Such an indivisible group of refugees is referred to as a case.
As a family can split when its members are fleeing their home country, some
refugees who are applying for resettlement might already have existing relatives
or connections in the US. Such cases with US ties are automatically resettled near
their existing ties. All other refugees, referred to as free cases, can be resettled by
any agency into any of the agency’s affiliates.
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Each affiliate has an assigned annual capacity for the number of refugees (rather
than cases) it can admit in a given fiscal year.1 These capacities are approved by 1: Each fiscal year ranges from October 1 of

the previous calendar year to September 30.
For example, fiscal year 2017 ranges from
October 1, 2016 to September 30, 2017.

USRAP and, in theory, agencies cannot exceed them. In practice, capacities can
be slightly adjusted towards the end of the year or, as in recent years, substantially
revised in the course of the year. Since capacities limit the number of refugees
arriving in a fiscal year rather than allocated in it, and since there is typically a
delay of multiple months between the two events, the Department of State tells
the resettlement agencies an estimated arrival date for each cleared case. Agencies
are assessed annually by USRAP on their performance in finding employment for
refugees within 90 days of their arrival. Data on 90-day employment is therefore
diligently collected by the affiliates and monitored by the agencies.

9.3 Model

An instance of the matching problem first defines a set 𝐿 of affiliates, and each
affiliate ℓ has a capacity 𝑐ℓ ∈ ℕ≥0∪{∞} of how many refugees it can host. We call
a collection {𝑐ℓ}ℓ∈𝐿 of capacities for all affiliates a capacity profile 𝑐. To describe
changes in capacity, it will be useful to manipulate the capacity profiles as vectors.
Specifically, we write 𝑐 − 𝑒ℓ to describe the capacity profile obtained from 𝑐 by
reducing the capacity of affiliate ℓ by 1.

On the other side of the matching problem is a set𝑁 = {1, … , 𝑛} of cases. Each case
𝑖 represents an indivisible family of 𝑠𝑖 ∈ ℕ≥1 refugees. Furthermore, each case 𝑖,
for each affiliate ℓ, has an employment score 𝑢𝑖,ℓ, which indicates the expected
number of case members that will find employment if the case is allocated to ℓ.
Typically, these employment scores 𝑢𝑖,ℓ are real numbers in [0, 𝑠𝑖], but we will
also allow to set 𝑢𝑖,ℓ = −∞ to express that case 𝑖 is not compatible with affiliate
ℓ. We will refer to the combination of a case’s size and vector of employment
scores as the characteristics of the case. To ensure that the matching problem is
always feasible, we will assume that 𝐿 contains a special affiliate⊥ that represents
leaving a case unmatched, where 𝑢𝑖,⊥ = 0 for all cases 𝑖 and 𝑐⊥ = ∞.2 2: For example, allowing cases to be un-

matched is necessary since an arriving case
might only be compatible with affiliates
whose capacity is already exhausted. When
these situations occur in practice, such cases
do not remain unmatched; instead, capac-
ities can be increased or case–affiliate in-
compatibilities overruled manually by the
arrivals officer. For our sequence of models,
we report the fraction of matched refugees
in Appendix D.7 of the full version, and find
that our algorithms do not lead to fewer
refugees being matched than in the greedy
baseline. To lower the number of unmatched
refugees at the cost of reducing employment,
one can add a constant reward per refugee
to the 𝑢𝑖,ℓ with ℓ ≠ ⊥.

We use the employment scores developed by Ahani et al. [AAM+21], and we

[AAM+21] Ahani et al. (2021): Placement
Optimization in Refugee Resettlement.

give details on data preprocessing and training in Appendix A of the full version.
Throughout this chapter, we consider these employment scores as ground truth,
which means that we evaluate algorithms directly based on the employment
scores. An evaluation of how accurately the employment scores predict employ-
ment outcomes is outside of the scope of this chapter, and has already been
performed by Ahani et al.

The goal of the matching problem is to allocate cases to affiliates such that the
total employment, that is, the sum of employment scores, is maximized, subject
to not exceeding capacities. For a set 𝐼 ⊆ 𝑁 and a capacity profile 𝑐 = {𝑐ℓ}ℓ∈𝐿,
define Matching(𝐼, 𝑐) as the matching integer linear program (ILP) below, where
variables 𝑥𝑖,ℓ indicate whether case 𝑖 ∈ 𝐼 is matched to affiliate ℓ ∈ 𝐿:

maximize �
𝑖∈𝐼
�
ℓ∈𝐿

𝑢𝑖,ℓ 𝑥𝑖,ℓ

subject to �
ℓ∈𝐿

𝑥𝑖,ℓ = 1 ∀𝑖 ∈ 𝐼

https://arxiv.org/pdf/2105.14388v2.pdf#page=33
https://arxiv.org/pdf/2105.14388v2.pdf#page=24
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�
𝑖∈𝐼
𝑠𝑖 𝑥𝑖,ℓ ≤ 𝑐ℓ ∀ℓ ∈ 𝐿

𝑥𝑖,ℓ ∈ {0, 1} ∀ 𝑖 ∈ 𝐼, ℓ ∈ 𝐿.

Let Opt(𝐼, 𝑐) denote the optimal objective value of Matching(𝐼, 𝑐). The linear
programming (LP) relaxation of Matching(𝐼, 𝑐) is obtained by replacing the
constraint 𝑥𝑖,ℓ ∈ {0, 1} by 0 ≤ 𝑥𝑖,ℓ ≤ 1 for all 𝑖 ∈ 𝐼, ℓ ∈ 𝐿. For a fixed matching, we
define the match score of a case 𝑖 as its employment score 𝑢𝑖,ℓ𝑖 at the affiliate ℓ𝑖
where it is allocated; we will also refer to its match score per refugee, 𝑢𝑖,ℓ𝑖/𝑠𝑖.

Finally, cases arrive online, that is, they arrive one by one and, when case 𝑖 arrives,
the decision of which affiliate to place it in must be made irrevocably, before the
characteristics of the subsequent arrivals 𝑖 + 1, … , 𝑛 are known.3 Thus, although 3: From Section 9.6 onward, cases will in-

stead arrive in batches, which can be allo-
cated simultaneously.

an online matching algorithm must still produce a matching whose indicator
variables 𝑥𝑖,ℓ satisfy the constraints of Matching(𝑁, 𝑐), the total employment
∑
𝑖∈𝑁,ℓ∈𝐿 𝑢𝑖,ℓ 𝑥𝑖,ℓ typically will not attain the benchmark Opt(𝑁, 𝑐) of the optimal

matching in hindsight. While we will not commit to a specific model of how the
characteristics of arriving cases are generated, these arrivals should be thought of
as stochastic rather than worst-case, and the distribution of case characteristics
as changing slowly enough that sampling from recent arrivals is a reasonable
proxy for the distribution of future arrivals.

Throughout the following sections, we will consider a sequence of models, which
incorporate an increasing number of features of the real-world refugee allocation
problem: in Section 9.4, we consider traditional online bipartite matching, which
results from requiring 𝑠𝑖 = 1 in the above model; from Section 9.5 onward, we
allow cases to have arbitrary size; from Section 9.6 onward, we also allow cases
to arrive in batches rather than one by one; in Section 9.7, we no longer assume
that the total number 𝑛 of arriving cases is known to the algorithm.

9.4 Online Bipartite Matching (𝑠𝑖 = 1)

In this section, we will consider the special case of online bipartite (weighted)
matching. We stress that this classic problem does not capture key features of
the refugee-allocation problem in practice, which we will add in later sections.
Instead, online bipartite matching allows us to more cleanly draw connections
to theoretical arguments, which help motivate our algorithm design. Later in the
chapter, we will empirically show that the approach continues to work well in
richer and more realistic settings.

Formally, this section considers the model defined in the previous section, with
the restriction that all cases consist of single refugees, that is, that 𝑠𝑖 = 1 for all
𝑖 ∈ 𝑁. Under this assumption, it is well-known that the optimum matching for
the ILP Matching(𝐼, 𝑐) can be found by solving its LP relaxation.

9.4.1 Algorithmic Approach

To motivate our algorithmic approach, we begin by describing why matching
systems currently deployed in practice lead to suboptimal employment. These
systems assign cases greedily, which — putting aside batching for now — means



9 Online Refugee Placement 139

that an arriving case 𝑖 is matched to the affiliate ℓ with highest employment score
𝑢𝑖,ℓ among those that have at least 𝑠𝑖 remaining capacity. The main problem with
greedy assignment is that it exhausts the capacity of the most desirable affiliates
too early. In particular, we observe on the real data that a large fraction of cases
have their highest employment score in the same affiliate ℓ∗, but that the size
of the employment advantage of affiliate ℓ∗ over the second-best affiliate varies.
Since it only considers the highest-employment affiliate for each case, greedy
assignment will fill the entire capacity of ℓ∗ early in the year, including with some
cases that benefit little from this assignment. Consequently, cases that would
particularly profit from being placed in ℓ∗ but arrive later in the year no longer
fit within the capacity.

Intuitively, the decision to match a case 𝑖 to an affiliate ℓ has two effects: the
immediate increase of the total employment by 𝑢𝑖,ℓ but also an opportunity
cost for consuming ℓ’s capacity, which might prevent profitable assignments for
later arrivals. Since greedy assignment only considers the former effect, it leaves
employment on the table.

A better approach is two-stage stochastic programming, which allocates an arriving
case 𝑖 to the affiliate ℓ maximizing the sum of the immediate employment 𝑢𝑖,ℓ
and the expected optimal employment obtainable by matching the future arrivals
subject to the remaining capacity. That is, if, at the time of 𝑖’s arrival, the remaining
capacities are given by 𝑐, two-stage stochastic programming allocates 𝑖 to the
affiliate

argmax
ℓ∈𝐿∶𝑐ℓ≥𝑠𝑖

𝑢𝑖,ℓ + 𝔼�Opt�{𝑖 + 1, … , 𝑛}, 𝑐 − 𝑠𝑖 ⋅ 𝑒ℓ��,

where the expectation is taken over the characteristics of cases 𝑗 = 𝑖 + 1,… , 𝑛.
Since adding a constant term does not change the argmax, this can be rewritten
as

= argmax
ℓ∈𝐿∶𝑐ℓ≥𝑠𝑖

𝑢𝑖,ℓ − 𝔼�Opt�{𝑖 + 1, … , 𝑛}, 𝑐�� + 𝔼�Opt�{𝑖 + 1, … , 𝑛}, 𝑐 − 𝑠𝑖 ⋅ 𝑒ℓ��

= argmax
ℓ∈𝐿∶𝑐ℓ≥𝑠𝑖

𝑢𝑖,ℓ − 𝔼�Opt�{𝑖 + 1, … , 𝑛}, 𝑐� −Opt�{𝑖 + 1, … , 𝑛}, 𝑐 − 𝑠𝑖 ⋅ 𝑒ℓ��. (9.1)

Using our assumption that 𝑠𝑖 = 1, this can be simplified to

= argmax
ℓ∈𝐿∶𝑐ℓ≥1

𝑢𝑖,ℓ − 𝔼�Opt�{𝑖 + 1, … , 𝑛}, 𝑐� −Opt�{𝑖 + 1, … , 𝑛}, 𝑐 − 𝑒ℓ��.

Note that the expectation that is subtracted in either of the last two lines is
exactly the expected opportunity cost of reducing the capacity of ℓ by placing
case 𝑖 there. This motivates our algorithmic approach: in every time step, we
first compute a potential 𝑝ℓ for each affiliate ℓ. Then, rather than myopically
maximizing the utility of the match as does greedy assignment, our algorithm
PM (“potential match”) myopically maximizes the utility of the current match
minus the potential of the capacity used, as shown in Algorithm 2. (Note that an
affiliate ℓ can always be defined in Line 5 as, by assumption, 𝑐⊥ = ∞.)

We estimate the expected value of the opportunity cost by averaging over a
fixed number 𝑘 of trajectories, each of which consists of randomly sampled
characteristics of all arrivals 𝑖 + 1 through 𝑛. As the characteristics of arriving
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Algorithm 2: PM(Potential)
Parameter: a subroutine Potential to determine affiliate potentials

1 initialize the capacities 𝑐ℓ for each affiliate ℓ;
2 for 𝑡 = 1, … , 𝑛 do
3 observe the case size 𝑠𝑡 and the employment scores {𝑢𝑡,ℓ}ℓ;
4 call Potential() to define a potential 𝑝ℓ for each affiliate ℓ;
5 ℓ ← argmaxℓ∈𝐿∶𝑐ℓ≥𝑠𝑡 𝑢𝑡,ℓ − 𝑠𝑡 𝑝ℓ;
6 allocate case 𝑡 to ℓ and set 𝑐ℓ ← 𝑐ℓ − 𝑠𝑡;

refugees change over time, and as these changes tend to be gradual, we draw
these arrival characteristics uniformly with replacement from the arrivals in the
six months prior to the current allocation decision. In Appendix D.3 of the full
version, we evaluate different lengths of this sampling window.

For each sampled trajectory, it remains to calculate the potential, which we would
like to equal the opportunity cost Opt�{𝑖 + 1, … , 𝑛}, 𝑐� −Opt�{𝑖 + 1, … , 𝑛}, 𝑐 − 𝑒ℓ�.
Clearly, this could be computed by solving 𝑂(|𝐿|) matching LPs, which is what
the flagship algorithm by Bansak [Ban20] does. [Ban20] Bansak (2020): A Minimum-Risk

Dynamic Assignment Mechanism Along with
anApproximation, Heuristics, and Extension
from Single to Batch Assignments.

Instead, we make use of a celebrated result in matching theory [Leo83] to compute

[Leo83] Leonard (1983): Elicitation of Honest
Preferences for the Assignment of Individuals
to Positions.

the opportunity costs for all affiliates with remaining capacity as the shadow
prices of a single LP:

Fact 9.1 Fix a matching-problem instance, in which all cases 𝑖 have size 𝑠𝑖 = 1. In
the LP relaxation of Matching(𝑁, 𝑐), let {𝑝ℓ}ℓ∈𝐿 denote the unique element-wise
maximal set of shadow prices for the constraints∑𝑖∈𝑁 𝑠𝑖 𝑥𝑖,ℓ ≤ 𝑐ℓ. Then, for each
ℓ with 𝑐ℓ ≥ 1,

𝑝ℓ = Opt�{𝑖 + 1, … , 𝑛}, 𝑐� −Opt�{𝑖 + 1, … , 𝑛}, 𝑐 − 𝑒ℓ�.

This suggests the procedure Pot1 for computing potentials, which is shown in
Algorithm 3.

We also develop a second method Pot2 for computing potentials, which is based
on a slightly different LP and has different theoretical underpinnings:

▶ whereas the matching LP for Pot1 does not include the current batch of arrivals,
the current batch is included in the LP for Pot2,

▶ whereas Pot1 uses the element-wise maximal set of shadow prices, Pot2 uses
the element-wise minimal one, and

▶ whereas Pot1 is theoretically derived from two-stage stochastic programming,
Pot2 is motivated by a connection to Walrasian equilibria.

For conciseness, we defer the formal definition of Pot2 and its connection to the
Walrasian equilibrium to Appendix B of the full version.

https://arxiv.org/pdf/2105.14388v2.pdf#page=29
https://arxiv.org/pdf/2105.14388v2.pdf#page=24
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9.4.2 Empirical Evaluation

We evaluate the employment of our potential-based matching algorithm on real
yearly arrivals at HIAS. For each fiscal year, we consider all refugees who arrived
in this period, and we consider them in the order in which they were received for
allocation by HIAS. For the capacities, we use the year’s final, i.e. most revised,
capacities.4 We also immediately take into account that affiliates are restricted in 4: When the number of refugees resettled

in the fiscal year exceeds the official capacity,
we use the number of resettled refugees in-
stead. In these situations, HIAS negotiated
an increase in capacity that is not always
recorded in our data.

which nationalities, languages, and family sizes they can accommodate, as well
as in whether they can host single parents and the constraints on tied cases.

Algorithm 3: Pot1(𝑘)
Parameter: 𝑘 ∈ ℕ≥1, the number of trajectories per potential computation
Input: remaining capacities 𝑐, the index 𝑡 of the last observed case,

characteristics of cases arriving in the past 6 months
Output: a set of potentials 𝑝ℓ for all affiliates ℓ

1 for 𝑗 = 1, … , 𝑘 do
2 for each 𝑖 = 𝑡 + 1,… , 𝑛, set 𝑠𝑖 and {𝑢𝑖,ℓ}ℓ to the size and employment

scores of a random, recently arrived case;
3 solve the following bipartite-matching LP:

maximize
𝑛
�
𝑖=𝑡+1

�
ℓ∈𝐿

𝑢𝑖,ℓ 𝑥𝑖,ℓ

subject to �
ℓ∈𝐿

𝑥𝑖,ℓ = 1 ∀𝑖 = (𝑡+1), … , 𝑛

𝑛
�
𝑖=𝑡+1

𝑠𝑖 𝑥𝑖,ℓ ≤ 𝑐ℓ ∀ℓ ∈ 𝐿 (∗)

0 ≤ 𝑥𝑖,ℓ ∀𝑖 = (𝑡+1), … , 𝑛, ∀ℓ ∈ 𝐿.

4 for each ℓ, set 𝑝𝑗ℓ to be the maximal shadow price5 of the constraint (∗);

5 set 𝑝ℓ ← (∑𝑘
𝑗=1 𝑝

𝑗
ℓ)/𝑘 for all ℓ;

6 return {𝑝ℓ}ℓ∈𝐿;

5: One way of finding the maximal shadow
price is to first solve the dual LP to find
its objective value, then adding a constraint
that constrains the objective of the dual LP
to be equal to this optimal objective value,
and to finally maximize the sum of dual vari-
ables 𝑝ℓ over this new restricted LP.The main way in which this experiment deviates from reality is the assumption

(made throughout this section) that cases have unit size. To satisfy this assump-
tion, we split each case of size 𝑠𝑖 > 1 into 𝑠𝑖 identical single-refugee cases with a
1/𝑠𝑖 fraction of the original employment scores. In subsequent sections, we will
repeat the experiments without this modification.

We study 6 fiscal years, from 2014 to 2019. As affiliates closed and opened across
these years, the number of affiliates varies between 16 and 24 (not counting the un-
matched affiliate ⊥). Finally, the number of arriving refugees (respectively, cases)
varies between 1 670 (resp., 640) and 4 150 (resp., 1 630) across fiscal years.

As shown in Figure 9.1, even the greedy baseline obtains a total employment
of between 89% and 92% of Opt(𝑁, 𝑐), the optimum matching in hindsight.
(One outlier is the year 2018, which we discuss below.) Nevertheless, the greedy
algorithm leads to between 50 and 100 fewer refugees finding employment every
year compared to what would have been possible in the optimum matching.
Our potential algorithms close a large fraction of this gap, obtaining between
98% and 99% of the optimal total employment, both for algorithms based on
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Figure 9.1: Total employment obtained by
different algorithms, assuming that cases are
split into multiple cases of size 1. Capacities
are the final capacities of the fiscal year. For
the potential algorithms, total employment
is averaged over 10 random runs. The num-
bers in the bars denote the absolute total
employment; the bar height indicates the
proportion of the optimum total employ-
ment in hindsight.
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Figure 9.2: Evolution of the per-refugee match score in order of arrival, for fiscal years 2016 and 2019 in the experiment of Figure 9.1 (split cases,
final capacities). Consecutive match scores are smoothed using triangle smoothing with width 500.

Pot1 and for those based on Pot2. Since experiments in this model take much
longer to run than those in subsequent models, we defer a comparison between
the two potential methods and between values of 𝑘 to Section 9.6.1, where we
can run the potential algorithms a sufficient number of times to discern smaller
differences.

The fiscal year 2018 stands out from the others due to the fact that the greedy
algorithm performs on par with the potential algorithms, at 99% of the hindsight-
optimal total employment. This is easily explained by the fact that the capacities
are much looser than in other fiscal years: whereas, in all other fiscal years
between 2014 and 2019, the number of arriving refugees amounts to between
84% (2019) and 97% (2016) of the final total capacity across all affiliates, this
fraction is only 48% in 2018. Since capacity is so abundant, the optimal matching
will match a large fraction of cases to their maximum-score affiliate, and the
greedy matching is close to optimal.

We also compare to the employment obtained by the allocation chosen by HIAS
(“historical”). This comparison gives the historical matching a slight advantage,
as HIAS sometimes overrides the incompatibility between an affiliate and a case,
which we do not allow any other algorithm to do.6 6: In these cases, we estimate the employ-

ment achieved by the case using the regres-
sion rather than using 𝑢𝑖,ℓ = −∞.In Figure 9.2, we investigate how the match score changes over the course of

two fiscal years, 2016 and 2019, chosen to contain one year in which the greedy
and historical baselines perform relatively poorly (2016) and one in which they
perform well (2019). As the match score of subsequently arriving refugees can
greatly differ, these graphs are heavily smoothed over time. If arrivals were drawn
from a time-invariant distribution, we would expect the curves for the optimum
matching in hindsight to be level, since how much employment the optimum
matching can extract from a case would be independent of the case’s arrival time.
Instead, we see that the employment prospects of arrivals fluctuate noticeably
over time; in particular, the early refugees in fiscal year 2016 and the late refugees
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Figure 9.3: Remaining priced capacity at the time of arrival of different refugees, for fiscal years 2016 and 2019 in the experiment of Figure 9.1 (split
cases, final capacities).

in fiscal year 2019 seem to have worse employment prospects than other refugees
in the plot.

The curves for both potential algorithms are nearly indistinguishable from one
another, which shows that the algorithms make very similar decisions. In 2016,
these curves start out closely tracking the curve of the optimal-hindsight match-
ing, but fall behind for the last cases, which we observe in most fiscal years.
The similarity of the curves over most of the year indicates that our approach
of sampling trajectories from past arrivals is nearly as useful as the optimum
algorithm’s perfect knowledge of future arrivals and that it leads to a similar
trade-off in extracting immediate employment versus preserving capacity for
later arrivals. Of course, the imperfect knowledge of the future incurs a small
loss towards the end of the fiscal year, likely because the amount of capacity
reserved per affiliate does not perfectly match the demand, which explains the
gap in total employment between the hindsight optimum and the potential al-
gorithms. This typical end-of-year effect is not very pronounced in fiscal year
2019, likely because the final arrivals of fiscal year 2019 have lower employment
probabilities than what would be expected based on past arrivals. Instead, the
potential algorithms fall behind the optimum algorithm for some period in the
middle of the year, perhaps because they are reserving capacity for late arrivals
which the optimum already knows to hold little promise.

The most striking curve is that of the greedy algorithm, which lies above those of
all other algorithms in the first quarter of arrivals, but then falls clearly below the
other curves in the second half. This observation can be explained by the effect
we predicted in the motivation of our potential approach: the greedy algorithm
extracts small additional gains in employment early in the arrival period, at
the cost of prematurely consuming the capacity of the most desirable affiliates.
Then, the lack of capacity limits the match scores of later arrivals, resulting in
an overall unfavorable trade-off. This effect can be directly seen in Figure 9.3,
in which we visualize the amount of capacity remaining in the most valuable
affiliates. Specifically, looking at all arrivals of the fiscal year, we compute the
shadow prices of the matching LP. At any point in time, we can then weight the
remaining capacity by these prices to obtain a priced capacity. In Figure 9.3, we
see that the optimum-hindsight matching and the potential algorithms use up
the priced capacity at a roughly constant pace and essentially consume it all. By
contrast, the greedy algorithm uses up the capacity very quickly, such that at the
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median refugee, only 22% (2016) or 17% (2019) of the priced capacity is left.

The historical matching made by HIAS does not have such obvious defects, but
still falls short in terms of total employment. In both reference years, the average
employment moves in parallel with the optimum matching, meaning that HIAS
does not overly focus on extracting employment at certain parts of the fiscal
year at the expense of others. However, the average employment consistently lies
below that of the optimum and of the potential algorithms. We see in Figure 9.3
that, in 2019, HIAS started consuming the priced capacity at a near-constant
pace very similar to that of the optimum algorithm. Around the median arrival,
however, the historical matching slowed down its capacity consumption and
ended up not consuming all priced capacity, which explains some loss in total
employment. One reason for this behavior might be that HIAS staff treat the last
9% of the capacity as a reserve that they are more reluctant to use. In a year such
as 2019, in which the overall arrivals were only 84% of the total capacity, this
heuristic might have actually kept much of the reserve capacity free, including in
the affiliates that could have generated higher employment. By contrast, the total
arrivals in 2016 amounted to 97% of the overall capacity, which could explain
why nearly all priced capacity was consumed in this year. Despite using up priced
capacity in a similar pattern as the optimum matching in 2016, the historical
assignment achieved lower matching scores throughout the year. This indicates
that the low employment of the historical matching is not just due to a reluctance
to use the entire capacity, but that the priced capacity is furthermore inefficiently
allocated.

9.5 Non-Unit Cases (𝑠𝑖 ≥ 1)

The most pressing aspect of refugee matching that we have ignored thus far is
that many cases do not consist of individual refugees. Instead, they consist of an
entire family of refugees, which has to be resettled to the same affiliate.

To accommodate cases consisting of multiple family members, we will from now
drop the assumption that the 𝑠𝑖 are 1. The main effect of this change is that the LP
relaxation of the ILPs Matching(𝐼, 𝑐) can now be a strict relaxation. Indeed, the
LP relaxation might allow for higher objective values because it allows fractional
solutions.7 As a result, our dual prices will no longer exactly compute the marginal 7: One can always find a fractional solu-

tion that splits cases into 1/𝑠𝑖 fractions sim-
ilarly to what we did in the evaluation of
Section 9.4.2.

value of a unit of capacity. In any case, to retain the exact connection to stochastic
programming in Equation (9.1), PM would have to subtract the opportunity cost
of 𝑠𝑖 units of capacity from 𝑢𝑖,ℓ, which might exceed 𝑠𝑖 times the opportunity cost
of a single unit of capacity.

However, as the capacity of most affiliates is much larger than the size of a
typical case, both approximations can be expected to be relatively close, which
is what we find empirically: we repeat the experiment of the previous section,
but without splitting up cases into individual refugees. The results are nearly
indistinguishable, which supports our decision to use LP relaxations even in the
setting with indivisible cases. The full figures are deferred to Appendix D.1 of the
full version.

https://arxiv.org/pdf/2105.14388v2.pdf#page=27
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9.6 Batching

A second aspect that we have not considered thus far is that HIAS does not
actually process arriving cases one by one, but in batches containing one or
multiple cases. Most of these batches result from the weekly meetings between
the resettlement agencies, but smaller batches with urgent cases are allocated
between the weekly meetings.

The fact that cases arrive in batches does not make the problem harder; after all, a
matching algorithm that does not support batching can still be used by presenting
the cases of each batch to the algorithm one by one. As we will argue, however,
batching represents an opportunity to improve on this strategy: there is a (limited)
opportunity to increase total employment and a (substantial) opportunity to
reduce running time.

Concerning total employment, using a non-batching algorithm in a batching
setting is wasteful since it ignores potentially valuable information. Specifically,
when the earliest cases of the batch are allocated, a non-batching algorithm
presumes that the characteristics of the other cases in the batch are not yet
known. Arguably, as the sizes of batches tend to be much smaller than the total
number of cases 𝑛, the amount by which accounting for this information can
increase total employment is likely to be limited.

As for running time, given that the matching algorithm receives no new infor-
mation between the first and last case of a batch, it seems reasonable not to
recompute potentials within a batch. As there tend to be 5 to 10 times more
cases than batches and as the computation of potentials is the bottleneck in the
running time of the potential algorithms, this promises to substantially speed up
the algorithm.

In adapting our algorithm PM to batching, we will not change how we compute the
potentials 𝑝ℓ. However, the algorithm now allocates all cases in the batch at once,
still with the objective of optimizing the immediate utility of the assignment less
the sum of potentials consumed. Thus, our extended algorithm PMB (“potential
match with batching”, Algorithm 4 in Appendix C of the full version) allocates
the current batch according to the solution to a matching ILP, in which the utility
of matching case 𝑖 to affiliate ℓ is set to 𝑢𝑖,ℓ − 𝑠𝑖 𝑝ℓ. Note that, if all batches have
size 𝑏 = 1, this algorithms coincides with our previous algorithm PM. Moreover,
PMB also generalizes the greedy algorithm previously implemented in Annie™,
which can be recovered by setting all potentials 𝑝ℓ to zero.

We can now compare the running time of our algorithms to the flagship algorithm
by Bansak [Ban20], which is very closely related, but does not use dual prices to [Ban20] Bansak (2020): A Minimum-Risk

Dynamic Assignment Mechanism Along with
anApproximation, Heuristics, and Extension
from Single to Batch Assignments.

compute opportunity costs and handles batching in a way that does not improve
running time. The computational bottleneck in both of our algorithms and theirs
is the computation of bipartite-matching LPs over the trajectories of simulated
future arrivals. Whereas we compute a single such program per batch of arrivals,
Bansak solves |𝐿| ⋅ 𝑏many such LPs per batch, where |𝐿| is the number of affiliates
and 𝑏 is the number of cases in the batch. In our dataset, a typical value of |𝐿| ⋅ 𝑏
is around 150, so these speed-ups are substantial.

https://arxiv.org/pdf/2105.14388v2.pdf#page=26
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Figure 9.4: Total employment, where cases
are not split and arrive in batches. Capac-
ities are the final fiscal year capacities. In
contrast to Figure 9.1, cases are treated as
indivisible, cases arrive in batches, and the
batching variants of greedy and the poten-
tial algorithms are used. For the potential
algorithms, the mean employment across 50
random runs is shown.
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Figure 9.5: Distribution of the total employ-
ment obtained by instantiating PMBwith dif-
ferent potential methods and different 𝑘, in
the experiment of Figure 9.4 (whole cases,
batching, final capacities) and over 50 ran-
dom runs per algorithm.

9.6.1 Empirical Evaluation

We repeat the experiment measuring the total employment obtained by the
algorithms, this time with the greedy algorithm and the potential algorithms
allocating cases in batches. As shown in Figure 9.4, the results again look very
close to those in the restricted setting of online bipartite matching, confirming
that our algorithmic approach generalizes well not only to non-unit case sizes
but also to batching as it is used in practice.

Since processing entire cases in batches is much faster than processing cases (or
individual refugees) one by one, we are now in a position to run each potential
algorithm many times and analyze the distribution of total employments. As
shown in Figure 9.5, the total employment produced by each potential algorithm
is sharply concentrated, especially when the algorithms use 𝑘 ≥ 3 trajectories to
compute duals.

Running each algorithm many times enables us to compare the relative perfor-
mance of the potential algorithms. Across both ways of computing potentials,
and all fiscal years (with the exception of 2018, where everything is very close
together), we see a clear tendency that averaging the potentials across more
trajectories improves the employment outcome. These effects are somewhat lim-
ited, though, as going from a single trajectory to nine trajectories improves the
median employment by less than half a percent of the hindsight optimum. As is
to be expected, increasing 𝑘 exhibits diminishing returns.
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For 𝑘 held constant, we observe that the Pot2 variants quite consistently out-
perform the Pot1 variants; again with the exception of 2018, in which a small
inversion of this trend can be seen. While all potential algorithms perform very
well, based on these results, we recommend the Pot2 potentials with a relatively
large 𝑘 for practical implementation. Of course, increasing 𝑘 increases the run-
ning time of the matching algorithm. However, since a resettlement agency
computes only one set of potentials per day, the algorithm runs in few seconds
even for 𝑘 = 9 (see Appendix D.2 of the full version).

To additionally support our observation that the potential algorithms outperform
the greedy algorithm and the historical matching, we repeat the experiment from
Figure 9.4 for additional arrival sequences derived from the historical data. As
we show in Appendix D.5 of the full version,we obtain similar employment
performance as in Figure 9.4 if the arrival sequence for each year is reversed,
or if we consider shifted yearly arrival periods from, say, April to the March
of the following year rather than fiscal years (from October to September). In
Section 9.7.2, we also evaluate the algorithms on bootstrapped arrivals. While
we discuss more specific observations there, the potential algorithms perform
similarly well or slightly better in that setting, consistently at 99% of the hindsight
optimum.

9.7 Uncertainty in the Number of Future Arrivals

Given that our algorithm PMB supports non-unit sized cases and batching, it
might seem that we are ready to replace the greedy algorithm in Annie™ by our
potential algorithm. However, our algorithm crucially relies on one piece of
input that the greedy algorithm did not need, namely, the total number of cases
arriving in the fiscal year. This number determines the length of the sampled
trajectories, which can greatly impact the shadow prices and, thus, how the
algorithm allocates cases.

In principle, the information given to resettlement agencies should provide a
fairly precise estimate of how many cases are expected to arrive. Indeed, before
the start of each fiscal year, the US Department of State announces how many
refugees it intends to resettle in that fiscal year, and resettlement agencies are
instructed to prepare for a certain fraction of this total number. In fact, HIAS sets
its affiliate capacities to sum up to 110% of this number of announced refugees,
which is intended to give local affiliates a good idea of how many refugees they
will receive while affording the resettlement agency some freedom in its allocation
decisions.

9.7.1 Relying on Capacities

It is thus natural to run our potential algorithms under the assumption that the
number of arriving refugees will be 1/(110%) ≈ 91% of the total announced capac-
ity.8

8: To convert the number of remaining
refugees into a number of cases, we divide
by the average case size of recent arrivals
(over the years, this average size fluctuates
between 2.4 and 2.6). While the number of
refugees who have arrived is below 91� of
the total capacity, this gives us a total num-
ber of cases 𝑛 for the algorithms. Once the
number of arrivals exceeds 91� of the total
capacity, we make the algorithms assume
that the current case is the last to arrive,
that is, all subsequently sampled trajectories
have length zero.

The result of this strategy is shown in Figure 9.6. Since these experiments use
the initial, unrevised capacities, the employment scores of the hindsight optimum
and the greedy algorithm may differ from those in previous experiments, which
used the most revised capacities.9

9: This means that the comparison to the
historical algorithm is not quite on equal
terms, since the latter is constrained by a
different set of capacities. In all fiscal years
except for 2017 and 2018, the final capacities
are element-wise larger than the original
capacities.In all fiscal years other than 2017 and 2018, the

https://arxiv.org/pdf/2105.14388v2.pdf#page=28
https://arxiv.org/pdf/2105.14388v2.pdf#page=31
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Figure 9.6: Total employment, where cases
are not split up and arrive in batches. The
potential algorithms no longer have access
to the true number of arriving cases but as-
sume that the arriving refugees amount to
91� of the total capacity. Capacities are the
initial capacities of the fiscal year (except for
historical). For the potential algorithms, the
mean employment across 50 random runs
is shown.
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Figure 9.7: Evolution of the per-refugee match score and remaining priced capacity in order of arrival, for fiscal years 2016 and 2019 and one run per
algorithm in the experiment of Figure 9.6 (whole cases, batches, initial capacities, potential algorithms do not know 𝑛). Dotted line show how many
refugees the potential algorithms expect. Smoothing as in Figure 9.2. Priced capacity is not shown for historical since it uses different capacities.

imprecise knowledge of future arrivals deteriorates the approximation ratio of the
potential algorithms, but the potential algorithms continue to clearly outperform
the greedy baseline overall, and they outperform the historical matching in every
single year.

Setting aside the outlier years of 2017 and 2018 for the moment, we investigate the
fiscal years 2016 and 2019, in which arrivals were otherwise highest and lowest
relative to the announced capacity. In fiscal year 2016, the total arrivals were
particularly large relative to the initial capacity: the arrival numbers added up
to 100% of the initial capacity rather than 91%, which means that our potential
algorithms expected around 3 770 refugees to arrive rather than the 4 150 that
ended up arriving. As a result, the potential algorithms consume the priced
capacity at an approximately constant rate, consuming it all around the expected
number of expected refugees (Figure 9.7, bottom left). Up to this point, the
potential algorithms are more generous in consuming capacity than would be
ideal given the actual number of arriving cases, which is why the potential
algorithms obtain a slightly higher average employment over the first three
quarters of arrivals (Figure 9.7, top left) than the optimal matching in hindsight.
For refugees arriving after the 3 770 expected refugees, however, the capacity
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Figure 9.8: Evolution of the per-refugee match score and remaining priced capacity in order of arrival, for fiscal years 2017 and 2018 in the
experiment of Figure 9.6 (whole cases, batches, initial capacities, potential algorithms do not know 𝑛). Dashed line shows evolution if potential
algorithm updates its expected arrival number at time of capacity revision (dotted line).

in the best affiliates is used up, which is why the averaged employment sharply
drops after this point.10 10: Note that, due to the triangle smoothing,

the drop starts dragging down the curve 500
arrivals before its actual start.In 2019, by contrast, fewer refugees arrived than expected, only 86% of the

total capacity. At the bottom right of Figure 9.7, it is visible that the potential
algorithms consume priced capacity at a slightly lower rate than the optimal
algorithm in hindsight, as they aim to use up the capacity around 2 440 refugees
rather than the 2 310 who ended up arriving. This effect is reflected in the average
employment rates (top right), which lie below that of the optimal algorithm
throughout most of the year.11 11: The drop in employment probabilities

at the end of the fiscal year affects all al-
gorithms including the hindsight optimum
andmust therefore be caused by an anomaly
in arrival characteristics.

The fiscal years of 2017 and 2018 stand out due to the fact that the total number of
arriving refugees fell far short of the announced number reflected in the approved
capacities: in 2017, arrivals amounted to 65% of the approved capacities, while
they amounted to only 46% in 2018. Both of these years fall into the beginning of
the Trump administration, which not only sharply reduced the announced intake
of resettled refugees, but furthermore abruptly halted the intake of refugees from
six predominantly Muslim countries starting from early 2017.

As the potential algorithm depicted in Figure 9.8 severely overestimates how
many cases will arrive, it holds back much more priced capacity than would be
optimal (bottom, solid lines). This causes the potential algorithms to extract less
employment throughout the year than the optimal algorithm (top, solid lines).
As observed in Section 9.4.2, the capacities in 2018 are so loose that the greedy
algorithm performs close to optimal.

In these two years, the US Department of State eventually reacted by correcting
the expected arrivals downward and instructing the resettlement agencies to
reduce their capacities. In fiscal year 2017, this revision came quite late and ended
up underestimating the arrivals: where the arrivals amounted to only 65% of
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the initial capacities, they exceeded the revised total capacity at a level of 103%,
rather than amounting to the 91% that was intended. Even if imperfect, this
signal that arrivals are much lower than originally announced is still useful to
the potential algorithms. Indeed, in Figure 9.8, the dashed curve corresponds to
a potential algorithm that still starts out expecting 91% of the initial capacities
to arrive, but expects only 91% of the revised capacities to arrive from the point
on where they were announced (vertical line). While this information comes
late, the algorithm in fiscal year 2017 uses the new information to burn through
the remaining priced capacity more aggressively (bottom left), which allows for
higher employment among refugees arriving after the revision of arrival numbers
(top left). As a result, the employment reaches 97% of the optimum in hindsight,
exceeding the value of 95% without the updated information that we showed in
Figure 9.6.

By contrast, the revision in fiscal year 2018 did not yield much useful information;
whereas the arrivals amounted to 46% of the initial capacities, they still amounted
to 48% of the revised capacities. This seems to indicate that, even after half of the
fiscal year’s refugees had already been allocated, the administration overestimated
the number of arriving refugees by a factor of two. Because the revision barely
changed the number of expected arrivals, giving the potential algorithm access
to this revised information does not have much effect (Figure 9.8, right).

While we have considered the informational value of revisions above, our exper-
iments have not considered that these revisions actually reduced the allowable
capacities. Although we include a variant of the experiment in Appendix D.6 of
the full version, it is difficult to meaningfully compare the employment achieved
by different algorithms if the parameters of the matching problem are changed
so drastically during the matching period. One particular challenge is that, while
the amount of reduction was extraneously decided, HIAS was involved in de-
ciding which capacities to decrease, which was done in a way that depended on
previous allocation decisions.12 Since we only know the revised capacities that 12: While the sum of capacities did not

change much in fiscal year 2018, the capaci-
ties of some affiliates were substantially de-
creased and those of others were substan-
tially increased.

were agreed upon, not the counterfactual revision of capacities that would be
made, the greedy algorithm and the potential algorithms might have already
exceeded a reduced capacity before it was announced. This means that the exper-
iment rewards algorithms for greedily using up the capacity in the best affiliates
before the revision, which we do not expect to be a good policy in practice. More
generally, a substantial change in capacities is an exceptional situation, outside
of our model, and cannot be addressed by our algorithm alone without manual
intervention.

9.7.2 Arrival Misestimation on Bootstrapped Data and
Incorporating Uncertainty

To obtain more systematic insights into the robustness of potential algorithms
to misestimated arrival numbers, we study bootstrapped case arrivals, which
allows us to simulate varying numbers of arrivals. The results of this experiment
are displayed in Figure 9.9. As a baseline, consider the greedy algorithm, which
obtains optimal employment when the number of arrivals is much lower than
the total capacity (say, 25% of the expected arrivals, which is 25%

110% ≈ 23% of the
capacity), but becomes more and more suboptimal the more refugees arrive.

https://arxiv.org/pdf/2105.14388v2.pdf#page=32
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Figure 9.9: Employment achieved by different algorithms as a function of how many refugees arrive. Refugee arrivals are bootstrapped over each
fiscal year’s historical arrivals, and the number of arriving refugees are given as a fraction of the historical arrivals. Capacities are 110� of historical
matching. Employment is measured as a ratio of the optimal hindsight employment for the same set of arriving refugees. Curves are averaged over
10 arrival sequences.

By contrast, the potential algorithms perform best (around 99% of the optimal
employment) when the number of arriving refugees matches what the algorithm
expects. On average, this number is around half of a percentage point higher
than in the corresponding non-bootstrapped experiments (Figure 9.4). Such an
increase is to be expected as the bootstrapping setup ensures that the algorithm
draws trajectories from the same distribution from which the arrivals are gener-
ated. In particular, the real arrival sequence used for Figure 9.4 might contain a
drift in refugee characteristics or a seasonality not captured by our algorithm,
and the lack of these features in the bootstrapped experiment allows for slightly
higher employment. It is just as noticeable, however, that this increase is only half
a percentage point, revealing that a drift of arrival characteristics and seasonality
does not account for most of the remaining optimality gap of our algorithm.

The further the actual arrival number deviates from this expectation, the further
the relative employment performance of the potential algorithm decreases. No-
ticeably, the performance more quickly deteriorates when the arrival numbers
exceed the expectation, versus falling short. This sharp decline makes sense
for two reasons. First, the algorithms aim to exploit all useful capacity exactly
at the expected number of refugee arrivals; thus, only a subset of the affiliates
remain available for subsequent arrivals. Second, once the number of arrivals
exceeds the expectation, the trajectories in the potential algorithms add no cases
beyond those that have already arrived, which means that the algorithm serves
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subsequent arrivals greedily. In the six fiscal years we observe, arrivals below the
expectation seem like a more urgent problem than arrivals above the expectation,
but over-arrivals might well become a problem under different political circum-
stances or when applying potential algorithms to other matching settings.

A natural way to make the potential algorithms more robust to inaccurate arrival
estimates is to treat arrival estimates not as exact predictions but as subject to
some uncertainty. Concretely, we adapt the potential algorithms by sampling
trajectories of different lengths, each drawn from a “prior” distribution whose
mean is the arrival estimate, conditioning this distribution such that trajectory
lengths are never less than the number of refugees who have already been al-
located. Conceivably, these adapted trajectories could generate potentials that
are robust across a wider range of arrival numbers, and the adapted algorithm
could therefore lead to higher employment when the official arrival numbers are
inaccurate. The most obvious distribution is perhaps a Poisson distribution. As
shown by the dotted line in Figure 9.9, using Poisson trajectories hardly changes
the employment outcomes for any of the experiments relative to the baseline of
fixed trajectory sizes. This is most likely due to the low variance of the Poisson
distribution. For a quite typical mean of 3 000 arriving refugees, 95% of the
probability mass lies within a distance of only 3.6% of the mean. For this reason,
we also try a distribution with overdispersion, specifically a negative binomial
distribution parameterized to have its mean equal to the expected arrivals and
its standard deviation equal to 10% of the expected arrivals. For example, if
again 3 000 arrivals are expected, 95% of the probability mass deviates up to
20% from the mean. As the figure shows, negative-binomial trajectories lead to
decent improvements in employment when more refugees arrive than expected.
When fewer refugees arrive than expected, using random trajectory lengths
helps more often than not, though with different degrees of success. Overall,
negative-binomial arrivals seem to make the potential algorithms marginally
more robust to misestimated arrival numbers, though not by enough to make
misestimation less of an overall concern. Additionally, this additional robustness
comes at a nonnegligible cost when arrival estimates are accurate.

9.7.3 Better Knowledge of Future Arrivals

In Section 9.7.1, we demonstrated that, even without outside supervision, our
potential algorithms lead to substantial employment increases over the baselines,
unless the announced capacities miss the eventual arrival numbers by an extreme
margin. Even in these typical years, however, more accurate arrival predictions
could increase the total employment on the order of percentage points of the
hindsight optimum. Obviously, more accurate information about arrivals would
be even more useful in years like 2017 and 2018, in which the official information
is unreliable.

One approach would be to use time-series prediction to estimate the number of
arrivals. For instance, when the US Department of State revised the capacities
for the fiscal year 2018 in January 2018 (several months into the fiscal year), the
announcement that 2.5 times more refugees were still to come than had already
arrived might have raised some doubts. However, the graph of monthly arrivals
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in Figure 9.10 shows that late increases in arrival rates may actually happen as
they did in fiscal year 2016.13 13: In fiscal year 2016, the number of ar-

rivals after January 2016 was 1.6 times larger
than the number that had arrived so far.
In the fiscal year of 2015, the number of
refugees arriving after January 2015 was only
75� of that arriving before.

A fundamental challenge that any data-driven approach faces is that there is very
little data to learn from. Indeed, while HIAS has data on hundreds of thousand of
refugees, they only have data on 15 fiscal years, which is, moreover, incomplete and
smaller-scale in earlier years. Thus, there is a limited foundation to learn about
how arrival patterns change between years. This task becomes especially difficult
given that arrival numbers are heavily influenced by external events such as
elections, the emergence of humanitarian disasters, and changes in immigration
policy, which cannot be deduced from past arrival patterns. Thus, while a time-
series prediction approach might lead to marginal improvements over naïvely
expecting 91% of the capacity to arrive, past arrival numbers are unlikely to give
enough information to accurately predict future arrival numbers.

Fortunately, resettlement agencies such as HIAS already possess much richer
information and insights into the dynamics of refugee arrivals than a pure data
approach would consider. In fiscal year 2017, for example, HIAS foresaw a wors-
ening climate for refugee resettlement immediately after the November 2016
election14 and was aware of concrete plans to drastically reduce refugee intake 14: https://www.hias.org/news/press-relea

ses/hias-calls-president-elect-trump-respe
ct-longstanding-refugee-policy

in January 2017,15 both before these changes were reflected in arrival numbers

15: https://www.hias.org/news/press-relea
ses/trumps-planned-action-refugees-betra
yal-american-values

and before the capacities were officially updated in March 2017. Similarly, HIAS
continuously monitors domestic politics and international crises for their po-
tential impact on resettlement, and moreover it has some limited insight into
the resettlement pipeline, which allows it to prepare for changes in arrivals. We
therefore believe that, rather than building a sophisticated tool for predicting
arrivals in a fully autonomous manner, it is preferable to allow HIAS staff to
override our prediction with more advanced information.

9.8 Implementation in Annie™ Moore

To enable HIAS to benefit from dynamic allocation via potentials, we have inte-
grated new features into its matching software Annie™ Moore. A crucial design
requirement is that HIAS staff must be able to override the allocation recommen-
dations of Annie™ when they are aware of requirements outside of our model.
From an interface-design perspective, the challenge is to visualize the effect of
such overrides on total employment, enabling HIAS staff to make informed
trade-offs. In the original, static model, this was easy enough: as the quality of
a matching was just the total employment of the current batch, the interface
labeled each case–locality match with its associated employment score, and staff
could drag the case to other localities to see the respective employment scores.

https://www.hias.org/news/press-releases/hias-calls-president-elect-trump-respect-longstanding-refugee-policy
https://www.hias.org/news/press-releases/hias-calls-president-elect-trump-respect-longstanding-refugee-policy
https://www.hias.org/news/press-releases/hias-calls-president-elect-trump-respect-longstanding-refugee-policy
https://www.hias.org/news/press-releases/trumps-planned-action-refugees-betrayal-american-values
https://www.hias.org/news/press-releases/trumps-planned-action-refugees-betrayal-american-values
https://www.hias.org/news/press-releases/trumps-planned-action-refugees-betrayal-american-values
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Figure 9.11:Updated Annie™ Interface. Fam-
ily tiles now show both original numeri-
cal employment scores of families in affil-
iates, as well as the adjusted employment
score by its shading. Green indicates posi-
tive adjusted scores, red negative scores, and
darker colors represent greater magnitudes.

In a dynamic setting, however, presenting only the employment scores may un-
intentionally encourage HIAS staff to greedily use capacity in their overrides, at
the expense of future arrivals.

As we illustrate in Figure 9.11, the new interface of Annie™ augments the original
interface with information about affiliate potentials, thereby taking future arrivals
into account. Specifically, the background color of the tile for case 𝑖 encodes the
adjusted employment score, that is, the original employment score 𝑢𝑖,ℓ less the
potential 𝑠𝑖 𝑝ℓ of the capacity consumed in affiliate ℓ.16 The fact that the algorithm 16: The employment scores of cases in af-

filiates are prominently retained in a text
label.

PMB always maximizes the sum of adjusted employment scores in its allocation
of the current batch means that the algorithm is explainable in terms of the
information presented to the user. In the interface, the green color spectrum
indicates positive adjusted employment scores (meaning that the employment
score of the case outweighs the loss in future employment), while the red color
spectrum highlights negative adjusted scores (where a placement reduces future
employment by more than its employment score). Darker colors signify greater
magnitudes.

In overriding the allocation recommended by Annie™, HIAS staff should be able
to quickly find alternative placements for a case that do not reduce immediate
and future employment by more than necessary. To support this workflow, our
interface shows the adjusted employment scores of a case across all affiliates at
a glance: as shown in Figure 9.12, upon dragging a particular case tile from its
current placement, all other case tiles temporarily fade in appearance, and the
shading of every affiliate tile temporarily assumes the adjusted employment score
relative to the selected case. By hovering a selected case tile over a new affiliate, the
original (numeric) employment score and the adjusted match score (background
color of the case tile) dynamically update. Moreover, incompatibilities with
affiliates due to nationality, language, family size, and single parent households
can be seen via an exclamation mark in the lower left corner of the affiliate tile.
After dropping the case tile in a new affiliate, the background color for each
affiliate returns to its original blue shade, and all affiliate-tile exclamation marks
disappear.

On a separate screen (not shown), Annie™ enables the entry of a prediction for
total refugee arrivals, as mentioned in Section 9.7.3. This estimate can be critical
to inform the process of estimating proper shadow prices, as at times HIAS is
in a better position to give more accurate case arrival predictions than officially
announced capacities.
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Figure 9.12:Moving a family tile. Other case
tiles fade, and affiliate tiles are colored as per
their adjusted employment scores in shades
of green (positive) or red (negative). Excla-
mation marks indicate incompatibilities.

9.9 Discussion

We have developed and implemented algorithms for dynamically allocating
refugees in a way that promotes refugees’ prospects of finding employment.
These algorithms outperform the baselines, even when taking into account how
refugee placement in practice deviates from a classic matching setting.

While we have tested the algorithms as an autonomous system, the success of
Annie™ in increasing employment outcomes in practice will depend on how it
performs in interaction with HIAS resettlement staff. In Section 9.7.3, we already
saw that the allocation decisions of Annie™ can greatly profit from human deci-
sion makers providing better estimates of future arrivals. Human input is equally
crucial in dealing with uncertainty in several other places: for example, HIAS staff
might intervene by correcting the arrival year of a case should the Department
of State’s estimate seem off, or they might increase some affiliate capacities late
in the year if they anticipate that these capacities can be increased. By allowing
all parameters of the matching problem to be changed, Annie™ allows HIAS
resettlement staff to improve the matching using all available information.

Ideally, the human-in-the-loop system consisting of the matching algorithm
and HIAS staff can combine the strengths of both of its parts: On the one hand,
the algorithms in Annie™ capitalize on subtle patterns in employment data and
manage capacity more effectively over the course of the fiscal year. On the other
hand, the expert knowledge of HIAS staff enables the system to handle the
uncertainty that is inherent in a matching problem involving the actions of
multiple government agencies, dozens of affiliates, and thousands of refugees. In
light of the administration’s recent increase of the total resettlement capacity from
15 000 to 125 000,17 we foresee both parts playing a crucial role: the increasing 17: https://www.hias.org/news/press-relea

ses/refugee-cap-fy2022-set-125000scale of the problem will make data-based algorithms more effective, and human
guidance will be necessary to navigate the evolving environment of a rapidly
growing operation.

https://www.hias.org/news/press-releases/refugee-cap-fy2022-set-125000
https://www.hias.org/news/press-releases/refugee-cap-fy2022-set-125000
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Throughout the chapters of this thesis, we have already drawn conclusions from
individual pieces of research. We conclude by reflecting more globally on the
work included, by answering two questions: How can computer science guide
democratic innovations, and which future directions can advance the study of
democracy in computer science?

10.1 How Can Computer Science Guide Democratic
Innovations?

Why, of all sciences, should computer science study democracy, and what does it
fundamentally have to offer? In the introduction, we answered a narrow version
of this question, by identifying three different modes of our work: designing
algorithms, analyzing processes, and identifying alternative processes. Here, we
posit three broader answers (neither disjoint nor exhaustive) to these guiding
questions, on which we elaborate below:

1. Computer scientists can bring expertise to practitioners’ algorithms.
2. Computer scientists can provide a precise language for the desiderata of

democratic processes.
3. Computer scientists can support the daily operations of practitioners.

Answer 1: Bringing Algorithmic Expertise to Practitioners’
Algorithms

Whether computer scientists are involved or not, democratic practitioners de-
velop and use algorithms. In some cases, such as the baselines in Chapters 2
and 5, these algorithms are already implemented as code and publicly accessible.1 1: In both cases, this availability was made

possible by the Sortition Foundation’s un-
usual technical expertise and its commit-
ment to open sourcing their tools.

In other cases, these algorithms are harder to spot, which was the case for four
additional selection algorithms that we learned of over the course of our dis-
cussions with other sortition organizations.2 These organizations did not think 2: See supplementary information 12 of

Flanigan et al. [FGG+21].of their sampling procedures as algorithms, and typically implemented them
not in code but using spreadsheets, dice, and flexibility for manual intervention.
Nonetheless, the goal of making combinatoric decisions in an impartial way
pushed each organization towards a distinct algorithmic approach.

A first contribution that computer scientists can make to these naturally emerg-
ing algorithms is the methodology of algorithmic analysis. In our experience,
questions that are natural from a computer science perspective played little role
in the discussion between practitioners prior to our involvement: Which prop-
erties does an algorithm satisfy? Which inputs does the algorithm perform worst3 3: “Worst” and “better” need not refer to

running time, but might also refer to the
quality of the solution, for example some
notion of the solution’s fairness.

on? Which algorithms are better than others? In both Chapters 2 and 5, our work
started by explaining shortcomings of the existing algorithms to practitioners,
which built the foundation for our development of new algorithms.

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=32
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As a second contribution, where limitations of the existing algorithms call for
the development of a new one, computer scientists can employ a large toolbox
of algorithmic techniques. In this thesis, we mostly applied techniques from
optimization (integer linear programming, column generation, submodular op-
timization, linear programming duality), but most techniques taught in courses
on algorithm design are likely to be new to practitioners and therefore potentially
valuable.

Answer 2: Providing a Precise Language for Desiderata

The field of political theory, where the desiderata of democratic innovations are
primarily discussed, formulates these goals in abstract terms that leave many
details unspecified. For example, Carson and Martin [CM99] categorize the [CM99] Carson andMartin (1999): Random

Selection in Politics.benefits of sortition into “(1) promotion of equality, (2) representativeness, (3) ef-
ficiency, and (4) protection against conflict and domination.” Trying to preserve
these benefits gives some direction in designing a selection algorithm (see Ap-
pendix A.1), but political theory does not make these desiderata so concrete as
to, say, make them measurable. In the few cases where political theory discusses
practical details, this is often in the context of a critique: For instance, political
theorists might point out that certain desiderata cannot be realized in practice,
but typically without suggesting what practitioners should do in the face of these
impossibilities.

Due to computer science’s roots both in mathematics and engineering, com-
puter scientists tend to formulate desiderata in a way that is highly different
from and complementary to political theory. First, since (theoretical) computer
scientists analyze processes through mathematics, the desiderata they study are
mathematical statements whose satisfaction can be objectively determined.4 For 4: This point is related to the role of com-

puting as a “formalizer” in promoting social
change in the categorization by Abebe et al.
[ABK+20].

example, in Chapters 2 and 3, we operationalized “promotion of equality” with
the more specific interpretation of “each agent has an equal marginal probability
of being selected to the panel.” Second, computer science’s origins in engineering
might explain why computer scientists tend to take on a constructive rather
than critical stance: when computer scientists show that a desirable property is
currently violated (or even impossible to satisfy), they are expected to build an
alternative process that satisfies the property (or an approximate version of it).
For instance, whereas multiple political theorists have pointed out that equal
chances of selection cannot be achieved in practical sortition, we were the first
to suggest a notion of “as close to equal chances as possible” in Chapter 2.

Of course, the choice of objectives is up to political theorists and practitioners,
not computer scientists. But work in computer science can act as a catalyst
for discussions among those former two groups: by confronting practitioners
with the choice between different algorithms, and by explaining the properties
underlying the computer science work, practitioners and political theorists are
nudged to more precisely state what they see as the goal.

Answer 3: Supportiong Practitioners’ Daily Operations

By offering hands-on support to practitioners, computer scientists can contribute
a technical expertise that is typically outside the main focus of democratic orga-
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nizations. Throughout the work on this thesis, this support of course included
helping practitioners use our website and tools, which has immediate benefits for
both sides. But our support extended to tasks not directly related to research, such
as building websites and forming diverse focus groups for screening materials.

Besides the immediate benefits of such close collaboration to practitioners, it
allows researchers to learn about practical problems and practitioners to learn the
range of what researchers can do. Both of these learning processes help identify
opportunities for computer science to support and inform practitioners’ efforts.
For example, the following three questions emerged in our collaborations and
are prime targets for future work:

▶ How can we incorporate the fact that some panel members drop out of the
assembly and must be replaced into our conception of fairness?

▶ How can panel organizers trade off the cost of the recruitment process with
the level of representativeness and fairness?

▶ If a panel organizer prefers to use a selection algorithm that can be executed
without a computer, which one should they use?

10.2 Future Directions for the Study of Democracy in
Computer Science

Going forward, we identify three priorities for directing our field towards inter-
esting mathematics, practical impact, and coherence: deliberation, incentivizing
participation, and engaging with normativity.

Direction 1: Deliberation as the Frontier of Computational Social
Choice

Traditionally, the field of computational social choice5 studies the aggregation of 5: And, more generally, its parent discipline
of social choice.individual preferences through voting. The success of deliberative democracy,

however, raises the question whether deliberation, not aggregation, should be
seen as the ideal of democracy — and how computational social choice can reflect
this shift.

Recent papers [CD20; FGMS17; GL16; PP15; ZLT21] have taken first steps on this [CD20] Chung and Duggan (2020): A For-
mal Theory of Democratic Deliberation.
[FGMS17] Fain et al. (2017): Sequential De-
liberation for Social Choice.
[GL16] Goel and Lee (2016): Towards Large-
Scale Deliberative Decision-Making.
[PP15] Perote-Peña and Piggins (2015):
A Model of Deliberative and Aggregative
Democracy.
[ZLT21] Zvi et al. (2021): Iterative Delibera-
tion via Metric Aggregation.

path by proposing procedural models of deliberation. So far, however, models
of deliberation are “toy models” that are only loosely inspired by deliberation;
as a result, these models can hardly claim to be stand-ins for deriving insights
about real-world deliberation. One way to develop more realistic models is
to root them firmly in the deliberation literature. A good starting point for
this agenda could be a paper by Dryzek and List [DL03], which disentangles

[DL03] Dryzek and List (2003): Social
Choice Theory and Deliberative Democracy.

the “informational, argumentative, reflective and social” effects of deliberation,
which is a much broader perspective on deliberation than the one that underlies
existing models. There is also an urgent need to develop theoretical models based
on empirical observations of deliberation, since such work can identify the most
important conditions for promoting the success of deliberation in practice. Once
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such models are available, problems such as our group-allocation problem in
Chapter 5 can and should be revisited with much greater depth.

Besides modeling deliberative processes, the success of deliberation raises ques-
tions about how computational social choice conceives of agents: What drives
real people towards successful deliberation, and how can we represent this drive in
our agent models? Currently, the agents studied in computational social choice
have fully-formed preferences, know the precise effects of possible outcomes,
are purely self-interested, and pursue this interest in a coldly calculating man-
ner. If real-world agents indeed had these characteristics, we would not expect
deliberation to have much effect on group decision making. By contrapositive,
the impact of deliberation should make us look for what our models are miss-
ing — new forms of partial information and bounded rationality, altruism, or
social norms?

Direction 2: Designing Processes in Which Voting Feels
Worthwhile

One of the worrying signs for the state of democracy is a global decrease in
voter turnout over the past decades [KB21]. How can democratic innovations [KB21] Kostelka and Blais (2021): The Gen-

erational and Institutional Sources of the
Global Decline in Voter Turnout.

encourage larger turnout? One possible lever is an agent’s expected benefit of
voting, which is the probability that the agent’s vote changes the outcome times
the expected change in the agent’s utility conditioned on their vote changing
the outcome. It is theoretically and empirically well-supported that the expected
benefit influences turnout [AK75; FOSY78; RO68], but increasing the benefit of [AK75] Ashenfelter and Kelley (1975): De-

terminants of Participation in Presidential
Elections.
[FOSY78] Frohlich et al. (1978): A Test of
Downsian Voter Rationality.
[RO68] Riker and Ordeshook (1968): A The-
ory of the Calculus of Voting.

voting is also an appealing goal in its own right: over time, voters should feel
that participation in the democratic process “pays off.” In single-winner plurality
elections (say, most national presidential elections), the expected benefit of voting
tends to be low because the probability of casting a pivotal vote is minuscule,
even more so when one candidate has a stable lead in support.

Other forms of elections offer more opportunities for votes to change the outcome,
and can thus potentially make voting more rewarding. Participatory budgeting
seems like a particularly promising candidate since its outcome structure (i.e.,
sets of budget-feasible projects) allows to satisfy both majority and minority
interests with part of the budget. Recent work on voting rules that provide strong
proportionality guarantees in participatory budgeting [PPS21] is exciting from [PPS21] Peters et al. (2021): Proportional Par-

ticipatory Budgeting with Additive Utilities.this angle because these rules ensure a form of responsiveness: if a project (say,
renovating a local school) would not be funded by default, but a modest number
of agents join the voting process from the political sidelines to support this
project, their participation must be rewarded by the project getting funded. In
the best case, such responsiveness might incentivize marginalized communities
to turn out at higher rates and thus decrease the demographic distortions in voter
turnout [LN14]. It seems highly attractive to strengthen these proportionality [LN14] Leighley and Nagler (2014): Who

Votes Now?guarantees (especially towards the elusive notion of core stability [PPS21]), but
also to think whether the perspective of encouraging participation inspires other
axioms for participatory budgeting.

Underlying these technical directions, the fundamental objective is a political one:
to create spaces where constituents can experience democracy benefitting their
daily lives. In a time of democratic cynicism [OEC22; WSC19]

[OEC22] OECD (2022): Building Trust to
Reinforce Democracy.
[WSC19]Wike et al. (2019):Many Across the
Globe Are Dissatisfied With How Democracy
Is Working., in which adherents
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of technocracy challenge the possibility of effective democratic governance [Bel15; [Bel15] Bell (2015): The China Model.
[Kha17] Khanna (2017): Technocracy in
America.

Kha17], proving the opposite is vital to defending democracy.

Direction 3: Embracing Normativity

As computer scientists, we are trained to derive factual statements such as “in
model X, algorithm Y satisfies property Z” or “on dataset X, algorithm A runs
faster on average than algorithm B,” which philosophers refer to as positive
statements. But when working on democracy, motivating our work or defining
desirable properties is inherently normative, i.e., dependent on subjective notions
of what is desirable for society. For example, a reader who is generally opposed
to citizens’ assemblies, or who has a very different conception of the objectives of
sortition, might not be convinced of the value of our work on selection algorithms.
But, if motivations are subjective, how can our field avoid being a collection of
arbitrary directions, just up to the authors’ personal beliefs?

One pragmatic tool for making directions less arbitrary is writing the moti-
vation of the paper for a broad audience of democrats, which is ideologically
and geographically unspecific. This approach is already the norm in the field.
We have aimed to follow this approach in our work as well; for instance, we
aimed to present citizens’ assemblies such that our work seems relevant not
only to, say, proponents of far-reaching reforms towards sortition, but also to
readers interested in citizens’ assemblies as a more modest instrument of citizen
consultation.

A more far-reaching approach to avoid arbitrary directions we want to propose
is for computer scientists to directly engage with the related normative literature.
Disciplines such as political theory, in which normative statements play a large
role, have long developed conventions that regulate how new positions must be
defended and connected to existing thought to avoid arbitrariness. By anchoring
itself to normative research, computer science can profit from these conventions.
Admittedly, we have not done so for most of the work in this thesis, but have
aimed to root our approach in Appendix A to political theory in Appendix A.1,
which we see as a model for our future work.

In fact, the need of connecting computer science research to normative literature
applies far beyond the study of democracy. Popular movements towards artifi-
cial intelligence for social good or mechanism design for social good by definition
require normative justification for how a piece of work in this area does indeed
serve the “social good.” Recently, there has been an increased focus on negative
social consequences of information technology; for example, the machine learn-
ing conference NeurIPS instructed authors to discuss “potential negative societal
impacts” of their work in 2022 [Neu22]. We believe that claims of positive social [Neu22] NeurIPS (2022): NeurIPS Paper

Checklist Guidelines.impact deserve equal attention, and more systematic attention than is currently
the norm.
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Appendix for Chapter 2: Fair
Algorithms for Selecting Citizens’

Assemblies A
A.1 Desiderata for Sortition in the Political Science

Literature

In this paper, we approach the problem of panel selection from a pragmatic angle.
We ask: taking as given the overall panel selection process (sending out invitations
uniformly at random, and then using quotas to enforce representativeness), what
is the best selection algorithm for practitioners to use?

To identify desirable properties of a selection algorithm, it is natural to take in-
spiration from political theory, where advantages and disadvantages of sortition
have been discussed in detail [Cou19; Eng89; Fis18; Smi09; Sto16]. However, one [Cou19] Courant (2019): Sortition and

Democratic Principles: A Comparative Anal-
ysis.
[Eng89] Engelstad (1989): The Assignment
of Political Office by Lot.
[Fis18] Fishkin (2018):Democracy When the
People Are Thinking.
[Smi09] Smith (2009): Democratic Innova-
tions.
[Sto16] Stone (2016): Sortition, Voting, and
Democratic Equality.

should not expect the political theory literature to give concrete instructions
for a practical selection algorithm, since the literature focuses on an idealized
sortition process that ignores the complications of the real-world settings in
which panels must be selected. In particular, the literature assumes that panels
can be selected by sampling directly from the population, whereby each member
of the population is selected with equal probability and will agree to participate
if invited [CM99; Par11; Sto11]. We refer to this procedure as idealized sorti-

[CM99] Carson andMartin (1999): Random
Selection in Politics.
[Par11] Parker (2011): Randomness and Le-
gitimacy in Selecting Democratic Represen-
tatives.
[Sto11] Stone (2011): The Luck of the Draw.

tion. Usually, in practice, a large majority of people decline to participate when
invited [Smi09].

Though this literature does not immediately prescribe a practical selection algo-
rithm, it informs our approach by identifying the values that should be pursued
when designing selection algorithms. In this section, we outline several promi-
nently advocated properties of idealized sortition, discuss how they are or are
not conducive to algorithmic implementation, and describe how these properties
complement or contradict one another. Ultimately, our approach of making
selection probabilities as equal as possible strives for promotion of equality, while
guaranteeing the achievement of representativeness as implemented by practi-
tioners via quotas.

A.1.1 Properties of Idealized Sortition

Following a model developed by Engelstad [Eng89] and elaborated upon by oth-
ers [CM99; Sto11], sortition should simultaneously (1) promote equality, (2) ensure
representativeness, (3) maximize efficiency, and (4) protect against conflict and
domination.

Equality

According to Engelstad, “The strongest normative argument in favour of sorti-
tion is linked to the idea of social equality and individual welfare”, which stems
from the fact that every constituent has an equal selection probability [Eng89].
Subsequent work in political theory has reaffirmed the importance of equal
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selection probabilities, even if different authors deduce this importance from
slightly different ideals: Some [Fis09; Fis18; Par11; Sto16] see the equal selection [Fis09] Fishkin (2009): When the People

Speak.
[Fis18] Fishkin (2018):Democracy When the
People Are Thinking.
[Par11] Parker (2011): Randomness and Le-
gitimacy in Selecting Democratic Represen-
tatives.
[Sto16] Stone (2016): Sortition, Voting, and
Democratic Equality.

probabilities of idealized sortition as an embodiment of democratic equality, the
ideal that a democratic decision-making process should give equal considera-
tion to all of its constituents’ preferences. Other authors [CM99; Par11] stress

[CM99] Carson andMartin (1999): Random
Selection in Politics.

equal probabilities as the hallmark of (prospect-regarding [Rae89]) equality of

[Rae89] Rae (1989): Equalities.

opportunity. A related argument is made by Stone [Sto11; Sto16]. Rather than

[Sto11] Stone (2011): The Luck of the Draw.

seeing equality as the goal in its own right, he views random allocation with
equal probability as the only way to satisfy allocative justice in the distribution of
public offices among constituents who all have equal claims to authority.

As we discuss in the introduction, perfect equality of selection probabilities is not
attainable within the constraints of practical sortition. In this paper, we handle
this impossibility by proposing a more gradual version of this goal: Subject to
achieving descriptive representation, one should make selection probabilities as
equal as possible. The view of political office as a good, and of sortition as a means
to allocative justice [Sto16], is a natural foundation for the approach of treating
panel selection as a problem of fair division (see supplementary information 9
of the full version).

Representativeness

Another important benefit of ideal sortition is that, with high probability, the
composition of the panel will resemble the population along all dimensions of
interest [Sto11]. Descriptive representation is a crucial assumption in Fishkin’s
argument that the result of a deliberative minipublic can reveal the likely outcome
of the whole population deliberating [Fis09; Fis18]. In addition to its contribution
to the quality of deliberation, descriptive representation is particularly valuable
in contexts of mistrust and marginalization [Man99]. [Man99] Mansbridge (1999): Should Blacks

Represent Blacks and Women Represent
Women?As stated above, the statistical properties of idealized sortition imply that any

possible division of the population is likely to be represented close to proportion-
ally on the panel, provided that the panel size is sufficiently large. By contrast, no
such guarantee can be provided in the realistic setting where constituents decline
to participate, which forces practitioners to select specific features for which they
want to enforce descriptive representation using quotas. Whereas our approach
focuses on making selection probabilities close to equal, we do not sacrifice
descriptive representation for this goal. Rather, organizing bodies can still set
quotas to ensure a desired level of descriptive representation, and our methods
only use the remaining freedom within these constraints to promote equality. In
this way, our method allows an assembly organizer to trade off representation
and equality by tightening or loosening the quotas.

Efficiency

In comparison to selecting representatives by election, some authors argue that
sortition is more efficient because it requires fewer resources [CM99; Eng89]. [Eng89] Engelstad (1989): The Assignment

of Political Office by Lot.For instance, campaigning and organizing elections are not necessary. Arguably,
this argument is more specific to the benchmark of elections than to sortition,
and subsequent works have put little emphasis on this point [Sto11].

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=22
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When considering the design of the selection algorithm, the only major resource
one might seek to use efficiently is time — namely, the time the algorithm takes
to run. Given that the selection of the panel from the pool is only a minor task
in organizing and convening a citizens’ assembly, as organizers spend much
more time recruiting the pool and organizing the deliberation. For this reason,
reducing the running time of the algorithm seems a frivolous efficiency. As we
show in Table 1, our algorithm LexiMin runs in seconds for most instances
and an hour at most. This is significantly longer than the running time of the
benchmark algorithm Legacy, but much faster than the process of executing
other selection algorithms using dice and spreadsheets, as practiced by some
organizations. We take this as an indicator that hours versus minutes of running
time is not a significant consideration in terms of efficiency.

Existing algorithms often confront practitioners with a hard trade-off between
representation and computational efficiency, since more numerous and tighter
quotas may drastically increase the running time of these algorithms. While
such a concern cannot be theoretically ruled out for any known algorithm (sup-
plementary information 6 of the full version), our algorithms delegate the task
of finding panels to a state-of-the-art ILP solver, a mature technology routinely
used to solve much harder tasks [GHG+21] than all panel-selection subtasks we [GHG+21] Gleixner et al. (2021): MIPLIB

2017: Data-Driven Compilation of the 6th
Mixed-Integer Programming Library.

have encountered. Therefore, we expect our algorithm to allow for much more
complex quotas without substantial increases in running time; the fundamen-
tal trade-offs between representativeness and equality, of course, persist. Our
algorithms also have an advantage in the (undesirable) situation where no panel
formed from the pool can satisfy the quotas. Whereas existing algorithms enter
an infinite loop in this situation until the user gives up, our algorithms’ first
call to the ILP solver will immediately reveal that the quotas are infeasible; in
these situations, our implementation solves a second ILP to suggest a minimal
relaxation of the quotas that can be satisfied.

Protection against Conflict and Domination

A final family of arguments stresses that, if the members of a panel are chosen
via idealized sortition, this procedure prevents interested parties from swaying
the selection for their benefit [CM99; Dow09; Eng89]. Stone summarizes these [CM99] Carson andMartin (1999): Random

Selection in Politics.
[Dow09] Dowlen (2009): Sorting Out Sorti-
tion.
[Eng89] Engelstad (1989): The Assignment
of Political Office by Lot.

arguments as follows:

“First, [sortition] can prevent wrongful action on the part of the
agent who must select officials. […] Second, it can prevent wrongful
action on the part of the officials selected. If the method of selection
is in any way predictable, outside interests might bribe or threaten
officials into conformity with their wishes. If the method is unpre-
dictable, then such wishes cannot be expressed at least until the
results of the lottery become known. […] Finally, competing elites
unable to stack the political process in their favor have less to fight
about.” [Sto11] [Sto11] Stone (2011): The Luck of the Draw.

In the practical setting of sortition, the additional stages of the selection process
(as compared to idealized sortition) inherently create opportunities for dishonest
agents to influence the composition and the decisions of the panel in ways that
cannot be remedied by a change of selection algorithm. First, with respect to

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=13
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=13
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concerns about wrongful action on the part of the officials, the panel organizers
wield a lot of influence in sending out the invitations, setting the quotas, and
handling the process of selecting the panel from the pool.

More fundamentally, when any selection algorithm enforcing descriptive rep-
resentation is used, a dishonest pool member can significantly increase their
chances of selection by misrepresenting their features. For example, this pool
member might pretend to have a different political orientation because they know
that people with this orientation are unlikely to participate, and thus are likely to
be underrepresented in the pool. Since, on average, the selection algorithm must
choose pool members from this group with higher probability, reporting this
feature will likely increase the agent’s probability of being selected for the panel.
So long as practitioners seek to enforce descriptive representation in the presence
of unequal rates of participation across subgroups, this type of manipulation
seems unavoidable.

If, despite these challenges, one wanted to design a selection algorithm to discour-
age manipulation, one would have to target a specific kind of manipulation. For
instance, for reducing the effect of bribing or intimidating pool members before
they are selected, the algorithm within our framework minimizing the largest se-
lection probabilities might be appropriate. Such an algorithm would increase the
cost to the manipulator since any bribed pool member would have a substantial
chance of not being selected to the panel, rendering the bribe futile. For other
threat models, it would be natural for the selection algorithm to maximize not
only the uncertainty of each agent being selected for the panel individually but
the uncertainty about the composition of the whole panel. A selection algorithm
maximizing this objective of maximum entropy could, in principle, be imple-
mented by uniformly drawing sets of 𝑘 pool members, repeating this process
until one set satisfies all quotas. Whether this selection algorithm can be sped
up to the degree of being practically relevant is an interesting question for future
work.

A.1.2 Beyond Idealized Sortition, and the Objective of Maximal
Fairness [CM99] Carson andMartin (1999): Random

Selection in Politics.
As we have described, a large body of political theory literature characterizes [Ley19] Leydet (2019): Which Conception

of Political Equality Do Deliberative Mini-
Publics Promote?
[Par11] Parker (2011): Randomness and Le-
gitimacy in Selecting Democratic Represen-
tatives.
[SBJB20] Steel et al. (2020): Rethinking Rep-
resentation and Diversity in Deliberative
Minipublics.

[Smi09] Smith (2009): Democratic Innova-
tions.
[Dow08] Dowlen (2008): The Political Po-
tential of Sortition.

[Sto11] Stone (2011): The Luck of the Draw.

the desiderata and benefits of idealized sortition. However, there is also research
that engages, as we do in this work, with sortition beyond the idealized assump-
tion that everyone is willing to participate. Such work often mentions stratified
sampling [CM99; Ley19; Par11; SBJB20; Smi09] as a sampling method that can
be used to reestablish descriptive representation despite differing response rates
across subpopulations. For details on stratified sampling and how it relates to our
work, see supplementary information 3 of the full version. In the political theory
literature touching on stratified sampling, several authors point out that the ben-
efits of idealized sortition do not perfectly extend to stratified sampling [Dow08;
Par11; Smi09; Sto11]. To our knowledge, however, the literature stops short of
proposing more gradual ideals, such as the maximal fairness objective we propose
to approximate equality.

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03788-6/MediaObjects/41586_2021_3788_MOESM1_ESM.pdf#page=6
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A.2 Additional Figures and Tables

Table A.1: Gini coefficient and geometric mean of probability allocations of both algorithms, for each instance. On every instance, Legacy has a
lower Gini coefficient and a larger geometric mean. For computing the geometric mean, we slightly correct upward empirical selection probabilities
of Legacy that are close to zero (as described in methods section “Statistics” of the full version).

Instance Gini coefficient Gini coefficient Geometric mean Geometric mean
of Legacy of LexiMin of Legacy of LexiMin

(lower is fairer) (lower is fairer) (higher is fairer) (higher is fairer)

sf(a) 51.2% 37.3% 6.5% 8.1%
sf(b) 59.6% 47.4% 3.5% 4.8%
sf(c) 57.0% 52.5% 8.3% 16.3%
sf(d) 59.3% 48.7% 3.5% 6.0%
sf(e) 64.4% 51.2% 2.2% 3.9%
cca 75.3% 67.8% 0.7% 3.5%
hd 64.5% 52.9% 3.1% 7.3%
mass 14.9% 14.8% 32.6% 32.7%
nexus 30.8% 25.4% 40.9% 44.2%
obf 58.9% 42.7% 3.7% 6.2%

Instance Share selected by Legacy with probability
below LexiMin minimum selection probability

sf(a) 47.1%
sf(b) 44.8%
sf(c) 40.4%
sf(d) 38.6%
sf(e) 48.4%
cca 55.8%
hd 53.1%
mass 12.9%
nexus 33.6%
obf 51.1%

Table A.2: For each instance, the share of
pool members selected with lower probabil-
ity by Legacy than the minimum selection
probability of LexiMin is shown. This cor-
responds to the width of the shaded boxes
in Figures 2.2, A.1, and A.2.

https://www.nature.com/articles/s41586-021-03788-6#Sec16
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Figure A.1: Selection probabilities given by Legacy and LexiMin to the bottom 60� of pool members on the 4 instances that are not shown in
Figure 2.2. Pool members are ordered across the x axis in order of increasing probability given by the respective algorithms. Shaded boxes denote
the range of pool members with a selection probability given by Legacy that is lower than the minimum probability given by LexiMin. Legacy
probabilities are estimated over 10 000 random panels and are indicated with 99� confidence intervals (as described in methods section “Statistics”
of the full version). Green dotted lines show the equalized probability (𝑘/𝑛).
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Figure A.2: Selection probabilities given by Legacy and LexiMin on all ten instances. Pool members are ordered across the x axis in order of
increasing probability given by the respective algorithms. In contrast to Figures 2.2 and A.1, this graph shows the full range of selection probabilities
(up to the 100th percentile). Shaded boxes denote the range of pool members with a selection probability given by Legacy that is lower than the
minimum probability given by LexiMin. Legacy probabilities are estimated over 10 000 random panels and are indicated with 99� confidence
intervals (as described in methods section “Statistics” of the full version). Green dotted lines show the equalized probability (𝑘/𝑛).
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https://www.nature.com/articles/s41586-021-03788-6#Sec16
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