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Abstract

Deep neural networks have seen great success in many domains, with the
ability to perform complex human tasks such as image recognition, text trans-
lation, and medical diagnosis; however, despite their remarkable abilities, neural
networks have several peculiar shortcomings and vulnerabilities. Many of these
weaknesses relate to a lack of conceptual soundness in the features encoded and
used by the network—that is, the features the network learns to use may rep-
resent concepts that are not appropriate for the task at hand, even when they
apparently allow the network to perform well on previously unseen validation
data. This thesis examines the problems that arise in deep networks when they
are not sufficiently conceptually sound, and provides steps towards improving
the conceptual soundness of modern networks.

The first contribution of this thesis is a general, axiomatically justified frame-
work for explaining neural network behavior, which serves as a powerful tool for
assessing conceptual soundness. This work takes the unique perspective that
to accurately assess the conceptual soundness of a model, an explanation must
provide a faithful account of its behavior. By contrast, the literature has of-
ten attempted to justify explanations based on their appeal to human intuition;
however, this begs the question, as it assumes the model captured conceptually
sound human intuition in the first place.

To the contrary, a large body of prior work provides conclusive evidence that
conceptual soundness is not the norm in standard deep networks, as adversarial
examples—small, semantically meaningless input perturbations that cause er-
roneous behavior—found ubiquitously therein, violate the tenets of conceptual
soundness. The second part of this thesis addresses this issue by contributing
a state-of-the-art method for training neural networks with provable guarantees
against a common class of adversarial examples.

Finally, we demonstrate that robustness to malicious input perturbations is
only the first step—with contributions uncovering several orthogonal weaknesses
and vulnerabilities relating to the conceptual soundness of deep networks.
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Chapter 1

Introduction

Deep neural networks have seen great success in many domains, with the ability to perform
complex tasks such as image recognition, text translation, and medical diagnosis—tasks pre-
viously only humans have been considered adequately capable of. However, notwithstanding
sensationalist claims of “human-level performance” on various tasks [56], modern neural net-
works remain prone to peculiar errors that humans would be unlikely to make. For example,
neural networks have been found to be easily fooled by inputs that are carefully crafted to
cause arbitrary classifications [111, 126, 141], to leak private information about the data
they are trained on [43, 83, 128], and to place undue weight on weak or happenstantial
correlations, leading to miscalibration and excessive bias [86]. These findings suggest that
despite their degree of success, modern machine learning methods and models suffer from a
multitude of weaknesses and vulnerabilities that require addressing if the limits of artificial
intelligence are to be advanced.

In this thesis, we examine a class of weaknesses of deep learning connected by a common
recurring theme: namely, a lack of what we will term conceptual soundness in the models
produced by modern learning algorithms. That is, the features a network learns to use may
represent concepts that are not appropriate for the task at hand, even when they allow the
network to perform well on previously unseen validation data.

One of the powers of deep networks is their ability to extract structure from large volumes
of raw, high-dimensional data in an unsupervised fashion. The layers of a deep network learn
to encode progressively higher-level features that can be used for tasks, such as classification,
without having to specify the concepts the network must use to perform its task effectively—
or indeed how such concepts can even be represented from the primitive form of the data
points it considers—a priori. While this has led to enormous strides in the capabilities
of modern AI, it comes with a level of opacity and mystique that makes neural networks
especially challenging to understand and analyze. In turn, the hidden risks of such systems
are elusive. Without a better understanding of what a network has learned, we may rightfully
be concerned about the quality of the learned features, and the way in which they are used.

Meanwhile, when networks indeed fail to be sound in the concepts they use, they con-
ceal erroneous or otherwise compromising behavior that may go undetected when they are
tested in tightly controlled circumstances resemblant of their training. The work presented
in this thesis addresses these concerns on several fronts, introducing analysis techniques to
determine when models are sufficiently trustworthy, studying the risks associated with when
they are not, and providing steps towards achieving more conceptually sound models.

1
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dog

dog

model 1

model 2

cat

dog

model 1

model 2

(a)

why dog? why dog?why dog? why cat?

model 1 model 2

(b)

Figure 1.1: (a) predictions of two different models on an image of a dog and an image of a cat.
We see that both models make the correct prediction on the dog image, but model 2 misclassifies
model 2 as a dog rather than a cat. (b) possible explanations summarizing the internal logic used
by each model to make its prediction on each image. The salient parts of the image (as determined
by each model) are circled. We see that model 1 correctly uses the subject of the image to make
its prediction, while model 2 erroneously focuses on the tennis ball in each picture, which it has
associated with the dog class.

The presentation of this thesis is divided into three parts, summarized in greater detail in
Sections 1.1–3. In Part I, we introduce the notion of conceptual soundness more concretely,
and contribute a general and flexible framework for assessing the conceptual soundness of
deep networks. Part II identifies the key role that a property called robustness plays in
setting a foundation for conceptual soundness, and contributes a state-of-the art technique
for producing robust neural networks. Finally, Part III contributes a novel analysis of two
other key issues, separate from robustness, that relate to the conceptual soundness of a
learned model. Specifically, we demonstrate how a lack of conceptual soundness compromises
the calibration of the model and the privacy of the data used to train it.

1.1 Conceptual Soundness

Suppose we have two models that perform image classification. When presented with the
picture of a dog shown in Figure 1.1a, both models correctly predict the class “dog.” How-
ever, when we present each model with the picture of a cat also shown in Figure 1.1a, we
find that the first model, model 1, correctly predicts “cat,” while the second model, model
2, erroneously predicts “dog” once again.

Imagine that we could query models 1 and 2 in order to better understand how this bug
comes about in model 2, and what model 1 does differently to avoid such a mistake. We may
then find, as illustrated in Figure 1.1b, that model 1 arrives at its predictions naturally, by
considering the dog that is the subject in the first image, and the cat in the second image.
On the other hand, when we press the logic of model 2, the cause of the error is revealed:
in both cases the model identifies a tennis ball in the picture, which it associates with the
dog class.

Although tennis balls may indeed be strongly associated with dogs in the training data—
and moreover, this may even reflect a true difference in dogs’ and cats’ respective natural
affinities for tennis balls—we as humans understand that a tennis ball cannot be a deter-
mining factor for distinguishing between cats and dogs. Put differently, a tennis ball is not
a sound concept for classifying cats and dogs. Thus, we will say that model 2 is not concep-

2



Identifying, Analyzing, and Addressing Weaknesses in Deep Networks

tually sound. By contrast, model 1 uses appropriate features to form its internal logic, and
can therefore be considered conceptually sound.

Conceptual soundness is clearly a desirable property for any machine learning model.
Even for models that apparently perform and generalize well, conceptual soundness is neces-
sary for establishing model trust and integrity. For example, suppose that no images of cats
with tennis balls (like the one in Figure 1.1) were seen by either model prior to deployment—
not even as part of a held-out validation set. In such a scenario, models 1 and 2 may be
indistinguishable using predictions on the available data alone. If model 2’s focus on tennis
balls is its only flaw, this may well be the case. On the other hand, when we peer into the
inner-workings of the two models, the inadequacy of model 2 becomes readily apparent.
Observing the conceptual soundness of model 1 boosts our confidence that it will handle
new images correctly, and understanding the precise way in which model 2 is conceptually
unsound on the picture of the dog enables us to anticipate the mistake it will make on the
picture of the cat (or any hypothetical image like it) in advance.

In practice, it is entirely possible—and likely—that evidence of a model’s lack of concep-
tual soundness will sometimes fail to arise in natural training and validation sets. Indeed,
as we will see, the extensively studied ability for adversarial actors to fool neural networks
into making arbitrary misclassifications is deeply related to a practically ubiquitous form of
conceptual unsoundness that is admissible on “natural” in-distribution points.

In order to assess the conceptual soundness of a model, we need to form an understanding
of what concepts the model has learned, and how it uses them. Like in the example in
Figure 1.1b, we need an abstracted explanation of the model’s “thought process,” which we
can then determine as either sound or unsound. This can be achieved using an explanation
framework, which is tasked with succinctly but accurately summarizing a model’s behavior
on some part of its input space so that it can be better understood. Of course, deep networks
are notoriously opaque and complex, meaning this task requires care. Moreover, while a
conceptually sound deep network may yet be difficult to understand due to the nature of
how it encodes its functionality, we cannot assume that a model is conceptually sound a
priori, meaning that we must be able to distinguish explanations that are inadequate at
meaningfully distilling a complex model’s behavior from those that are symptomatic of the
underlying model’s unsoundness. That is, ultimately, quality explanations require quality
models.

Part I of this thesis addresses the problem of exploring and evaluating conceptual sound-
ness in deep neural networks. We begin by defining conceptual soundness in more concrete
terms in Chapter 2, as it lies at the heart of our discussion throughout. Next, Chapter 3
contributes Internal Influence, a powerful and flexible explanation framework for deep net-
works that generalizes prior work while offering several unique capabilities that make it a
particularly valuable tool for assessing conceptual soundness. Finally, Chapter 4 discusses
the challenge of evaluating explanation frameworks themselves, offering a critique of some of
the flavors of empirical tests that have been proposed for this in the literature, while arguing
instead for a set of natural axioms to justify the explanations produced by a framework.

1.2 The Role of Robustness

Continuing our series of examples from Section 1.1, consider a third image classification
model, model 3. Suppose that model 3, like model 1, does not make the mistake of encoding
tennis balls as a feature for identifying dogs. However, it contains a perhaps more insidious
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= + 0.01×

car features?
dog sports carmodel 3

Figure 1.2: Prediction of a model on an image of a dog (left) and a perturbed image (right) derived
by adding barely-perceptible noise-like features to the original image. We see that the model makes
the correct prediction on the original image, but incorrectly predicts “sports car” on the perturbed
image rather than “dog.” This discrepancy suggests that that the model perceives the nose-like
features as indicators of sports cars.

bug, illustrated by the example in Figure 1.2. In this example, model 3 is presented with two
images. The first, on the left is the same dog image from our previous example, which model
3 correctly labels. The second image appears visually the same, but has been perturbed
slightly with a pattern that, even when amplified to be detectable by the human eye, looks
essentially like noise. On this perturbed image, model 3 perplexingly predicts “sports car,”
a clearly incorrect label entirely unrelated to the contents of the image.

Taking the performance implications of this strange bug aside for a moment, consider
what this example entails for the conceptual soundness of model 3. First, how can the
model’s prediction of “sports car” on the second image be explained? Given that the added
perturbation led the model to change its prediction from “dog” to “sports car,” it seems the
model treats these noise-like features as important indicators of sports cars, constituting a
clear violation of conceptual soundness.

Conversely, consider the explanation for model 3’s correct prediction of “dog” on the
first image. At some level of abstraction, it is possible that model 3 identified sound dog
features; however, more locally, it applies less intuitive logic. Namely, precisely because each
of the pixels did not take their nearby perturbed values from the second image, model 3
predicted “dog,” when it could easily have predicted “sports car.” This may seem like a
facetious explanation—there are many features besides the noise-like perturbation that are
not present in the first image—however, the perturbation (or lack thereof) is particularly
salient because it represents such a small change to the input, meaning model 3 is highly
sensitive to its presence. In other words, the perturbation represents a highly important
direction (for both dogs and sports cars) in which the model’s output rapidly changes.

The perturbed image from Figure 1.2 constitutes an instance of what has become known
in the literature as an adversarial example, recognized to be first reported on by Szegedy
et al. [141]. As in our illustration in Figure 1.2, an adversarial example is an input to a
model that resembles one class (e.g., “dog”), while being classified as another (e.g., “sports
car”) by the model. While the concept of “resemblance” is nebulous, we typically take it to
mean that an adversarial example is derived by perturbing a natural input in a semantically
meaningless way—for example, the perturbation may be small enough to be imperceptible
to the human eye (like in Figure 1.2), or simply inconspicuous in the given context.

Adversarial examples impact the reliability of neural networks that are vulnerable to
them—and constitute a security concern in safety-critical machine learning systems—as they
lead to unexpected erroneous behavior on seemingly benign inputs. Moreover, as discussed,
they represent a fundamental hurdle for conceptual soundness. As such—and due to their
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ubiquity in standard neural networks [19, 48, 111, 141]—the problem of adversarial examples
is of central importance to modern machine learning.

To defend against adversarial examples, we often aim to obtain so-called robust models,
that are resistant to malicious perturbations. Methods for improving model robustness usu-
ally consider a specific class of adversarial examples that can be precisely defined without
depending on an ill-defined notion of human perception, namely small-norm adversarial
examples. As the name suggests, a small-norm adversarial example is one for which the
distance (according to some metric, e.g., Euclidean distance) between the original point and
its perturbed counterpart is below some small threshold, typically denoted by ε. In terms of
perception, when ε is sufficiently small, any points that are ε-close to the original input will
be perceptually indistinguishable from the original input, meaning that small-norm adver-
sarial examples can be properly considered a subset of the broader notion of perturbations
that preserve the “resemblance” of a point.

We say that a model is locally robust at a point, x, if all points within a distance of ε from
x receive the same label as x from the model. Hence, we see that small-norm adversarial
examples cannot be derived from points for which a model is locally robust. We may thus
informally refer to a model that resists adversarial examples by achieving local robustness
at as many points as possible as a robust model.

Part II of this thesis is dedicated to addressing the challenge of robustness as an im-
portant cornerstone of conceptual soundness. Chapter 5 introduces adversarial examples,
robustness, and their relation to conceptual soundness more formally. Chiefly, we conclude
in this chapter that robustness is necessary for conceptual soundness. Next, in Chapter 6,
we delve into our contributions to the literature on training models that achieve provable
guarantees of robustness. Specifically, we propose an elegant and effective defense that mod-
ifies the architecture of a neural network to naturally provide certificates of local robustness
without introducing overhead to the network’s inferences. Finally, Chapter 7 discusses lim-
itations of local robustness, demonstrating that in some contexts it is too stringent (we
propose some natural relaxations), while at the same time it is insufficient to ensure con-
ceptual soundness.

1.3 Weaknesses Related to Conceptual Soundness

As we have seen, conceptual soundness is a desirable property for reliable neural networks.
Furthermore, while robustness serves as an important step in achieving conceptual sound-
ness, it is not sufficient to guarantee that the model will use features appropriately. Indeed,
one need look no further than our original example in Figure 1.1 to find an illustration of
this point. Namely, it is entirely possible that model 2, which erroneously conflates dogs with
tennis balls, is a perfectly robust model—at least in the sense of local robustness described
in Section 1.2 prior. That is, perhaps model 2 cannot be fooled via small perturbations into
changing its perception of the high-level features it observes. Even carefully-crafted manip-
ulations may not lead the model astray from correctly identifying tennis balls, dog ears, cat
noses, etc. Nonetheless, if it sees a tennis ball it will insist that it has been presented with
a picture of a dog regardless of the other features available.

In practice, numerous issues may arise in deep networks that are intrinsically tied to
conceptual soundness, but not necessarily to robustness. In the final part of this thesis,
we embark on a deep dive into two such issues. The first, which we will focus on most
heavily, is the concern of data privacy. Essentially, a model that is too closely tailored to
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its training set may unwittingly leak private information contained in the training data.
A particular consequence of this issue, which is studied much more broadly in the field
of machine learning, is overfitting, wherein a model behaves differently on points from its
training set than on novel instances. Second, we will examine how a model may learn to
place undue weight on weak or happenstantial correlations, leading to miscalibration and
excessive bias, a phenomenon that has been termed feature-wise bias amplification [86].

Overfitting and Privacy Risks

Overfitting is a central problem in machine learning that is strongly tied to the reliability of
a learned model when it is deployed on unseen data. Overfitting is often measured—or even
defined—by the difference in accuracy obtained by a model on its training data, compared
to on previously unseen validation data (i.e., the generalization error). While this is a useful
metric that broadly captures the extent to which a model will make mistakes on new points
(one of the key problematic implications of overfitting), we will instead take a more general
and nuanced take on overfitting. In particular, we will examine a key mechanism underlying
overfitting: the encoding and use of unsound features; i.e., the lack of conceptual soundness.

In essence, deep networks function by learning to extract high-level features that en-
able them to make predictions on new inputs. While some of these features may truly be
generalizable, conceptually sound predictors, others may be learned simply because they
coincidentally aid classification on the training set only. The latter type of learned features
are not conceptually sound, and thus may lead to anomalous or incorrect behavior on unseen
points, i.e., overfitting. For example, in our example from Section 1.1, model 2 learned to
associate tennis balls with dogs (presumably because its training set featured this associa-
tion), leading to the mistake we observed when the model was presented with a cat with a
tennis ball.

It is worth taking note that this may not have been measured as overfitting in the
classical sense (i.e., measurable generalization error) if no instances like the cat-tennis-
ball example were included in the validation set used to calculate the generalization error.
Moreover, while overfitting through the use of a conceptually unsound, but possibly generally
occurring feature (like a tennis ball) may indeed fail to be measured as generalization error,
more subtle, yet possibly more egregious cases of overfitting may be even more likely to go
undetected on sample data. For example, if some image in the training set had been directly
memorized as a feature itself, the effect of such blatant overfitting may be kept highly
localized to the memorized point. Thus, in addition to potentially causing misclassifications,
overfitting presents a privacy risk. Namely, by learning features that are overly-specific to
the training set, models will inadvertently leak information about their training data. The
work presented in Chapter 8 uses insights in line with those presented here to show how
a range of different types of attackers can make various sorts of inferences about the data
used to train a model.

Feature-Wise Bias Amplification

Bias amplification occurs when the distribution over a model’s prediction outputs is more
skewed in comparison to the prior distribution of its prediction target. For example, suppose
we have a fourth model, model 4, performing the same image classification task used in our
illustrations throughout this chapter. Suppose further that 75% of the images presented
to model 4 would always be cats (perhaps due to the abundance of cat videos on the
internet). In this case, model 4 would exhibit bias amplification if, for example, 90% of
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its predictions come back as “cat” (amplifying the 75% prior). This phenomenon has been
observed and reported on in the context of several real classification tasks in the recent
literature [86, 139, 171].

Intuitively, bias amplification is always undesirable, since it necessarily implies imperfect
accuracy. In the strictest sense, however, this is not entirely true: as we will see, bias am-
plification may be unavoidable in contexts where the available features are not sufficiently
informative. Nevertheless, in practice, bias amplification has been reported in contexts where
the features presumably contain sufficient information to classify accurately, suggesting that
it is in fact detrimental to the model’s utility. In Chapter 9 we show that indeed, a partic-
ular form of strictly detrimental bias amplification may arise that can be attributed to a
suboptimal weighting of features by the learning process—we call this feature-wise bias am-
plification. This form of bias amplification constitutes a violation of conceptual soundness,
as it implies that the model does not use features appropriately.
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Part I

Evaluating
Conceptual Soundness
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Chapter 2

Explanations and
Conceptual Soundness

Conceptual soundness, a theme we will recurrently visit throughout this thesis, is paramount
to establishing model trust and avoiding a myriad of potential weaknesses and vulnerabilities
in deep networks. While we previously introduced conceptual soundness informally—as the
proper use of appropriate features by a model—we now turn to make this notion more
concrete in this brief chapter. Section 2.2 presents a formalization of conceptual soundness,
which we state in terms of an explanation framework, formally defined in Section 2.1.

2.1 Explanation Frameworks

Typically, it is most useful to think of a neural network abstractly as a function, f : Rn Ñ
Rm, where n and m represent the input and output dimensions, respectively. Primarily, the
work in this thesis will consider neural network classifiers, which categorize their inputs into
a discrete set of classes. In such cases,m represents the number of classes, and each dimension
of f ’s output corresponds to a logit value, or unscaled probability score, for a particular class.
These logit values are often scaled to a probability space and interpreted as confidences. We
will find it useful to distinguish between the network’s (discontinuous) prediction function,
F : Rn Ñ rms, and (continuous) logit function f , using an upper/lower-case notation. The
predictions can be derived by taking the index of the maximal logit output from f , i.e.,
F pxq “ argmaxitfipxqu.

The types of functions neural networks are employed to capture often correspond to
high-level human tasks, making it unclear how one would explicitly construct them. The
“magic” of neural networks comes from their ability to learn such complex functions from
simple parameterizations and learning objectives (and lots of data). The resulting systems
may achieve impressive results, but are intrinsically opaque as their parameterizations do
not aid particularly in forming an understanding of the nature of the function they represent.
Thus, in order to gain transparency and insight into our learned models, it is helpful to have
the ability to probe their behavior through an explanation framework. As suggested by the
discussion in Chapter 1, explanations provided by such frameworks allow us to diagnose
potential problems in models that might otherwise elude us, and to increase our confidence
in models that prove to act on sound principles.

11
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Formally, an explanation framework, which we will denote by χ : pRn Ñ Rmq Ñ Ψ Ñ Ω,
is a function from a model, f : Rn Ñ Rm, and a space of explanation parameters, Ψ, to
a space of possible explanations, Ω. As an illustrative example to understand what these
components mean, we will recall the explanations from Figure 1.1b in Chapter 1. In this
example, explanations were produced as a function of a given model and image. Concretely
then, the corresponding parameter space would be Ψ “ Rn, the space of inputs to the model.
The resultant explanations consisted of a circled region superimposed onto the provided
image, indicating the most salient region of the original image contributing to the model’s
prediction. Thus, the corresponding explanation space for this framework could be defined as
the set of all circles that could be drawn onto the provided image. More explicitly, this could
be represented as Ω “ R3, the set of 3-tuples consisting of an x-coordinate, y-coordinate,
and radius of the superimposed circle.

For the remainder of this chapter, we will consider this toy explanation framework as
a running example. The precise function χ in pRn Ñ Rmq Ñ Rn Ñ R3 that produces the
explanations is not important, and can be considered a black box for now. We will revisit
explanation frameworks again in more detail in Chapter 3 when we introduce Internal
Influence for influence-directed explanations [85], a real-world explanation framework.

As a final remark, we have not, as of yet, described the requisite properties of χ that would
allow us to consider its outputs to be valid “explanations” of the provided model. Clearly,
it would seem improper to refer to just any arbitrary function in pRn Ñ Rmq Ñ Ψ Ñ Ω,
as an explanation framework—at the very least the purported explanations should be tied
in some meaningful way to the model f and the explanation parameters φ. We will refer to
this property as faithfulness; intuitively, an explanation framework is faithful to the model
f if it produces explanations that are causally related to f . We will define the concept of
faithfulness more rigorously in Chapter 4 when we provide an axiomatic justification for
Internal Influence.

2.2 Conceptual Soundness

We now turn to defining the notion of conceptual soundness more explicitly. We will do so
in terms of a set of “desired” explanations that we would be satisfied with obtaining on an
ideal model. More formally, let Ω˚ : Ψ Ñ 2Ω be an explanation criterion. Essentially, Ω˚

maps possible parameterizations of χ to a set, Ω˚pφq Ď Ω, of admissible explanations for
that parameterization. In terms of our example explanation framework from Section 2.1,
Ω˚ specifies a set of acceptable superimposed circles for each possible image. For example,
on the dog image from Figure 1.1, we may allow a range of circles that capture the the dog
from the image; however, we would not admit circles that focus on the tennis ball, or any
background part of the image.

There may be certain parameterizations that do not make sense to consider—e.g., an
image consisting entirely of noise. For such parameterizations, we can simply let Ω˚pφq “ Ω,
indicating that no requirements are imposed on the explanations produced on these parts
of the parameter space.

Using the concept of an explanation criterion, we are now ready to provide a formalization
of conceptual soundness, stated in Definition 2.1. Intuitively, this definition states that a
model is conceptually sound if the explanations produced for the model are consistent with
our desired explanations.

12
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Definition 2.1 (Conceptual Soundness). Given a faithful explanation framework, χ : pRn Ñ
Rmq Ñ Ψ Ñ Ω, and an explanation criterion, Ω˚ : Ψ Ñ 2Ω, we say that a model,
f : Rn Ñ Rm, is conceptually sound if

@φ P Ψ . χpf ; φq P Ω˚pφq

While Definition 2.1 is stated universally over the entire parameter space, it should be
clear that it also makes sense to refer to a model as conceptually sound in some parts of the
space—i.e., those for which χpf ; φq P Ω˚pφq—and not others. In other words, Definition 2.1
can be extended to capture partial conceptual soundness.

To match the informal intuition we have presented for conceptual soundness previously,
we note that conceptual soundness should principally be a property of a model. That is,
whether or not a model is conceptually sound should be a reflection of the model itself.
The explanation framework through which the model is defined should not artificially lead
to conceptual soundness, nor should a lack of conceptual soundness be an indictment of
the underlying explanation framework. The former is ensured if the explanation framework
is faithful to the model, which essentially entails that the model must earn its desired
explanations rightfully.

As to the latter point, we see that a model may fail to be conceptually sound when the
explanation criterion is not achievable within the given explanation framework. To avoid
this setting, conceptual soundness can only be considered meaningful in cases where the
explanation framework is sufficiently expressive (Definition 2.2) for our given requirements.

Definition 2.2 (Sufficient Expressiveness). We say that an explanation framework, χ :
pRn Ñ Rmq Ñ Ψ Ñ Ω is sufficiently expressive for explanation criterion, Ω˚ : Ψ Ñ 2Ω if
Df P pRn Ñ Rmq such that f is conceptually sound with respect to χ and Ω˚.

We will typically assume that Definition 2.2 holds, meaning that our desiderata are
“reasonable” for the context they are given in.
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Chapter 3

Influence-Directed Explanations

When a deep neural network makes a decision, we would like to know that we can trust
it. Did our model make a connection between spuriously-correlated events? Did our model
learn a pattern that we overlooked but might find useful? If our model made a mistake,
why? Answering these high-level questions requires the ability to make a rich set of queries
that help us learn about a model’s predictive behavior and assess its conceptual soundness.
Primarily, an explanation framework is meant to give us the means to make such queries;
its utility comes from its ability to express and accurately answer queries.

As compared to inherently interpretable machine learning models, such as simple decision
trees or linear classifiers, deep networks are capable of far more complex behavior, but
operate opaquely. As the power of deep networks is often required for the most challenging
tasks, if we additionally desire transparency, we are left with the task of understanding deep
network behavior post hoc. This should be seen as a scientific process; the network’s full
behavior cannot necessarily be summarized succinctly, but we can aid our understanding of
its most important characteristics through carefully-tailored queries that enable hypothesis
formulation, evaluation, and refinement. One explanation may not be sufficient to totally
“understand” a neural network, but it should provide insight that sharpens our conception
of it, and guides further inquiry.

In this section, we present a framework1 that enables this kind of analysis by giving a
saliency score to the features of the network indicating their importance in a given context.
Our framework provides unique flexibility in terms of (1) describing what behavior we would
like to explain—a prediction on a particular instance? A distinction between two specific
classes?—(2) drilling into highly-localized behavior or zooming out to capture global trends
internalized by the model; and (3) working with the concepts learned by the model and
understanding how these concepts contribute to the network’s decision-making.

As the primary building block in computing this importance score, we use the gradient of
the network with respect to its features. The gradient has been used in several explanation
frameworks, as it provides a causal account of how a function’s inputs affect its output.
Intuitively, this facilitates faithfulness, identified in Chapter 2 as a crucial property for
explanation frameworks. The sense in which this is related to a concrete notion of faithfulness
is explained in Chapter 4, where we show that our framework is justified via a set of natural
properties that it uniquely possesses.

1An implementation of our framework is available at https://github.com/truera/trulens [32].
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3.1 Influence, Attribution, and Saliency

The majority of post-hoc explanation techniques can be considered to be what we will call
saliency measures. A saliency measure calculates a score for each of the features of a network
representing their respective importance towards the model behavior being explained. In the
context of images, the saliency score of input features can easily be interpreted by simply
visualizing them as a heat map localizing the important parts of the image; however, we
will see that saliency scores can be used in other ways as well.

When saliency scores are to be interpreted directly (e.g., as in a heat map), the saliency
measure itself constitutes an explanation framework. Recall from Chapter 2 that an expla-
nation framework maps a model, f : Rn Ñ Rm, and some explanation parameters, φ P Ψ,
to an explanation from some explanation space, Ω. For heat map explanations, Ω would be
the set of possible heat maps, typically in the same dimension as the inputs to the model;
i.e., Ω can typically be represented as Rn.

We find it useful to make a particular distinction in the units, so to speak, of Ω, as they
impact the way in which the explanations should be interpreted. Though this distinction is
not commonly made in the literature, various proposed saliency measures have used different
units. Perhaps the simplest saliency measure, first proposed by Simonyan et al. [131] in 2014,
is to take the gradients of the network’s output2 with respect to its input. The resulting
saliency scores are properly measured in units of output per unit of input; we will refer to
saliency scores taking these units as influence—as in, the ability of each feature to influence
the output. It has also been proposed to consider the product of the input gradients and
their respective input values (i.e., “gradient times input” [2, 74, 129]). By multiplying by the
input, these saliency scores measure the importance of features in terms of units of output;
we will refer to saliency scores taking these units as attribution—as in, the portion of the
output that can be attributed to each feature.

We can think of influence as a feature’s potential to affect the model’s behavior. By con-
trast, attribution purports to measure the realization of this potential—the absolute amount
that the feature contributed to the observed outcome. In an anthropomorphic analogy, the
influence of a feature could be its raw talent or skill (for producing the behavior being ex-
plained), while attribution takes into account the effort the feature dedicated to achieving
the outcome. Neither the talent nor the effort of the feature alone directly imply what it
will achieve.

Care must be taken when measuring and interpreting attribution. Specifically, if we
would like to quantify the net impact of a feature on the model’s output, this impact must
be measured with respect to some baseline—the impact relative to what? For example, we
may wish to compare the model’s output on a given instance, x1 to the output on another
similar image, x2—e.g., to understand why the model treats x1 differently from x2. In this
case, we would measure the effort of each feature to be its deviation from its value in x2,
i.e., x1 ´ x2, and the difference in outputs, fpx1q ´ fpx2q, would be credited to the features
of x1 according to their attribution. Without a baseline, neither the effort nor the output
to be accounted for are clearly defined. If we calculate attribution as the gradient times the
input, we implicitly treat zero as the baseline for each feature, which may or may not be
appropriate for the query we seek to address.

Additionally, when measuring attribution, it often makes sense to ensure the combined
attributions of each feature exactly account for the observed output (relative to the baseline).

2We will clarify what we mean by taking the gradient of “the network’s output” in Section 3.2

16



Identifying, Analyzing, and Addressing Weaknesses in Deep Networks

In other words, if the attribution of a feature is the portion of the baseline-adjusted output
that can be attributed to that feature, then we would reasonably expect that the sum of
these attributions would equal the baseline-adjusted output. This requirement corresponds
to a property known in the cooperative game theory literature as efficiency [6, 164] (in the
machine learning literature it has also been called completeness [140]). We discuss this point
further in Section 3.4.

Both influence and attribution can be useful in different contexts. When interpreted
correctly, each tells us something specific about the model our explanation framework is
tasked with helping us understand. The nature of our query to the model—that is, our
specific probe into the qualities of its behavior—determines which is best to use in the
given context. For example, influence might tell us about potential bugs in the model’s
behavior that may not have been entirely manifested on a particular input. By focusing
on influence we can identify the role of features which have the potential to impact the
model’s behavior significantly despite their degree of presence in a particular instance being
relatively insignificant. On the other hand, attribution may sometimes be a better choice
for understanding the fully-realized effects of existing features.

Not all saliency measures compute attribution or influence. Another family of saliency
measures use modified backpropagation techniques to produce saliency scores for the in-
puts [7, 129, 137, 165]. Although a few of these methods can coincide with attribution
measures under certain settings [74, 129], most backpropagation methods are motivated as
“inverting” or “transposing” the outputs of a network back to their corresponding inputs
(though not precisely in the mathematical sense of an inverse) by reversing the order of the
linear transformations in the network. In this sense, the resulting saliency scores are perhaps
best measured in units of input, since they map network outputs back to the network’s input
space. From this perspective, it is less clear how such measures ought to be interpreted. Some
prior work has suggested that many backpropagation-based techniques essentially perform
“(partial) image recovery [that] is unrelated to the network decisions” [108]. These findings
confirm the intuition derived from a consideration of the proper units of such approaches,
and indeed calls their utility into question.

3.2 Internal Influence

As discussed at the beginning of this chapter, the value in an explanation framework comes
from its ability to accurately but succinctly answer a broad set of queries that add mean-
ingfully to our understanding of a model’s behavior. In this section, we present Internal
Influence, an influence measure that serves both as an explanation framework itself (as dis-
cussed in Section 3.1), and as a key component of a broader framework of influence-directed
explanations. Our measure is unique in its high degree of flexibility for formulating a variety
of useful queries.

We developed Internal Influence using an axiomatic approach in order to (1) justify
it as a faithful measure of influence, and (2) identify appropriate axes for generalization.
By using an axiomatic justification for our framework, we avoid the need for problematic
quantitative or qualitative success measures for our explanations in favor of a more principled
philosophical argument; that is, one need only accept our proposed axioms to accept our
influence measure (see Chapter 4 for a detailed discussion). As we will see, our axioms lead
to a specific family of justified influence measures. Internal Influence encompasses this entire
family of measures using a few natural parameters which capture the degrees of freedom
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Figure 3.1: Two explanations for the same image with different queries. The query for the
explanation on the left corresponds to, “why was the image classified as a sports car?” The query
for the explanation on the right corresponds to, “why was the image classified as a sports car rather
than a convertible?”

allowed by our axioms. As a result, Internal Influence generalizes other closely-related work
rather than simply comprising one specific way to generate explanations; and beyond this,
it explores three key axes not covered in previous work.

We refer to these axes, which form the parameter space of our influence measure, as
the quantity of interest, the distribution of interest, and the slice of the network—they are
described in detail in Sections 3.2.1-3. We subsequently put these pieces together to define
Internal Influence in Section 3.2.4.

3.2.1 Quantity of Interest

The quantity of interest lets us specify what we want to explain. Up until now, we have
informally referred to the quantity of interest as “the network’s output,” or f . If we are to
be pedantic, f produces a vector in Rm, so we must be more clear about what it means to
“take the gradient of the network’s output.”

Often, we refer to the component of the model’s output corresponding to a particular
class, addressing, e.g., why did the model classify the image in Figure 3.1 as a sports car?
Indeed, prior work has practically always used this as the de facto quantity of interest—
and more specifically, the particular class has typically corresponded only to the predicted
class, restricting the choice in quantity of interest further. While querying about the model’s
ultimate prediction is natural, it may sometimes be helpful to establish the evidence the
model identified for another class that it did not end up selecting; e.g., to determine if a
model acted “reasonably” even when it did not make the correct prediction.

We can also consider various combinations of outputs, allowing us to ask more specific
questions, such as, why did the model classify the image in Figure 3.1 as a sports car and not
a convertible? As shown in the figure, using the quantity of interest corresponding to “sports
car” may highlight general “car features,” such as tires, while a comparison of “sports car” to
“convertible” might focus on the roof of the car, a “car feature” not shared by convertibles.

More generally, the quantity of interest can be represented as a function of the model’s
output to a scalar quantity, q : Rm Ñ R. In fact, when we discuss the slice of the network in
Section 3.2.3, we will see that q need not even be a function of the network’s output only—it
may even be a function of an internal component of the network. Under this notation, it
is more proper for us to say that we are explaining q ˝ f rather than f or “the network’s
output;” however, we may still informally use the latter when it is clear we are referring to
the quantity of interest.
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Our work is the first to consider the quantity of interest explicitly, and hence, to allow
full freedom along this axis when explaining deep networks.

3.2.2 Distribution of Interest

The distribution of interest lets us specify the set of instances over which we want our
explanations to be faithful. In our running examples thus far, we have primarily considered
explanations derived for specific instances, as this is certainly the most intuitive case. More
broadly, we can think of explaining the model’s behavior over some distribution of points;
this allows us to build an understanding of the model’s more global behavior.

In an explanation framework that acts on distributions of interest (as opposed to points of
interest), we can still model instance-specific inquiries by using a distribution that places all
of its probability mass on a single point. Other times, we may be interested in a more general
behavior over, e.g., a class of instances. Previous explanation frameworks have tended to act
only on individual instances, or specific, de facto distributions tailored to a single instance.3

One challenge that prior work has identified with explaining neural network behavior is
the relationship between the faithfulness and interpretability of explanations. It has been
argued that a “fully-faithful” explanation would necessarily consist of the entire description
of a model, e.g., its weights, architecture, etc. [125]. In contrast to this, we know that neural
networks are not intrinsically interpretable; so clearly, effective explanations must somehow
abstract from the literal model description. Hence, authors such as Selvaraju et al. [125]
have viewed faithfulness and interpretability as existing within a natural trade-off.

To the contrary, when the elements of a query addressed by an explanation are properly
distilled, abstraction does not inherently contradict the notion of faithfulness. Perhaps the
most clear case for this point is the example of explaining a single point. Our explanation
may faithfully tell us about how the model behaves on that point, while ignoring the model’s
full range of behavior more globally. Namely, this explanation can be locally faithful, while
still far less complex than the model in its entirety.

More broadly, a concept of distributional faithfulness can assure that explanations faith-
fully address the model’s behavior as it pertains (in aggregate) to any distribution of points
we would like to capture by our query. Figure 3.2 provides an illustration of this point.
Figure 3.2a shows an example model, which corresponds to a one-dimensional function f .
If we want to “zoom in” to the model’s local behavior on some point, x, we can do so using
a distribution of interest, D1, that corresponds to that single point. In Figure 3.2b, for ex-
ample, we see that f slopes downward on x. We can take this to mean that, in the vicinity
of x, increasing x will tend to decrease the output of f .

On the other hand, if we want to “zoom out” to get a more global understanding of the
model’s behavior, we can use a wider distribution of interest, D2, that captures a range of
inputs to f . As shown in Figure 3.2c, the slope of f over D2 points upwards. This can be
interpreted to mean that, more generally, increasing x will tend to increase f .

In both the zoomed-in and zoomed-out case, the description of the model’s behavior
we receive is correct for the question being asked. Both the model’s behavior on a single
point and its average behavior over a region are valid to investigate, and both contribute to
our understanding of the model. The confusion over how a faithful explanation framework
can appropriately distill complex model behavior is clarified when we model our desired
abstractions explicitly within the framework, which our work is the first to do.

3See Section 3.4 for discussion of de facto distributions of interest used in prior work.
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(a) (b) (c)

Figure 3.2: Illustration demonstrating how the distribution of interest can help specify the level
of abstraction when explaining a model’s behavior. (a) an example model, which corresponds to
a one-dimensional function f (shown in light blue). Two distributions of interest, D1 (blue) and
D2 (orange) are shown on the x-axis, represented as bars that indicate the range of the support
of the respective distribution. (b) zooming in to the model’s behavior on D1 (which corresponds
to a singe point), we see that the gradient over this distribution, which captures the model’s local
behavior at this point, points downwards. (c) zooming out to capture the support of D2, we see
that the model’s aggregate behavior over this range slopes upwards.

3.2.3 Internal Slice

Commonly, explanation frameworks provide implementation invariance; in other words,
they treat the network abstractly as a single function rather than a layered composition of
functions computing latent representations. At some level, this property makes sense. If two
networks represent the exact same function—i.e., they produce the exact same outputs on
all inputs—then distinguishing between their implementations may rightly be considered
a strictly academic exercise. As a particularly clear example of this, consider the fact that
by permuting the internal neurons of a network (and adjusting the incoming and outgoing
weights accordingly), we can obtain a new network that computes the same function, but
is—in a trivial sense—different from the original. It seems clear that we have no reason to
desire an explanation framework to distinguish between such “isomorphic” networks.

More practically, however, it can be useful to expose the learned feature representations
of a network. For example, two networks may behave the same—or sufficiently similarly—on
certain observed points, but differently on other, untested points. A prescient explanation
might lead us to predict this divergence in behavior without necessarily observing the points
on which it is manifested.

Indeed, we have already articulated this point in a different context in Chapter 1: recall
our example in Figure 1.1, where two models making the same prediction on a picture of a
dog with a tennis ball did so for rather distinct reasons. Here, one model made its prediction
based on the dog’s face, while the other did so on account of the tennis ball. In this case,
implementation invariance does not necessarily present a problem because the explanations
were readily distinct without considering the nature of the models’ internal representation.
Presumably, the models formed some internal feature representing dogs and tennis balls,
respectively, but we did not need to know how this was accomplished to discover the bug in
the second model’s behavior.

This need not be the case, though, so we may sometimes want to drill deeper to determine
the trustworthiness of a model. Suppose, for example, in some abstract task, an explanation
highlights the shape shown in Figure 3.3a as the salient part of an image. However, note
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(a) (b) (c) (d)

Figure 3.3: An illustration providing a comparison of explanations that identify salient inputs
indiscriminately (a) with those that distinguish salient regions according to the concepts encoded
by internal neurons (b-d). (a) an explanation indicating the salient inputs (shown in black) for some
abstract task performed by a neural network. (b) a possible decomposition of the salient features
according to the concepts encoded by three internal neurons (represented by the colors blue, green,
and yellow) which correspond to specific shapes. (c) alternative decomposition where the internal
neurons are sensitive to the y-coordinate. (d) alternative decomposition where the salient inputs
are distributed over the three neurons unintelligibly.

that the salient input features do not specify the model’s internal view of the highlighted
shape. For example, suppose the network contains three internal neurons. Internally, the
model might decompose the highlighted shape between the three neurons in any number
of ways, e.g., as depicted in Figures 3.3b, c, or d (where the regions of the original shape
corresponding to each neuron are represented in blue, green, and yellow).

Supposing we knew that the generative process behind the data used for the task in this
example was in fact decomposed as depicted in Figure 3.3b, then discovering this particular
implementation detail of the network would surely inspire more trust than the explanation
in Figure 3.3a alone—and certainly more than the explanations in Figures 3.3c or d. Thus,
we can see how it may be desirable to peer into the internals of a deep network rather than
forcing strict implementation invariance.

Explanations that reference the internals of a model can also be motivated by a desire to
reason about higher-level features than the inputs of a model (e.g., raw pixels) represent. In
a criticism of explanation frameworks used in health care applications, Ghassemi et al. [47]
point out that localizing salient features may be inadequate in contexts like medical imaging
because the locations themselves do not reveal why they are important. For example, even
when the correct regions are identified, “[a] clinician cannot know if the model appropriately
established that the presence of an airspace opacity was important in the decision, if the
shapes of the heart border or left pulmonary artery were the deciding factor, or if the model
had relied on an inhuman feature, such as a particular pixel value or texture that might
have more to do with the image acquisition process than the underlying disease” [47]. While
pixels in medical images represent far more primitive concepts than airspace opacities, etc.,
the learned internal features of a network can certainly—at least in principle—represent
such concepts. While the meaning of the internal features cannot be known a priori, and
thus must be ascertained in some way, this can be viewed as an orthogonal problem. More
discussion on interpreting salient features is provided in Section 3.3.

To capture the ability to peer into the learned features of a network, Internal Influence
uses a parameter which we call the slice. Informally, a slice can roughly be equated with
a particular layer of a network. In a low layer, a model typically encodes more primitive
features, such as edges and simple textures, while in a higher layer, the model might encode
high-level features, such as dogs, tennis balls, or airspace opacities.

21



CHAPTER 3. INFLUENCE-DIRECTED EXPLANATIONS

Put mathematically, a slice is a decomposition of a network into two functions whose
composition is the function f computed by the entire network (Definition 3.1).

Definition 3.1 (Network Slice). A slice of a network, f : Rn Ñ Rm, is a decomposition of
f into two functions, h and g, such that f “ g ˝ h.

Essentially, the slice specifies a single window into the implementation of the model that
our explanation framework is sensitive to; this leads to a relaxed version of implementation
invariance that is allowed to depend on the internal layer exposed by the slice. Meanwhile,
the components of the slice, g and h, are still treated as black boxes (i.e., we are agnostic
to their implementation).

Here, g represents the “top” of the network, which performs the network’s task (e.g.,
classification) using features that are computed by the “bottom” of the network, h. Note
that slices generalize gracefully to input explanations with full implementation invariance
by letting g “ f and setting h to the identity function. Our work is the first to extend
explanations to slices beyond this degenerate case.

3.2.4 Influence Measure

We are now ready to define our influence measure, Internal Influence. Internal Influence acts
on a parameter space (Ψ) that specifies the quantity of interest, q, distribution of interest,
D, and slice, pg, hq. Of course, in order for pg, hq to be a valid slice of the model f , we must
have that g ˝ h “ f ; thus, for convenience, we will write Internal Influence, χ, as a function
of g ˝ h, q, and D (omitting f , which is captured by the slice).

Put succinctly, Internal influence is simply the expected gradient of the quantity of inter-
est with respect to the output of h, taken over the distribution of interest (Definition 3.2).

Definition 3.2 (Internal Influence). Given a slice of a network, pg, hq, a quantity of interest,
q, and a distribution of interest, D, internal influence, χ, is given by

χpg ˝ h, q, Dq “ E
x„D

”

∇z

“

q ˝ g
‰`

hpxq
˘

ı

,

where the variable, z, is given by z “ hpxq.

In theory, the expectation from Definition 3.2 is computed via the integral given by
Equation 3.1, where Dpxq is the probability mass allocated to x by the distribution of
interest. Note that here, the distribution of interest is defined over the input space of f ,
Rn. When it is more convenient, we can instead express the distribution of interest over
the latent space induced by h on Rn, in which case we would instead take the integral in
Equation 3.1 over z.

E
x„D

”

∇z

“

q ˝ g
‰`

hpxq
˘

ı

i
“

ż

xPRn

Bpq ˝ gq

Bzi

∣∣∣∣
hpxq

Dpxq ¨ dx (3.1)

In practice, the integral in Equation 3.1 may not be feasible to compute. Instead, we can
approximate it via a weighted average. In an intuitive and easy-to-implement formulation
of this approach, we can consider taking the average gradient over points in a multiset, D,
drawn uniformly from D (Equation 3.2). This formulation is particularly convenient because
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it means that the distribution of interest does not have to be given explicitly; in turn, we
can think of the distribution of interest as simply a collection of points.

E
x„D

”

∇z

“

q ˝ g
‰`

hpxq
˘

ı

i
«

1

|D|
¨
ÿ

xPD

Bpq ˝ gq

Bzi

∣∣∣∣
hpxq

(3.2)

3.3 Interpreting Influential Features

The slice parameter allows Internal Influence to reference the internals of a model, giving
insight into how it uses learned concepts. In many machine learning tasks, especially those for
which deep networks are uniquely well-suited, the raw input features (e.g., RGB pixels) are
not meaningful on their own. Localizing salient features does not reveal why those features
are important. For example, a pixel may be important because of its relationship with other
nearby pictures—e.g., in forming an edge—and a salient region may be important because
of its color (or any other number of regions). In principle, these sorts of concepts can be
represented directly by internal neurons. If we can communicate in the “language” of the
network’s internal representations, our explanations can directly provide insight into the
role of these high-level concepts in the network’s behavior.

Of course, the meaning of a neural network’s internal features cannot be known a priori.
Interpreting learned features can be viewed as a separate problem from identifying salient
features, and has independently received attention in the literature [3, 73, 117, 131, 165]. In
addition, Internal Influence can also serve as a tool in this effort.

Internal Influence for Interpreting Learned Features

One of the most straightforward ways to achieve a rudimentary understanding of what
an internal feature represents is by visualizing the low-level inputs that contribute to its
activation. For a slice of a network, pg, hq, suppose we are interested in identifying the
inputs contributing to the ith feature in the latent space induced by h on the model’s input.
We can think of h as a neural network of its own, and consider the slice that captures
this entire network, i.e., ph, h1q where h1 is the identity function. We can then construct a
quantity of interest, q, that extracts the ith feature from h, i.e., qpzq “ zi. Putting these
pieces together, we can calculate the Internal Influence of the network’s inputs on the ith

feature of h as χph ˝ h1, q,Dq.
Often, we may use this approach in a process in which we (1) determine a set of influential

internal features (using Internal Influence), and (2) interpret these features by localizing
them. This can be seen as separately measuring the gradient (of the network’s output) that
flows through a particular neuron of interest. Using this approach allows us to produce
explanations that distinguish salient regions according to the concepts encoded by internal
neurons like in the illustrations in Figure 3.3.

Other Interpretation Techniques

The above approach does not entirely circumvent the issue of requiring richer insight than
locations of features represent. Instead, it should be viewed as a potential starting point in
a scientific process, in which internal representations are examined at many angles to form
a robust hypothesis of their meaning. Other methods for interpreting neurons thus play a
complimentary role.
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One alternative way to approach the problem is through exemplars. For example, one
may visualize a collection of training images that activate a particular neuron [165]. This does
not establish causation—merely correlation—but may provide further insight. In particular,
exemplars provide the ability to view a variety of manifestations of a concept, and to quantify
the degree to which the concept is present in various instances. For example, we may find
that a particular neuron is active in images of red barns, and the strength of its activation
correlates with the visual redness of the barn, activating most strongly on freshly-painted
red barns. From this we might infer that the feature likely captures the barn’s red color.
Evidence for this could be made stronger if the activation could be localized to the barn
through a faithful influence measure. This hypothesis could be further tested by providing
“counterfactual” images, such as barns painted “John Deere green.”

While exemplars from training (or auxiliary) data have the advantage of being in-
distribution (where the model is presumably better behaved), we can also use synthetic
visualizations that optimize for strongly activating a particular neuron [131]. This can give
us a sense of the “essence” of what a neuron has learned, realized as its “ideal” input.

We must also consider the possibility that interpretable features, if they are learned by
the network, may be manifested as linear combinations of internal features, as opposed to
isolated within single neurons. Prior work has sought to establish and interpret meaningful
directions in the latent space [3, 73, 117]. For example, Kim et al. [73] propose concept
activation vectors, which capture the principle direction in a network’s latent space that
distinguishes between exemplars selected to exhibit a chosen concept and those selected not
to.

Regardless of the method used, thorough testing is the best way to build confidence in
an interpretation of the network’s latent space. By challenging our hypotheses we may form
more nuanced ones. Here, moving out of the distribution the network was trained on can be
an asset, as it can break important structural correlations in the data that the model may or
may not be sensitive to. For example, Geirhos et al. [46] studied commonly-used Imagenet
models by feeding them inputs where patches of the image were permuted. In doing so,
they found that the networks’ performance was strikingly invariant to such permutations,
suggesting that the models’ features primarily reflected textures (as opposed shapes, for
example).

3.4 Related Work

The problem of explaining deep networks post hoc has been studied extensively in the prior
literature, e.g., [7, 96, 114, 118, 125, 129, 131, 134, 140, 154, 165]. Among prior methods,
Internal Influence can be sub-categorized with other gradient-based techniques, such as
Saliency Maps [131], Integrated Gradients [140], and Smooth Gradients [134]. Non-gradient-
based methods do not necessarily satisfy faithfulness, i.e., the features they indicate as salient
to do not necessarily line up with a natural notion of causality with respect to the function
computed by the network (this concept is made more mathematically rigorous in Chapter 4).

Gradient-Based Methods

As described in Section 3.2, our work generalizes prior work on gradient-based saliency
measures along three key axes: (1) the quantity of interest, (2) the distribution of interest,
and (3) the internal slice of the network. Here, (1) and (2) provide greater freedom to design
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appropriate queries for understanding key network behaviors, and (3) allows us to reason
on the level of the concepts encoded by the network.

As Internal Influence is more general than prior gradient-based approaches, these other
methods can naturally be realized as specific parameterizations of Internal Influence. In
particular, while most methods have not considered slices or general quantities of interest,
they essentially differ by establishing a particular family of distributions of interest. We
outline three key such cases below.

Saliency Maps. Saliency Maps, proposed by Simonyan et al. [131], are perhaps the sim-
plest gradient-based influence measure, computed as simply the input gradient at a single
point being explained. Naturally, this corresponds to a distribution of interest in which the
entire probability mass is placed on the single point in question. As such, Saliency Maps
constitute the most local view of the network’s behavior.

Smooth Gradients. Another measure, Smooth Gradients, proposed by Smilkov et al.
[134], offers a wider view of the network’s behavior by averaging the gradients taken at
points sampled from a Gaussian distribution centered at the point being explained. This is
modeled in Internal Influence by using a Gaussian distribution of interest.

Integrated Gradients. Sundararajan et al. [140] proposed Integrated Gradients, a gra-
dient-based approach for measuring attribution that possesses several key properties. Inte-
grated Gradients is defined as the path integral of the gradients along a straight line segment
connecting a baseline, x0, to the point being explained. This can be written as Equation 3.3.

χIGpf, x, x0q “ px´ x0q

ż 1

α“0

Bf

Bx

∣∣∣∣
x0`αpx´x0q

dα (3.3)

Integrated Gradients satisfies efficiency, a property for attribution measures discussed in
Section 3.1 which states that

ř

i χ
IG
i pf, x, x0q “ fpxq´fpx0q, i.e., that the input attributions

account exactly for the total change in output of the function from the baseline to x.
The integral in Equation 3.3 corresponds to a measure of Internal Influence where the

distribution of interest is given by a uniform distribution over the line segment between x and
x0. Despite the fact that Integrated Gradients measures attribution while Internal Influence
measures influence, we see from the above observation that the latter can be converted to
the former by multiplying by px ´ x0q, the “effort” of the features relative to the baseline.
Here, this conversion is “valid” because it achieves efficiency, as stated earlier.

Backpropagation Methods

Zeiler and Fergus [165] proposed Deconvolution as one of the first methods for probing
the behavior of deep networks. Essentially, Deconvolution propagates in reverse from the
network’s output to its input to trace the output activations back to corresponding in-
put activations. Similar styles of techniques with various refinements have followed this
work [7, 129, 137]. More recently, some of these approaches have come under question as
they have been found to essentially perform partial image recovery [108], and to be concern-
ingly invariant to the parameters of the network [2].

Others can be parameterized to compute a form of attribution (input times gradient) [74,
129]; however, unless they are parameterized to be equivalent to Integrated Gradients, they
may not achieve efficiency.
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Class Activation Mapping

Another popular family of explanation approaches, not necessarily mutually exclusive with
the types of approaches discussed so far, is derived from a technique called class activation
mapping (CAM) [172]—several variants of this approach have been proposed [21, 125, 151].
In essence, these methods localize salient regions in images by up-scaling the salient regions
in the latent space of the network (which has lower resolution due to down-sampling oper-
ations in the network, such as pooling). While in a sense, these methods can be thought of
as computing a form of internal salience, a few points bear mentioning.

First, the saliency in the latent feature maps may be computed in a number of ways.
While Grad-CAM [125] uses the gradient (an instance of Internal Influence), several other
CAM approaches use different methods, e.g., backpropagation. Even when Internal Influence
is used, some granularity is lost, as the feature influences are aggregated over the channels,
which represent distinct features. As a result, only the locations (in latent space) of features
are preserved, while the further decomposition into learned concepts is not.

Second, the extrapolation of the latent space to the input space via up-scaling is some-
what suspect. While the limited receptive field of internal neurons partially constrains the
locations of the corresponding inputs, naive up-scaling is likely too simple to adequately
capture this relationship. This low-resolution solution leaves the resulting heat maps more
open to interpretation, which opens the door to confirmation bias.
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Chapter 4

Assessing the Quality of
Explanations

Many possible methods for explaining neural network behavior, including our own, have been
proposed in what has become a vast body of literature [7, 21, 41, 85, 114, 125, 129, 131,
137, 140, 151, 154, 165]. The question naturally arises, how do we know which explanation
frameworks are best? More broadly, what constitutes a good explanation? Or perhaps more
pointedly, which explanation frameworks can we trust?

One core function of an explanation framework is to asses the conceptual soundness of
the model being explained. As such, we should anticipate that the quality of the model will
impact the explanations we will see. We are therefore faced with the challenge of being able
to discern between bad explanations for good models and good explanations for bad mod-
els, as either may be unintelligible, counter-intuitive, or otherwise apparently undesirable.
Conversely, while good explanations for conceptually sound models should add clarity and
instill trust, we want to avoid being led astray by bad explanations for conceptually unsound
models that offer a false sense of security.

We argue that, in light of this observation, explanations cannot be evaluated or warranted
purely on the basis of their appearance; rather, an explanation framework should be justified
from first principles, which do not require a priori knowledge of the quality of the underlying
model. If an explanation framework is justified in this manner, there is no need to empirically
evaluate its results, provided it can be demonstrated to be sufficiently expressive (in the
sense given by Definition 2.2 in Chapter 2). The quality of said explanations can instead be
confidently interpreted as a reflection of the underlying model’s conceptual soundness with
respect to the query the explanation addresses.

Note that this still requires that we ask the right questions, and that our framework
supports asking those questions—which is why the flexibility of Internal Influence is instru-
mental. Without the right questions, our explanations may still fail to extract useful insights
concealed behind opaque computations.

However, beyond its flexibility, we demonstrate in Section 4.1 that Internal Influence
is justified via an essential set of axioms—properties that are natural to expect from any
measure of feature influence within a neural network. Moreover, we show that the family of
influence measures captured by Internal Influence are the only measures satisfying these ax-
ioms, establishing Internal Influence as uniquely justified for influence-directed explanations.
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Any arbitrary decisions for measuring influence are captured succinctly by the parameters
of Internal Influence: the slice, and the quantity and distribution of interest.

The choice of using an axiomatic justification is relatively rare in the literature on expla-
nations. In Sections 4.2 and 4.3 we discuss (and critique) a variety of other approaches that
have been used for assessing explanation quality. These methods can be broadly categorized
as either (1) empirical tests that serve as de-facto axioms (discussed in Section 4.2) or (2)
tests mistakenly applied to explanations that should be better understood as desiderata of
the underlying model (discussed in Section 4.3).

4.1 Axiomatic Justification of Internal Influence

In this section, we justify the family of measures captured by Internal Influence (Defini-
tion 3.2 in Chapter 3) by defining a set of natural axioms for influence measures, and then
proving a tight characterization. We first address the the case where the influence is mea-
sured with respect to inputs—i.e., when the slice, pg, hq, is given as g “ f and hpxq “ x.
and then generalize to general slices that capture internal layers. This approach is inspired,
in part, by axiomatically justified power indices in cooperative game theory [6, 164], which
have inspired a few other explanation frameworks as well [31, 140]. An important difference
between our work and similar aforementioned axiomatizations, as we elaborate below, is
that we carefully account for distributional faithfulness in this work.

Input Influence

We begin by characterizing an ideal measure, χinputpf, d,Dq, that measures the influence of
the features of a model, f , on a quantity of interest, q, over a distribution of interest, D. In
other words, we will consider a simplification of the parameter space of Internal Influence,
wherein we will ignore nontrivial slices of the network for the moment.

The simplest neural network we can consider calculating influence for is a linear model,
i.e., where there are no hidden layers, and the logits of the network are given simply by
fpxq “ xW ` b. The interpretation of a linear model is straightforward since a unit change
in an input corresponds to a change in the output given by the coefficient, independent of the
other feature values or the input under consideration. Verifying that the feature influences
align with this straightforward intuition on the simplest of models serves as a basic sanity
check for any influence measure. Accordingly, the first axiom, linear agreement (Axiom 4.1),
states that for linear models, the coefficient of an input is its influence. Axiom 4.1 is formu-
lated in terms of the quantity of interest (composed with the model function), q ˝ f , since
this is the actual function that we measure influence on. This formulation can principally
be taken to mean that the axiom refers to simple quantities of interest that select a scalar
output from a linear model of the form fpxq “ xW`b (though in reality it means something
slightly more general).

Axiom 4.1 (Linear Agreement). For linear quantities of interest of the form

pq ˝ fqpxq “ wTx` b “ b`
ÿ

i

wi ¨ xi,

the influence of feature xi is given by χinput
i pf, q,Dq “ wi.
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The second axiom, distributional marginality (Axiom 4.2), is inspired by the marginality
principle [164] in prior work on cooperative game theory. The marginality principle states
in essence that an input’s importance only depends on its own contribution to the output.
Formally, if the partial derivatives with respect to an input of two functions are identical at
all input instances, then that input is equally important for both functions.

Axiom 4.2 is a weaker form of this requirement that only requires equality of importance
when partial derivatives are same for points in the support of the distribution. This axiom
ensures that the influence measure only depends on the behavior of the model on points
within the manifold containing the input distribution. This property captures the notion of
distributional faithfulness described informally in Section 3.2.2; namely, that while an ex-
planation must accurately describe a model’s behavior, we can still simplify the information
conveyed by explanations that are faithful in this sense by tailoring them to describe local
behavior.

Axiom 4.2 (Distributional Marginality). Let X P Rn be a random variable distributed
according to the distribution of interest, D. If for neural networks, f1 and f2, and quantities
of interest, q1 and q2,

Pr

„

Bpq1 ˝ f1q

Bxi

∣∣∣∣
X

“
Bpq2 ˝ f2q

Bxi

∣∣∣∣
X



“ 1,

then χinput
i pf1, q1,Dq “ χinput

i pf2, q2,Dq.

Finally, the third axiom, distributional linearity (Axiom 4.3), states that the influence
measure is linear in the distribution of interest. This ensures that influence measures are
properly weighted over the input space, i.e., influence on infrequent regions of the input space
receive lesser weight in the influence measure as compared to more frequent regions. Prac-
tically, this admits the most natural interpretation of the distribution of interest, namely,
that points contributing to the influence score are weighted according to their probability
mass. To formalize this axiom, we consider distributions of interest that are expressible as
essentially a “weighted combination” of some family of distributions, P; Axiom 4.3 stipu-
lates that the influence over such distributions of interest can be likewise expressed as a
“weighted combination” of the influences calculated over the members of P.

Axiom 4.3 (Distributional Linearity). Let P be family of distributions indexed by a P A. If
a distribution of interest, D, can be written in terms of the distributions Pa P P, and weight
function αpaq, as

Dpxq “

ż

aPA

αpaq ¨ Papxq ¨ da,

then

χinputpf, q,Dq “

ż

aPA

αpaq ¨ χinputpf, q, Paq ¨ da.

The requirements imposed by these three axioms appear rather basic. Essentially, we have
argued that a reasonable influence measure should (1) be consistent with the straightforward
interpretation of linear models, (2) reflect the marginal impact of individual features, and
(3) admit the natural interpretation of the distribution of interest as weighting the degree
to which the various parts of a model’s input space should contribute to the influence score.
Interestingly, even with these minimal requirements, we can show that the only influence
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measure that satisfies these three axioms is the expected input gradient over the distribution
of interest (Theorem 4.1). In other words, these three axioms uniquely characterize the family
of influence measures that are equivalent to some instantiation of Internal Influence tailored
to input-output behavior.

Theorem 4.1. The only measure that satisfies linear agreement, distributional marginality
and distribution linearity is given by

χinput
i pf, q,Dq “ E

x„D

”

∇x

“

q ˝ g
‰

pxq
ı

i
“

ż

xPRn

Bpq ˝ fq

Bxi

∣∣∣∣
x

Dpxq ¨ dx

Proof. Assume some influence measure, χinput, satisfies Axioms 4.1-3.
Choose any differentiable function q ˝ f , and let Papxq “ δpx´ aq, where δ is the Dirac

delta function—that is, Pa places all its probability mass on the single point a. Let f 1 be a
linear function whose slope is given by the gradient of q ˝ f with respect to x evaluated at
a (Equation 4.1), and let q1 be the identity function.

f 1pxq “
´

∇x

“

q ˝ f
‰

paq
¯T

x (4.1)

By Axiom 4.1, it must be the case that χinputpf 1, q1, Paq is given by Equation 4.2—indeed,
this holds even independently of the particular choice of distribution of interest.

χinput
i pf 1, q1, Paq “

Bpq ˝ fq

Bxi

∣∣∣∣
a

(4.2)

By Axiom 4.2, we thus have that χinputpf, q, Paq “ χinputpf 1, q1, Paq, since on Pa, whose
support is only the point a, the gradients of f ˝ q and f 1 ˝ q1 align.

Any distribution, D, over Rn can be written according to Equation 4.3, owing in part to
the fact that Papxq “ 0 unless a “ x.

Dpxq “

ż

aPRn

Dpaq ¨ Papxq ¨ da (4.3)

Therefore, by Axiom 4.3, we obtain Equation 4.4.

χinput
i pf, q,Dq “

ż

aPRn

Dpaq ¨ χinput
i pf, q, Paq ¨ da “

ż

xPRn

Bpq ˝ fq

Bxi

∣∣∣∣
x

Dpxq ¨ dx (4.4)

Finally, we remark that it is not difficult to verify that χinput as defined in Theorem 4.1
satisfies Axioms 4.1, 4.2, and 4.3.

Internal Influence

We now show how Internal Influence can be derived by generalizing the characteristic mea-
sure of input influence given in Theorem 4.1 to one that can be used to measure the influence
of internal neurons as well. We do so by introducing an additional axiom, preprocessing (Ax-
iom 4.4), which essentially encodes a consistency requirement equating the influence of an
internal neuron, zj , to the ideal input influence (i.e., according to Theorem 4.1) of an input
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that is distributed exactly the same as zj . That is, suppose we have a network, f1, that
can be sliced as g ˝ h, and suppose further that we have another network f2 where f2 “ g.
Applying h to a distribution of interest DX over the inputs of f1 induces a new distribution,
DZ , over the inputs to f2. We can thus consider the input influence for the features of f1

with the distribution of interest given by DZ . Naturally, this influence measure should not
be affected by whether DZ was imagined a priori, or if it arose from applying a section of
some neural network—e.g., h—to another distribution.

This argument is especially clear if we consider the case where h is the identity function.
In this case, f1 “ f2, and the inputs to f2 are exactly the same as the internal features
determined by the slice pg, hq, making it difficult to justify how their influences could be
different.

Axiom 4.4 (Preprocessing). Let pg, hq be a slice of a neural network, f . Given distribution
DX over the input space of f , let DZ be the probability distribution over the input space of
g, induced by applying h to x „ DX , given by

DZpzq “

ż

xPRn

DX pxq ¨ δphpxq ´ zq ¨ dx.

Then, χinputpg, q,DZq “ χpg ˝ h, q,DX q.

We now demonstrate that the addition of Axiom 4.4 uniquely characterizes Internal
Influence, as defined by Definition 3.2, or equivalently, Equation 3.1. This result is stated
in Theorem 4.2; we note that while Theorem 4.2 only references preprocessing (Axiom 4.4),
Axioms 4.1-3 are implicitly invoked through this axiom.

Theorem 4.2. The only measure that satisfies preprocessing is Internal Influence (Defini-
tion 3.2), given by

χpg ˝ h, q,Dq “ E
x„D

”

∇z

“

q ˝ g
‰`

hpxq
˘

ı

i
“

ż

xPRn

Bpq ˝ gq

Bzi

∣∣∣∣
hpxq

Dpxq ¨ dx.

Proof. Assume some influence measure, χ satisfies Axiom 4.4. Let pg, hq be a slice of a neural
network, f , let q be a quantity of interest, and let DX be a distribution of interest over the
domain of f . Let DZ be the probability distribution over the input space of g, induced by
applying h to x „ DX , as defined by Equation 4.5

DZpzq “

ż

xPRn

DX pxq ¨ δphpxq ´ zq ¨ dx (4.5)

By Axiom 4.4, we have Equation 4.6 for any index, i P rks (where k is the input dimension
to g). By applying the definition of χinput, we obtain (4.7). By assumption, we can replace
DZ to obtain (4.8), which can be rearranged to (4.9). As a property of the Dirac delta
function, the integral over z can be simplified to obtain (4.10).
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χipg ˝ h, q,DX q “ χinput
i pg, q,DZq (4.6)

“

ż

zPRk

Bpq ˝ gq

Bzi

∣∣∣∣
z

DZpzq ¨ dz (4.7)

“

ż

zPRk

Bpq ˝ gq

Bzi

∣∣∣∣
z

ż

xPRn

DX pxq ¨ δphpxq ´ zq ¨ dx ¨ dz (4.8)

“

ż

xPRn

DX pxq

ż

zPRk

Bpq ˝ gq

Bzi

∣∣∣∣
z

δphpxq ´ zq ¨ dz ¨ dx (4.9)

“

ż

xPRn

Bpq ˝ gq

Bzi

∣∣∣∣
hpxq

DX pxq ¨ dx (4.10)

Finally, it is clear from the equivalence of Equations 4.6-10 that Internal Influence as
defined previously satisfies Axiom 4.4.

4.2 Implicit Axioms via Empirical Tests

A general dissatisfaction with the appearance of explanations produced by existing methods,
perhaps, has led to a large volume of work that attempts to explore novel ways of explaining
complicated network behavior. A choice among a multitude of methods must be justified
in some way or another. Rather than taking an axiomatic approach, as we have advocated,
much of the existing literature follows a more empirical approach to evaluate various ex-
planation frameworks, using quantitative (or even qualitative) tests to measure explanation
quality. Within the crowded space of work on explaining neural network behavior, various
explanation approaches may distinguish themselves on particular empirical tests. Of course,
this raises the question of which tests are themselves justified.

Most empirical tests used to evaluate explanation frameworks can be broadly separated
into two categories, differentiated by whether they are evaluated on the basis of the model
and explanation parameters alone, or if they require access to some auxiliary information re-
lated to an explanation criterion (Ω˚). In this section we will consider the former; Section 4.3
will provide discussion of the latter.

We will argue that empirical tests that can be evaluated solely on the basis of inputs
that would be available to an explanation framework—to the extent that they are considered
the most important measure of explanation quality—in fact constitute implicit axioms. By
stating axioms implicitly in the form of a test, their use as a justification may evade due
scrutiny, as the implications of such axioms and their interactions with other desirable
properties of explanation frameworks become less apparent. If we are to accept such tests
as justified, we should seek an analysis of what they entail as explicit axioms.

One of the most common empirical tests in this category, which we will refer to as the
occlusion test, is to measure the drop in logit or confidence output of the network f as the
parts labeled as salient by the explanation are occluded in some fashion [7, 21, 122]. Several
different precise methods for taking this measurement have been proposed. First, the method
of occlusion may vary, from blacking- or graying-out pixels (or replacing them with some
baseline value), to blurring or adding noise to salient regions. Second is the question of how
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to score the drop in f ’s output. Aside from the decision of whether to use the unscaled logit
outputs, or the scaled confidence scores, one may focus on the drop induced by occluding
the single-most salient pixel or region, the area under the curve induced by plotting f as
regions are occluded, the number of regions that must be occluded to reach a particular
drop, etc.

As an aside, let us consider how gradient-based explanation methods, which we have
justified via the marginality principle and linear agreement, fare under the such an evalua-
tion. The simplest gradient-based method is to simply take the input gradient at the single
point to which the explanation applies. This is often referred to in the literature as saliency
maps or sensitivity analysis [131], and corresponds to the simple case in Internal Influence
when the distribution of interest is taken to be a single point. Samek et al. [122] find that
saliency maps do not perform well under the occlusion test. If we consider what the input
gradient means—the direction in the input space leading to the steepest ascent for f—there
is an extent to which this intuitively lines up with the goal of the occlusion test. However,
as even Samek et al. point out, gradients identify a “very particular direction for reducing
the prediction,” while occlusion seeks regions that independently degrade the prediction.
In other words, gradients capture features that act in concert, while occlusion disregards
correlations between features.

Moreover, the gradient is highly localized in the sense that it measures the impact of
marginal changes to the model’s inputs. Meanwhile, depending on the method of occlusion,
we may be introducing large changes that cannot be extrapolated from a local gradient,
especially if the surface of f is highly erratic (a potential sign of conceptual unsoundness).
If unstable local behavior concealing unwanted behavior [48, 141] concerns us, the fine-grain
resolution of point-gradients (compared to occlusion) may in fact be desirable. However, if
we are interested in a higher-level description of the model’s behavior than point-gradients
allow, Internal Influence allows us to widen the scope of the gradient computation via the
distribution of interest. For example, a Gaussian distribution about the point being explained
could be used to aggregate surrounding gradient information. Alternatively, the distribution
of interest could be used to model specific occlusion types, for example by aggregating the
gradients obtained as pixels are gradually blacked-out (to model black-out occlusion).

Finally, gradients are perhaps not treated fairly by the occlusion test in the sense that
a positive gradient for a feature, xi, indicates that f will increase if xi increases, and vice
versa. If we assume that occlusion will decrease xi’s value, then a large positive gradient
indeed suggests that occluding xi will reduce f . However, this assumption need not hold.
If, for example, xi is a black pixel and our method of occluding xi is to replace it with
gray (such that our occlusion is properly centered), we are directly opposing the intuition
of the occlusion method under the correct prediction of the gradient. For this reason, the
value of each feature relative to its occluded value should be taken into account—at the
very least in determining the sign of the gradient used for the occlusion test. Put differently,
while gradients measure influence, attribution (see Chapter 3 for this distinction) is the
appropriate measurement to consider for the occlusion test.

Indeed, Integrated Gradients [140], does precisely this. The feature values relative to a
baseline (in this case, the value taken under occlusion) are taken into account to produce
a measure of total feature attribution. In fact, when using (baseline-adjusted) attribution
along with the particular distribution of interest used by Integrated Gradients (discussed
in Chapter 3), a property known as efficiency, or completeness, is obtained; this entails
directly that the attribution of each feature is exactly the value that f would take if that
feature were occluded. Thus for the initial occlusion, a careful choice of distribution and

33



CHAPTER 4. ASSESSING THE QUALITY OF EXPLANATIONS

attribution adjustment tailors gradients perfectly for the occlusion test, although this does
not necessarily extend to subsequently-occluded features.

Another empirical measure of explanation quality that has appeared in the literature is
a natural counterpart to the occlusion test, which we will refer to as the isolation test. This
test occludes all but the most salient parts of the image with the hopes of increasing the
network’s confidence in its prediction [21]. This method is perhaps not as well-motivated as
the occlusion test; while the context in the less-salient parts of the image may sometimes be
distracting, it is not clear that the network would necessarily be more confident on points
that deviate from the distribution on which the model was trained (the isolated features
would surely be out-of-distribution).

When tests such as the occlusion test and the isolation test are employed in the literature,
they typically evaluate a variety of explanation frameworks that are derived independently
of the test criteria. This raises natural questions regarding the apparent mismatch between
the way explanation frameworks are constructed and the way they are evaluated. If the
test is truly the best measure of explanation quality, one ought not to compute explanations
through roundabout means; we can construct the explanation framework to optimize for our
intended test directly. For example, if we took the occlusion test at face value, we could easily
define an explanation framework that ranks the features sequentially by greedily selecting
the unranked feature whose occlusion leads to the greatest drop in confidence in the model’s
prediction.

More broadly, any test, q : pRn Ñ Rmq ˆ Ψ Ñ Ω Ñ R, which, given a model, f , and
parameters, φ P Ψ, produces a real-valued score for any candidate explanation, can be
translated into an explanation framework, χ˚, that is optimal with respect to q. This can
be done by simply defining χ˚ to produce the explanationn that receives the best score
from q (Equation 4.11). Provided sufficient structure in q and Ω, χ˚ may be efficient to
compute. Otherwise χ˚ can be approximated, resulting in an approximately optimal “best-
effort” explanation framework; but note that even in this case, we would explicitly aim to
maximize q rather than taking an indirect approach.

χ˚pf ; φq :“ argmax
ωPΩ

 

qpf, φ ; ωq
(

(4.11)

The framework χ˚ would be justified as the “correct” and “ideal” method for calculating
explanations with respect to the test, q, in question. Thus, we can think of q as an axiomatic
justification for χ˚. It is in this sense that such tests can be considered implicit axioms.

While it has perhaps not been presented in this light before, many explanation frame-
works have in fact used a similar concept to the occlusion test as part of their defini-
tion [41, 114, 129, 151]. However, because this has not been made explicit, there has not
been a thorough analysis (like the one in Section 4.1) of the implications of possessing an
“occlusion-optimal” property.

4.3 Desiderata of the Underlying Model

While there are disadvantages to lacking an explicit characterization of the key properties of
an explanation framework, there is not an inherent problem to using tests that act implicitly
as axioms, provided the tests themselves are well-justified. On the other hand, another class
of empirical tests have often been used in the literature that retain a more fundamental flaw.
Specifically, these tests make the mistake of conflating desiderata of the explanation frame-
work with desiderata of the model itself. Accordingly, they evaluate explanations under the
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a priori assumption that the underlying model is conceptually sound. Clearly, this assump-
tion need not hold—in fact, testing this assumption is a core function of an explanation
framework in the fist place.

Perhaps the most common empirical test of this sort is what we will call the localization
test. Many variants of this test have been used in the literature [21, 41, 151, 154, 170], but
all variants of the test essentially measure the alignment between the salient pixels of an
image (according to the explanation framework) and human-supplied bounding boxes that
localize the subject of the image corresponding to its label. This test is tempting because
it forms a reasonable proxy for conceptual soundness that can be quantitatively measured
using annotations that already exist on many popular benchmark datasets. Of course, the
localization test fails as an evaluation of an explanation framework because it forgets that
it is not incumbent on the explanation framework—but rather the underlying model—to
produce conceptual soundness.

A few prior works have also designed human subject studies as a way to assess the
quality of explanations. For example, Chattopadhay et al. [21] conducted an experiment
in which their explanation framework was compared to a another framework by human
test subjects. In the experiment, explanations for several instances were generated using
two separate methods on a single model. The explanations were then shown to 13 subjects
(inexperienced in machine learning), who were asked to select the explanation that invoked
the most trust in the underlying model. The crucial flaw in this experiment is its failure
to initially establish the degree of trust that ought to be instilled in the model in question.
Though it may have been unknown to the subjects, the two explanations they were presented
with corresponded to the same model. It is not at all clear that the explanation instilling
more trust between the two was the explanation instilling the correct amount of trust.
Moreover, if the underlying model was not conceptually sound (not an unlikely prospect),
then it may indeed have been preferable for the explanation to instill less trust in the model.
While Chattopadhay et al. used the fact that subjects had preferred their explanations to
claim theirs the superior explanation framework, we can see that no such conclusion can be
made.

In a slightly less flawed human-based experiment, Selvaraju et al. [125] trained two sep-
arate models which attained different validation accuracies. Explanations were generated
on several instances using a single explanation framework on each of the two models. The
instances were controlled such that both models made the correct prediction on every in-
stance used in the experiment. Test subjects were then asked to use the explanations to
select which of the two models they trusted more. In this experiment, Selvaraju et al. were
able to establish a correlation between user trust and model performance; i.e., the users
tended to prefer the explanations produced on the model with the higher validation accu-
racy. Compared to the experiment of Chattopadhay et al., Selvaraju et al. at least take into
account the fact that the quality of the explanation must be tied to the conceptual sound-
ness of the model. Taking accuracy as a proxy for conceptual soundness, this experiment is
properly formulated; if the explanations reflect the quality of the model (measured here as
the validation accuracy), then they can be considered useful rather than misleading. How-
ever, while we should expect a model that is fully conceptually sound to perform well, it is
not necessarily correct to assume that the more accurate model is more conceptually sound.
As we will explore in greater detail in Parts II and III, even conceptually unsound features
can lead to good performance, though such models would not hold up to distribution shifts
or adversarial manipulation.

In fairness, most works that use this flavor of empirical test sell them as “evaluating
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human trust,” which is properly distinguished from evaluating faithfulness. To consider
these concepts separately is not entirely misled. For example, a model is always a faithful
explanation of itself, but this is entirely useless for providing any additional insight into its
behavior. Thus, a useful explanation must provide some abstraction over the original model,
meaning that there may indeed be variation in the extent to which two faithful explanations
convey illuminating information.

However, when faithfulness is not taken seriously enough, falling out of favor in lieu of
better “interpretability,” the results may be misleadingly appealing. For example, Adebayo
et al. [2] found that several explanation frameworks that produced visually pleasing expla-
nations failed basic sanity checks for faithfulness. In particular, methods based on guided
backpropagation through the network [125, 137] (these methods perform a similar calcu-
lation to backpropagating gradients, but with modifications that “clean” the propagated
values, leading to more refined visualizations) were found to be concerningly insensitive to
the model. Specifically, the visual appeal of the explanations produced by these frameworks
persisted even when the network weights were randomized, indicating the interpretability
of such explanations was not derived from the model. By contrast, similar experiments did
not raise concerns over gradient-based methods, which we have seen can be axiomatically
justified.

Explanations that achieve interpretability independently of the underlying model must
be seen as suspect; the findings of Adebayo et al. warn us that we should be cautious of
relying on interpretability measures, which do not indicate how interpretability is achieved.

Other methods besides guided backpropagation may dubiously achieve interpretability
as well. For instance, Ribeiro et al. [118] proposed Local Interpretable Model-agnostic Ex-
planation (LIME), a framework that explains the behavior of a complex model through an
interpretable model (e.g., a linear classifier) that is locally faithful to the underlying model’s
behavior—on a collection of high-level “interpretable representations”—at a given point.
While the authors intend the term “model-agnostic” (from which LIME gets its name) to
mean that their approach is black-box, their concept of atomic interpretable representations
introduces a problematic source of infidelity to the model being explained.

In the context of images, LIME creates an interpretable proxy model that operates on
so-called “super-pixels” rather than the raw features (RGB pixels). The super-pixels used
by LIME are defined generally, but in practice are obtained via standard image segmen-
tation algorithms. These methods for segmentation are oblivious to the concepts learned
by the model, and by contrast, are designed to appeal to rudimentary human visual intu-
ition. As such, LIME presents the model as using reasonable concepts (leading to pleasing
explanations), without any regard to the model’s true internalized concepts.

In general, classical computer vision algorithms, such as edge detection, could be used
as a filter over instances that would appear as an intuitive explanation [2]. Of course, we
should not accept such explanations, because they are not a function of the model being
explained.

Another slightly different place in which we must take care when interpreting explana-
tions is when multiplying a measure of influence by the corresponding neural activations
to obtain attributions. Integrated Gradients, for instance, does this. If influence (especially
averaged over the distribution interest implicitly specified by Integrated Gradients) is to be
interpreted as a potential impact a feature may have, by taking its activation into account
we are essentially measuring the degree to which the potential has been realized. How-
ever, in practice this means that—if we use a black image as the baseline, as is commonly
done [140]—lighter pixels will tend to have higher attribution. While this is not strictly
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incorrect, it signals that we must take care in interpreting such results (the correct inter-
pretation of Integrated Gradients is clear given its axiomatization), and moreover, in how
we formulate our queries to the model. For example, in an image with a black background
and a light subject, using Integrated Gradients with a black baseline essentially constitutes
a “loaded question.”

Conclusions. As Samek et al. [122] aptly put, “one should keep in mind that [an ex-
planation] always represents the classifier’s view, i.e., explanations neither need to match
human intuition nor focus on the object of interest.” Indeed, we cannot assume a priori
that our models are conceptually sound, even when they appear proficient at the task they
were trained for—vulnerabilities may we lurking still. Although we want our explanations
to effectively distill sound behavior when it is to be found hidden beneath opaque compu-
tations, we must consider the possibility that unintelligible, counter-intuitive, or otherwise
undesirable explanations may simply be a reflection of a neural network’s lack of conceptual
soundness. Put concisely, quality explanations require quality models.
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Training Robust
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Chapter 5

Adversarial Examples and
Provable Robustness

In Part I we concluded that the quality of a model is to blame for faithful explanations
that are unintelligible, counter-intuitive, or otherwise undesirable. Much of the continued
effort on developing new explanation techniques—as well as some of the faulty ways of
evaluating them, described in Chapter 4—has been inspired by a general dissatisfaction
with the appearance of explanations produced on typical models. In this chapter, we will
demonstrate that vulnerability to adversarial input perturbations (known as adversarial
examples), a ubiquitous problem in modern neural networks, is a major factor limiting the
intuitiveness of explanations. The presence of adversarial examples establishes a model as
conceptually unsound, rendering qualitative evaluations of explanations are meaningless if
unresolved. This will serve as a significant part of the motivation for the remainder of Part II
of this thesis, which focuses on defenses against adversarial examples—though in addition to
compromising conceptual soundness, adversarial examples also pose a direct security threat
to models that are vulnerable to them.

To this end, we introduce local robustness, a property that ensures the protection of
specific points against certain kinds of adversarial manipulations. Local robustness is a key
property behind the wider goal of models that are invulnerable, or at least resistant, to
adversarial examples, informally referred to as “robust models.” This chapter contributes
a possible formalization of robust models that raises the notion of local robustness—which
applies to specific points—to models.

One of the primary goals of this chapter is to make explicit the vital link between the
robustness of a model and its conceptual soundness. While many of these connections come
from prior work, which has documented the interpretability benefits of robustness well,
we take this logic a step further, arguing that robustness is a necessary prerequisite for
conceptual soundness.

5.1 Conceptual Soundness and Adversarial Examples

The existence of what have been termed adversarial examples has been reported on almost
as early as the onset of deep networks’ surge in popularity. In 2014, Szegedy et al. [141]
observed that “[by] applying an imperceptible non-random perturbation to a test image, it

41



CHAPTER 5. ADVERSARIAL EXAMPLES AND PROVABLE ROBUSTNESS

𝜖

adversarial example

class “dog” class “sports car”

decision boundary

benign input

Figure 5.1: Geometric interpretation of small-norm adversarial examples.

is possible to arbitrarily change the network’s prediction.” A hypothetical example of this
phenomenon was presented in Chapter 1 in Figure 1.2, in which an image of a dog was
perturbed to lead a model to predict the class “sports car.”

The concept of an adversarial example is actually quite general; although certain classes
of adversarial examples can be defined more concretely, broadly speaking, the term adver-
sarial example refers to an instance that resembles one class (e.g., “dog”), while fooling a
network into outputting a different class (e.g., “sports car”). While the meaning of “resem-
blance” is nebulous, we essentially take it to mean that an adversarial example is derived
by perturbing a properly-classified1 natural input in a semantically meaningless way—for
example, the perturbation may be small enough to be imperceptible to the human eye, or
simply inconspicuous in the given context.

Even with this understanding of “resemblance,” this definition is somewhat vague. Much
of the work addressing adversarial examples has focused on a particular subclass of adversar-
ial example derived from perturbations that can be defined concretely, namely small-norm
adversarial examples (stated formally in Definition 5.1). Essentially, as the name suggests,
small-norm adversarial examples are derived by making a small perturbation (as measured
by an `p norm, e.g., Euclidean distance) to a natural input that causes the network to change
its prediction. Geometrically, this means that the original point is near a decision boundary
in the model, as shown in Figure 5.1.

Definition 5.1 (Small-norm Adversarial Examples). Let F : Rn Ñ rms be a neural network
classifier, and let x P Rn be a natural input to F . We say that an input, x1 “ x ` δ, is an
ε-small-norm adversarial example with respect to `p norm || ¨ ||p if

||δ||p ă ε ^ F pxq ‰ F px1q.

Besides being possible to easily specify, small-norm adversarial examples are motivated
by the fact that for sufficiently small ε, the difference between the natural input x and
adversarial example x1 will be imperceptible (in domains for which a notion of perception
makes sense, e.g., images, sound waves). Thus, if ε is chosen appropriately, we can be assured
that the perturbations used to construct such adversarial examples do not alter the original
input semantically, as desired by our broader definition. We will provide a deeper discussion

1While the literature does not impose a requirement that an adversarial example is derived from a
correctly-classified point, it is assumed that the perturbation causes the network to change its prediction.
Moreover, in spirit, to say that a neural network was “fooled” by an adversarial example suggests that its
initial behavior on the original point was non-arbitrary.
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Figure 5.2: Example of how an explanation can be unintelligible, yet justified.

of adversarial examples that fit this criterion despite having large-norm perturbations at the
end of Chapter 7.

Clearly, adversarial examples negatively impact the reliability of neural networks that
are vulnerable to them—and constitute a security concern in safety-critical machine learn-
ing systems—as they lead to unexpected erroneous behavior on seemingly benign inputs.
Upon closer inspection, it becomes clear that the existence of adversarial examples in a
network must constitute a violation of conceptual soundness as well. Indeed, the perturba-
tion δ, which is semantically meaningless by construction, is nonetheless causally relevant
to changing the model’s prediction, as witnessed by the anomalous prediction it induces.
Thus δ can be thought of as corresponding to some ill-conceived concept that the network
erroneously encodes and employs.

Consider the following thought experiment illustrated in Figure 5.2. Suppose we have an
image, like the image of a panda on the left in the figure, that our model correctly labels
as “dog.” Further, let us suppose that changing one pixel in the corner of the image to
red leads the model to produce a different label from “dog,” e.g., “sports car.” If we ask
why the model labeled the perturbed image as “sports car,” it is clearly reasonable for an
explanation to highlight the single red pixel. After all, we have observed that this pixel was
causally relevant in changing the model’s prediction to “sports car;” and furthermore, there
appears to be no other possible reason to label the perturbed image as such.

This accounts for odd explanations on adversarial examples (like the perturbed image
that was labeled “sports car”), but what about benign inputs? When we ask the model why
it labeled the original image as “dog,” we might get an explanation highlighting nothing but
the single pixel in the corner of the image that could have been perturbed to produce the
adversarial example, as shown in Figure 5.2. While this explanation is certainly confusing,
when we consider the context of the model’s behavior, there is actually an argument for
why such an explanation would be justified. After all, had it not been for the value taken
by that pixel in the original image, the label might not have been “dog”—if it had been
red, for example, the image would have been labeled as “sports car.” For a sufficiently local
explanation (e.g., with a single-point distribution of interest), the value of this specific pixel
may indeed be the most consequential factor in ensuring the “dog” prediction, as a small
change to any other pixel may hardly affect the model’s behavior.2 Thus it is reasonable
to consider that pixel to be highly important in the model’s decision to label the original
image as “dog.”

2This should not be taken to mean that only local explanations exhibit artifacts relating to adversarial
examples. For example, Wang et al. [153] show that Integrated Gradients can be affected by similar anomalies
in a model’s decision surface.
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Relatedly, Ilyas et al. [65] argue that adversarial examples arise because of “non-robust
features” that are reliable predictors (i.e., they are correlated with the class labels), provided
that they remain unperturbed ; i.e., they lose their predictive power under small-norm per-
turbations. As such, these non-robust features are useful for standard classification, but not
for robust classification. These non-robust features are inherently imperceptible to humans,
as they essentially correspond to the perturbations leveraged to create adversarial examples.

This suggests that in order for a model to be interpretable, it must make decisions
based on features that, unlike non-robust features, are fundamentally intelligible to humans.
Furthermore, we cannot expect that a model will naturally learn human-intelligible features
without adequate regularization. After all, there are many ways of using features that could
be consistent with the training data, but clearly not all of them are intelligible—indeed, the
non-robust features described by Ilyas et al. match this description precisely.

5.2 Provable Robustness Guarantees

Numerous defenses have been proposed to deal with the threat of adversarial examples—
particularly small-norm adversarial examples [30, 44, 84, 88, 97, 166]. While many of these
approaches are heuristic in nature—that is, they do not provide guarantees that tell us
when, or if, the model’s predictions cannot be manipulated—in the most safety-critical ap-
plications, this may not be good enough, particularly as such solutions have often been
subverted by subsequent adaptive attacks [19, 29]. Thus, we will focus on provable defenses,
which better address the safety concerns raised by adversarial examples, and ensure im-
proved conceptual soundness.

The first question is, what, precisely, do we want to prove? To address the case of small-
norm adversarial examples, we will target a property called local robustness (Definition 5.2).
Local robustness on a point, x, stipulates that all points within a distance of ε from x are
given the same label as x. Geometrically, this means that a ball of radius ε around x is
guaranteed to be clear of any decision boundaries. From this intuition, it should be clear
that local robustness at x precludes the possibility of deriving an adversarial example from
x.

Definition 5.2 (Local Robustness). A model, F : Rn Ñ rms, is ε-locally-robust at point,
x P Rn, with respect to `p norm, || ¨ ||, if

@x1 P Rn . ||x´ x1|| ď ε ùñ F pxq “ F px1q.

As the name suggests, local robustness is local in the sense that it applies to the neigh-
borhood of a single point, x. We are interested more broadly in models that are robust
in some way. But this raises the question, what does it mean for an entire network to be
robust? Perhaps the most straightforward answer to this question would be to propose that
a network, F , is robust if F is locally-robust at x for all x P Rn. However, upon inspection,
we see that no interesting network can satisfy such a property: if the network contains a
boundary at all, some points must be arbitrarily near it. In other words, a network that is
robust in this sense must degenerately make the same prediction everywhere—not a very
“interesting” network.

This suggests that we must admit the network to not be locally robust in some parts of
the input space; however, this does not have to present a problem as long as the network is
robust in the places we care about—the data manifold. For example, an image that bears
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Figure 5.3: Illustration of global robustness. The model abstains from predicting on the margin
between the classes (dark gray), which has width at least ε.

no resemblance to any class (e.g., an image consisting of pure noise) will still be categorized
as some class by the network; yet there is no particular reason to insist that this arbitrary
decision be robust to perturbations that simply produce other ill-formed inputs. Moreover,
if we assume that our class labels can be applied unambiguously to every valid (on-manifold)
input, then we have reason to believe the “boundary” of the ground truth does not contain
nearby valid inputs—we will return to this point shortly.

While a model cannot be locally-robust on its entire input space, it may contain con-
tiguous robust regions, R, over which the model is ε-locally-robust at every point x P R.
Such regions must contain only points of a single class, i.e., F pxq “ F px1q @x, x1 P R. Addi-
tionally, for any two robust regions, R1 and R2, receiving different labels from F , all points
in R1 must be a distance of at leas 2ε from points in R2. This follows from the fact that
R1 and R2 must be on opposite sides of some decision boundary, and points in each set
are a distance of at least ε from all boundaries. For a given boundary, if we were to extend
all contiguous robust regions maximally, we would obtain a margin of width 2ε centered on
the boundary. In order to distinguish between points that belong to some robust region and
those that do not, we will introduce an additional class, K, which represents points that are
not locally robust. If we assume that the data are 2ε-separated, i.e., on-manifold points with
different ground-truth labels are a distance at least 2ε from one another, then the entire
data manifold may be contained within the appropriately labeled robust regions.

We will use this intuition as inspiration to define a more formal notion of global robustness
(Leino et al. [88]), which extends the concept of local robustness to models. At a high level,
we will consider a model to be globally-robust as long as it separates regions of the input
space that are given different non-K labels by a distance of at least 2ε. An illustration of a
globally-robust decision boundary is shown in Figure 5.3.

First, let us define the relation, K
“, over classes from rms Y tKu, given by Definition 5.3.

Definition 5.3 (K“). For c1, c2 P rms Y tKu, we say that c1
K
“ c2 if

c1 “ K _ c2 “ K _ c1 “ c2.

Using this relation, we provide our formal notion of global robustness in Definition 5.4.
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Definition 5.4 (Global Robustness). A model, F : Rn Ñ rms, is ε-globally-robust, with
respect to `p norm, || ¨ ||, if

@x1, x2 P Rn . ||x1 ´ x2|| ď 2ε ùñ F px1q
K
“ F px2q.

Global robustness can also be thought of as capturing the operational properties of on-
line local robustness certification. That is, suppose we have some procedure, cert, which,
given a model, F , and point, x, tells us if F is ε-locally-robust at x.3 Then, we can obtain a
globally-robust model, F 1, from F by adhering to the following procedure: if certpF, x, εq,
then output F pxq, otherwise output K. This procedure essentially adds a K-labelled region
of width at least ε to either side of an underlying model’s decision boundary, resulting in the
requisite 2ε. Conversely, given an ε-globally-robust model, F 1, if we let X “ tx : F 1pxq ‰ Ku
there exists some corresponding “underlying” model, F , such that @x P X , F pxq “ F 1pxq
and F is ε-locally-robust at x; however the construction of F from F 1 is less straightforward
than producing F 1 from F .

Finally, we remark that while global robustness can be trivially satisfied by predicting K
on all points, it is important to keep in mind that the goal of robustness does not replace the
overarching goal of accuracy—shared by all neural classifiers. Thus, the utility of a globally-
robust model depends on labeling only points off the data manifold as K, as illustrated in
Figure 5.3. However, regardless of whether this goal is entirely met, globally-robust networks
warn us when local robustness cannot be guaranteed.

We typically measure the success of a globally-robust model in terms of its verified robust
accuracy (VRA), which empirically counts the fraction of points from some collection of
validation data that are correctly classified by a non-K label (i.e., for which the underlying
model is both correct and guaranteed to be locally robust). This represents a lower bound
on the accuracy the underlying model could achieve under manipulation by a norm-bounded
adversary, and serves as a better quality measure of the model’s predictions than standard
accuracy provides.

Robustness as a Starting Point for Conceptual Soundness. Viewed from the frame-
work of Ilyas et al. described in Section 5.1, small-norm adversarial examples reflect a
model’s use of non-robust features [65]. While these features are valuable for classification
on benign inputs, they have no utility for the objective of robust classification, as they
open the door to adversarial examples. Non-robust features inherently pose a problem for
conceptual soundness as they are by their very nature uninterpretable and semantically
meaningless. If non-robust features are incompatible with conceptual soundness, and are by
all accounts ubiquitous in standard deep networks, then robustness—which precludes their
use—is an essential property for conceptual soundness. Indeed, any adversarial example is
a witness to unsound behavior. Prior work already provides evidence for this claim, finding
that explanations—including simple point-gradients—produced on empirically robust mod-
els look more intuitive and align more closely with the salient objects in image classification
tasks [37, 65, 148, 154]. In Chapter 6, we will discuss how robust models can be obtained.

3For this analogy, we need only require that cert is sound, i.e., it is acceptable for cert to reject robust
points as long as it does not accept non-robust points.
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Chapter 6

Globally Robust
Neural Networks

Because of the threat posed by adversarial examples, and the elusiveness of such attacks
against heuristic defenses [19, 29], the goal of obtaining local robustness guarantees—to
rigorously rule out small-norm adversarial examples—has been sought with intense effort.
Within the realm of methods for guaranteeing robustness, we will focus our initial discussion
on two classes of approaches. On the one hand, we have methods for post hoc local robustness
certification [44, 69, 71, 144, 155, 168, 169], which attempt to derive point-wise guarantees on
a pre-trained model. Of course, adversarial examples are known to be ubiquitous in models
not specifically trained to resist them [48, 111, 141], meaning that post hoc certification will
not find success on standard-trained models. However, many heuristic defenses—primarily
based upon adversarial training [97], which exposes the model to adversarial examples during
training—produce models for which post hoc certification may, in theory, provide meaningful
guarantees (provided they have stood up to existing attacks [29]).

Post hoc certification faces several significant challenges. First, we cannot assume a priori
that any particular pre-trained model achieves a meaningful degree of local robustness in
the first place. Indeed, it remains unclear whether the types of heuristic defenses used in
concert with post hoc certification truly yield models that will withstand novel attacks. If
they do not, any sound certification routine will overwhelmingly reject inputs, destroying
the utility of the model. However, even when the underlying model is locally robust at
a point under scrutiny, proving this (in ReLU networks) has been shown to be an NP-
complete problem [71, 133]. As a result, post hoc certification methods have been forced
into a trade-off between precision and efficiency.

Some methods perform complete certification, which exactly decides whether a given
point is locally robust at radius ε [69, 71, 144]. Because of the fundamental difficulty of
this problem, these methods cannot scale beyond small “toy” networks. Fromherz, Leino et
al. [44] proposed a slight relaxation of complete certification that remains practically precise,
but with improved speed and scalability. Still, this approach is only viable for networks of a
few thousand neurons, while state-of-the-art networks contain millions of neurons. On the
opposite end of the spectrum, other work has opted for efficient, but loose, over-approximate
certification [155, 168]. While these methods scale to much larger networks, their robustness
guarantees are highly-conservative; e.g., Fromherz, Leino et al. found that the certified
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radii of some such approaches may underestimate the true robustness by multiple orders of
magnitude [44].

In short, post hoc certification is either discouragingly inexact or prohibitively expen-
sive. This has led the research community towards the conclusion that specialized training
procedures are likely necessary to obtain formal guarantees on larger state-of-the-art archi-
tectures [44]. For example, Croce et al. [30] and Xiao et al. [159] proposed regularization
methods for producing models that are more amenable to efficient complete certification.
Other methods seek to construct models on which over-approximate certification is more
precise [82, 88, 91, 103, 147, 157, 169].

In our work, we similarly direct our focus towards training procedures that produce cer-
tifiably robust models. Specifically, we contribute a type of network that we call a GloRo
Net—short for Globally Robust Network—that is globally robust (Definition 5.4) by con-
struction. As certification is baked directly into the network, it is natural to optimize GloRo
Nets for verified robust accuracy (VRA). In the remainder of this chapter, we cover the
construction, implementation, and evaluation GloRo Nets.

6.1 Constructing Globally-Robust Networks

Recall that global robustness (Definition 5.4) requires that we impose a thickness of 2ε on
the boundary of a network, where points landing within this “thick” boundary are labeled as
K, flagging them as not locally robust. To capture this directly, we instrument a model with
an extra K output that will be applied to points near decision boundaries. In particular, we
aim to assign the K label such that the instrumented model predicts a non-K class only if
the point is ε-locally-robust (with respect to the original model). Essentially, this K output is
obtained by applying an on-line local robustness check as each input is evaluated; however,
the key to our approach is that this check is incorporated naturally into the network’s
architecture. This means that (1) the network is always globally robust by construction, and
therefore (2) the joint goal of accuracy and robustness can be reduced to simply training
the instrumented model to make the correct predictions (which means not predicting K).

Before explaining our approach, we will first briefly take an aside to establish a high-
level understanding of why small-norm adversarial examples occur in certain models, as
these insights will be key to our implementation of globally-robust neural networks.

Lipschitz Continuity: the Key to the Avoiding Adversarial Examples

If we are to achieve the ideal for globally-robust models described in Chapter 5—applying
the K label to only points off the data manifold (e.g., see Figure 5.3)—our model must
not contain small-norm adversarial examples derived from on-manifold points, as these will
always be labeled as K by any globally-robust model.

Recall from Definition 5.1 that for some point x on the data manifold, an ε-small-
norm adversarial example takes the form x1 “ x ` δ, where F pxq ‰ F px1q and ||δ|| ă
ε. For simplicity, we will consider a binary classifier, where the network function, f , has
only one output and F pxq is determined by the sign of fpxq. Supposing that the model’s
original prediction on x was confident (i.e., |fpxq| " 0)—indeed, in practice, even confident
predictions are subject to adversarial manipulation [141]—the difference in the network’s
output on x and x1, |fpxq ´ fpx1q| will be large. Meanwhile, the distance between x and x1,
||δ||, is small. Thus, the average slope of the function between x and x1, given by Equation 6.1,
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will be especially large.

|fpxq ´ fpx1q|

||x´ x1||
“
|fpxq ´ fpx1q|

||δ||
(6.1)

Thus, we see that adversarial examples can be derived from confidently-labeled points
only when the network function contains problematically-steep regions. Meanwhile, as we
and others have observed, Lipschitz continuity (Definition 6.1)—specifically local Lipschitz
continuity—is a key component of robustness [48, 88, 155, 160]. Essentially, Lipschitz conti-
nuity stipulates that the maximum steepness of a function is bounded by some constant, K,
known as the Lipschitz constant. When the Lipschitz constant is small, we can be assured
that the function is not too steep in any region.

Definition 6.1 (Lipschitz Continuity). A function, h : X Ñ R, is K-Lipschitz-continuous
with respect to `p norm, || ¨ ||, if

@x1, x2 P X .
|hpx1q ´ hpx2q|

||x1 ´ x2||
ď K.

A direct corollary of Lipschitz continuity that we will use in our construction is that a
change in the function’s input of at most ε (measured in `p space) can induce a change in
the function’s output of at most εK.

Constructing Globally-Robust Networks

The logit outputs of a neural network, f , can be thought of as m individual functions,
fi, for i P rms. The prediction, j, of the network on a particular point, x, corresponds to
the largest such logit output, i.e., j “ argmaxitfipxqu “ F pxq. Intuitively, if none of the
logit functions is arbitrarily steep, then if fjpxq is sufficiently large compared to any of the
other logit outputs, a small perturbation to x will not be able to account for this difference.
Specifically, let ∆ipxq “ fjpxq ´ fipxq, for i ‰ j, be the size of the margin between the
highest logit output and the ith logit output. While ∆ipxq is measured in the output space,
we can ensure it is sufficiently large to ensure local robustness by relating the output space
to the input space via the Lipschitz constant of each logit output.

Namely, let Ki be an upper bound on the Lipschitz constant of fi. Recall that Ki bounds
the largest possible change in the logit output for class i per unit change in the model’s input.
Thus, on any input x1 within a distance of ε from x, fj can decrease by at most εKj and
any other logit, fi, can increase by at most εKi. Together, these observations suggest that
∆i can decrease by at most εpKj `Kiq. If ∆ipx

1q becomes negative then some logit besides
fj must have surpassed fj , meaning that the network must have changed its prediction on
x1. On the other hand, if ∆ipx

1q remains positive for all x1 in the ε-ball around x, then the
model’s prediction on x is preserved, meaning the network is locally robust at x.

Therefore, let us define our instrumented model, or GloRo Net, which we will denote
by f̄ ε, as follows: Let j “ F pxq, i.e., the class predicted on point x. Let yKpxq, the logit
corresponding to the K class, be defined according to Equation 6.2. In essence, yKpxq captures
the logit value that most competitive class with j would take under the worst-case change
to x within an ε-ball (accounting for the possible decrease in fj). Figure 6.1 provides an
illustration of this construction.

yKpxq :“ max
i‰j

tfipxq ` εpKi `Kjqu (6.2)
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1 2 3 4 ⊥

𝜖K1

𝜖K2

Figure 6.1: Illustration of calculating the K logit. Note that εKi provides a bound on changes to
logit i within an ε-ball. The K logit is chosen to account for the predicted class decreasing by the
maximum amount and each other class increasing by the maximum amount. If the K logit does not
surpass that of the predicted class, then no class can overtake the predicted class within an ε-ball
(Theorem 6.1).

We then define f̄ ε, according to Equation 6.3. Essentially, f̄ ε concatenates yK with the
output of f .

@i P rms Y tKu . f̄ εi pxq :“

#

fipxq if i P rms

yKpxq if i “ K
(6.3)

A key property of a GloRo Net, f̄ ε is that its predictions, F̄ ε, can be used to certify
the predictions of the instrumented model, F : namely, whenever F̄ ε predicts a class that is
not K, the prediction coincides with the prediction of F , and F is guaranteed to be locally
robust at that point (Theorem 6.1).

Theorem 6.1. If F̄ εpxq ‰ K, then F̄ εpxq “ F pxq and F is ε-locally-robust at x.

Proof. Let j “ F pxq. Assume that F̄ εpxq ‰ K; this happens only if one of the outputs of
f is greater than f̄ εKpxq — from the definition of fKpxq, it is clear that only fjpxq can be
greater than f̄ εKpxq. Therefore fjpxq ą f̄ εKpxq, and so F̄ εpxq “ j “ F pxq.

Now assume x1 satisfies ||x´x1|| ď ε. Let Ki be an upper bound on the Lipschitz constant
of fi. Then, @i

|fipxq ´ fipx
1q|

ε
ď
|fipxq ´ fipx

1q|

||x´ x1||
ď Ki

ùñ |fipxq ´ fipx
1q| ď Kiε (6.4)

We proceed to show that for any such x1, F px1q is also j. In other words, @i ‰ j, fipx
1q ă

fjpx
1q. By applying the definition of the Lipschitz constant as in (6.4), we obtain (6.5). Next,

(6.6) follows from the fact that f̄ εKpxq “ maxi‰j tfipxq ` εpKi `Kjqu (Equation 6.2). We
then obtain (6.7) from the fact that fjpxq ą f̄ εKpxq, as observed above. Finally, we again
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apply (6.4) to obtain (6.8).

fipx
1q ď fipxq ` |fipxq ´ fipx

1q| ď fipxq `Kiε (6.5)

ď f̄ εKpxq ´Kjε (6.6)

ă fjpxq ´Kjε (6.7)

ď fjpxq ´ |fjpxq ´ fjpx
1q| ď fjpx

1q (6.8)

Therefore, fipx
1q ă fjpx

1q, and so F px1q “ j. We thus conclude that F is ε-locally-robust
at x.

Note that in our formulation of GloRo Nets in Equation 6.3, we assume that the pre-
dicted class, j, will decrease by the maximum amount within the ε-ball, while all other
classes increase by their respective maximum amounts. This is a conservative assumption
that guarantees local robustness; however, in practice, we can dispose of this assumption
by instead calculating the Lipschitz constant of the margin, ∆, by which the logit of the
predicted class surpasses the other logits, i.e., the Lipschitz constant of fj´fi for i ‰ j. The
details of this tighter variant are presented in Appendix A.1 along with the corresponding
correctness proof.

Notice that the GloRo Net, F̄ ε, will always predict K on points that lie directly on the
decision boundary of F . Moreover, any point that is within ε of the decision boundary will
also be labeled as K by F̄ ε. From this, it is perhaps clear that GloRo Nets achieve global
robustness (Theorem 6.2).

Theorem 6.2. F̄ ε is ε-globally-robust.

Proof. Assume x1 and x2 satisfy ||x1 ´ x2|| ď 2ε. Let F̄ εpx1q “ c1 and F̄ εpx2q “ c2.
If c1 “ K or c2 “ K, global robustness is trivially satisfied.
Consider the case where c1 ‰ K, c2 ‰ K. Let x1 be the midpoint between x1 and x2, i.e.,

x1 “ px1 ` x2q{2. Thus

||x1 ´ x
1|| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1 ´ x2

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
||x1 ´ x2||

2
ď ε.

By Theorem 6.1, this implies F px1q “ c1. By the same reasoning, ||x2 ´ x1|| ď ε, implying
that F px1q “ c2. Thus, c1 “ c2, so global robustness holds.

6.2 Lipschitz Bounds

The logit corresponding to the K class that is added in our construction of GloRo Nets in
Section 6.1 is a function of the Lipschitz constant, Ki, of each of the logit outputs of the
instrumented model. Thus, far, we have not discussed how this value is obtained. In practice,
it is only computationally tractable to obtain an upper bound on the Lipschitz constant of
the instrumented model. Furthermore, even with the exact Lipschitz constant, the K logit
is a conservative indicator of robustness; that is, although a GloRo Net is guaranteed to be
locally robust at any point where it does not predict K—as stated by Theorem 6.1—when
the GloRo Net does output K, it is not necessarily the case that the point in question is not
locally robust. As we will see, this looseness can be mitigated by learning model parameters
for which GloRo certification is nonetheless effective. However, this means that the ability

51



CHAPTER 6. GLOBALLY ROBUST NEURAL NETWORKS

to derive rich gradient information from the Lipschitz bound computation is instrumental
to the success of our approach.

Section 6.2.1 provides deeper insight into how the seemingly naive approach of using a
simple upper bound on the Lipschitz constant can yield shockingly good results. We then
describe the precise details behind how we compute Lipschitz bounds in Section 6.2.2.

6.2.1 Revisiting the Global Lipschitz Constant

The global Lipschitz constant (otherwise known simply as the Lipschitz constant) gives a
bound on the maximum rate of change in the network’s output over its entire input space.
For the purpose of certifying robustness, however, it suffices to bound the maximum rate
of change in the network’s output over any pair of points within the ε-ball centered at the
point being certified, i.e., the local Lipschitz constant [160]. In fact, recent work has explored
methods for obtaining upper bounds on the local Lipschitz constant [82, 155, 168]; and the
construction of GloRo Nets given in Section 6.1 remains correct whether K represents a
global or a local Lipschitz constant.

The advantage to using a local bound is, of course, that we may expect tighter robustness
guarantees; after all, the local Lipschitz constant is no larger than the global Lipschitz
constant. However, using a local bound also has its drawbacks. First, a local bound is
typically more expensive to compute. In particular, a local bound always requires more
memory, as each instance has its own bound, hence the required memory grows with the
batch size. This in turn reduces the amount of parallelism that can be exploited when using
a local bound, reducing the model’s throughput.

Furthermore, because the local Lipschitz constant is different for every point, it must
be computed every time the network sees a new point. By contrast, the global bound can
be computed in advance, meaning that verification via the global bound is essentially free.
This makes the global bound advantageous, assuming that it can be effectively leveraged for
verification. Note however, that this advantage only applies after training, when the model
parameters have been fixed.

It may seem initially that a local bound would have greater prospects for successful
certification. First, local Lipschitzness is sufficient for robustly classifying well-separated
data [160]; that is, global Lipschitzness is not necessary. Meanwhile, global bounds on typ-
ical networks have been found to be prohibitively large [155], while local bounds on in-
distribution points may tend to be smaller on the same networks. However, the potential
disadvantages of a global bound become less clear if the model is specifically trained to have
a small global Lipschitz constant.

In particular, GloRo Nets that use a global Lipschitz constant will be penalized for
incorrect predictions if the global Lipschitz constant is not sufficiently small to verify its
predictions (as they will output K in such cases); therefore, the loss function actively dis-
courages any unnecessary steepness in the network function (even off-manifold). In practice,
this natural regularization of the global Lipschitz constant may serve to make the steepness
of the network function more uniform, such that the global Lipschitz constant will become
similar to the local Lipschitz constant.

We show that this is possible in theory, in that for any network for which local robustness
can be verified on some set of points using the local Lipschitz constant, there exists a model
on which the same points can be certified using the global Lipschitz constant (Theorem 6.3).
This suggests that if training is successful, our approach has the same potential using a global
bound as it does using a local bound.
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x d(x)

Figure 6.2: Illustration of a function, g, constructed to satisfy Theorem 6.3. The points in S
are shown in light and dark gray, with different shades indicating different labels. The Voronoi
tessellation is outlined in black, and the faces belonging to the decision boundary are highlighted
in bold. The level curves of g are shown in various shades of gray and correspond to points, x, at
some fixed distance, dpxq, from the decision boundary.

Theorem 6.3. Let f be a binary classifier that predicts 1 ðñ fpxq ą 0. Let KLpx, εq be
the local Lipschitz constant of f at point x with radius ε.

Suppose that for some finite set of points, S, @x P S, |fpxq| ą εKLpx, εq, i.e., all points in
S can be verified via the local Lipschitz constant.

Then there exists a classifier, g, with global Lipschitz constant KG, such that @x P S, (1)
g makes the same predictions as f on S, and (2) |gpxq| ą εKG, i.e., all points in S can be
verified via the global Lipschitz constant.

Theorem 6.3 is stated for binary classifiers, though the result holds for categorical clas-
sifiers as well. Details on the categorical case and the proof of Theorem 6.3 can be found
in Appendix A.2; however we provide the intuition behind the construction here. The proof
relies on the following lemma, which states that among locally-robust points, points that
are classified differently from one another are 2ε-separated.

Lemma 6.4. Suppose that for some classifier, F , and some set of points, S, @x P S, F is
ε-locally-robust at x. Then @x1, x2 P S such that F px1q ‰ F px2q, ||x1 ´ x2|| ą 2ε.

Proof. Suppose that for some classifier, F , and some set of points, S, @x P S, F is ε-locally-
robust at x. Assume for the sake of contradiction that Dx1, x2 P S such that F px1q ‰ F px2q

but ||x1 ´ x2|| ď 2ε. Consider the midpoint between x1 and x2, x1 “ px1 ` x2q{2. Note that

||x1 ´ x1|| “
||x1 ´ x2||

2
ď ε

Therefore, since F is ε-locally-robust at x1, F px1q “ F px1q. By the same argument, F px1q “
F px2q. But this contradicts that F px1q ‰ F px2q. �

To prove Theorem 6.3, we construct a function, g, whose output on point x increases
linearly with x’s minimum distance to any face in the Voronoi tessellation of S that separates
points in S with different labels. In simpler terms, gpxq is simply the distance from x (sign-
adjusted to match the label of x) to a decision boundary that is equidistant from points of
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Figure 6.3: Illustration motivating the layer-wise Lipschitz bound (Equation 6.9). In the first
stage, we assume that the inputs to the network can be perturbed by a radius of ε. If the Lipschitz
constant of layer 1 is K1, this means the corresponding perturbations can be scaled to a radius of
at most εK1 after being processed by layer 1. Since the output of layer 1 is the input of layer 2, by
the same reasoning, if the Lipschitz constant of layer 2 is K2, the corresponding perturbations can
be scaled to a radius of at most εK1K2 after being processed by layer 2.

either class. An illustration with a general example of g is shown in Figure A.1. Notably,
the local Lipschitz constant of g in this construction is everywhere the same as the global
constant, making the choice between the two inconsequential.

However, we note that while Theorem 6.3 suggests that networks exist in principle on
which it is possible to use the global Lipschitz constant to certify 2ε-separated data, it
may be that such networks are not easily obtainable via training. Furthermore, as raised by
Huster et al. [64], an additional potential difficulty in using the global bound for certification
is the estimation of the global bound itself. Methods used for determining an upper bound
on the global Lipschitz constant, such as the method presented later in Section 6.2.2, may
provide a loose upper bound that is insufficient for verification even when the true bound
would suffice. Nevertheless, our evaluation in Section 6.4 shows that in practice, the global
bound can be used effectively for certification (Section 6.4.1), and that the bounds obtained
on the models trained with our approach are far tighter than those obtained on standard
models (Section 6.4.3).

6.2.2 Computing Lipschitz Bounds

There has been a great deal of work on calculating upper bounds on the Lipschitz constants of
neural networks [4, 25, 39, 40, 50, 104, 124, 132, 155, 173]. Our implementation uses the fact
that the product of the Lipschitz constant of each of the individual layers of a feed-forward
network provides an upper bound on the Lipschitz constant of the entire network [141]. The
illustration in Figure 6.3 provides some insight as to why this is the case.

More specifically, the output corresponding to class i of a neural network can be decom-
posed into a series of k linear transformations, hi, with k´1 interstitial activation functions,
σi; i.e., fi “ hk ˝ σk´1 ˝ hk´1 ˝ . . . ˝ σ1 ˝ h1. The Lipschitz constant of an activation
function can typically be determined analytically, and in fact, most common activation func-
tions, e.g., ReLU, have a Lipschitz constant of 1. Meanwhile, the Lipschitz constant of each
linear layer, hi, is given by its operator norm. In Euclidean space, for linear layers of the form
hipxq “ xW ` b, this is simply the largest singular value of W , i.e., the largest eigenvalue
of WTW . Thus, for 1-Lipschitz-continuous activation functions, Equation 6.9 provides an
upper bound on the Lipschitz constant of the ith output of the network f (where || ¨ || is the
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operator norm).

Ki ď

k
ź

j“1

||hj || (6.9)

There are many iterative methods for computing the operator norm of the linear layers,
the simplest of which is the power method [39, 50]. Because the power method is matrix-free,
it allows us to compute operator norm of convolutional layers efficiently, without the need
for expanding the kernel to its full matrix form. We will provide more details on practical
considerations for calculating the operator norm in Section 6.3.

Gouk et al. also give a procedure for bounding the Lipschitz constant of skip connections,
enabling the use of a similar bound to that in Equation 6.9 for ResNet architectures. For more
complicated networks, there is a growing body of work on computing layer-wise Lipschitz
bounds for various types of layers that are commonly used in neural networks [40, 104, 124,
132, 173].

This calculation must be recomputed as the network parameters change during training;
however, after training, the global Lipschitz bound will remain unchanged and therefore it
can be computed once in advance. This means that new points can be certified with no
additional non-trivial overhead.

`8 Bounds. While we focus on the `2 norm in this work, the ideas presented in this Chap-
ter can be applied to other norms, including the `8 norm (with appropriate modifications
to the Lipschitz bounding procedure [50]). However, we find that the analogue of the ap-
proximation of the global Lipschitz bound given by Equation 6.9 appears empirically to be
loose in `8 space. Meanwhile, a large volume of prior work applies `8-specific certification
strategies that have proven effective for `8 certification [8, 51, 169].

6.3 Training Dynamics

In this section we describe the key implementation details that allow us to obtain state-of-
the-art certified accuracy with GloRo Nets.

6.3.1 Loss Functions

Crucially, because certification is intrinsically captured by the GloRo Net’s predictions—
specifically, the K class represents inputs that cannot be verified to be locally robust—a
standard learning objective for a GloRo Net corresponds to a robust objective on the original
model that was instrumented. That is, we can train a GloRo Net by simply appending a
zero to the one-hot encodings of the original data labels (signifying that K is never the
correct label), and then optimizing a standard classification learning objective, e.g., with
cross-entropy loss. Using this approach, F̄ ε will be penalized for incorrectly predicting each
point, x, unless x is both predicted correctly and F is ε-locally-robust at x.

While the above approach is sufficient for training models with competitive VRA, we
find that the resulting VRA can be further improved using a loss inspired by TRADES [166],
which balances separately the goals of making correct predictions, and making robust pre-
dictions. Recent work [160] has shown that TRADES effectively controls the local Lipschitz
continuity of networks. While TRADES is implemented using adversarial perturbations,
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which provide an under-approximation of the robust error, GloRo Nets naturally lend them-
selves to a variant that uses an over-approximation, as shown in Definition 6.2.

Definition 6.2. (TRADES Loss for GloRo Nets) Given a network, f , cross-entropy loss
LCE, and parameter, λ, the GloRo-TRADES loss (LT ) of px, yq is

LT px, yq “ LCE

`

fpxq, y
˘

` λDKL

`

f̄ εpxq||fpxq
˘

Intuitively, LT combines the normal classification loss with the over-approximate robust
loss, assuming that the class predicted by the underlying model is correct. Empirically we
find that using the KL divergence, DKL, in the second term produces the best results,
although in many cases using LCE in both terms works as well.

6.3.2 Gradient Norm Preservation

Despite the fact that Theorem 6.3 states that global-Lipschitz-based certification is suffi-
ciently powerful to match local-Lipschitz-based certification, we may still fail to achieve this
result if we cannot accurately calculate the Lipschitz constant of the network. The high-level
method presented in Section 6.2.2 (Equation 6.9) provides an upper bound on the Lipschitz
constant that is simple to compute, but may be loose. Indeed, Huster et al. [64] prove that no
ReLU network can implement the absolute value function in such a way that Equation 6.9
will return a tight bound on the global Lipschitz constant (i.e., 1). More recently, Anil
et al. [4] identified gradient norm preservation as an important property for obtaining tight
layer-wise bounds. A K-Lipschitz layer, zi “ hipzi´1q of a network, f , is gradient-norm-
preserving if it satisfies Equation 6.10; in other words, its Jacobian preserves the norm of
incoming gradients during backpropagation, scaling them by its Lipschitz constant.
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(6.10)

Below, we provide more details on these considerations and their implications regarding
our architecture choices for GloRo Nets.

Gradient-Norm-Preserving Activations

ReLU activations—perhaps the most commonly used activation in deep networks—are not
gradient-norm-preserving. As a result, the bound provided by Equation 6.9 will be loose for
ReLU networks that utilize their capacity. Specifically, ReLU networks—and more generally,
networks with non-gradient-norm-preserving activations—are faced with an inherent trade-
off between non-linear capacity and the tightness of Equation 6.9. Consider the example of
the function gpxq “ |x|. This is a 1-Lipschitz function, and its gradient norm is one almost
everywhere. Suppose that Equation 6.9 bounds the Lipschitz constant of some ReLU neural
network f as one; i.e., the product of the Lipschitz constants of the linear layers of f is
one—this is also a bound on their gradient norm. The Jacobian, of a ReLU activation is a
diagonal matrix where each diagonal entry is either one (if the corresponding ReLU switch
is active) or zero (if the corresponding ReLU switch is inactive). Thus, the Jacobian tends to
shrink the norm of the gradient (which was upper-bounded by one) during backpropagation
on x, meaning that the gradient norm of f will be less than one at x. Thus, f ‰ g. This
argument is made more formal in [4, Theorem 1], which states that ReLU networks for
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which Equation 6.9 yields a bound of one, and for which the norm of their gradient is one
almost everywhere, must be linear.

This result is of particular consequence in light of our construction of the proof of Theo-
rem 6.3, which constructs a function for which the local Lipschitz constant—and in particular
the gradient norm—is the same as the global Lipschitz constant everywhere. It suggests that
this construction is not achievable with ReLU networks, if we wish to use Equation 6.9 to
bound the Lipschitz constant. From this we conclude that gradient-norm-preserving acti-
vation functions are necessary for obtaining expressive neural networks that can be tightly
certified using the bounds given by Equation 6.9.

Anil et al. propose the GroupSort activation, which is gradient-norm-preserving. A spe-
cial case of the GroupSort activation that is most convenient to use is the MinMax acti-
vation, which acts on pair of neurons, z1 and z2, returning them in sorted order (given by
Equation 6.11).

MinMaxpz1, z2q “

#

pz1, z2q if z1 ď z2

pz2, z1q otherwise
(6.11)

Anil et al. conjecture that any 1-Lipschitz function can be approximated a network using
only MinMax activations and linear layers with `2 operator norms that are bounded by one.
We thus use MinMax activations rather than ReLUs for our GloRo Net architectures, finding
that this significantly improves the achievable certified performance.

Orthonormal Linear Operators

Anil et al. also argue for orthonormalizing the linear layers of a network. A linear operator
is k-orthonormal if its singular values are all equal to k. In dense layers, this corresponds to
a weight matrix with orthogonal rows (or columns depending on whether the dimension of
the transformation increases or decreases). Such layers essentially perform scaled rotations.
Orthonormal operators are gradient-norm-preserving, and may confer additional benefits
during training [113]. Thus, several approaches to certifiably robust training have proposed
optimizing over the space of orthonormal linear operators [4, 91, 147]—accomplished by
constraining the parameters of linear layers to yield only orthonormal transformations. Anil
et al. propose a method for orthonormalizing dense layers during training using the Björck
algorithm [11]. Orthonormalizing convolutional layers is more difficult, as it does not suffice
to orthonormalize the kernels; however, recently Trockman and Kolter [147] proposed a
method that acts on the convolution in Fourier space.

However, we find that training GloRo Nets is more successful when the linear layers
are unconstrained. Specifically, orthonormalized layers appear to inhibit the capacity of the
GloRo Net to fit the data, leading to an underfit model. Meanwhile, because the operator
norm calculation is incorporated into the GloRo Net’s forward pass, gradient information
flows back to the linear layer parameters that controls the Lipschitz constant while encourag-
ing accuracy—we discuss this further in Section 6.3.3. As we will see in Section 6.4, GloRo
Nets achieve slightly better empirical results than even the most competitive approaches
based on orthonormalization, suggesting that a well tailored gradient may lead to sufficient
k-othonormality, while making it easier to learn a certifiably robust boundary. We note,
however, that the apparent benefits of optimization over orthonormalizing are not yet fully
understood, and merit further study.
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Figure 6.4: Geometric interpretation of the operator norm. Shown in blue on the left is a unit
ball in the input space of the operator, A. The image of the unit ball under A is shown in blue on
the right, taking the form of an ellipsoid. The eigenvectors of A˚A, v1 and v2 give directions for the
axes of the ellipse, and the corresponding singular values, σ1 and σ2 give the radii. The Lipschitz
constant of the operator, K, is given by the largest singular value.

6.3.3 Operator Norm Calculation

Equation 6.9 in Section 6.2.2 gives a way to provide an upper bound on the Lipschitz constant
of a neural network based on layer-wise Lipschitz bounds. For linear layers, the layer-wise
Lipschitz bound is given by the operator norm of the linear transformation implemented
by the layer. Several algorithms exist for computing this operator norm, in selecting the
optimal choice, we have three primary considerations: (1) the speed of the computation,
(2) the accuracy of the computation, and (3) the gradient signal when backpropagating
through the computation. The speed is important to make training practical and efficient; it
is not important at test time, however, as once the parameters have been fixed the Lipschitz
constant does not need to be recomputed. Conversely, the accuracy is primarily important at
test time, while during training it matters only insofar as it affects the gradient of the loss—
in a sense, an underestimate of the Lipschitz constant during training is roughly analogous
to increasing the temperature of the softmax. Finally, the gradient signal is important for
optimization. The proper gradient direction should signal how to decrease the operator norm
without shrinking the operator in any unnecessary directions.

To elaborate on this latter point, consider the following geometric interpretation of a
linear operator, A : Rn Ñ Rm, illustrated in Figure 6.4 for n “ m “ 2. A maps the points
in a ball in Rn to an ellipsoid in Rm. The axes of the ellipsoid are in the direction of the
eigenvectors of A˚A, and the principal radii are given by the square root of the corresponding
eigenvalues. In order to decrease the operator norm of A, we essentially want to shrink the
semi-axis corresponding to the leading eigenvector. If the gradient direction shrinks some
linear combination of eigenvectors, the ellipsoid will shrink in multiple directions; this is
undesirable, as shrinking in a direction besides that of the leading eigenvector reduces the
expressive capacity of the network without reducing the Lipschitz constant. Worse, if the
gradient direction causes A to grow in the direction of the leading eigenvector, the operator
norm will increase. Thus we must ensure that the gradient direction captures the direction
of the critical eigenvector(s).

With these criteria in mind, we proceed to consider appropriate methods for calculating
the operator norm. Although many of the same techniques may apply to both, we will
consider the cases of dense and convolutional layers separately.
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Algorithm 6.1: The Power Method

Inputs: a linear operator, A : Rn
Ñ Rm; a number, N of iterations

Output: the operator norm of A

1 def createAttackModel (A , N):
// Randomly initialize x as a unit vector.

2 x Ð randomInitializationpq

3 x Ð x{||x||

4 for i P rN s do
5 x Ð A˚Ax
6 x Ð x{||x||

7 return ||Ax||

Dense Layers

Perhaps the simplest method for computing the operator norm is the power method, given
by Algorithm 6.1. One benefit of the power method is that it is matrix-free, meaning that
an explicit representation of A is not necessary as long as we have a method of evaluat-
ing Av and A˚v1 for vectors v P Rn and v1 P Rm. The power iterate, x, in Algorithm 6.1
converges to leading eigenvector of A˚A; however, this may take many iterations. Other
matrix-free algorithms exist for iteratively computing the leading eigenvector, such as the
Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) algorithm. While the
LOBPCG algorithm takes advantage of the fact that A˚A is Hermitian to ensure faster
convergence, unfortunately, we were unable realize practical benefits from a naive imple-
mentation of LOBPCG, as iterations of LOBPCG are significantly slower than iterations of
the power method.

Although the power method is matrix-free, for dense layers, A is in fact represented
explicitly as a matrix, W . We can thus compute the operator norm by directly computing
the eigenvalues of WTW . Since WTW is real-symmetric, it is also Hermitian, meaning that
we can use specially tailored algorithms that exploit this property. TensorFlow has a native
eigh function, which returns the eigenvectors and eigenvalues of a Hermitian matrix. While
this performs unnecessary work, as we only require the leading eigenvalue, we find this native
operation is often quite efficient. Moreover, it is numerically stable, and consistently gives
accurate estimates of the eigenvectors and corresponding eigenvalues, as compared to the
power method. As the eigenvector is necessary for determining the gradient direction, its
accuracy is crucial to successful optimization.

Table 6.5a shows the average runtime for computing forward and backward passes of the
power method and TensorFlow’s native eigh on a 400 ˆ 600 weight matrix, as well as the
accuracy of the resulting eigenvector, x, measured as the cosine similarity between x and
WTWx. We see that the native TensorFlow eigh implementation stands out as the fastest
method for precisely estimating the leading eigenvalue.

This also translates to eigh providing the most reliable gradient signal. Figure 6.6a
plots how the operator norm, λ, of W changes as W is modified in the direction of Bλ

BW ,
for various methods of estimating λ. We see that λ is reduced most effectively when the
gradient is calculated using eigh. Although it is not conveyed by Figure 6.6a, we also found
that the quality of the power method gradient was far less consistent—sometimes leading to
an increase in λ—even for large numbers of iterations. Therefore, we use eigh rather than
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time (s)
method forward pass backward pass accuracy

power ˆ5 0.013 0.024 0.993
power ˆ10 0.024 0.036 0.998
power ˆ100 0.220 0.300 1.000
eigh 0.023 0.030 1.000

(a) dense layer

time (s)
method forward pass backward pass accuracy

power ˆ5 0.006 0.009 0.995
power ˆ10 0.011 0.014 0.998
power ˆ100 0.096 0.118 1.000
SVD 0.050 0.125 1.000

(b) convolutional layer

Table 6.5: Comparison of the computation speed and eigenvector accuracy of the power method
(with various numbers of iterations) and TensorFlow’s native eigh and SVD implementations on
a randomly initialized (a) dense layer and (b). Accuracies are measured as the cosine similarity
between the eigenvalue estimate, x, and A˚Ax. Note that if x is a true eigenvector of A˚A, then
A˚Ax “ λx.
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Figure 6.6: Comparison of the effectiveness of the gradient of various operator norm computations
at decreasing the operator norm on a randomly initialized (a) dense layer and (b). The x-axis
represents the distance the layer weights are perturbed in the direction of the gradient of each of
the four computation methods—the power method with 5, 10, and 100 iterations, and TensorFlow’s
native eigh or SVD implementation—and the y-axis measures the corresponding operator norm of
the perturbed weights.

the power method for computing the operator norm of dense layers in our implementation.

Convolutional Layers

As mentioned previously, since the power method is matrix-free, it is applicable to convolu-
tional layers in a straightforward way. Specifically, Av can be computed by a convolution of
the kernel, W , with v. Analogously A˚v1 can be computed via a transposed convolution—
often referred to as a deconvolution, though this should not be confused with the inverse of
the original convolution operation.

As convolutional layers are parameterized by a kernel rather than a full-dimensional
weight matrix, eigh cannot be directly applied as in dense layers. However, Sedghi et al.
[124] demonstrate that the kernel can be mapped into a matrix, M in Fourier space where the
singular values of M are the singular values of the convolution operation, A. Experimentally,
we found that calling TensorFlow’s eigh on M˚M was less numerically stable than using
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the native TensorFlow SVD implementation, which operates directly on M .
Table 6.5b and Figure 6.6b compare the performance of the power method to that of

TensorFlow’s SVD implementation on a convolutional layer with 32ˆ 32 feature maps and
32 input and output channels. In contrast to what we observed on dense layers, SVD is
less comparably favorable. First, Table 6.5b shows that SVD is relatively more costly than
the power method. Additionally, Figure 6.6b shows that the gradient signal of the power
method is higher quality on convolutional layers than on dense layers—and we also observe
that it is much more robust to the random initialization. This difference is likely because
the eigenvectors of convolutional layers are typically low-dimensional compared to their
counterparts in dense layers—the former have their dimension determined by the kernel,
which is typically small.

Another advantage to the power method is that if, rather than initializing x randomly,
we begin with a close approximation of the true leading eigenvector, then the power method
converges much more rapidly. Thus, we can preserve the state of the power iterate over the
course of training to accelerate convergence. While the eigenvector may drift as we update
the weights, we can over-provision the number of power iterations and add an early-stopping
criterion to terminate iteration once the eigenvector estimate is sufficiently accurate. We base
our stopping criterion on the cosine similarity between the values taken by x at the start
and end of each iteration—we note that this corresponds to the measurement of cosine
similarity between x and A˚Ax used in Table 6.5b. The results from Table 6.5b show that
the equivalent of 100 power iterations has been reached once the cosine similarity is within
approximately four decimal places from 1.0. This does not affect the gradient computation,
as the gradient depends only on the final value of x regardless of the number of iterations—
the gradient of the power method is the same as the gradient of ||Ax||, where x is treated
as a constant.

Given these advantages, and the results in Table 6.5b and Figure 6.6b, we opt to use the
power method for computing the operator norm of convolutional layers.

6.4 State-of-the-Art Robust Classification

In this section, we present an empirical evaluation of our proposed GloRo Nets. We first
compare GloRo Nets with several certified training methods from the recent literature in
Section 6.4.1. We also explore the training cost, in terms of per-epoch time and peak memory
usage, required for training and certification using our method, compared with other styles
approaches (Section 6.4.2). We end by demonstrating that the simple method we use for
estimating Lipschitz bounds is surprisingly tight for GloRo Nets (Section 6.4.3).

Experimental Setup

We begin by providing an overview of the methods we compare against and the setup of our
experiments.

Certifiable Training Methods. We compare the performance of GloRo Nets to a wide
array of certifiable training methods that follow a few high-level approaches. A detailed
discussion of these approaches and their relation to GloRo Nets is provided in Section 6.5.
First, we consider other methods that perform certification via global Lipschitz bounds,
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including Cayley [147], BCOP [91], and LMT [149]. We also consider BCP [82], which uses
a local Lipschitz bound to perform certification. Finally, we consider two methods performing
non-Lipschitz-based certification, KW [157] and MMR [30].

Datasets. Our evaluation considers three benchmark datasets, MNIST [79], CIFAR-10 [76]
and Tiny-Imagenet [78], which have commonly been used to evaluate certified training meth-
ods. To facilitate comparison with prior work, we use an `2 adversarial perturbation budget
of either ε “ 0.3 or ε “ 1.58 for MNIST, and ε “ 0.141 for CIFAR-10 and Tiny-Imagenet.

Metrics. For each model considered in our evaluation, we report the clean accuracy, i.e.,
the accuracy without verification on non-adversarial inputs, the PGD accuracy, i.e., the
accuracy under adversarial perturbations found via the Projected Gradient Descent (PGD)
attack [97], and the verified-robust accuracy (VRA), i.e., the fraction of points that are both
correctly classified and certified as robust. Whereas the VRA gives a lower bound on the
number of correctly-classified points that are locally robust, the PGD accuracy serves as
an upper bound on the same quantity. For the methods besides our own, we report the
corresponding best VRAs from the original respective papers when possible, but measure
training and certification costs on our own hardware for an equal comparison. However, when
training BCP models for MNIST with ε “ 0.3, we found a different set of hyperparameters
that outperforms those given by Lee et al. [82], which we report instead.

Models. We used four standard convolutional network architectures that have been used
in most of the prior literature on certifiable training to provide the most accurate comparison
to the other methods in our evaluation. As discussed in Section 6.3, we found that MinMax
activations [4] performed better than ReLU activations for GloRo Nets; however, some
of the methods we compare to used ReLU activations, either because their certification
analysis is tailored to ReLUs (BCP, KW, and MMR) or because they were published before
MinMax became popularized (LMT). We include additional results in Appendix A.3 that
show that GloRo Nets trained with ReLU activations still outperform all of these methods.
Further details on the network architectures and experimental hyperparameters are provided
in Appendix A.4. An implementation of our approach that can be used to reproduce our
results is available on GitHub.1

6.4.1 Verified Accuracy

We first compare the VRA obtained by GloRo Nets to the VRA achieved by several other
certified training approaches. The results are shown in Table 6.7. As additional reference
points, for each dataset we also provide numbers obtained via standard training and Ran-
domized Smoothing (RS) [26] on the same architectures (using ReLU activations). We note
that RS provides only a probabilistic robustness guarantee, while the other VRAs in Ta-
ble 6.7 correspond to deterministic guarantees. We further note that the numbers reported
for RS appear lower than what is often reported for RS and similar methods in the litera-
ture because we use the same small CNN architecture used by the other approaches in our
evaluation rather than a large ResNet architecture.

We find that GloRo Nets consistently outperform the previous state-of-the-art deter-
ministic VRA. On MNIST, GloRo Nets outperform all previous approaches with both radii

1Code available at https://github.com/klasleino/gloro.
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method clean (%) PGD (%) VRA(%)

MNIST pε “ 0.3q

standard: 99.2 96.9 0.0
GloRo 99.0 97.8 95.7
BCP 93.4 89.5 84.7
KW 98.9 97.8 94.0
MMR 98.2 96.2 93.6
RS˚ 98.8 - 97.4

MNIST pε “ 1.58q

standard: 99.0 45.4 0.0
GloRo 97.0 81.9 62.8
LMT 86.5 53.6 40.6
BCOP 98.8 - 56.7
BCP 92.4 65.8 47.9
KW 88.1 67.9 44.5
RS˚ 99.0 - 59.1

CIFAR-10 pε “ 36{255q

standard: 85.7 31.9 0.0
GloRo 77.0 69.2 60.0
LMT 63.1 58.3 38.1
BCOP 72.4 64.4 58.7
Cayley 75.3 67.6 59.1
BCP 65.7 60.8 51.3
KW 60.1 56.2 50.9
RS˚ 74.1 - 64.2

Tiny ImageNet pε “ 36{255q

standard: 35.9 19.4 0.0
Gloro 35.5 32.3 22.4
BCP 28.8 26.6 20.1
RS˚ 23.4 - 16.9

Table 6.7: Performance comparisons for a wide set of certifiable training approaches approaches,
showing the VRA, PGD accuracy, and clean accuracy of each approach. Best results are highlighted
in bold. Standard training is included for the sake of comparison but is marked by a : superscript
to denote that it does not lead to certified predictions. Randomized Smoothing (RS) is marked
with a * superscript to indicate that it provides only a stochastic robustness guarantee rather than
a deterministic one.

commonly used for the `2 norm in prior work (ε “ 0.3 and ε “ 1.58). When ε “ 0.3, the
VRA begins to approach the clean accuracy of the standard-trained model; for this bound,
GloRo Nets outperform the previous best VRA (achieved by KW) by nearly two percent-
age points, accounting for roughly 33% of the gap between the VRA of KW and the clean
accuracy of the standard model. For ε “ 1.58, GloRo Nets improve upon the previous best
VRA by several percentage points—in fact, the VRA achieved by GloRo Nets in this setting
even slightly exceeds that of Randomized Smoothing, despite the fact that RS provides only
a stochastic guarantee. On CIFAR-10, GloRo Nets slightly exceed the VRA of the other
deterministic approaches, though Cayley is competitive. Finally, on Tiny-Imagenet, GloRo
Nets outperform BCP by approximately 2 percentage points, improving the state-of-the-art
VRA by roughly 10%. Some other methods, such as KW, have been found to be unable to
scale to Tiny-Imagenet due to memory pressure, and overall, results on Tiny-Imagenet are
less common in the literature.
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method sec./epoch # epochs mem. (MB)

MNIST pε “ 0.3q

standard: 0.3 100 0.6
GloRo 0.9 50 0.7
KW 66.9 100 20.2
BCP 44.8 300 12.6

MNIST pε “ 1.58q

standard: 0.9 42 2.2
GloRo 3.7 300 2.7
KW 138.1 60 84.0
BCP 43.4 60 12.6

CIFAR-10 pε “ 36{255q

standard: 1.8 115 2.5
GloRo 6.9 400 3.6
KW 516.8 60 100.9
BCP 47.5 200 12.7

Tiny-Imagenet pε “ 36{255q

standard: 10.7 58 6.7
GloRo 40.3 800 10.4
BCP 798.8 102 715.2

(a)

method time (sec.) mem. (MB)

CIFAR-10 pε “ 36{255q

GloRo 0.4 1.8
KW 2,515.6 1,437.5
BCP 5.8 19.1

RS˚ 36,845.5 19.8

(b)

Table 6.8: (a) Training cost in terms of runtime and memory usage. Standard training is included
for the sake of comparison but is marked by : superscript to denote that it does not lead to certified
predictions. (b) Certification timing and memory usage results on CIFAR-10. Randomized Smooth-
ing (RS) is marked with a * superscript to indicate that it provides only a stochastic robustness
guarantee rather than a deterministic one.

Table 6.7 also shows that GloRo Nets perform favorably in terms of the other metrics we
consider. Compared to standard training, all certifiably-robust training approaches typically
impose some cost on clear accuracy. While the traded benefits of certifiable training are clear
(as standard training provides no guarantees of robustness), it is preferable to have a model
that performs well even when it can’t be certified. To this end, we find that GloRo Nets
also consistently achieve better clean and PGD accuracy than other approaches. The former
suggests that GloRo Nets do not achieve better VRA than other approaches by simply
trading expressiveness for certifiability. The latter indicates that the higher VRA of GloRo
Nets translates to practical benefits against real adversaries, rather than merely reflecting
tighter certification on similarly robust points.

6.4.2 Training and Certification Cost

A key advantage to GloRo Nets over most prior approaches is their ability to achieve state-
of-the-art VRA using methods that are computationally inexpensive both at train and test
time. Most importantly, as discussed in Section 6.2, using a global Lipschitz bound for certifi-
cation confers performance benefits over using a local bound (e.g., BCP), or other expensive
approaches (e.g., KW). Furthermore, as discussed in Section 6.3.3, using the power method
in favor of weight orthonormalization (used by BCOP and Cayley) for enforcing global
Lipschitzness accrues additional performance gains during training. Our evaluation focuses
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particularly on the benefits of global-Lipschitz-based certification, which is responsible for
the most significant performance benefit of GloRo Nets—namely, instant certification at test
time. To this end, we compare against BCP, which uses local-Lipschitz-based certification,
and KW, the better of the two non-Lipschitz-based certification procedures we consider in
our evaluation.

Table 6.8a shows the cost of GloRo, KW, and BCP—both in time per epoch and in
memory—during training. For comparison, Table 6.8a also provides the same measurements
for standard training. All timings were taken on a machine using a Geforce RTX 3080
accelerator, 64 GB memory, and Intel i9 10850K CPU, with the exception of those for
the KW [157] method, which were taken on a Titan RTX card for toolkit compatibility
reasons. Appendix A.5 provides further details on how memory usage was measured. Because
different batch sizes were used to train and evaluate each model, we control for this by
reporting the memory used per instance in each batch.

We see that KW is the most expensive approach to train, requiring tens to hundreds
of seconds per epoch and roughly 35ˆ more memory per batch instance than standard
training. BCP is less expensive than KW, but still takes nearly one minute per epoch on
MNIST and CIFAR and 15 minutes on Tiny-Imagenet, and uses anywhere between 5-106ˆ
more memory than standard training.

Meanwhile, the cost of GloRo Nets is more comparable to that of standard training than
of KW or BCP, taking only a few seconds per epoch, and at most 50% more memory than
standard training. Because of its memory scalability, we were able to use a larger batch size
with GloRo Nets. As a result, more epochs were occasionally required for GloRo training;
however, this did not outweigh the significant reduction in time per epoch, as the total time
for training was still only at most half of the total time for BCP.

Table 6.8b shows the test-time cost of the same set of approaches both in the time
required to certify the entire test set and in the memory used to do so (results given for
CIFAR-10). KW is the most expensive deterministic approach in terms of time and memory,
followed by BCP. Here again, GloRo Nets are far superior in terms of cost, making certified
predictions over 14ˆ faster than BCP with less than a tenth of the memory, and over 6,000ˆ
faster than KW. These results show that the GloRo approach is promising not only because
of its first-class VRA, but also because of its scalability.

Figure 6.8b also provides the evaluation cost for Randomized Smoothing (RS). As re-
ported in the literature (and also somewhat evident from Figure 6.7), RS and its derivatives
typically outperform the VRA achievable by modern deterministic approaches—though the
stochastic guarantees they provide are not perfectly comparable. However, we see in Fig-
ure 6.8b that GloRo Nets are several orders of magnitude faster at certification than RS.
GloRo Nets perform certification in a single forward pass, enabling certification of the entire
CIFAR-10 test set in under half a second ; on the other hand, RS requires tens of thousands
of samples to provide a confident guarantee on a single instance, reducing throughput by
orders of magnitude and requiring over ten hours to certify the same set of instances. Thus,
unlike GloRo Nets, RS is not suitable for applications that require a “real-time” defense.

6.4.3 Lipschitz Tightness

Theorem 6.3 demonstrates that a global Lipschitz bound is theoretically sufficient for certi-
fying 2ε-separated data. However, as discussed in Section 6.2, there may be several practical
limitations making it difficult to realize a network that reaches this potential; we now assess
how these limitations are borne out in practice by examining the Lipschitz bounds that
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method global UB global LB local LB

MNIST pε “ 1.58q

standard 5.4 ¨ 104 1.4 ¨ 102 17.1
GloRo 2.3 1.9 0.8

CIFAR-10 pε “ 36{255q

standard 1.2 ¨ 107 1.1 ¨ 103 96.2
GloRo 15.8 11.0 3.7

Tiny-Imagenet pε “ 36{255q

standard 2.2 ¨ 107 3.6 ¨ 102 40.7
GloRo 12.5 5.9 0.8

Table 6.9: Upper (UB) and lower (LB) bounds on the global and local Lipschitz constant. Lower
bounds on the local Lipschitz constant reflect an average over the points in the test set.

GloRo Nets use for certification.
Weng et al. [155] report that an upper bound on the global Lipschitz constant is not

capable of certifying robustness for a non-trivial radius. While this is true of models produced
via standard training, GloRo Nets impose a strong implicit regularization on the global
Lipschitz constant. Indeed, Table 6.9—which provides the layer-wise Lipschitz upper bound
(from Equation 6.9) on both GloRo Nets and their standard-trained counterparts—shows
that the global upper bound is several orders of magnitude smaller on GloRo Nets than on
standard networks.

Another potential limitation of using an upper bound of the global Lipschitz constant
is the tightness of the bound itself [64]. To investigate this possibility, we compute a lower
bound on the network’s Lipschitz constant via optimization. Specifically, we solve the opti-
mization problem given by Equation 6.12, where j1 “ F px1q. The fact that Equation 6.12
considers fj1´fi reflects the fact that our GloRo Net implementation measures the Lipschitz
constant of the margin between the predicted class and all other classes (see Appendix A.1
for more details).

max
x1,x2

max
i

"

|fj1px1q ´ fipx1q ´ pfj1px2q ´ fipx2qq|

||x1 ´ x2||

*

(6.12)

Table 6.9 shows that a lower bound of the Global Lipschitz constant, obtained via opti-
mizing Equation 6.12, reaches an impressive 83% of the upper bound on MNIST, meaning
that the upper bound is fairly tight. On CIFAR-10 and Tiny-Imagenet the lower bound
reaches approximately 70% and 47% of the upper bound, respectively. However, on a stan-
dard model, the lower bound is potentially orders of magnitude looser. These results show
there is still room for improvement; for example, using the lower bound in place of the
upper bound would lead to roughly a 10% increase in VRA on CIFAR-10, from 58% to
64%. However, the fact that the bound is tighter for GloRo Nets suggests the objective
imposed by the GloRo Net helps by incentivizing parameters for which the upper bound
estimate is sufficiently tight for verification. Moreover, the decreasing tightness from MNIST
to CIFAR-10 to Tiny-Imagenet may also partially reflect looseness in the lower bound as the
number of input dimensions increases, causing progressively more difficulty in optimizing
Equation 6.12.

Finally, we compare the global upper bound to an empirical lower bound of the local
Lipschitz constant. The local lower bound given in Table 6.9 reports the mean local Lipschitz
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constant found via optimizing Equation 6.12 subject to ||x1 ´ x0|| ď ε and ||x2 ´ x0|| ď ε
for each x0 in the test set. In the construction given for the proof of Theorem 6.3, the
local Lipschitz constant is the same as the global bound at all points. While the results in
Table 6.9 show that this may not be entirely achieved in practice, the ratio of the local lower
bound to the global upper bound is essentially zero in the standard models, compared to
6-35% in the GloRo Nets, establishing that the upper bound is again much tighter for GloRo
Nets. Still, this suggests that a reasonably tight estimate of the local bound may yet help
improve the VRA of a GloRo Net at runtime, although this is a challenge in its own right.
Intriguingly, GloRo Nets outperform BCP, which optimizes over a local Lipschitz bound
for certification during training, suggesting that GloRo Nets provide a better objective for
certifiable robustness despite using a looser bound during training.

6.5 Related Work

The earliest approaches attempting to address the threat of adversarial examples were es-
sentially heuristics motivated by the contemporary attacks of the time []. Such approaches
are routinely broken by adaptive attacks []. Goodfellow et al. [48] and Madry et al. [97] pro-
posed minimizing adversarial loss—i.e., taking the worst-case adversarial perturbation into
account when determining the model’s loss during training—as general method of defense.
While the concept of adversarial loss is sound in principle, its implementation has tradition-
ally relied on methods that produce adversarial examples—an under-approximation—and
thus so-called adversarial training has the tendency to “overfit” to specific attacks, while
leaving the possibility for new types of attack to succeed. GloRo Nets can be understood
as minimizing adversarial loss via an over-approximation, however, this has typically been
considered distinct from adversarial training.

A body of work has emerged to seek an end to the cat-and-mouse game of adversarial
training through methods that provide provable guarantees against adversarial examples—
specifically small-norm adversarial examples. Many methods have been proposed to certify
the robustness of networks post hoc [], but as discussed in the introduction of this chapter,
such methods quickly meet scalability constraints when the networks are not regularized for
the explicit goal of certification. Thus focus has been shifted to training certifiably robust
models.

Lipschitz-based Certification

Utilizing the Lipschitz constant to certify robustness has been studied in several instances
of prior work. On discovering the existence of adversarial examples, Szegedy et al. [141] an-
alyzed the sensitivity of neural networks using a global Lipschitz bound, explaining models’
“blind spots” partially in terms of large bounds and suggesting Lipschitz regularization as
a potential remedy.

Lipschitz constants have been applied previously for fast post hoc certification [58, 155,
156]. While our work relies on similar techniques, our exclusive use of the global bound
means that no additional work is needed at inference time. However, as our results in
Table 6.9 in Section 6.4.3 show, layer-wise Lipschitz bounds may be incredibly loose on
typical neural networks; this was corroborated by Fromherz, Leino, et al. [44], who find that
the radii certified by post hoc Lipschitz methods are indeed quite loose. Thus, a method
for controlling the Lipschitz constant during training is a crucial piece of Lipschitz-based
certification.
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Gradient-based Lipschitz Control. The closest work in spirit to ours is Lipschitz Mar-
gin Training (LMT) [149], which also uses incorporates global Lipschitz bounds into a net-
work’s loss to train models that are more certifiably robust. The approach works by adding?

2εK to all logits other than that corresponding to the ground-truth class during train-
ing. Despite the fact that the construction of GloRo Nets is only subtly different from that
of LMT (as GloRo Nets were developed independently), the differences are consequential.
In practical terms, our evaluation shows LMT was outperformed by essentially all of the
methods considered in our evaluation, while GloRo Nets achieve the best performance. This
stark contrast may be due to several factors, including (1) the construction of GloRo Nets
does not excessively penalize logits corresponding to boundaries distant from the point be-
ing certified, and (2) GloRo Nets admit a straightforward implementation of TRADES loss
(Section 6.3), which we find improves performance.

Lipschitz Control via Orthonormalization Cisse et al. [24] introduced “Perseval net-
works,” which enforce non-increasing Lipschitz bounds on all layers by orthonormalizing
their weights. This general approach has been refined more recently [91, 147], particularly
after Anil et al. [4] proposed replacing ReLU activations with MinMax activations, allowing
networks with Lipschitz-bounded layers form a class of universal Lipschitz approximators,
that that can approximate any Lipschitz-bounded function over a given domain [4, 25].
The most recent development in orthonormalization-based approaches has been a method
proposed by Trockman and Kolter [147] that orthonormalizes convolutional layers applying
the Cayley transform to a representation of the convolutional kernel in the Fourier domain.
This approach is the most competitive with ours, though our analysis in Section 6.3 suggests
that layer-wise Lipschitz control via gradients is a viable option when the computation is
sufficiently accurate, and thus our slightly superior results may indicate that there are ben-
efits to the gradient-based approach. Nonetheless, we contend that orthonormalized layers
are complimentary to our work, as they can be incorporated into GloRo Nets, a direction
which merits further study.

Local Lipschitz Control. Recently, Lee et al. [82] explored the possibility of training
networks against local Lipschitz bounds, motivated by the fact that the global bound may
vastly exceed a typical local bound on some networks. Theorem 6.3 shows that in principle,
the choice between local and global bounds may not matter for robust classification. More-
over, while it is true that the layer-wise bounds computed by Equation 6.9 may be loose on
some models, our experimental results suggest that it is possible in many cases to mitigate
this limitation by training against such bounds with the appropriate loss. The advantages
of doing so are apparent in the cost of both training and certification, where the additional
overhead involved with computing tighter local bounds is an impediment to scalability.

Other Certification Approaches

Several other methods have been proposed for training `2-certifiable networks that are not
based on Lipschitz constants. For example, Wong et al. [157] use an LP-based approach that
can be optimized relatively efficiently using a dual network, Croce et al. [30] and Madry et al.
[97] propose training routines based on maximizing the size of the linear regions within a
network, and Mirman et al. [103] propose a method based on abstract interpretation.
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Randomized Smoothing

The certification methods discussed thus far provide deterministic robustness guarantees.
By contrast, another recent approach, Randomized Smoothing [26, 80], provides stochastic
guarantees—that is, points are certified as robust with high probability (meaning in this case
that the probability can be bounded from below). Randomized Smoothing has been found
to achieve better VRA performance than any deterministic certification method, including
GloRo Nets. However, GloRo Nets compare favorably to Randomized Smoothing in a few
key ways.

First, the fact that GloRo Nets provide a deterministic guarantee is an advantage in
and of itself. In safety-critical applications, it may not be considered acceptable for a small
fraction of adversarial examples to go undetected; meanwhile, Randomized Smoothing is
typically evaluated with a false positive rate around 0.1% [26], meaning that instances of
incorrectly-certified points are to be expected in validation sets with thousands of points.

Furthermore, as demonstrated in Section 6.4.2, GloRo Nets have far superior run-time
cost. Because Randomized Smoothing does not explicitly represent the function behind
its robust predictions, points must be evaluated and certified using as many as 100,000
samples [26], reducing throughput by several orders of magnitude. Meanwhile, GloRo Nets
can certify a batch of points in a single forward pass.

6.6 Future Directions

The work presented in this chapter offers promising results that we expect can further
advance the state-of-the-art with continued innovation. The strengths of GloRo Nets are
many. First, we find that GloRo Nets outperform other existing methods in terms of the
VRA they achieve with deterministic guarantees. Beyond this, they offer efficient training
with the ability to achieve results without the need to calculate local bounds, orthonor-
malize their weights, sample thousands of points, etc. Finally, unlike several methods, they
perform certification at no extra cost at test time, making them highly practical for deploy-
ment in systems requiring real-time performance. We see many potentially fruitful future
directions for continued effort to improve GloRo Nets. In this section we outline a few of
the possibilities.

ResNets. Our evaluation considers relatively small CNN architectures that have become
standard in most work on deterministic robustness certification. Nondeterministic methods,
i.e., those based on Randomized Smoothing, typically achieve best results on large ResNet
architectures—on comparably-small convolutional networks like the ones presented in our
evaluation, GloRo Nets are actually competitive with simple Randomized Smoothing [26].
The ability for ResNet architectures to achieve superior clean performance suggests they
provide potential for higher VRA as well—provided they can be certified. ResNets present
a challenge for deterministic certification because of their size (in terms of parameters) as
well as their depth. As we saw in Section 6.4, many certification methods are already com-
putationally expensive and memory-intensive on the smaller models from our evaluation,
making it unlikely they would scale to ResNet-sized models. GloRo Nets do not face the
same limitations, however, particularly deep models make layer-wise Lipschitz approxima-
tion potentially looser. ResNet training can also be unstable, particularly without batch
normalization, which we find is not compatible with GloRo training—though there is a
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growing body of literature on training “normalizer-free” ResNets with no batch normaliza-
tion [14, 15, 167]. While we have borrowed some of these aforementioned techniques, we
conjecture that the Lipschitzness of GloRo Nets lessens the need for batch normalization
in the first place. Instead, we find that stability of GloRo ResNet training is best improved
by increasing the number of power iterations to get an accurate gradient signal. To date,
we have been able to train GloRo ResNets that match our best performance on CIFAR-10
(with 60.1% VRA), but we believe continued effort will be necessary to unlock the full power
of ResNet models.

Detailed Analysis of Training Dynamics. The discussion and analysis in Section 6.3
provides useful insights that we leveraged to improve the performance of GloRo Nets. We
believe further analysis along these lines may lead to additional insights. For example, we
may uncover better ways of tailoring of the loss function and gradient direction to achieve
the goals of GloRo training. Additionally, as noted in Section 6.3.2, we believe it will be
useful to better understand the costs and benefits of orthonormalizing the linear layers
compared to controlling the Lipschitz constant through gradient updates—the latter, used
by GloRo Nets, achieves the best empirical results to date. As a starting point, it will be
helpful to determine whether (or to what extent) GloRo training naturally converges towards
orthonormalized weights, and what the consequences are if it does not.
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Chapter 7

Limitations of Local Robustness

The methods presented in Chapter 6 provide concrete steps towards training models free
from one of the most fundamental conceptual soundness pitfalls—adversarial examples.
While continued effort will be required in this direction to close the gap between the per-
formance of non-robust models (on unperturbed data) and that of models that can provide
provable local robustness guarantees, this problem is likely within the grasp of such efforts.
However, the progress of robust models—and moreover, their utility for combating adversar-
ial examples—will fundamentally remain inhibited by the specific guarantees they provide.
In particular, we allude to the fact that we have, to this point, focused on guarantees of
local robustness; in this chapter, we discuss the limitations of such guarantees, and their
implications for the greater objective of conceptual soundness.

In broad terms, there are two primary ways in which local robustness may be inadequate.
First, and perhaps the more subtle point, is that local robustness may be too strict to be
appropriate in certain contexts—even granting that bounding the `p norm of the adversary’s
perturbation budget by ε is sufficient to render the perturbation imperceptible. We continue
this point in considerable depth in Section 7.1, and propose and evaluate two possible
relaxations to address the issue in Sections 7.2-4.

Second, the more glaring and fundamental shortcoming of local robustness is that it ad-
dresses only small-norm adversarial examples (Definition 5.1). While these are an important
class of adversarial examples that minimally capture imperceptibility, we must bear in mind
that, as mentioned in Chapter 5, adversarial examples may be derived by perturbations
that are quite perceptible, yet otherwise semantically irrelevant or inconspicuous. Moreover,
though local robustness—and robustness to adversarial examples in general—is an essential
cornerstone for conceptual soundness, robustness does not, on its own, imply conceptual
soundness. We conclude this chapter in Section 7.5 with a further discussion of these con-
cerns, highlighting the many avenues for future work on robustness, and foreshadowing the
handful of conceptual soundness violations orthogonal to robustness that will be addressed
in Part III.

7.1 Relaxations of Local Robustness

The objective of robust classification is typically captured by ensuring that a model satis-
fies point-wise local robustness; i.e., given a point, x, the model’s predictions must remain
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invariant over the ε-ball centered at x (Definition 5.2). As discussed in Chapter 5, this can
be extended to a notion of global robustness, which applies to the underlying model. Robust
models are evaluated by a metric, verified-robust accuracy (VRA), which corresponds to the
fraction of points that are both correctly classified and locally robust.

In some contexts, however, it is not always clear that VRA is the most desirable objective
or the most natural metric for measuring a model’s success against adversaries. For example,
in some contexts, not all adversarial examples are equally bad—this may reflect simply that a
mistake is understandable, even if it was caused by an adversary (e.g., if a model mistakenly
predicts an image of a leopard to be a jaguar); or that the correct label may be arbitrary
in certain cases (e.g., if an image contains two classes of subjects1). If only non-arbitrary
“mistakes” can be induced by an adversary, such changes in prediction may simply be driven
by small-magnitude, sound features that merely tip the balance between plausible labels.
In such cases, restricting the ability of the model to signal reasonable uncertainty may be
counterproductive to achieving conceptual soundness.

For similar sorts of reasons, some computer vision tasks often use top-k accuracy as a
benchmark metric that relaxes standard accuracy, allowing a prediction to be considered
correct so long as the correct label appears among the model’s k highest logit outputs.
In many applications, top-k accuracy is considered a more suitable metric/objective than
standard top-1 accuracy [10]; meanwhile, studied robustness properties are typically only
defined with respect to a single predicted class. Thus, as part of this work, we introduce
an analogous relaxation of local robustness to top-k accuracy, which we call relaxed top-K
(RTK) robustness (Section 7.2, Definition 7.2). Moreover, we demonstrate how a neural
network can be instrumented (following an analogous approach to the one presented in
Chapter 6) in order to naturally incorporate certifiable RTK robustness into its learning
objective, making runtime certification of this property essentially free—a construction we
call RTK GloRo Nets.

Recently, Jia et al. [68] also proposed a definition that aims to capture certified robustness
for top-k predictions. However, their work differs from ours in two key ways. First, their
certification method is derived from Randomized Smoothing [26, 80], which gives a stochastic
guarantee and relies on hundreds of thousands of samples for conclusive certification. More
importantly, Jia et al. evaluate their proposed robustness property with respect to the ground
truth class of the point in question, making it unclear how one might certify this property on
unlabeled points, e.g., those seen by the model in deployment. We provide more discussion
on this problem and how our work addresses it in Appendix B.1. As we will see, devising
a robustness analogue to top-k accuracy in a manner that relaxes standard robustness and
does not depend on the ground truth is a subtle task—we address this issue carefully in
Section 7.2.

In addition to applying to only top-1 predictions, standard robustness also focuses specif-
ically on the problem of undirected adversarial examples. More concretely, adversarial ex-
amples are obtained broadly via two categories of attacks: (1) evasion (undirected) attacks,
and (2) targeted (directed) attacks. Local robustness provides guarantees against the former,
while the latter, which requires only a weaker guarantee, has remained largely unexplored
by work on certifiable robustness [49]. In this work we introduce affinity robustness (Sec-

1We note that if it is possible for an image to contain multiple subjects—and especially if this is common
in the target distribution—this may be an indicator that classification is a fundamentally ill-suited objective.
Here, we propose that a robust analogue to object flagging may be the most reasonable alternative, and to
our knowledge this has not been previously proposed or studied. However, our analysis in the remainder of
this chapter will assume that the learner is constrained to the general objective of classification.
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Figure 7.1: (a) Example of network outputs that demonstrate top-k robustness is not a relaxation
of standard local robustness. The gray arrows denote bounds on the amount each logit can change
within a radius of ε. We see that these bounds are not sufficient for class 2 to surpass class 1; however,
the bounds are sufficient for class 3 to surpass class 2. Therefore, the point in this example is top-1
robust, but not top-2 robust. (b) Example of network outputs that are simultaneously top-1 robust
and top-2 robust.

tion 7.3, Definition 7.3), which captures resistance to specified sets of directed adversarial
attacks. We further show that certifiable affinity robustness can also be achieved via an
analogous Affinity GloRo Net construction.

7.2 Relaxed Top-K Robustness

We begin in this section by introducing a notion of robustness that is inspired by the relaxed
accuracy metric, top-k accuracy. Top-k accuracy is a common benchmark metric in vision
applications such as Imagenet, where the class labels are particularly fine-grained, and may
even be arbitrary on some instances. Furthermore, top-k accuracy has been studied as a
learning objective in its own right [10], and has been identified as desirable in the context
of robustness certification [68].

In order to create a notion of relaxed robustness that is analogous to top-k accuracy, we
will consider the network to output a set of classes rather than a single class. Let us define
the following notation representing the set of the top k outputs of a model: let f be the
function computing the logit values of a neural network, and let fkpxq be the kth-highest
logit output of f on x. We then define F kpxq “ tj : fjpxq ě fkpxqu, that is, F k is the
set of classes corresponding to the top k outputs of f . Using this notation, we define top-k
robustness (Definition 7.1), which requires that the set of classes with the k highest logits
remains invariant over small-norm perturbations. We note that if we had a single class of
interest, c, e.g., the ground truth, we could simply require that c remain in F k under small
perturbations [68]; however, top-k accuracy is useful precisely because any of the classes in
F k could be correct, meaning that all classes in F kshould be treated equally and guarded
against perturbations.

Definition 7.1 (Top-k Robustness). A model, F , is top-k ε-locally-robust at point, x, w.r.t.
norm, || ¨ ||, if

@x1 . ||x´ x1|| ď ε ùñ F kpxq “ F kpx1q

While top-k robustness may appear to capture the idea of top-k accuracy, we observe
that the analogy fails, as top-k robustness is not a relaxation of standard local robustness.
For example, if a model is top-1 accurate, it is also top-2 accurate; however, if a model is
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(a) (b) (c) (d)

Figure 7.2: (a) An example 2D synthetic dataset containing four classes. (b) Decision boundary
of a standard model trained on the synthetic dataset. (c) Decision boundary of a GloRo Net [88]
trained to be certifiably robust on the synthetic dataset. (d) Decision boundary of an RT2 GloRo
Net (see Algorithm 7.1) trained to be RT2 robust on the synthetic dataset. We observe that the
RT2 GloRo Net can label the points as accurately as the standard model, while the GloRo Net
must reject some point on the manifold. The RT2 GloRo Net reports a relaxed robustness guarantee
(indicated by orange, purple, and cyan) in the regions where the classes overlap. E.g., in the orange
region, the RT2 GloRo Net guarantees that no adversary can change the label to blue or green with
a small-norm perturbation.

top-1 robust, it may not be top-2 robust. Figure 7.1a provides an example illustrating this
point.

We thus turn our attention to a modification of Definition 7.1 that does relax standard
local robustness. Definition 7.2 provides a notion of what we call relaxed top-K robustness,
or RTK robustness, which is properly analogous to the concept of top-k accuracy. Essentially,
a point is considered RTK robust if it is top-k robust for some k in t1, . . . ,Ku.

Definition 7.2 (Relaxed Top-K Robustness). A model, F , is relaxed-top-K (RTK) ε-
locally-robust at point, x, w.r.t. norm, || ¨ ||, if

@x1 . ||x´ x1|| ď ε ùñ D k ď K : F kpxq “ F kpx1q

From the definition, it is clear that RTK robustness is a relaxation of standard local
robustness: first, RT1 robustness is equivalent to top-1 robustness, which is equivalent to
local robustness; second, RT1 robustness implies RTK robustness for K ą 1.

We can think of RTK robustness as allowing the model to output a set of labels (with size
at most K) such that the output set remains invariant under bounded-norm perturbations.
In some cases there may be multiple such sets, e.g., if the model is both top-1 robust and
top-2 robust on the point (see Figure 7.1b for an example). These can be thought of as the
sets of classes that are “safe” to predict on a given point; if the only such set is empty then
no classes are safe, and the model abstains from predicting. Geometrically, this gives rise to
a spatially-arranged hierarchy of classes that is conveyed through the robustness guarantee:
each region on the decision surface corresponds to some set (or sets) of classes that can be
robustly predicted. Figure 7.2c gives an example of how such a decision surface might look
on a synthetic 2D dataset, via a coloring that indicates the smallest safe set that can be
predicted.

Certifying RTK Robustness

We now describe how to produce networks that incorporate certifiable RTK robustness into
their training objectives. In particular we follow a similar approach to Leino et al. [88], in-
strumenting the output of a neural network to return an added class, K, in cases where the
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Algorithm 7.1: RTK GloRo Net Prediction

Inputs: a neural network, f : Rn
Ñ Rm; a number, K P N, specifying the maximum

robust set size; a radius, ε; a point x P Rn

Output: a prediction y P rms if f is ε-RTK-robust at x, or K otherwise

1 def rtkPredict (f , K , ε , x):
2 y Ð fpxq
3 for k P rKs do

// Fk is the set of top-k indices of y.

4 F k
Ð ti : yi ě fk

pxqu

5 for j P F k do
// mkj is the margin (under ε perturbation) between class j and any

// class not in the top k.

6 mk
j Ð yj ´maxiRFk

 

yi ` ε ¨ lipschitzConstantpfj ´ fiq
(

// mk is the margin by which every class in the top k classes exceeds

// every class not in the top k.

7 mk
Ð minj P F

k
tmk

j u

8 if Dk P rKs : mk
ą 0 then

9 return argmaxityiu
10 else
11 return K

desired property cannot be certified. Perhaps surprisingly, our construction demonstrates
that our proposed robustness properties can be certified efficiently, with little overhead com-
pared to a forward pass of the network.

Recall from Chapter 6 that a GloRo Net encodes robustness certification into its archi-
tecture such that all points are either rejected (the network predicts an added class, K),
or certifiably ε-locally-robust by making use of the underlying network’s global Lipschitz
constant. Specifically, let f be a neural network, let j be the class predicted by f on point,
x, and let Kji (for i ‰ j) be the Lipschitz constant of fj ´ fi. A GloRo Net adds an extra
logit value, fKpxq “ maxi‰jtfipxq ` εKjiu. If the margin between the highest logit output,
fjpxq, and the second-highest logit output, fipxq, is smaller than εKji, then fKpxq will be
the maximal logit score in the GloRo Net, thus the point will be rejected; otherwise the
GloRo Net will not predict K and the point can be certified as ε-locally-robust.

We propose a variation of GloRo Nets, RTK GloRo Nets, which naturally satisfy RTK
robustness on all non-rejected points. As with standard GloRo Nets, we construct RTK
GloRo Nets by instrumenting a model, f , such that the instrumented model returns K unless
f can be certified as RTK ε-locally-robust. This construction is given by Algorithm 7.1, and
described below.

Let F be the predictions made by f , i.e., F pxq “ argmaxitfipxqu, and let F kpxq be the
set of the top k predictions made by f on x; and as above, let Kji be the Lipschitz constant
of fj ´ fi.

For k ď K and j P F kpxq, let mk
j pxq “ fjpxq ´ maxiRFkpxqtfipxq ` εKjiu. Intuitively,

mk
j pxq is the margin by which class j, which is in the top k classes, exceeds every class not

in the top k classes, after accounting for the maximum change in logit values within a radius
of ε determined by the Lipschitz constant. We observe that if mk

j pxq ą 0 then the logit for
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class j, fjpxq, cannot be surpassed within the ε-ball around x by an output not in the top
k outputs, fipxq for i R F kpxq.

Next, let mkpxq “ minjPFkpxqtm
k
j pxqu. This represents the minimum margin by which

every class in the top k classes exceeds every class not in the top k classes; thus if mkpxq ą 0,
then F is top-k robust at x.

Finally, let mpxq “ maxkďKtm
kpxqu. We observe that if mpxq ą 0, then the model is

RTK robust at x. We would thus like to predict K only when mpxq ă 0. To accomplish this
we create an instrumented model, g, as given by Equation 7.1.2 This instrumented model
naturally satisfies RTK robustness, as stated by Theorem 7.1.

gipxq “ fipxq; gKpxq “ max
i
tfipxq ´mpxqu (7.1)

Theorem 7.1. Let g be an RTK GloRo Net as defined by Equation 7.1. Then, if the maximal
output of gpxq is not K, then F is RTK ε-locally-robust at x.

The proof of Theorem 7.1, follows similarly to the proof of Theorem 6.1 in Chapter 6,
and is given in Appendix B.2.

Other Certification Techniques. While many certification methods have been pro-
posed and studied in the past, we use the GloRo Net approach to certification for two key
reasons. First, as we have seen, GloRo Nets are among the top state-of-the-art methods for
deterministic `2 certification. Second, GloRo Nets provide an elegant way for incorporat-
ing our robustness objectives into a certifiable training procedure, as certified training can
be reduced to simply performing overapproximate certification. However, leveraging other
types of techniques for certifying our proposed robustness properties remains an interest-
ing possibility for future work to explore. Appendix B.3 provides a discussion of how other
certification techniques may be adapted to incorporate RTK and affinity robustness.

7.3 Affinity Robustness

In Section 7.2 we demonstrated how to relax local robustness in order to capture a robustness
notion analogous to the concept of top-k accuracy. This induces a decision surface with
a spatially-arranged hierarchy of classes conveyed through the robustness guarantee (see
Figure 7.2d). While logical hierarchies may arise naturally, in some cases we may wish to
guide the hierarchy that forms. E.g., we may have a priori knowledge of the class hierarchy
that we would like to impart to our model, or we may have a limited set of class groupings
that are acceptable.

In this section, we demonstrate how the class hierarchy induced on the decision surface
of a model can be guided using pre-specified affinity sets, which define the sets of classes
that can be grouped together without intervening rejected space on the decision surface.
More formally, let S be a collection of affinity sets, where each affinity set S P S is simply a
set of class labels. We will typically assume that for each class, j, D S P S such that j P S;
that is, each class is included in at least one affinity set.

For a given collection of affinity sets, we can define affinity robustness (Definition 7.3),
which stipulates that points, x, may be top-k robust for any k, so long as F kpxq is contained

2When g outputs K, we want the gradient of Equation 7.1 to encourage increasingmpxq, but not encourage
decreasing maxitfipxqu. Thus we treat fi as a constant in Equation 7.1, such that gradient information only
flows through m.
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in some affinity set. That is, classes may be “grouped” together in a robust prediction set
with other classes that share an affinity set.

Definition 7.3 (Affinity Robustness). A model, F , is affinity-ε-locally-robust on a point,
x, w.r.t. a collection of affinity sets, S, and norm || ¨ ||, if

@x1 . ||x´ x1|| ď ε ùñ D k P N, S P S : F kpxq “ F kpx1q ^ F kpxq Ď S

Examples of Affinity Sets. Several common datasets offer natural instantiations of affin-
ity sets. For example, CIFAR-100 contains 100 classes that are grouped into 20 super-classes
containing 5 related classes each. Additionally, Imagenet classes belong to a tree structure
from which many natural collections of affinity sets could be derived. Finally, affinity sets
can be used to capture mistakes that may arise even without adversarial manipulation,
e.g., by grouping classes that are visually similar; or to group classes that may naturally
co-occur in the same instance, e.g., highways and pastures in EuroSAT [59] satellite images
(see Section 7.4.2).

Certifying Affinity Robustness

We now describe how to produce networks that incorporate certifiable affinity robustness into
their training objectives. As with the construction for RTK GloRo Nets in Section 7.2, we
again instrument the output of an underlying neural network to return an added class, K, in
cases where affinity robustness cannot be certified. We call this construction Affinity GloRo
Nets, which naturally satisfy affinity robustness on all non-rejected points. Our construction
is given by Algorithm 7.2, and described below.

Again, we let F be the predictions made by f , i.e., F pxq “ argmaxitfipxqu; we let F kpxq
be the set of the top k predictions made by f on x; and we let Kji be the Lipschitz constant
of fj ´ fi. Furthermore, let S be a collection of affinity sets, and let K “ maxSPSt|S|u; that
is, K is the size of the largest affinity set in S.

As before, we define mk
j pxq for k ď K as mk

j pxq “ fjpxq´maxiRFkpxqtfipxq` εKjiu, and

mkpxq for k ď K as mkpxq “ minjPFkpxqtm
k
j pxqu, where mk

j pxq represents the margin by
which class j, which is in the top k classes, exceeds every class not in the top k classes, after
accounting for the maximum change in logit values within a radius of ε determined by the
Lipschitz constant, and represents the minimum margin by which every class in the top k
classes exceeds every class not in the top k classes.

Now, let mpS, xq be given by Equation 7.2. Essentially, we restrict our consideration of
sets of top-k predictions to those that are constrained to a single affinity set. Among the
considered sets, we take the maximum margin by which every class in the set will surpass
every class not in the set under bounded perturbations to x.

mpS, xq “ max
k : DSPS : FkpxqĎS

!

mkpxq
)

(7.2)

We note that in practice, the maximum in Equation 7.2 can be computed efficiently by
representing the sets F kpxq and S as bit maps and masking out rows ofmk that correspond to
values of k for which F kpxqXS ‰ F kpxq for all S P S. This is reflected in our implementation,
which can be found on GitHub.3

3Code available at https://github.com/klasleino/gloro.
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Algorithm 7.2: Affinity GloRo Net Prediction

Inputs: a neural network, f : Rn
Ñ Rm; a collection of affinity sets, S; a radius, ε; a point

x P Rn

Output: a prediction y P rms if f is ε-Affinity-robust w.r.t. S at x, or K otherwise

1 def rtkPredict (f , S , ε , x):
2 y Ð fpxq

// K is the set of values of k for which the top k logits in y belong to a

// single affinity set.

3 K Ð tu

4 for k P rmaxSPSt|S|us do
// Fk is the set of top-k indices of y.

5 F k
Ð ti : yi ě fk

pxqu
6 for S P S do

7 if F k
Ď S then

8 K Ð KY tku

9 for k P K do

10 F k
Ð ti : yi ě fk

pxqu

11 for j P F k do
// mkj is the margin (under ε perturbation) between class j and any

// class not in the top k.

12 mk
j Ð yj ´maxiRFk

 

yi ` ε ¨ lipschitzConstantpfj ´ fiq
(

// mk is the margin by which every class in the top k classes exceeds

// every class not in the top k.

13 mk
Ð minj P F

k
tmk

j u

14 if Dk P K : mk
ą 0 then

15 return argmaxityiu
16 else
17 return K

We observe that if mpS, xq ą 0, then the model is affinity robust at x. We would thus like
to predict K only when mpS, xq ă 0. To accomplish this we create an instrumented model, g,
as given by Equation 7.3. The correctness of this approach is stated in Theorem 7.2, which
we prove in Appendix B.4.

gipxq “ fipxq; gKpxq “ max
i
tfipxq ´mpS, xqu (7.3)

Theorem 7.2. Let g be an Affinity GloRo Net as defined by Equation 7.3. Then, if the
maximal output of gpxq is not K, then F is affinity-ε-locally-robust at x.

7.4 Relaxed Robustness in Practice

In this section, we motivate our proposed robustness relaxations via an empirical demonstra-
tion and argue that our proposed relaxations are likely to be relevant for extending certified
defenses to complex prediction tasks with many classes, where standard robustness may
be difficult or unrealistic to achieve. To this end, we first find that applying these relaxed
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robustness variants to suitable domains leads to certifiable models with lower rejection rates
and higher certified accuracy (Section 7.4.1). We then explore the intriguing properties of
a model’s prediction space that arise when the model is trained with the objective of RTK
or affinity robustness on appropriate domains. In particular, we examine the predictions
of RTK and Affinity GloRo Nets trained on EuroSAT [59] (Section 7.4.2) and CIFAR-100
(Section 7.4.3), and find that (1) the classes that are “grouped” by the model typically
follow a logical structure, even without supervision, and (2), affinity robustness can be used
to capture a small set of specific, challenging class distinctions that account for a relatively
large fraction of the points satisfying RTK robustness but not standard robustness.

In addition, we provide further motivation for Affinity GloRo Nets in Section 7.4.4 by
showing how they can be leveraged to efficiently certify a previously-studied safety property
for ACAS Xu [70], a collision avoidance system for unmanned aircraft that has been a
primary motivation in many prior works that study certification of neural network safety
properties [49, 71, 72, 87, 95]. Specifically, we show that Affinity GloRo Nets can certify
targeted safe regions [49] in a single forward pass of the network, while previous techniques
based on formal methods require hours to certify this property, even on smaller networks [49].

7.4.1 Improving Certified Performance through Relaxation

We begin our evaluation by measuring the extent to which certification performance can
be improved when the objective is relaxed. We focus particularly on the `2 norm, and
deterministic certification and guarantees, as opposed to the types of guarantees obtained
via Randomized Smoothing [26]. To this end, we compare against GloRo Nets [88], which
have achieved state-of-the art performance for deterministic certification on several common
benchmark datasets.

Experimental Setup

We begin by briefly describing the setup used for the experiments in this section.

Datasets. Our evaluation focuses on datasets for which our relaxed robustness variants
are appropriate. Namely, we select datasets with large numbers of fine-grain classes, or
classes with a large degree of feature-overlap: EuroSAT [59], CIFAR-100 [76], and Tiny-
Imagenet [78]. The most widely-studied datasets for benchmarking deterministic robustness
certification are CIFAR-10 and MNIST, which do not fit these desiderata; however, Tiny-
Imagenet has also been used for evaluating deterministic certification [82, 88], making our
results directly comparable to the previously-published state-of-the-art.

Models. We trained three types of models in our evaluation: GloRo Nets (as a point of
comparison to standard robustness certification), RTK GloRo Nets, and Affinity GloRo Nets.
More details on the affinity sets chosen for the Affinity GloRo Nets are given in Section 7.4.2
(for EuroSAT) and Section 7.4.3 (for CIFAR-100). The details of the architecture, training
procedure, and hyperparameters are provided in Appendix B.5.

Metrics. We measure the performance of RTK models using a metric we call RTK VRA,
which is the natural analogous metric to top-k accuracy. For a given point, x, that is certi-
fiably RTK robust, let k˚ be the the maximum k ď K such that the model is top-k robust
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dataset guarantee ε VRA / RTK VRA / affinity VRA rejection rate clean accuracy*

EuroSAT standard (local robustness) 0.141 0.749 ˘ 0.003 0.204 ˘ 0.002 0.862 ˘ 0.003
EuroSAT RT3 0.141 0.908 ˘ 0.002 0.073 ˘ 0.002 0.987 ˘ 0.002
EuroSAT highway+river affinity 0.141 0.798 ˘ 0.002 0.170 ˘ 0.002 0.917 ˘ 0.003
EuroSAT highway+river+agriculture affty. 0.141 0.819 ˘ 0.003 0.151 ˘ 0.003 0.930 ˘ 0.003

CIFAR-100 standard 0.141 0.281 ˘ 0.002 0.640 ˘ 0.003 0.473 ˘ 0.002
CIFAR-100 RT5 0.141 0.360 ˘ 0.002 0.562 ˘ 0.002 0.706 ˘ 0.003
CIFAR-100 superclass affinity 0.141 0.323 ˘ 0.002 0.599 ˘ 0.002 0.520 ˘ 0.002

Tiny-Imagenet standard 0.141 0.210[88] 0.639[88] 0.346[88]

Tiny-Imagenet RT5 0.141 0.277 ˘ 0.002 0.447 ˘ 0.006 0.537 ˘ 0.002

ACAS Xu targeted affinity 0.010 0.749 ˘ 0.001 0.195 ˘ 0.001 0.858 ˘ 0.002

Table 7.3: Certification results under various notions of robustness. Note that VRA and clean
accuracy numbers are given for the VRA/accuracy metric corresponding to the robustness guar-
antee the respective model was trained for, thus their meaning is slightly slightly different for each
guarantee (see Section 7.4.1:Metrics). Results are taken as the average over 10 runs; standard
deviations are denoted by ˘.

at x (recall that an RTK robust point can be top-k robust for more than one k—k˚ corre-
sponds to the loosest such guarantee). We define the RTK VRA of model, F , as the fraction

of labeled points, px, yq, such that (1) the model is RTK robust at x, and (2) y P F k
˚

.
In other words, the correct label must be in a certifiably-robust set of top-k predictions for
some k ď K. Similarly, we define affinity VRA, with respect to a collection of affinity sets,
S, as the fraction of points for which the correct label is in a certifiably-robust set of top-k
predictions that is contained in some affinity set in S.

We also provide clean accuracy metrics for each model, corresponding to the guarantee
the model is trained for; e.g., top-k accuracy for RTK GloRo Nets. For Affinity GloRo Nets,
we use what we call affinity accuracy, which counts a prediction as correct if all labels scored
above the ground truth share a single affinity set with the ground truth.

Evaluation Results

Table 7.3 shows the performance of GloRo Nets compared to RTK GloRo Nets and affin-
ity GloRo Nets with respect to the appropriate VRA metric, as well as the rejection rate
of each model, i.e., the fraction of points that cannot be certified. RTK GloRo Nets use
the most relaxed objective, and accordingly, we see that they consistently outperform the
standard GloRo Net, improving VRA performance by 6-16 percentage points. Additionally,
RTK GloRo Nets reduce the rejection rate significantly, rejecting as few as half the number
of points rejected by the standard GloRo Nets. We also observe that affinity GloRo Nets
consistently improve performance compared to standard GloRo Nets. In particular, high-
way+river+agriculture affinity (see Section 7.4.2) and superclass affinity (see Section 7.4.3)
increase VRA performance by 8 points and 4 points respectively, despite the fact that these
affinity guarantees are significantly more restrictive than the RTK guarantees.

Relaxed Guarantees & Learning Objectives. As demonstrated by the results in Ta-
ble 7.3, RTK and affinity robustness significantly improve certifiability and VRA perfor-
mance. Clearly, this improvement is in part due to the relaxed certification and evaluation
criteria entailed by RTK and affinity robustness. However, there is also evidence that the
relaxed learning objective itself may better aid in learning robust boundaries in general.
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Figure 7.4: Robust prediction set sizes on EuroSAT (left) and CIFAR-100 (right). The y-axis
measures the fraction of certified test instances that were certifiable as top-k robust, for each k
on the x-axis. Note that the fractions do not sum to 1 because some points can receive multiple
guarantees.

For example, on CIFAR-100, 5% of points rejected by the GloRo Net are certified by the
RT5 GloRo Net with a top-1 guarantee, suggesting that the RT5 objective better facilitated
obtaining a strong robustness guarantee on these points.

Similarly, we find that the objective of affinity robustness, while technically stronger than
RTK robustness, guides the model towards greater certifiability than would be explained
by the fraction of instances for which the RTK GloRo Net naturally satisfies the affinity set
groupings, highlighting the significance of incorporating affinity robustness into the training
objective. For example, on CIFAR-100, 22% of points certified by the RT5 GloRo Net receive
a top-k guarantee that does not correspond to a superclass. This would correspond to a 16%
higher rejection rate under superclass affinity robustness; meanwhile the rejection rate of
the superclass Affinity GloRo Net is in fact only 6% higher than that of the RT5 GloRo
Net.

Top-k Prediction Set Sizes. While appropriate relaxations are useful in many contexts,
it is generally preferable to be able to obtain a stricter guarantee—i.e., a smaller robust
output set. Figure 7.4 shows the robust prediction set sizes obtained on certified (i.e., non-
rejected) test points for both EuroSAT and CIFAR-100. Note that points may receive a
top-k guarantee for multiple values of k, meaning that a point may belong to robust sets of
more than one size. For example, 56% of certified points on EuroSAT and 24% on CIFAR-
100 received a guarantee for multiple values of k. We see that the majority of points get a
tight guarantee, with about 80% of certified points receiving a top-1 guarantee, and looser
guarantees becoming progressively less common.

7.4.2 Relaxed Robustness Guarantees on EuroSAT

EuroSAT is a relatively recent dataset based on land-use classification of Sentinel-2 satellite
images [59]. Although EuroSAT contains only ten classes, we argue that it is nonetheless a
suitable application for the types of relaxed robustness presented in this paper, primarily
because of the lack of mutual exclusivity among its classes. Specifically, the classification
task proposed for EuroSAT contains the following classes to describe a 64ˆ64 image patch:
(1) annual crop, (2) forest, (3) herbaceous vegetation, (4) highway, (5) industrial buildings,
(6) pasture, (7) permanent crop, (8) residential buildings (9) river, and (10) sea/lake. Each
instance has exactly one label, however, in practice the labels are not necessarily non-
overlapping. For example, highway images may depict a road going through agricultural
land, crossing a river, or near buildings. It may be reasonable, then, for a classifier to produce
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highway, permanent crop, 
annual crop

highway, 
residential buildings

highway, permanent crop, 
herbaceous vegetation

highway, annual crop highway, annual crop, 
pasture

highway, 
residential buildings

(a)

annual crop, river annual crop, river, 
highway

river, highway, 
residential buildings

pasture, river, highway

(b)

ground truth: river ground truth: highway

(c)

Figure 7.5: Samples of EuroSAT instances labeled “highway” (a) or “river” (b) that are rejected
(i.e., cannot be certified) by a standard GloRo Net, but certified by an RT3 GloRo Net. The classes
included in the RT3 robustness guarantee are given beneath each image. (c) Two visually similar
instances with ground truth label “river” (left) and “highway” (right).

high logit values for two classes simultaneously, making local robustness potentially difficult
to achieve.

Indeed, we find this to be the case; namely, many EuroSAT instances labeled “highway”
cannot be certified for standard robustness, while a large fraction of these rejected inputs can
be certified for RT3 robustness. Specifically, we found that a standard GloRo Net trained on
EuroSAT rejected 39% of highway instances from the test set (above average for instances
overall). Meanwhile, an RT3 GloRo Net was able to certify 72% of these same instances.
Upon examination, we found that many of the guarantees associated with the points rejected
by the GloRo Net but certified by the RT3 GloRo Net appeal nicely to intuition. Figure 7.5a
depicts a few of these intuitive examples; we see that on image patches with a highway in
a field, the RT3 GloRo Net gives top-2 or top-3 guarantees with highway alongside classes
such as “annual crop,” and on image patches with a highway near a neighborhood, it gives
top-2 guarantees with highway grouped with “residential buildings.”

We see a similar trend for the “river” class, shown in Figure 7.5b. Additionally, we find
that many instances of rivers receive an RTK guarantee including “highway” as one of the
classes belonging to the corresponding robust prediction set. As illustrated by Figure 7.5c,
this may not be unreasonable—Figure 7.5c shows two visually similar EuroSAT instances
with ground truth label “river” and “highway” respectively, demonstrating that the 64ˆ 64
patches may not always provide enough detail and context to easily distinguish these two
classes.

The above intuition suggests that the difficulty in learning a certifiably-robust model
on EuroSAT may be largely due to frequent cases where specific sets of classes may not
be sufficiently separable. That an adversary might have the ability to control which of a
set of plausible labels is chosen may be considered inconsequential, provided the adversary
cannot cause arbitrary mistakes. This observation motivates the use of affinity robustness
on EuroSAT. That is, we may wish to further restrict the sets of classes that may forgo ε-
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house

poppy, tulip, 
orchid, rose

bicycle, 
motorcycle

boy, girl, baby bus, streetcar

Figure 7.6: Samples of CIFAR-100 instances that are both correctly classified and certified as
top-k robust for k ą 1. The classes included in the RT5 robustness guarantee are given beneath
each image.

tulip, 
sweet pepper, 

poppy

tulip shark, sea shark, ray spider, 
caterpillar, 

butterfly

caterpillar, 
butterfly

aquarium fish, 
tulip, poppy

aquarium fish

Figure 7.7: Comparison of robust prediction sets produced by an RT5 GloRo Net (left) and a
superclass Affinity GloRo Net (right). Samples are taken from points on which the RT5 GloRo Net
did not match a single superclass, while the Affinity GloRo Net was able to successfully certify the
point.

separation (those that correspond to “arbitrary” mistakes), while at the same time admitting
the model to group a specified set of classes, between which adversarial examples could be
considered benign.

To this end, we suggest two plausible affinity sets for EuroSAT. The first, which we
refer to as highway+river affinity, captures the challenges faced by standard GloRo Nets
that are illustrated by Figure 7.5; namely, S consists of one affinity set, Sc per class, c,
consisting of c, the class “highway,” and the class “river.” The second, which we refer to
as highway+river+agriculture affinity additionally allows the classes “permanent crop” and
“annual crop” to be grouped, as these classes are often visually similar. We find that these
two affinity sets allow us to improve the VRA on EuroSAT compared to a standard GloRo
Net by 5 and 7 percentage points, respectively (see Table 7.3). Moreover, the performance of
the highway+river+agriculture Affinity GloRo Net closes half of the VRA gap between the
standard GloRo Net and the more-relaxed RTK GloRo Net, suggesting that roughly half of
the performance benefits obtained under RTK robustness can be recovered by accounting
for a few simple types of reasonable mistakes.

7.4.3 Relaxed Robustness Guarantees on CIFAR-100

CIFAR-100 is another natural application for which our relaxed robustness variants are
suitable for several reasons, including that (1) it contains a large number of classes, (2)
many of the classes are fine-grain, especially considering the small size of the input images,
and (3) its 100 classes are further organized into 20 superclasses that each encompass 5
classes.

We find that when training for RT5 robustness using an RT5 GloRo Net, 78% of cer-
tifiable points on the RT5 GloRo Net have corresponding robust prediction sets that are
contained by some superclass set. That is, even without supervision, the robust prediction
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sets of the RTK GloRo net typically respect the superclass hierarchy. Moreover, even on
instances for which the robust prediction set does not match a superclass set, the robust
prediction set is often nonetheless “reasonable,” in that it is often clear upon inspection why
the model may have chosen the particular set of predictions. Figure 7.6 provides samples of
correctly-classified, RT5-certifiable points with their corresponding robust prediction sets,
illustrating this point. More such examples can be found in Appendix B.6.

However, supposing we would want to strictly enforce the model’s robust prediction sets
to be contained entirely in one superclass, Affinity GloRo Nets provide a means of doing
this. We find that 34% of instances on which the RT5 GloRo Net fails to match a superclass
can be certified by the superclass Affinity GloRo Net. Figure 7.7 provides examples of such
instances, showing that the additional supervision of Affinity GloRo Nets helps better ensure
the robust prediction sets respect superclasses.

7.4.4 Targeted Safe Regions on ACAS Xu

ACAS Xu is an airborne collision avoidance system for unmanned aircraft that has been
studied in the context of neural network safety certification [49, 71, 72, 87, 95]. The classi-
fication task for ACAS Xu is as follows. Given a few features, e.g., altitude, velocity, etc.,
the network produces a horizontal maneuver advisory for the aircraft, instructing it on how
to turn to avoid a collision. This advisory comes from one of the following options: (1) hard
left, (2) left, (3) clear of conflict (i.e., go straight), (4) right, or (5) hard right.

Access to the ACAS Xu dataset is not public. However, many trained networks that have
been certified for other safety properties specific to ACAS Xu (and unrelated to robustness)
are publicly available; we generated a synthetic dataset derived from the predictions of one
such public model provided by Katz et al. [71]. To create this dataset, we generated random
inputs clipped to be within the standard range for each input [71] and labeled them using
a publicly-available pretrained ACAS Xu network.

We chose our value for ε by estimating the minimum `2 distance between any two points
with different labels. This value was approximately 0.02 on our synthetic dataset; thus we
used ε “ 0.01, as ε-local-robustness requires a separation of 2ε between classes.

Previously, Gopinath et al. [49] proposed certification of targeted safe regions on ACAS
Xu. An `p ball with radius ε, centered at x, is considered targeted safe if the horizontal
maneuver advisory does not change within the ball except to either one degree further left
or one degree further right. E.g., an `p ball may contain the directives “left” and “hard
left” or “left” and “clear of conflict.” We note that this property can be captured by affinity
robustness, where the affinity sets are simply all pairs of adjacent directives.

Table 7.3 presents the results of training and evaluating an Affinity GloRo Net on our
synthetic ACAS Xu dataset. In particular, we give the VRA (as the fraction of points that
are correctly classified and affinity robust), the rejection rate (as the fraction of points that
cannot be certified as affinity robust), and the clean accuracy. Gopinath et al. do not present
any directly-comparable metrics to these in their evaluation. Rather than presenting rejec-
tion rates for a fixed epsilon, they instead attempt to determine the minimum radius under
which the property holds, and they present the average such radius. It is therefore unclear
what fraction of points would be accepted under any fixed radius. However in Gopinath
et al.’s experiments, 16% of the points timed out after 12 hours, meaning that at least 16%
of points were unable to be certified. This is comparable to the 19% rejection rate obtained
by our Affinity GloRo Net. Moreover, the points that were successfully certified by Gopinath
et al. took, on average, 7.6 hours to certify; by comparison, our approach certifies points in
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a single forward pass of the network, meaning an entire batch can be certified in a matter
of milliseconds.

7.5 Robustness Does Not Imply Conceptual Soundness

Local robustness is an important property that captures resistance specifically to small-
norm adversarial examples. The problem of guarding against this class of adversarial ex-
amples is so widely studied that local robustness is often informally referred to as simply
“robustness.” While `p-bounded perturbations are intended to capture a subset of imper-
ceptible perturbations—the initial description of the adversarial perturbations discovered by
Szegedy et al. [141]—we should not be deceived us into thinking that “robust” models—even
those that are provably “robust” in this sense—are invulnerable to all forms of adversarial
examples.

First, imperceptible perturbations do not necessarily have small `p norms. For exam-
ple, translating the subject of a picture by one pixel may be This cannot be addressed
by increasing the norm bound, as `p distances (especially `8) do not align precisely with
perceptibility—let alone semantics—thus this may admit meaningful changes [146], which
should not be considered adversarial perturbations. Some prior work has considered gen-
eralizations of `p local robustness meant to better capture perceptual invariance, though
not typically in the context of certification. For example, previous literature has proposed
training for invariance under unions of multiple `p balls [28, 145], and invariance to rotations
and translations [36].

Beyond this, adversarial examples may still be derived from perceptible perturbations
that are inconspicuous and semantically meaningless to the classification task. In many
ways, these types of adversarial examples pose a larger security threat, as they are more
likely to be physically realizable. For example, Sharif et al. [126] designed carefully crafted
patterned glasses that can be worn to fool facial recognition models into making arbitrary
misclassifications. While the glasses are clearly visible, a human onlooker would not ex-
pect them to have any profound impact on the wearer’s perceived identity. Other sorts of
physically realizable attacks have also been proposed [16, 38, 77]. It is not clear that any
easily defined geometric property characterizes such attacks, making it much more diffi-
cult to conceive of corresponding provable defenses. At a high level, we would require a
sort of “semantic robustness,” which demands insensitivity to the set of semantically irrel-
evant perturbations. For tasks involving human perception, semantic robustness takes on a
Turing-test-like quality—we simply want our models to avoid mistakes that humans would
be unlikely to make—a view underscoring the difficulty of this task.

Finally, conceptual soundness relates to a number of model quality issues that are not
directly tied to adversarial examples; Part III discusses this further.
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Part III

Conceptual Soundness
Beyond Robustness
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Chapter 8

Privacy Risks of
Conceptual Unsoundness

We have seen the vital connection between robustness and conceptual soundness, discussed
in depth in Part II. A lack of robustness to adversarial examples can be viewed as an
indication that a model is overly sensitive to semantically inconsequential features; and
therefore, it would be difficult to deem any model with such vulnerabilities as conceptually
sound. However, as observed in the conclusion of Chapter 7, robustness and conceptual
soundness are not equivalent; machine learning models may also exhibit other weaknesses
that are not directly related to adversarial examples. In the final part of this thesis, we
will explore and analyze some of the further defects that can be related to conceptual
unsoundness. This chapter will focus on privacy vulnerabilities, and Chapter 9 will cover
calibration issues.

An adversarial example, by definition, must have downstream effects on the model’s ulti-
mate prediction. But even when a reliance on conceptually unsound features is not realized
this overtly, it can nonetheless compromise the integrity of the model. In this chapter, we will
discuss how conceptual unsoundness can introduce privacy vulnerabilities, wherein private
information about the data a model is trained on can be leaked through the model’s parame-
ters or behavior. Specifically, we show that when models use features that are overly-specific
to private aspects of their training data—rather than appropriately general ones—then pri-
vate information is leaked through the model.

We will begin in Section 8.1 with an overview of some of the privacy risks that have been
studied in deep networks. Next, we will demonstrate how an adversary can exploit a model’s
lack of conceptual soundness to perform an attack called membership inference, in which
an adversary identifies points belonging to an ostensibly private data set that was used to
train a model (Sections 8.2 and 8.3). Finally, we will cover attacks that attempt to directly
reconstruct private attributes of a training set—including entire training instances in some
cases—in order to infer knowledge that the model would reasonably have been expected to
keep confidential. Section 8.4 describes a threat called model inversion, and reveals how this
threat interacts with robustness. Section 8.5 demonstrates how model inversion can enable
an adversary to gain knowledge about private dataset properties, and Section 8.6 reveals
how unsound feature encodings at the root of this vulnerability can lead to catastrophic
leakage of specific private training points.
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CHAPTER 8. PRIVACY RISKS OF CONCEPTUAL UNSOUNDNESS

8.1 Overview of Privacy Risks in Machine Learning

Many compelling applications of machine learning involve the collection and processing of
sensitive personal data, giving rise to concerns about privacy [5, 13, 27, 35, 42, 43, 83, 90,
128, 158]. In particular, when machine learning algorithms are applied to private training
data, the resulting models might unwittingly leak information about that data through their
behavior or representation. This fact can be exploited by an adversarial agent through a
variety of privacy-compromising attacks.

8.1.1 Membership Inference

Membership inference attacks aim to determine whether a given data point was present in
the training set used to build a model. This can be a privacy threat in itself, but vulnerability
to membership inference has also come to be seen as a more general indicator of whether
a model leaks private information [90, 93, 128, 161], and is closely related to the guarantee
provided by differential privacy [33]—a strong, formal notion of data set privacy.

We model membership inference as a game played by an attacker, given formally by
Definition 8.1 [161]. Essentially an attacker is given a point that is either drawn from the
training data of a target model or from the general distribution that the training data
were sampled from, each with equal probability. The attacker’s goal is to predict which of
the two the given point was drawn from, given access to the point and to some additional
information determined by the threat model—we use Threat Model 8.1 below. Because an
attacker that guesses randomly achieves 50% accuracy, we often refer to the advantage of
the adversary [161], which subtracts out the 50% baseline and re-scales to lie in the range
[-1, 1].

Definition 8.1 (Property Inference Game). Let ĝ : Rn Ñ Rm be a target model that
has been trained on a set S Ă Rn ˆ rms, with elements drawn i.i.d. from some underlying
distribution, D˚. Let T be a random variable drawn uniformly at random from t0, 1u. If
T “ 0, the attacker is then given a fresh instance px, yq „ D˚; otherwise, if T “ 1, px, yq is
sampled uniformly at random from the elements of the training set, S. The adversary’s goal
is to predict the value of T (i.e., whether px, yq was a member of the training set or not)
given px, yq and some additional knowledge about ĝ determined by the threat model.

Threat Model 8.1 (Strong White-box MI Adversary). We assume that the adversary
has access the following: (i) the target model function, f , including its parameters, θ (i.e.,
the adversary has white-box access to f); (ii) the training algorithm, A, used to produce f ,
including any hyperparameters; and (iii) a set of auxiliary data sampled from D˚ but distinct
from the training set S.

To date, most membership inference attacks follow the so-called shadow model ap-
proach [128]. This approach casts the attack as a supervised learning problem, where the
adversary is given a data point and its true label, and aims to predict a binary label indicat-
ing membership status. To do so, the adversary trains a set of shadow models to replicate
the functionality of the target model, and trains an attack model from data derived from
the shadow models’ outputs on the points used to train each shadow model and points not
previously seen by each shadow model.

The shadow model approach uses a black-box threat model, where the adversary is given
only oracle access to the model’s outputs (including the probabilities associated with each
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(a) (b) (c)

Figure 8.1: Pictorial example of how overfitting can lead to idiosyncratic use of features. (a) shows
12 training instances. We see that the image of Tony Blair on the top right has a distinctive pink
background. (b) depicts internal explanations [85] for three test instances. The explanations show
that the model uses Tony Blair’s face to classify these instances, as we might expect. Meanwhile,
(c) shows the explanation for the image with the distinctive pink background from the training set,
where we see that the model is using the pink background to infer that the image is of Tony Blair.

class), as opposed to access to the model itself. Initially, it would seem that white-box
information (i.e., the model’s learned parameters, etc.) would provide a large edge to an
attacker; while this may be true, surprisingly, prior work has not found a way to effectively
leverage this information without significant relaxations to the threat model [107]. However,
we show that with a deeper understanding of the mechanisms underlying overfitting, white-
box information can be used to advance the state-of-the-art in membership inference (Leino
and Fredrikson [83]).

Our work takes a fresh look at the problem of white-box membership inference, beginning
with the intuitive observation that when a model “memorizes” certain aspects of the training
data, it is likely to show up in the way that the model uses features—both those that are
given explicitly and that are learned in internal layers. This may occur even when signs of
overfitting are not clearly manifested in the model’s output behavior.

Consider the example illustrated by Figure 8.1, in which a model was trained to recognize
faces from the Labeled Faces in the Wild (LFW) dataset. Figure 8.1a shows 12 instances
sampled from the training set of the model. The top right corner of Figure 8.1a depicts an
image of Tony Blair with a distinctive pink background. Supposing that the background
is unique to this training instance, an overfit model may use the background as a feature
for classifying Tony Blair, identifying the instance as a member of the training set via the
uncharacteristic way in which the model correctly labels it. In such a setting, the model’s
use of the pink background could be viewed as evidence of membership. Indeed, Figures 8.1b
and 8.1c show this phenomenon on a convolutional neural network trained on this dataset.
Figures 8.1b and 8.1c use Internal Influence [85] (Chapter 3) to visualize the regions of
the image that are most influential towards the classification of “Tony Blair” on three test
instances, and on the aforementioned training instance with the pink background. While
the model is influenced most by Tony Blair’s face for classification on the test instances, on
the training instance it relies on the distinctive pink background.

This example highlights the intuition that membership information is leaked via a target
model’s idiosyncratic use of features. Essentially, features that are distributed differently
in the training data from how they are distributed in the true distribution can provide
evidence either for or against membership when the model inappropriately fixates on them.
Our attack works by deriving a set of parameters that profile idiosyncratic feature use,
which are then used to construct a logistic attack model. The parameters of the attack are
derived to be optimal against linear models in a simplified setting with strong distributional
assumptions, but the attack can be applied effectively without any such assumptions. The
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success of our attack supports the primary hypothesis motivating this work, namely that
conceptual unsoundness is a privacy liability.

8.1.2 Property Inference

Rather than attempting to isolate specific training points, an adversary might instead be
interested in gaining broader knowledge about a model’s training set. Property inference
attacks [5, 20, 45, 102, 112] seek to infer distributional information about a model’s training
data given access to the model itself—whether that be in a white-box [45] or black-box
[20] setting. These kinds of attacks differ subtly from attribute inference and reconstruction
attacks [43, 135], which focus on inferring an attribute value of an individual instance in
the training dataset. Instead, property inference attacks seek to identify an attribute value
of the training dataset as a whole. Indeed, property inference, attribute inference, and to
some extent reconstruction each rely on the sensitivity of the model to distributional char-
acteristics of the training dataset—both in the sense of the underlying generative process,
and in the sense of artifacts resultant from finite sampling thereof.

Property inference attacks typically consider the property of interest to be the rela-
tive proportion of a sub-population bearing some attribute—for example, the proportion
of women in US census data [45]. The inference of discrete properties has also been con-
sidered, e.g., inferring the presence of individuals wearing glasses in the training data of a
gender classifier [102]. However, prior work on property inference attacks typically lack con-
trol with respect to the association between the property of interest and the predictive task
itself [5, 20, 45]. It is difficult to claim that a model should not reveal the target property
in scenarios with clear association (e.g., gender and income prediction), as there is not a
sufficient distinction between these properties and the premises of statistical learning in the
first place.

Without direct control over the generative process by which properties occur in the train-
ing data, these concerns are difficult to navigate. As such, we contribute a novel methodol-
ogy in which we constrain our analysis to properties whose generative model we explicitly
control—namely the addition of watermarks to the data (Leino et al. [89]). In this way, we
concretely enforce a lack of association between target properties and the predictive task,
meaning that such properties have no reason to be learned by the model, and thus that their
disclosure is a valid privacy concern. Interestingly, we find that even statistically irrelevant
properties may nonetheless be encoded and leaked by neural network classifiers.

Figure 8.2 shows prototypical examples of the types of watermarks we apply to each
dataset in our evaluation. Because we use watermarks to represent a class of dataset prop-
erties for which we may appropriately have an expectation of privacy, we may use the terms
“watermark” and “private property” interchangeably.

We will formalize property inference in terms of boolean predicates on training sets, Φ,
which indicate whether a dataset exhibits a particular property (e.g., if the dataset has
been augmented with a particular watermark). Additionally, for our methodology, it will
be useful for us to define a generative process corresponding to a given dataset attribute.
We will denote by DΦ the distribution over training sets S | ΦpSq, i.e., those which exhibit
property Φ.

We model property inference as a game, similar to how prior work [83, 161] has defined
membership inference. Our property inference game is given by Definition 8.2. Essentially,
the goal of the adversary is to determine from a model, f , which of a known set of hy-
pothetical dataset properties are exhibited by the training set used to produce f . In our
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(a) LFW-12 (b) CIFAR-10

Figure 8.2: Prototypical examples of the watermarks we apply to each dataset.

setting, adversary makes this determination given access to f , as well as the set of possible
properties, P, and the ability to train new models on training sets with specific properties
in P (Threat Model 8.2).

Definition 8.2 (Property Inference Game). Let P be a collection of k dataset properties,
Φ0, . . . , Φk. Select j uniformly at random from rks, and draw S according to DΦj ; i.e., draw
a training set with property Φj. Let f “ ApSq; i.e., obtain a target model, f , by training on
S. Label f according to the boolean vector ` “ p@i P S . ΦipSqq.

The adversary’s goal is to predict ` (i.e., which properties from P applied to S) given
some auxiliary information, determined by a chosen threat model.

Threat Model 8.2 (Strong White-box PI Adversary). We assume that the adversary has
access the following: (i) the target model function, f , including its parameters, θ (i.e., the
adversary has white-box access to f); (ii) the training algorithm, A, used to produce f ,
including any hyperparameters; (iii) the set of possible properties, P, and (iv) the ability to
sample from DΦi for each property, Φi P P.

8.1.3 Model Inversion

Model inversion attacks, introduced by Fredrikson et al. [43], aim to reconstruct inputs that
are “typical” with respect to a model’s training data. Formally, given a model, f : Rn Ñ Rm,
a given class, j P rms, and loss function, L, the adversary attempts to find a reconstruction,
x1, according to Equation 8.1:

argmin
x1

!

L
`

j, fpx1q
˘

)

subject to x1 P r0, 1sn (8.1)

In the simplest form of the attack, this is achieved via gradient descent in the input space
of the model, starting from a provided seed (e.g., a random initialization). The constraint
specifying that x1 should be in r0, 1sn is typically used in image domains where pixels are
assumed to take values in the r0, 1s range. In other domains, alternative boundary constraints
may be appropriate.

Typically, model inversion is performed as a white-box attack that relies on computing
input gradients of the target model f to optimize Equation 1. For the sake of simplicity, we
primarily abide by standard white-box access for the reconstruction attacks in our evaluation
(Threat Model 8.3); however, we will also show that fundamentally, the same results can
be obtained even with query access only (Threat Model 8.4). We draw attention to the fact
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(a) (b)

Figure 8.3: (a) An example of a reconstruction obtained from a robustly-trained neural network
trained with watermarked data. We see that the watermark, which reads “#privacy,” is clearly
recognizable despite the fact that the adversary performing the reconstruction had no a priori
knowledge of its existence. (b) An example of explicit instance leakage on a robustly-trained dense
network. In each pair of images, a reconstruction is shown on the left, and the most similar training
instance (measured by SSIM) is shown on the right for comparison.

that in both threat models, no access to the data, or a distribution like it, is required. This
differs from most threat models commonly used in privacy attacks in the literature, which
typically require access to auxiliary data. For this reason, we refer to these threat models
as “weak” adversaries.

Threat Model 8.3 (Weak White-box Adversary). We assume that the adversary has access
only to the target model, f , including its parameters, θ.

Threat Model 8.4 (Weak Black-box Adversary). We assume that the adversary has access
only to query the target model, f . That is, the adversary does not have access to the model
parameters, θ, but may obtain the logit outputs, fpxq, on any input x P Rn.

Ultimately, the goal of the adversary is to produce reconstructions in which private
properties of the training data are evidently recovered. Qualitatively, this means that a
human can learn of their presence and nature upon inspection of the reconstruction. It is in
this sense that the reconstruction adversary is “weak,” as it does not possess (nor does it
rely on) prior knowledge of the nature of the private properties.

While we do not propose any novel model inversion techniques, our work is the first to
report on the connection between robustness and the ability for a weak adversary to discover
private information encoded by the model through model inversion—even without a priori
knowledge of the nature or existence of the leaked private properties. Figure 8.3 provides
an example of this phenomenon. Figure 8.3a shows a reconstruction of a watermark that
was added to the training set, with the express goal of ensuring that the watermark itself
is not a predictive feature. Despite this, the watermark is explicitly encoded by the model
and leaked through the visualization so that an adversary without a priori knowledge of its
existence can easily recover it. Figure 8.3b shows reconstructions that resemble individual
training instances—capturing aspects of gesture and pose that are unique to those instances,
and not necessary for the model’s classification task.

8.2 A Bayes-Optimal Membership Inference Attack

We begin by focusing on the problem of membership inference. In this section and the next,
we introduce a novel membership inference attack that exploits a model’s use of features
that are overly-specific to the training set, demonstrating that inappropriate feature-use
compromises the privacy of a model. We begin in this section by laying out the core principles
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of our attack in an idealized setting where the exact data distribution is known and the
model is linear (Section 8.2.1). Under these circumstances, we can more rigorously analyze
our attack, justifying it as the Bayes-optimal logistic attack model under our simplifying
assumptions. In particular, we show that when specific data-generating assumptions hold,
the confidence scores produced by this attack correspond to the true membership probability,
and can thus be used for effective, accurate calibration towards high-precision attacks. Using
the insights gained from this analysis, we then show how to generalize the attack to settings
where the model is linear but the data-generating distribution is unknown, or does not
match our previous simplifying assumptions (Section 8.2.2). Finally, we extend the attack
to deep models and relate it more clearly to conceptual soundness in Section 8.3.

8.2.1 Membership Inference in an Idealized Setting

Models learn to use features to distinguish between classes, and while some features may
be truly discriminative (i.e., function as good predictors on unseen data), others may be
discriminative only on the particular training set merely by coincidence. When the model
applies features of the latter type to make a prediction, this can be thought of as “evidence”
of overfitting regardless of whether the prediction is correct; the salience of a feature coin-
cidental to the training data is suggestive on its own. Similarly, there may be features that
are discriminative on the data in general, but not on the training data, which would serve
as evidence against training set membership.

To motivate this intuition more formally, we begin by showing how to model an evidence-
based attack in an idealized setting where data is distributed according to a known distribu-
tion. This provides a simpler illustration of the central ideas used in our real attack, where
we do not make explicit assumptions about the data distribution. We show that the attack in
this setting leads to Bayes-optimal membership predictions on points from that distribution,
which suggests that even when the strict assumptions made here are violated, the approach
may nonetheless be a strong heuristic.

Generative Assumptions

Recall the setting described in Section 8.1: a model, ĝ, trained on S „ D˚, and an adversary
that leverages white-box access to ĝ to create an attack model, m, that predicts whether a
labeled instance, px, yq, belongs to S. We show how membership inference can be analyzed
by introducing some assumptions about ĝ and D˚.

First we assume that D˚ is given by parameters, µ˚y , Σ˚, and p˚ “ pp˚1 , . . . , p
˚
Cq, such

that the labels, y, are distributed according to a Categorical distribution with parameter
p˚, and the features, x, are multivariate Gaussians with mean µ˚y for each label y, and
covariance matrix, Σ˚ (Equation 8.2).

y „ Categoricalpp˚q x „ N pµ˚y ,Σ˚q (8.2)

Furthermore, assume that Σ˚ is a diagonal matrix, i.e., the distribution of x satisfies
the so-called “naive-Bayes assumption,” which states that the features are conditionally
independent given the class label. We will therefore write Σ˚jj as σ˚2

j .
Because S is drawn i.i.d. from D˚, in expectation, the class priors, means, and covariance

of its features will be given by p˚, µ˚, and Σ˚. However, the empirical class priors, means,
and covariance will not match these values exactly, as S is a finite sample from D˚. Therefore,
let p̂ be the empirical class prior of the labels in S, µ̂y be the empirical mean of the features
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Figure 8.4: Example of two Gaussian distributions, η˚ and η̂. The point x1 has a higher probability
of being generated by η̂ than by η˚. Given a prior probability of 1{2 for being drawn from either
distribution, the decision boundary for predicting which distribution a given point was drawn from
would be at the intersection of the two curves, and x1 would be predicted to have been drawn from
η̂.

in S with class y, and Σ̂ be the empirical covariance matrix of the features in S. For the
purposes of our analysis, we will model the training set as a distribution, D̂ parameterized
by p̂, µ̂y, and Σ̂ analogously to D˚. In addition, we will make the corresponding assumption

that Σ̂ is a diagonal matrix.
Under these assumptions, we can now think of the adversary’s goal as the following:

given a labeled point, px, yq, determine if px, yq is more likely to have been drawn from D̂
(i.e., px, yq P S), or D˚. If we momentarily assume that the attacker knows D˚ and D̂,
then we can proceed to derive a logistic attack model purely in terms of their respective
parameters, namely p˚, p̂, µ˚y , µ̂y, Σ˚, and Σ̂—this is, of course, for illustrative purposes,
and not realistic for a practical attack; we will dispose of this assumption in Section 8.2.2.

A Simplified Illustrative Example

Let us first ignore the class labels, and consider 1-dimensional features, x P R. If we have
two Gaussian distributions, η˚ “ N pµ˚, σ˚q and η̂ “ N pµ̂, σ̂q, assuming a prior probability
of 1{2 of being drawn from either distribution, x is more likely to have been generated by
η̂ than by η˚ when N px | µ̂, σ̂q ą N px | µ˚, σ˚q (where N px | µ, σq is the Gaussian PDF,
given by Equation 8.3).

N px | µ, σq “ 1

σ
?

2π
¨ exp

ˆ

´
px´ µq2

2σ2

˙

(8.3)

Thus, we can construct a simple model that predicts whether x was drawn from η̂ rather
than η˚ by solving for x in this inequality. When the variances, σ˚ and σ̂, are the same,
this produces a linear decision boundary that is a function of µ˚ ´ µ̂ and σ˚. An example
of this is shown pictorially in Figure 8.4.

An Omniscient Attack Model

Our setting is more complicated than the above simple Gaussian example, but as we demon-
strate below, the same principle can be applied to mount an attack. Let pX,Y q be random
variables drawn at random from either D̂ or D˚, and let t be the probability of drawing
from D̂. Let T be the event that pX,Y q was drawn from D̂, which we take to mean that
pX,Y q P S.Thus, Pr rT s “ t. In keeping with the membership inference definition presented
in Section 8.1, we will assume that t “ 1{2.
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We now derive an attack model,m, such thatmypxq “ Pr rT | X “ x, Y “ ys, interpreted
to mean that m gives us the probability that a labeled point px, yq is a member of the training
set, S. Because we know t and the parameters of D˚ and D̂, we can derive an estimator
for this quantity by applying Bayes’ rule and algebraically manipulating the result to fit a
logistic function of the log odds. We then make use of the naive-Bayes assumption, allowing
us to write the probability of observing x given its label as the product of the probabilities
of observing each of x’s features independently. The result is linear in the target feature
values when σ̂ “ σ˚, as detailed in Theorem 8.1.

Theorem 8.1. Let T be a random indicator variable where Pr rT s “ 1{2. Let pX,Y q „ D̂
if T “ 1 and pX,Y q „ D˚ otherwise, where D̂ and D˚ are given by Equation 8.2 with
parameters pp̂, µ̂y, Σ̂q and pp˚, µ˚y ,Σ

˚q, respectively. Further, assume that Σ̂ “ Σ˚ is diagonal
and p̂ “ p˚. Then Pr rT | X “ x, Y “ ys “ mypxq where m is given by Equation 8.4, and ¯s
is the sigmoid function given by ¯spxq “ p1` exq´1.

mypxq “ ¯s
´

wyTx` by
¯

(8.4)

where wy “
µ̂y ´ µ

˚
y

σ2
by “

ÿ

j

µ˚2
yj ´ µ̂

2
yj

2σ2
j

Proof. We begin with the expression for P rT | X “ x, Y “ ys and apply Bayes’ rule to
obtain Equation 8.5.

Pr rT | X “ x, Y “ ys “
Pr rX “ x | T, Y “ ysPr rT s

Pr rX “ x | Y “ ys
(8.5)

Next, we express Equation 8.5 as a sigmoid function. Since we assume that Pr rT s “ 1{2,
Pr rX “ x | Y “ ys can be written according to Equation 8.6 by the law of total probability.

Pr rX “ x | Y “ ys “
1

2
pPr rX “ x | T, Y “ ys ` Pr rX “ x |  T, Y “ ysq (8.6)

We then divide by the numerator in Equation 8.5, yielding an expression that can be
written as a logistic function (8.7) by noting that for x ą 0, expplog xq “ x.

p8.5q “
Pr rX “ x | T, Y “ ys

pPr rX “ x | T, Y “ ys ` Pr rX “ x |  T, Y “ ysq

“

ˆ

1`
Pr rX “ x| T, Y “ ys

Pr rX “ x|T, Y “ ys

˙´1

“

ˆ

1` exp

ˆ

log
Pr rX “ x| T, Y “ ys

Pr rX “ x|T, Y “ ys

˙˙´1

“ ¯s
ˆ

log
Pr rX “ x | T, Y “ ys

Pr rX “ x |  T, Y “ ys

˙

(8.7)

We notice that Pr rX “ x | T, Y “ ys is the probability of having drawn x from D̂, given
class, y, and similarly, Pr rX “ x |  T, Y “ ys is the probability of having drawn x from
D˚, given class, y. Using the Naive-Bayes assumption, i.e., that conditioned on the class, y,
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the individual features, xj , are independent, we obtain Equation 8.8.

p8.7q “ ¯s
˜

log
ź

j

N pxj | µ̂yj , σ̂2
j q

N pxj | µ˚yj , σ˚2
j q

¸

(8.8)

We then re-write the log of the product as a sum over the log, and observe that the
sum can be written as a dot product as in Equation 8.9, which gives the parameters of the
Bayes-optimal model for mypxq.

p8.8q “ ¯s
˜

ÿ

j

pxj ´ µ
˚
yjq

2

2σ˚2
j

´
pxj ´ µ̂yjq

2

2σ̂2
j

` log

ˆ

σ˚j
σ̂j

˙

¸

“ ¯s `vy Tx2 ` wy Tx` by
˘

(8.9)

where

vyj “
1

2σ˚2
j

´
1

2σ̂2
j

wyj “
µ̂yj
σ̂2
j

´
µ˚yj
σ˚2
j

by “
ÿ

j

˜

µ˚2
yj

2σ˚2
j

´
µ̂2
yj

2σ̂2
j

¸

` log

ˆ

σ˚j
σ̂j

˙

Finally, by assumption the variance is the same in S as in the general distribution, i.e.,
σ̂j “ σ˚j “ σj , for all features, j. Thus, vy from Equation 8.9 becomes zero, so we are left
with a linear model for my, with weights, wy, and bias, by, given by Equation 8.4.

An immediate corollary of Theorem 8.1 is that mypxq ą 1{2 is the Bayes-optimal pre-
dictor for T , as it predicts the outcome for T that is most likely according to the Bayesian
probability given by m.

Notice that the magnitude of the attack model weights given in Theorem 8.1 is large only
on features whose means on the training data differ significantly from their means in the
distribution, D˚, relative to their variance. This is a manifestation of the intuition described
earlier in this section, as the attack model effectively treats those features as its primary
“evidence” for deciding membership.

Summary. Features that are more likely in the empirical training distribution, D̂, than
in the true “general population” distribution, D˚, serve as evidence for membership. Theo-
rem 8.1 shows how this evidence can be compiled into a linear attack model with parameters
wy and by that achieves Bayes-optimality for membership inference when both distributions
are known precisely. In Section 8.2.2, we show how to obtain approximate values for wy and
by when the distributions D̂ and D˚ are unknown.

8.2.2 Obtaining Attack Parameters from Proxy Models

In practice, it is unrealistic to know the exact parameters defining the distributions D˚ and
D̂. In particular, our threat model assumes that the attacker has no a priori knowledge of
the parameters of D̂ or the elements of S, only that S was drawn from D˚. While we assume
white-box access to the target model, ĝ, we cannot expect that it will explicitly encode D̂;
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indeed, ĝ is usually parameterized by weights, leaving the distribution parameters under-
determined. Finally, D˚ and D̂ may violate the naive-Bayes assumption, and may moreover
be difficult to parameterize directly.

These issues can be largely addressed by observing that the learned weights are sensitive
to D̂, and although they may not encode sufficient information to solve for the exact pa-
rameters, they can still encode useful information about the differences between D̂ and D˚.
To measure these differences, we use a proxy dataset, S̃, which is drawn i.i.d. from D˚ (but
distinct from S) to train a proxy model, g̃, which is then compared with ĝ. To control for
differences in the learned weights resulting from the learning algorithm, rather than from
differences between D̂ and D˚, the proxy model is trained using the same algorithm and
hyperparameters as ĝ (note that this information is assumed to be known in our threat
model). This process can be repeated on many different S̃, using bootstrap sampling when
the available data is limited.

For the moment we will continue with the assumption that data is generated according to
Equation 8.2. In this part of our analysis we will assume that the target model being attacked
is a linear model ĝpxq “ ŴTx ` b̂, that minimizes 0-1 loss on S for the predictions given
by argmaxjPrmstĝjpxqu. This is a convex optimization problem that, under our generative

assumptions, is minimized when Ŵ and b̂ are given by Equation 8.10.1

Ŵjy “
µ̂yj
σ̂2
j

b̂y “
ÿ

j

´µ̂2
yj

2σ̂2
j

` logpp̂q (8.10)

Plugging this, and the analogous equation for the proxy model, g̃pxq “ W̃Tx ` b̃, into
Equation 8.4 from Theorem 8.1, we see that the weights and biases of the attack model
my are approximated by wy “ Ŵ:y ´ W̃:y and by “ b̂y ´ b̃y respectively, assuming that
µ̃ “ µ˚, i.e., that the proxy data reflects the true distribution mean. This is summarized in
Observation 8.2, which leads to a natural attack as shown in Algorithm 8.1. We call this
the bayesian-wb attack.

Observation 8.2. For linear softmax model, ĝ, with weights, Ŵ , and biases, b̂; and proxy
model, g̃, with with weights, W̃ , and biases, b̃, the Bayes-optimal membership inference
model, m, on data satisfying Eq. 8.2 is approximated by Equation 8.11 when ĝ and g̃ have
converged on their respective training sets and when D̃ is a good approximation for D˚.

my “ ¯s
´

wyTx` by
¯

(8.11)

where wy “ Ŵ:y ´ W̃:y by “ b̂y ´ b̃y

Notice that Observation 8.2 gives the weights and biases of my in terms of only the
observable parameters of the target and proxy models. This is therefore possible even when
the distributions, D˚ and D̂, are unknown. Furthermore, while Observation 8.2 is derived and
stated using relatively strong generative assumptions, we find that this attack is nevertheless
often effective when these assumptions do not hold.

Disposing of Generative Assumptions

One way of viewing the bayesian-wb attack is that it weights membership predictions by
measuring a sort of displacement between the weights of the target model and the ideal

1See [105, Slide 20] for details.
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Algorithm 8.1: The Linear bayesian-wb MI Attack

1 def createAttackModel (ĝ, S̃):

2 g̃ Ð trainProxypS̃q
3 wy

Ð ĝ.W:y ´ g̃.W:y @y P rms
4 by Ð ĝ.b:y ´ g̃.b:y @y P rms

5 return λpx, yq : ¯s `wyTx` by
˘

6 def predictMembership (M , x, y):
7 return 1 if My

pxq ą 1
2

else 0

Ŵ : Ŵi W̃ : W̃i x :

df

W : Wi x, y

¯s

Figure 8.5: Illustration of the generalized attack model. A learned displacement function, d, is
applied element-wise to the weights of the target and proxy model to produce attack model weights,
W . The inner product of W and x is then used to make the membership prediction. Not pictured: d
is also applied to the biases, b̂ and b̃, to produce b, which is added to the result of the inner product.

weights of the true distribution as approximated by the proxy model. Let D be a displace-
ment function that is applied element-wise to the weights of the model—that is for some
d : RˆRÑ R, on vectors v, u P Rn, let Dpx, yq “ pdf pv1, u1q, . . . , dpvn, unqq. We can express

the bayesian-wb attack via a such a displacement function, namely, wy “ DpŴ:y, W̃:yq and

by “ Dpb̂y, b̃yq, by letting dpvi, uiq “ vi ´ ui, i.e., by letting D be element-wise subtraction.

As per Observation 8.2, element-wise subtraction is optimal for membership inference
under the Gaussian naive-Bayes assumption, but it may be that for other distributions, a
different displacement function is more appropriate. More generally, we can represent the
displacement function as a neural network, and train it using whatever data is at hand.

Figure 8.5 illustrates this approach, which we call the nn-wb attack. A learned displace-
ment function, d, is applied element-wise to Ŵ and W̃ to produce attack model weights,
W , and to b̂ and b̃ to produce attack model biases, b. It then predicts the probability of
membership as ¯s `WT

:yx` by
˘

.

As d is applied element-wise to pairs of weights, we model D as a 1-dimensional convo-
lutional neural network, where the initial layer has a kernel size and strides of 2 (i.e., the
kernel is applied to one element of Ŵ:y and one element of W̃:y), and subsequent layers have
a kernel size and stride of 1.

In order to learn the weights of D, we partition S̃ into an “in” dataset, S̃1, and an “out”
dataset, S̃0. We train a shadow target model, ǧ, on S̃1 and a proxy model, g̃, on S̃0. We then
create a labeled dataset, T , where the features are the weights and biases of ǧ, the weights
and biases of g̃, and x; and the labels are 1 for x belonging to S̃1 and 0 for x belonging to
S̃0. Finally we train to find the parameters to D that minimize the 0-1 loss, L, of the nn-wb
attack on T . We can increase the size of T to improve the generalization of the attack by
repeating over multiple in/out splits of S̃. This procedure is described in Algorithm 8.2.
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Algorithm 8.2: The Linear nn-wb MI Attack

1 def createAttackModel (ĝ, S̃, N):
2 for i P rN s do

3 S̃1
i , S̃

0
i Ð splitipS̃q

4 ǧi Ð trainShadowpS̃1
i q

5 g̃i Ð trainProxypS̃0
i q

6 T Ð rpǧi.W:y, g̃i.W:y, ǧi.by, g̃i.by, x, `qs
@px,y1qPS̃`

i :y1“y, @yPrCs, @`Pt0,1u, @iPrNs

7 D Ð argmin
D1

"

E
pŵ,w̃,b̂,b̃,x,`qPT

“

Lp¯spD1pŵ,w̃qT x`D1pb̂,b̃qq,`q
‰

*

8 g̃ Ð trainProxypS̃q

9 return λpx, yq : ¯s `Dpĝ.W:y, g̃.W:yq
Tx`Dpĝ.by, g̃.byq

˘

10 def predictMembership (m, x, y):
11 return 1 if my

pxq ą 1
2

else 0

omniscient bayesian-wb nn-wb
(min capacity)

nn-wb
(extra capacity)

n “ 100 0.618 0.605 0.602 0.590
n “ 200 0.577 0.570 0.563 0.562
n “ 400 0.568 0.550 0.547 0.542

Table 8.6: Comparison of the bayesian-wb and nn-wb attacks to an omniscient attack, which has
knowledge of µ̂, µ˚, and σ, and thus can use Theorem 8.1 directly without the use of a proxy model.
In one case, the nn-wb attack was given the minimum capacity to reproduce the bayesian-wb attack,
i.e., d is simply a weighted sum of Ŵi and W̃i. In another case, the nn-wb attack was given excess
capacity, with 16 hidden units in d. Three target models, trained on synthetic Gaussian naive-Bayes
data with training set sizes of 100, 200, and 400, were attacked.

8.2.3 Efficacy of Proxy Models

In Section 8.2.1, we derived the Bayes-optimal membership inference attack on Gaussian
data satisfying the naive-Bayes condition. The weights of the optimal membership predictor
for this case, given by Theorem 8.1, are a function of the empirical training distribution
parameters and true distribution of the data, which, of course, would be unknown to an
attacker. Section 8.2.2 describes how to address this, using a proxy model to capture the
difference between the data used to train the target model and the general population.

To measure the extent to which this proxy model approach can recover the Bayes-optimal
attack, we created a synthetic dataset matching the generative assumptions used for our
derivation. The synthetic data were generated with 10 classes, 75 features, and 400, 800, or
1,600, records, with an equal number of records per class. The features, xj , of the synthetic
data were drawn randomly from a multivariate Gaussian distribution with parameters, µy
(for each class, y) and Σ, where µyj was drawn uniformly at random from r0, 1s, and Σ was
a diagonal matrix with Σjj drawn uniformly at random from r0.5, 1.5s. Each dataset was
divided into three groups, with 1{4 of the records used to train a linear target model (these
comprise the “members”), 1{4 used to test the attack performance on non-members, and 1{2

used as hold-out auxiliary data for the attacker to use to construct the attack model (i.e.,
to train proxy models, etc.).
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Table 8.6 demonstrates the effectiveness of the proxy model in our attack, by comparing
our bayesian-wb attack using a proxy model to an “omniscient” attack, which uses Equa-
tion 8.10 directly, with knowledge of the empirical means and covariances of the set of
members and the set of non-members. We can consider the omniscient attack as giving an
upper bound on the expected accuracy of a white-box attack on Gaussian naive-Bayes data,
as it is the true Bayes-optimal attack (while bayesian-wb is the approximate Bayes-optimal
attack according to Proposition 8.2). Our bayesian-wb attack achieves on average 84% of the
advantage of the omniscient attack, suggesting that the proxy model was able to approxi-
mately capture the general distribution as necessary for the purpose of detecting the target
model’s idiosyncratic use of features.

We also further generalized the bayesian-wb attack to use a learned displacement function
that may be more appropriate for distributions that don’t resemble the Gaussian naive-
Bayes assumption (Algorithm 8.2). While we find that this nn-wb attack often generalizes to
arbitrary distributions better than the bayesian-wb attack, because its displacement function
is learned, it is possible for the nn-wb attack to overfit.

Table 8.6 also shows the accuracy of the nn-wb attack on Gaussian naive-Bayes data.
When the neural network representing the displacement function is given exactly enough
capacity to reproduce the bayesian-wb attack, nn-wb recovers on average 94% of the advan-
tage of the bayesian-wb attack. Upon inspecting the weights of the displacement network, we
find that nn-wb learns almost exactly element-wise subtraction, demonstrating its potential
to learn the optimal displacement function. When given excess capacity, the nn-wb attack
performs only marginally worse, achieving on average 92% of the minimal nn-wb attack’s
advantage (86% of bayesian-wb), suggesting that nn-wb is not highly prone to overfitting.

8.3 Exploiting Idiosyncratic Feature-use in DNNs

We have now seen how to approximate the Bayes-optimal estimator for membership pre-
diction using the weights of a linear target and proxy model; in this section, we extend
the same reasoning to deep models. However, as deep networks learn novel intermediate
representations, the semantic meaning of an internal feature at a given index—i.e., the data
characteristic that it associates with—will not necessarily line up with the semantic meaning
of the corresponding internal feature in another model [9, 163]. This holds even when the
models share identical architectures, training data, and hyper-parameters, as long as the
randomization in the gradient descent is distinct between the models. In general, the only
features for which two models will necessarily agree are the models’ inputs and outputs, as
these are not defined by the training process.

This poses a challenge for any white-box attack that attempts to extend the “shadow
model” approach [128] developed for black-box membership inference. Consider such an
approach, which learns properties of internal features that indicate membership—involving
activations of specific neurons, gradients, or any other quantity—from shadow models. Any
such property must make reference to specific internal features within the shadow model,
but even if the target model contains internal features that match these properties, they
are unlikely to reside at exactly the same location within the network as they do in the
shadow model. This is why previous white-box attacks [107] require large amounts of the
target model’s training data; rather than learning attack models from shadow models, they
are forced to learn them from the target model itself and its training data. Such methods
thus learn differences between the training and auxiliary data, but do not offer any general
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insights as to how those differences manifest in the model.
To circumvent this limitation, one must either construct a mapping between internal

features in the shadow and target models, or fix the feature representation in the shadow
model to preserve semantic meaning between the two. In this section, we show how to
accomplish the latter by constructing a series of local linear approximations of the network
(Section 8.3.1), one for each internal layer, that operate on the feature representation of the
target model. Because each approximation is linear, we can apply any of the attacks from
Section 8.2 to each approximation, and combine the results (Section 8.3.2) to form an attack
model for the full network.

8.3.1 Local Linear Approximations of Deep Models

We define a local linear approximation in terms of a slice, pg, hp, which decomposes a deep
network, f , into two functions, g and h, such that f “ g ˝ h. Intuitively, a slice corresponds
to a layer of the network, where h yields the internal features computed by the layer, and g
computes the output of the model from these features.

For the slice at the penultimate layer of the network, g is simply a linear model acting on
features computed by the rest of the model. In this case, no local approximation is needed
and the bayesian-wb (Algorithm 8.1) and nn-wb (Algorithm 8.2) attacks can be applied
directly to g using internal features that are computed by h.

For slices lower in the network, g is no longer linear, but we can approximate the way in
which g makes use of its features at a particular point by constructing a linear model that
agrees with it at that point and faithful to its local behavior. To do this, we make use of
an influence measure (see Chapter 3) over the inputs of g to its computed output for each
point. Recall that given a model, f , a point, x, and feature, j, the influence of a feature xj
on f is a quantitative measure of xj ’s potential impact the output of f . Essentially, our goal
is to replace the model weights in Algorithms 8.1 and 8.2 with the corresponding feature
influences, which are the natural analogues of the feature weights in linear models.

We can think of this attack as comparing the explanations between the target and proxy
models to find evidence of idiosyncratic feature use that might be linked to the training set.
For instance, in our example in Figure 8.1 (Section 8.1), if influence-guided explanations
reveal that the target model uses a “pink background” feature to identify Tony Blair, while
the proxy model does not, the resulting attack model will view pink backgrounds as evidence
of membership in images of Tony Blair.

We now specify the parameters we will use for our influence measure when mounting our
attack. Recall that the preprocessing axiom of Internal Influence (Axiom 4.4) states that the
Internal Influence of a slice, χpg ˝h, q,DX q is equivalent to the internal influence on g using
the distribution DZ , derived by raising DX through h. For our purposes, we will specify DZ
directly. Specifically, when predicting on a point, x, we let Dx

Z be a uniform distribution
over the line segment connecting the zero-vector to hpxq; recall that this is the distribution
implicitly used by Integrated Gradients. This results in a measure satisfying the efficiency
property (see Chapter 3), stated for our context in Equation 8.12.

ÿ

j

χinput
j pg, q,Dx

Zq ¨ pzj ´ 0q “ q ˝ gpzq ´ q ˝ gp0q (8.12)

Thus, we see that for z “ hpxq, we have that q˝gpzq “ χinputpg, q,Dx
Zq

T z`gp0q, giving us
a linear approximation of g at x as desired. Since χinput satisfies linear agreement (Axiom 4.1),
this linear approximation is exact when g is a linear function. Using this approximation,

103



CHAPTER 8. PRIVACY RISKS OF CONCEPTUAL UNSOUNDNESS

Algorithm 8.3: The Deep bayesian-wb MI Attack

1 def createAttackModel (ĝ ˝ ĥ, S̃):

2 S̃1 Ð rpĥpxq, yq for px, yq P S̃s

3 g̃ Ð trainProxypS̃1q

4 wy
Ð λpzq : χpĝ ˝ ĥ, P z

0 qy ´ χpg̃ ˝ ĥ, P
z
0 qy @y P rCs

5 by Ð ĝp0qy ´ g̃p0qy @y P rCs

6 return λpx, yq : ¯s
´

wy
pĥpxqq

T
ĥpxq ` by

¯

7 def predictMembership (m, x, y):
8 return 1 if my

pxq ą 1
2

else 0

we can apply the bayesian-wb and nn-wb attacks to an arbitrary slice of a deep network,
by replacing g with its linear approximation. Note that this gives a separate set of weights
for each input, x (hence why we call the approximation “local”); however, our attacks are
parametric in the weights of the target model, so only a single attack model is necessary.
The modification of Algorithm 8.1 for an arbitrary slice of a target deep network is detailed
in Algorithm 8.3. An analogous modification of Algorithm 8.2 follows as well, by simply
replacing each reference to weights with influence measurements, but is omitted for the sake
of brevity.

As an aside, we note that the way we presented is not the only way of obtaining a linear
approximation of the network using influence. In general, any distribution of interest could
be chosen, as long as the intercept of the linear approximation is adjusted to make the ap-
proximation agree with the model. For example, using a single-point distribution of interest
is also natural, as it yields the tangent plane to the network at the point under considera-
tion. The exploration of alternative distributions of interest for mounting this attack is left
as future work.

Summary. We can generalize the attacks given by Algorithms 8.1 and 8.2 to apply to an
arbitrary layer of a deep target network by replacing the weights with their natural gener-
alization, influence. This allows us to perform membership inference by detecting anomalies
in the way in which a target model uses its learned features. Because influence allows us to
create a faithful local linear approximation of the model for any given point, this generalized
attack follows from the same analysis on linear models from Section 8.2. In Section 8.3.2, we
suggest a method for combining attacks targeting each individual layer to create an attack
that utilizes white-box information from all the layers of a deep network.

8.3.2 Combining Layers

The results of Section 8.3.1 allow us to leverage overfitting in each layer learned represen-
tations employed by the target model towards membership inference. Attacks on different
layers may pick up on different signals, but because the model’s internal representations
are not independent across layers, we cannot simply concatenate the approximated weights
of each layer and treat it as an attack on a single model. Instead, we make use of a meta
model, which learns how to combine the outputs of the individual layer-wise attacks. The
meta model takes the confidences of the attack defined in Section 8.3.1 applied to each layer,
and outputs a single decision.
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To train a meta model, m1, to attack target model, f , we partition S̃ into two parts, S̃1

and S̃0. We train a shadow target model, f̌ , on S̃1. Then, for each layer, i, in f , we train
an attack model, mi, on the ith layer of f̌ , as described in Section 8.3.1. We then construct
a training set, T “ T 1 Y T 0, such that px1, y1q P T 1 is constructed as px1i, y

1q “ pmy
i pxq, 1q

for px, yq P S̃1, and px1, y1q P T 0 is constructed as px1i, y
1q “ pmy

i pxq, 0q for px, yq P S̃0. We
can increase the size of T by creating multiple random partitions of S̃. Finally, we train m1

on T .
When building a meta model for the nn-wb attack, we can train m1 jointly with the

displacement metric, d, rather than first learning a nn-wb attack on each layer. We also use
a separate distance metric, di for each layer, i, of f .

8.3.3 Evaluation

We now present the results First and foremost, these results demonstrate that a model’s
use of features may compromise the privacy of its training data. Essentially, both variants
of our attack operate on faithful explanations of the model’s behavior. The success of the
attack depends on the extent to which the explanations uncover idiosyncratic feature-use
that identifies specific training instances. To the extent that this is generally inappropriate,
we view this as a violation of conceptual soundness—the ideal is for a model to learn general
methods for prediction, not for it to memorize one-off patterns.

Experimental Setup

We begin by presenting details on the attack methods, metrics, datasets, target models, and
methodology used in our experiments.

Attack Methods. We evaluate our bayesian-wb and nn-wb attacks in comparison to two
other baseline approaches which both use only black-box access. By far the simplest mem-
bership inference attack, which we dub the “naive” attack (referred to as naive in our
evaluation), follows from the fact that generalization error necessarily leads to membership
vulnerability [161]. Given a data point and its true label, the attacker runs the model and
observes whether its predicted label is correct. If it is, then the attacker concludes that
the point was in the training set; otherwise, the point is presumed a non-member. This
attack serves as a simple baseline that is more informative than the 50% baseline provided
by an adversary that guesses randomly. We also consider the black-box shadow model at-
tack [128], which was briefly introduced in Section 8.1. We refer to this attack as shadow-bb
in our evaluation. This serves as a baseline for state-of-the-art membership inference.

Metrics. We compare the performance of the attacks in our evaluation on both accuracy
and precision. Because an adversary that guesses randomly achieves 50% accuracy, we will
often opt to describe the advantage of an attack [161], given by 2pa ´ 0.5q where a is
the accuracy. Essentially, advantage scales accuracy to the 50% baseline to yield a measure
between -1 and 1. While advantage is an indicator of the degree to which private information
is leaked by the model, it does not necessarily capture the severity of the threat posed to any
given individual in the training set. From this perspective, a privacy violation occurs if any
of the points can be confidently identified by the adversary—this is arguably a greater threat
than if the adversary were to identify every training member with very low confidence. Thus,
we also consider precision—the fraction of predicted members that were true members of
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model # row # feat. # class train acc. test acc.

Breast Cancer (BCW) 569 30 2 0.987 0.944
Pima Diabetes (PD) 768 8 2 0.789 0.756
Hepatitis (Hep) 155 19 2 0.997 0.810
German Credit (GC) 1000 20 2 0.937 0.701
Adult 48841 99 2 0.861 0.849
MNIST 70k 784 10 0.998 0.987
LFW 1140 1850 5 0.993 0.829
CIFAR-10 60k 3072 10 0.996 0.664
CIFAR-100 60k 3072 100 0.977 0.312

Table 8.7: Characteristics of the datasets and models used in our experiments.

the training set—as a key desideratum for the attacker. In order for an attacker to reach
confident inferences, precision must be appreciably greater than 1{2. If no points are predicted
to be members, we define precision to be 1{2.

Datasets. We performed experiments over nine publicly available classification datasets
derived from real-world data. Among the classification datasets were Adult, Pima Diabetes
(obtained from the UCI Machine Learning Repository); Breast Cancer Wisconsin, Hepatitis,
German Credit, Labeled Faces in the Wild (obtained from scikit-learn’s datasets API);
MNIST [79], CIFAR-10, and CIFAR-100 [76]. Table 8.7 shows the characteristics of each
of these datasets.

Target Models. The target models we used to conduct our experiments include both
simple dense networks, and convolutional neural networks. Each model was trained until
convergence with categorical cross-entropy loss, using SGD with a learning rate of 0.1, a
decay rate of 10´4, and Nesterov momentum. For non-image real data, we used a dense
network architecture with one hidden layer and ReLU activations. For datasets with n
features, we employed 2n hidden units, followed by a softmax layer with one unit per class.
For image data, we used a CNN architecture based on LeNet, with two convolutional layers
with 5 ˆ 5 filters and 20 and 50 output channels respectively (each convolutional layer is
followed by a max pooling layer), followed by a fully connected layer with 500 neurons. We
trained CNNs with a 25% dropout rate following each pooling layer, and a 50% dropout
rate following the fully connected layer. Each target model consists of a pair containing an
architecture and a dataset; we will refer to each model by its dataset abbreviation given in
Table 8.7. The train and test accuracy for each of the target models used in our evaluation
are given in the final two columns of Table 8.7.

Methodology. When evaluating each attack, we randomly split the data into three dis-
joint groups: train, test, and hold-out. The train and test groups were each comprised of one
fourth of the total number of instances, and the hold-out group contained the remaining one
half of the instances. The target model was trained on the train group, while the attacks
were allowed to make use of the hold-out group only. The attack model’s predictions were
evaluated on the train group (members) and the test group (non-members). Each exper-
iment was repeated 10 times over different random samplings of the data split, and the
results were averaged.
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accuracy precision
model naive shadow-bb bayesian-wb nn-wb naive shadow-bb bayesian-wb nn-wb

BCW 0.522 0.500 0.514 0.523 0.511 0.500 0.545 0.528
PD 0.517 0.508 0.517 0.519 0.511 0.515 0.537 0.561
Hep 0.595 0.553 0.605 0.618 0.552 0.528 0.562 0.609
GC 0.618 0.582 0.623 0.622 0.572 0.547 0.603 0.637
Adult 0.506 0.524 0.507 0.516 0.504 0.514 0.512 0.516
MNIST 0.506 0.506 0.575 0.521 0.503 0.506 0.578 0.640
LFW 0.582 0.597 0.618 0.619 0.545 0.557 0.581 0.586
CIFAR-10 0.666 0.684 0.686 0.709 0.600 0.605 0.638 0.646
CIFAR-100 0.831 0.847 0.847 0.872 0.757 0.766 0.770 0.792

Table 8.8: Comparison of the accuracy and precision of bayesian-wb and nn-wb with naive and
shadow-bb attacks. Best results for each dataset are shown in bold.

For the bayesian-wb attack, we trained 10 proxy models on random samples from the
hold-out group, and took the mean of their approximated weights at each point for added
stability of results. When attacking dense networks, we performed the attack on the final
layer of the network using Algorithm 8.1. When attacking LeNet models, we used a meta
attack model targeting each of the five internal layers (described in Section 8.3.2) that was
trained on data from 10 shadow models trained on 10 bootstrapped samples from the hold-
out group. We used a small dense network with 16 hidden neurons for the meta model and
trained it for 32 epochs with the Adam optimizer [75].

For the nn-wb attack, we construct an attack model that learns a displacement function,
Di, for each layer, i, of the network, and combines the results with a meta attack model, M .
The attack model was trained for 32 epochs with Adam, using data from 10 shadow models
trained on bootstrapped samples from the hold-out group. As suggested in Section 8.2.2,
we modeled each Di as a convolutional neural network. In each experiment, the networks
modeling M and each Di had at most one hidden layer, with nM and nD hidden units,
respectively (in our experiments each Di used the same architecture, though this need not
be the case in general). In order to determine nM and nD for each dataset, we created
a validation set using 10 shadow models trained on different random splits of the hold-
out group, and performed a parameter sweep over nM , nD. We then took the nM and nD
yielding the highest validation accuracy for each target model. We find that because the
attack model is highly regularized via its restrictive architecture, the validation accuracy is
a reasonably good indicator of the test accuracy, making it a useful tool for hyper-parameter
tuning.

In each experiment, the shadow-bb attack was trained using 10 shadow models trained
on 10 samples from the hold-out group (see [128] for more details on this attack).

Evaluation Results

We now compare our approach to previous work, namely, shadow-bb [128]. In particular, we
compare (1) performance in terms of accuracy, precision, and recall; and (2) the reliability
of the attack confidence when used to calibrate for higher precision. In short, our results
show that both bayesian-wb and nn-wb outperform shadow-bb, and can be more reliably
calibrated to achieve confident inferences for the attacker. Furthermore, even on some well-
generalized models, on which shadow-bb and naive fare poorly, our attacks can be calibrated
to make confident inferences, and sometimes also achieve non-trivial advantage. Finally,
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Figure 8.9: Precision of the bayesian-wb, nn-wb, and shadow-bb attacks, calibrated by setting
the decision threshold to the αth-percentile prediction confidence (with α “ 0.90 and α “ 0.99),
compared to the precision with no calibration (i.e., using 1{2 as the decision threshold for predicting
members). An upward slope in the plot indicates a greater degree of calibration.

we find that there is often little advantage to shadow-bb over naive, both because shadow-
bb often performs comparably to naive, and because shadow-bb does not always produce
calibrated confidence scores.

Performance. Table 8.8 shows the accuracy and precision of naive, bayesian-wb, nn-wb,
and shadow-bb. We see that both bayesian-wb and nn-wb are consistently more accurate and
precise than naive and shadow-bb. At least one of bayesian-wb or nn-wb obtains the highest
accuracy of the four methods on each target model except the one trained on the Adult
dataset, and both outperform the other two methods in terms of precision in all cases. In
some cases, the improvement in accuracy of at least one of our attacks over prior work is
by as much as seven percentage points, though in others our accuracy is only modestly
better; however, in terms of precision, the difference is more pronounced in almost every
case (typically greater by at least five percentage points).

Our results for the performance of shadow-bb are roughly in line with previously reported
results for shadow-bb on the datasets which have been used for evaluation in prior work
(Adult, MNIST, LFW, CIFAR-10, and CIFAR-100) [121, 128]. On CIFAR-10 and CIFAR-
100, our results are slightly lower than the results reported for shadow-bb by Shokri et al.
[128], however, our target models trained on CIFAR-10 and CIFAR-100 use dropout and
have a lower generalization error than the models in the attacks reported by Shokri et al.,
which most likely accounts for this small discrepancy.

Calibration. As argued previously, one of the key desiderata of a membership inference
attack is precision. In order to calibrate an attack for precision, the confidence output by
the attack must be informative. Here, we examine the calibration of the confidence outputs
of our attacks compared to shadow-bb (naive does not provide a confidence score with which
to calibrate). We find that increasing the decision threshold of the bayesian-wb and nn-wb
attacks has a positive effect on precision. In particular, we can choose to predict “member”
only on points that receive the highest confidence scores among points from the hold-out set.
As the hold-out points are presumed to be non-members, setting the confidence threshold to,
e.g., the 99th-percentile confidence score should admit a false positive rate of approximately
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1%. If the true members are more likely to have high confidence scores, increasing the
decision threshold in this way will improve the precision of the attack.

We see that this is indeed the case for the bayesian-wb and nn-wb attacks. Figure 8.9
shows the precision of bayesian-wb, nn-wb, and shadow-bb as the decision threshold is raised
from 1{2 to the 90th and 99th percentile confidence score measured on the hold-out set.
For bayesian-wb and nn-wb, this results in an increase in precision in all cases, often by
10 or more percentage points. On all convolutional models, nn-wb is able to be calibrated
to upwards of 75% precision. Notably, this includes the model trained on MNIST, which
has only 1.1% generalization error. This implies that privacy violations are a threat even to
well-generalized models, since our attack is able to confidently (with at least 75% confidence)
identify a subset of training set members. On the dense models, the calibration is slightly
less consistent; however, here bayesian-wb is able to obtain over 70% precision on the models
trained on the Breast Cancer Wisconsin and Hepatitis datasets.

While Figure 8.9 demonstrates that applying our calibration heuristic to bayesian-wb
and nn-wb consistently increases the precision, we see that this is not always the case for
shadow-bb. In some cases, the precision of shadow-bb is decreased by increasing the decision
threshold. In fact, occasionally, the average confidence on non-members is higher than that
of members, leading to a precision slightly less than 50%. This may be a result of the shadow
model overfitting to the hold-out data. When we are able to increase the precision of shadow-
bb using its confidence output, the gains are less impressive, suggesting the probability
outputs of shadow-bb are less well-calibrated.

These results indicate that our attacks can accurately determine which points are most
likely to be members, based on the specific observed behavior on those points. By contrast,
the naive approach works based on a general heuristic that does not distinguish between
characteristics of specific points. The same appears to be true of shadow-bb.

Performance on Well Generalized Models. While some of the models we used to
evaluate our attacks had a generalization error of 10% or more, we also evaluated on several
datasets for which the learned model was far less overfit, including MNIST (1.1% general-
ization error), Adult (1.2%), Pima Diabetes (3.4%), and Breast Cancer Wisconsin (4.3%).
While on PD and BCW, our attacks only slightly outperform naive, on MNIST and Adult,
our attacks do substantially better: on the model trained on Adult, nn-wb achieves an ad-
vantage 2.6 times greater than the advantage achieved by naive. Even more impressively, on
MNIST, nn-wb and bayesian-wb achieves an advantage 3.5 and 12.5 times greater than the
advantage achieved by naive, respectively. On the other hand, shadow-bb fares poorly on all
of these datasets except for Adult, typically achieving less than 2% advantage, suggesting
that our attacks are better at picking up overfitting that is not manifested as downstream
errors in the model’s predictions on unseen points.

In addition to the cases where our attacks achieve relatively high advantage against
well-generalized models, we find that when calibrated, our attacks achieve as high as 75%
precision on MNIST, and 70% precision on Breast Cancer Wisconsin, again underscoring
the threat of privacy violations for well-generalized models. While it is clear that a greater
degree of overfitting (in the traditional sense of a discrepancy between the train and test
errors) makes it easier for an adversary to mount any attack, the relative success of our
attacks over naive on well generalized models suggests that the white-box information is
useful even when the model does not leak information through incorrect predictions on the
test set.
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Similarity of shadow-bb and naive Results. Table 8.8 reveals that often, shadow-bb
has performance comparable or even worse than naive, particularly on well-generalized tar-
get models. This is likely a product of the attack model overfitting to idiosyncrasies in the
shadow model’s output that are unrelated to the target model. On deep models with sig-
nificant overfitting, shadow-bb performs slightly better than naive, however, we found that
its behavior was not significantly different from that of naive; for example, on LFW, naive
recovers 88% of the exact correct predictions made by shadow-bb. This supports the intu-
ition that the features used by the shadow model approach (i.e., the softmax outputs) are
not fundamentally more well-suited to membership inference than those used by the naive
method (i.e., the correctness of the predictions). This is perhaps unsurprising, as the soft-
max outputs are likely to coincide largely with the correctness of the prediction—for correct
predictions, the softmax will likely have high confidence on the correct class, regardless of
whether the point was a member or not; and similarly for incorrect predictions, the softmax
will likely have more entropy.

Conclusions. The fact that our attacks outperform prior state-of-the-art membership in-
ference attacks demonstrates the value of our insights regarding the mechanisms underlying
overfitting. Our attack is designed to solely leverage the way in which the target model uses
features in comparison to a baseline, which we find accounts for as much membership leakage
as has been extracted by any attack thus far, solidifying the significance of the analysis in
this chapter for our understanding of overfitting and its relation to conceptual soundness.

8.4 Model Inversion in Robust Models

We now shift our focus from membership inference to attacks that aim to directly recon-
struct private information from the training data that may be encoded by a model. The
use of private information can be considered conceptually unsound, particularly when such
behavior is not entailed by the model’s learning objective. This is especially worrisome if
the model encodes private information in a manner that is easily recoverable by a weak ad-
versary (i.e., one provisioned with little auxiliary information about the private information
it seeks). As we will see, this concern is related to robustness. Specifically, in line with our
observations at the conclusion of Part II, although robust models address certain sources of
conceptual unsoundness, the danger of unsound encoding of private features is amplified in
robust models. This suggests that work to protect the privacy of robust models is of special
importance.

Recent work has suggested that privacy vulnerabilities and robustness to adversarial
examples may be related concerns. For example, robustly-trained models have been found to
be more vulnerable to membership inference attacks than their non-robust counterparts [136,
162]. The nature of these findings primarily implicates the observation that robustly-trained
models generalize poorly on their robust objective; that is, previously unseen points are
far more susceptible to adversarial perturbations than points seen during training. These
findings are also in line with prior work on membership inference on standard models, which
has drawn a strong connection between generalization error and susceptibility to common
types of membership inference attacks [83, 116, 161].

Our work contributes new evidence that another mechanism is also at play regarding
the interaction between privacy and robustness, namely, the types of features encoded by a
model and how they are encoded.
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Figure 8.10: Example reconstructions from publicly available pre-trained ResNet50 ImageNet
models for both standard and adversarial training. The column labels indicate the ImageNet class
that was targeted for reconstruction. (top) standard model available from Torchvision.2 (bottom)
adversarially trained model available from MadryLab.3

This insight draws connections from previous work, which has shown a connection be-
tween a model’s robustness to adversarial input perturbations and the interpretability of its
feature representations [37, 60, 65, 148, 154]. Ilyas et al. [65] argue that adversarial examples
arise because of “non-robust features” that are reliable predictors (i.e., they are correlated
with the class labels), provided that they remain unperturbed ; i.e., they lose their predic-
tive power under small-norm perturbations. As such, these non-robust features are useful
for standard classification, but not for robust classification. Additionally, while non-robust
features are inherently imperceptible to humans, their “robust feature” counterparts (which
are useful for robust classification) will tend to be more perceptible, meaning that we might
expect robust models to be more likely to learn human-recognizable features.

This reasoning is borne out when we try to probe the behavior of adversarially trained
or provably robust models. For example, Tsipras et al. [148] and Etmann et al. [37] find
that gradient-based explanations (e.g., [85, 131, 140]) produced on robust models look more
intuitive and align more closely with the salient objects in image classification tasks.

In addition to explanations, another technique that is often used to interpret the fea-
tures learned by a neural network is feature visualization, first introduced by Simonyan et al.
[131]. Though this has not been made explicit previously in the literature, feature visual-
izations are essentially an instance of model inversion—prototypical features for a chosen
class (or internal neuron) are visualized by finding an input that maximizes the activation
corresponding to that class. Interestingly, Tsipras et al. and Helland and VanHoudnos [60]
find that feature visualizations on robust models depict recognizable features, unlike those
derived on standard-trained models. Figure 8.10 showcases this phenomenon in terms of
feature visualizations that we sampled from publicly available pre-trained ImageNet models
from Torchvision2 and MadryLab.3 4 While establishing the precise relationship between
the visualizations in Figure 8.10 and the training set would require deeper investigation,
at a surface level, the reconstructions are suggestive of a number of potential inferences.
For example, the text in the visualization of the corn class seems to indicate that some
training instances of corn may have contained text. Artifacts like these immediately raise
the question: Do these types of visualizations leak information about the training data that
the model should not have disclosed?

2See https://pytorch.org/vision.
3See https://github.com/MadryLab/robustness.
4It should be noted that, although Figure 8.10 shows feature visualizations from a standard model that

are clearly not recognizable, it is possible to obtain more recognizable visualizations using more sophisticated
techniques—see Figure D.1 in Appendix D.1.
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Figure 8.11: Property inference workflow reflecting Algorithm 8.4. The example reconstructions
are generated from a dense network trained on LFW-12 with GloRo (ε “ 0.45) and result in human
readable watermarks. Note that watermarks are not always human-readable, but our experiments
show that the meta-classifier can give similar results with sufficient training data.

Thus, we argue that increased interpretability has potential privacy implications, when
the features learned by the model include protected properties. In such cases, even a naive
adversary may come across private information that it had otherwise no reason to even search
for. However, to our knowledge, this connection between robustness, interpretability, and
disclosure of specific features of a model’s training data has not previously been explored.

While there is not necessarily an a priori reason that interpretable reconstructions would
coincide with training set properties or instances, we posit that if some of the encoded
features of the model are overly-specific to protected properties of the training data, private
information may be surfaced. Indeed, as we saw in Sections 8.2 and 8.3, deep networks are
certainly prone to learning features that compromise privacy. While the features of robust
models are more interpretable, and hence less trivially unsound, there is no particular reason
to assume they would not be similarly disposed to overfit. In Sections 8.5 and 8.6, we aim
to answer the question: Do these recognizable features found in robust reconstructions reflect
specific private properties of the training data?

8.5 Reconstruction-Based Property Inference Attacks

In this section, we present a novel property inference attack that operates on reconstructions
to quantify the extent to which model inversion reveals information about private training
properties. Recall from Definition 8.2 that the goal of the property inference adversary is
to predict which properties from a known possible set, P, are exhibited by the training set
of the adversary’s target model. At a high level, we accomplish this by training an attack
model, g, that takes as input a batch of reconstructions, and outputs a prediction as to
which properties would lead to a model producing said reconstructions.
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Algorithm 8.4: Property Inference Attack

Inputs: auxiliary information according to Threat Model 8.2: the training procedure A,
the possible properties P, and sample access to the distribution D; a number N
of shadow models

Output: An attack model, g

1 def TrainPiAttack(A , P , D , N):

// Create N shadow models.

2 for i P r1, ¨ ¨ ¨ , N s do

3 ppiq „ Uniformp|P|q
4 Spiq „ DΦ

ppiq

5 f piq :“ ApSpiqq

// For each shadow model, produce a

// batch of reconstructions.

6 for i P r1, ¨ ¨ ¨ , N s do

7 x1piq :“ GetReconstructionspf piqq

8 zpiq :“ px1piq, ppiqq

9 T :“
!

zpiq for i P r1, ¨ ¨ ¨ , N s
)

// Train an attack model on the labeled

// reconstructions.

10 g :“ FitpT q

11 return g

Inputs: the trained attack model g, auxiliary information according to Threat Model 8.2:
the model f

Output: A boolean vector of size |P|

12 def DoPropertyInference(g , f):
13 x1 :“ GetReconstructionspfq
14 return gpx1q

Our attack is given by Algorithm 8.4 and illustrated with an example workflow in Fig-
ure 8.11. Broadly, the attack follows a similar shadow model approach first introduced by
Shokri et al. [128] in the context of membership inference and later refined for property infer-
ence by Ganju et al. [45]. Our attack differs from prior work by using images reconstructed
from the model weights (under either a white-box or black-box threat model) instead of the
model weights themselves, allowing for significantly fewer shadow models to be used relative
to prior work such as [45].

Algorithm 8.4 has two functions: TrainPiAttack, which trains the meta classifier g from
image reconstructions generated from shadow models, and DoPropertyInference, which
uses the meta classifier g to predict which properties within the set P are present in the the
target model f .

TrainPiAttack takes four inputs: sample access to the data distribution D, the set of
possible properties that could be applied to the data P, the training procedure A used to
produce trained models, and N , a hyperparameter specifying the number of shadow models
to produce. The first loop of the function generates the N shadow models in turn: for the
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ith model, a single property ppiq is uniformly drawn, the property is then applied to the
data distribution D to produce shadow training data Spiq containing that property, and the
shadow model f piq is trained using the training procedure A. The next loop generates the
meta classifier’s training set T , where the ith element of a T is a collection of reconstructions
x1piq from shadow model f piq each labeled with the matching ppiq property. Finally, the meta
classifier g is trained on T .

DoPropertyInference takes two inputs: the meta classifier g and the target model f .
Reconstructions are generated from f , passed to the meta-classifier g, and the output is
returned.

Figure 8.11 displays an example workflow where D is LFW-12, P are the 30 text water-
marks from in Figure 8.12, and the training procedure, A, is GloRo (see Chapter 6) with
an `2-adversary whose radius is ε “ 0.45. Note that the reconstructions in this example
produce human-readable watermarks, with “#Memes,” “#Certainly,” and “#Vowel” being
visible in several of the reconstructions.

8.5.1 Private Property Leakage in Reconstructions

We now present experimental evidence to support the following claims: (1) feature recon-
struction visualizations derived from deep networks leak specific, non-predictive properties of
training data; and (2) while this is true for both non-robust and robust models, it manifests
differently in robust models, leaving them more susceptible to a less-powerful attacker.

Experimental Setup

We begin by presenting details on the datasets, watermarks, target models, attack model,
and general methodology used for our evaluation.

Datasets. We focus on two datasets in our evaluation: LFW [63] and CIFAR-10 [76].
Both are common, publicly-available benchmark datasets that have been frequently studied
in the machine learning privacy literature. We select only images from classes in the full
LFW dataset that have at least 50 examples, leaving 12 remaining classes. We refer to this
subset of LFW as LFW-12. We use the 3-channel color version of the dataset and crop and
scale the images to be 64 ˆ 64 pixels. The images are then zero-centered and normalized
to the unit ball, by dividing by their `2 norm. We use a single random 80-20 stratified
train/test split for all experiments, giving 912 images in the training set and 228 in the test
set. For CIFAR-10, we use the standard train and test sets of 50,000 and 10,000 32 ˆ 32
color images respectively. The images are standardized using Imagenet channel-wise means
and variances.

Watermarks. For our watermarking scheme, we randomly generate 30 textual water-
marks using Diceware passphrases, from which we—for each experiment—randomly sample
14 (without replacement) to comprise our set of possible properties, P. These watermarks
are shown in Figure 8.12. All watermarks use the same white color-scheme with a black bor-
der (see Figure 8.2 for an example). We apply watermarks to 80% of the training instances
as a pre-processing step; i.e., when training a given model, the same instances will contain
watermarks each time they appear in a batch.
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#Space #Characteristic #Sentence #Voice #Month #Squiggly #Ongoing #Journey
#Graph #Variety #Poet #Evergreen #Calendar #Brought #Robust #Describe

#Cruncher #Memes #Getting #Certainly #Water #Tray #Bakeshop #Party #Tusk
#Subject #Vowel #Metal #Cloud #Dozen

Figure 8.12: Universe of possible watermarks used in our experiments. We randomly subsample
(without replacement) 14 of these watermarks for each distinct experiment.

Target Models. We study three different training methods for the target models in our
evaluation: standard training, PGD adversarial training [97], and GloRo training [88] for
certified `p-robustness. For both PGD and GloRo training, we consider `2 adversaries; on
LFW-12 we use a perturbation budget of ε “ 0.45, and on CIFAR-10 we use ε “ 1.0 for
PGD and ε “ 0.141 for GloRo. We focus our evaluation on two simple dense architectures
respectively containing two and four hidden layers of 1,000 neurons each. For standard and
PGD models, use ReLU activations, but for reasons discussed in Section 6.3 in Chapter 6,
we use MinMax [4] for GloRo models. All models are trained with a batch size of 64 for 30
epochs using the Adam optimizer [75] with a default learning rate of 0.001.

Property Inference Classifier. The architecture of the attacking meta-classifier takes
inspiration from the permutation-invariant approach of Ganju et al. [45]—in our case, we
enforce permutation invariance over the set of reconstructions from a given model rather than
permutation invariance with respect to said model’s neuron parameters. We use a single pre-
activation ResNet18 [57] as a feature extractor for each image in the set of reconstructions.
We then feed the set of reconstructions into a small set transformer [81] to obtain a single
output vector, which we subsequently feed into a linear multi-label classification head to
obtain the final prediction. For more details on the set transformer architecture we employ,
see Appendix D.2. The ResNet18 feature extractor and set transformer are trained jointly
with batches of size 16 (each instance of which is a set of 64 reconstructions) for 100 epochs
using Adam with a learning rate of 0.001 and weight decay of 0.01.

Methodology. To implement and evaluate our property inference attack detailed in Al-
gorithm 8.4, we construct multiple different watermarked versions of the same underlying
dataset, each of which we train a distinct model over. Over the course of training on any given
watermarked dataset, we ensure that a given image retains the same watermark regardless
of the batch sampling method—in this sense, our watermarks are static data augmentations.

Trained models are then split into train and test sets for the sake of training and evalu-
ating the attack model. Within the train and test sets, we generate a set of reconstructions
for each model, and label the whole set with a multi-label that indicates which watermarks
the given model was trained on. For each of our property inference experiments, we fix the
number of total watermarks to be |P| “ 14.

For every experiment, we perform an 80%-20% train-test split across trained models.
From each model, we sample 64 reconstructions where for each reconstruction, we perform
128 iterations of gradient descent on the model inversion objective given by Equation 8.1
with a randomly chosen label j „ Categoricalpmq, where m “ 14 is the number of classes,
each corresponding to a different possible watermark in P. We initialize this optimization
process with a blank image, x0 “ 0, and `2-normalize the gradients at each iteration to a
step size of 0.001.
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Figure 8.13: The average top-1 accuracy of the shadow models on each dataset. The colored bars
indicate test set accuracy, whereas the hatched “Train” bars signify train set accuracy, thereby
indicating the generalization gap. We found that the variance in accuracy for each method was
negligible.

(a) (b)

Figure 8.14: Results of our property inference attack on the LFW-12 (a) and CIFAR-10 (b)
datasets with varying numbers of shadow models trained. The colors correspond to different shadow
model training methods. The solid bars signify F1 score on the test set, while the hatched “Train”
bars signify the F1 score on the train set, indicating the generalization gap of the attack.

Hardware. Experiments were performed using an AWS instance with 8 16GB NVIDIA
Tesla V100 GPUs and an NVIDIA DGX-2 box with 16 32GB Tesla V100s.

Property Inference Results

Figure 8.13 shows the average performance of the shadow models that we train in terms
of top-1 accuracy. We can see that GloRo achieves the worst performance but the smallest
generalization gap, which we attribute to the strong regularizing effect that GloRo has on
the model’s global Lipschitz constant. For PGD, the performance is comparable to standard
training, albeit the generalization gap on CIFAR-10 is smaller, which again can be attributed
to the regularizing effect of adversarial training.

Figure 8.14a shows the results of our attack in terms of the F1 score against 2-hidden-
layer dense models with 1,000 neurons per layer, trained on the LFW-12 dataset as per
the previous section. In this experiment, each shadow training set is given one watermark
and each image has an 80% chance of receiving this watermark. We can see that increasing
the number of shadow models dramatically increases the attack performance, with little
improvement past 512 models. With sufficiently many shadow models, all training methods
are clearly susceptible to property leakage.

More interestingly, for 128 shadow models, the robust training methods (GloRo and
PGD) seem to leak more information relative to standard training. We believe that the large
generalization gap is primarily due to the high capacity of our attacking meta-classifier ar-
chitecture (a stacked pre-activation ResNet18 and set transformer), which can easily overfit.
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Figure 8.14b shows the results of our attack against 4-hidden-layer dense models with
1,000 neurons per layer, trained on the CIFAR-10 dataset. Each shadow training set is
given one watermark and each image has an 80% chance of receiving this watermark. Due
to computational constraints, we did not train an attack using 1024 shadow models. We can
see that, similarly to in Figure 8.14a, increasing the number of shadow models yields strong
attacking model performance—with a sufficient number of shadow models, the attack was
highly successful against all training methods.

Given the strong performance of the property inference attack in a variety of settings,
it is clear that reconstructions quantitatively carry information about the distributional
properties of the training set, even when those properties do not provide useful information
about the model’s prediction objective and therefore provide no incentive for memorization.

Visualizing Reconstructions

We now play the role of the weak adversary by inspecting the reconstructions that the
property inference attack operates on. While the strong adversary has prior knowledge of
the possible watermarks and only needs to distinguish which is which, the weak adversary
has no knowledge of the existence of the watermarks unless it is made clearly apparent
through the reconstructions.

Following the same methodology as used by the models seen by the property inference
adversary, we produced a set of standard, GloRo, and PGD models trained on versions of
LFW-12 and CIFAR-10 watermarked with the text, “#privacy.” We subsequently produced
m reconstructions for each model obtained by performing standard SGD model inversion
starting from a gray background. The results for LFW-12 and CIFAR-10 are shown in
Figures 8.15 and 8.16, respectively.

For context, we collected the PGD accuracy5 of each of the models. On LFW, PGD was
the most empirically robust with a PGD accuracy (at radius ε “ 0.45) of 0.61, followed by
GloRo at 0.58 and standard at 0.55. On CIFAR-10, GloRo was the most empirically robust
with a PGD accuracy (at radius ε “ 1.0) of 0.33, followed by PGD at 0.21 and standard at
0.20.

Our primary goal is to look for strong evidence appearing in the reconstructions indi-
cating the presence and nature of the watermark added to the training set. Because the
watermarks are fairly small, the resulting figures are best viewed closely.

On LFW the reconstructions obtained on the PGD model appear to show the watermark
most clearly; in several of the reconstructions, most notably the one second from the right on
the bottom, the text “#privacy” is clearly legible. In most of the other reconstructions the
top-left corner of the visualization has a text-like anomaly that at least suggests the presence
of some watermark. By contrast, the reconstructions on standard models are the least clear.
Not only are the faces more vague and indistinct, but with few exceptions the text is difficult
to perceive, let alone read. The quality of the reconstructions on the GloRo nets appear to
be in-between, with generally clearer text than on the standard model, but perhaps not as
clear as on the PGD models. We note that this ordering is consistent with what we would
expect given our analysis of previous findings on interpretability; namely the recognizability
of the features in the reconstructions—including the private watermark—improves as the
models become more robust.

5By PGD accuracy, we mean the fraction of test points that are labelled correctly after a perturbation
with norm ε obtained via PGD is applied. This serves as a measure of the empirical robustness of the model.
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(a) Standard

(b) GloRo

(c) PGD

Figure 8.15: Reconstructions on LFW-12 models obtained using model inversion. Models were
trained using (a) standard, (b) GloRo, and (c) PGD adversarial training respectively. Viewed
closely, we see that the watermark, “#privacy,” can be read in some of the reconstructions, partic-
ularly on the robust models.
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(a) Standard

(b) GloRo

(c) PGD

Figure 8.16: Reconstructions on CIFAR-10 models obtained using model inversion. Models were
trained using (a) standard, (b) GloRo, and (c) PGD adversarial training respectively. Viewed
closely, we see that the watermark, “#privacy,” can be read in some of the reconstructions, partic-
ularly on the robust models.
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The results on CIFAR-10 are qualitatively the same. This time, the GloRo model was
distinctively the most empirically robust, and as before, we see that this translates to the
clearest reconstructions with the most legible watermarks.

Information Organization. Our findings when inspecting reconstructions are in line
with recent work that has noticed an increased susceptibility of robust models to privacy
attacks. However, despite this, and the fact that the watermarks appear visibly even to
a weak adversary, the global success of the strong adversary even in non-robust settings
suggests a more nuanced picture. Namely, our results seem to indicate that robust models
do not necessarily leak more private information than standard models—rather, it is the
way in which private information is leaked that differs. The greater success experienced by a
relatively weaker adversary on robust models might relate to the overt way in which robust
models appear to encode learned information. Meanwhile, a complex ML model, like the
meta classifier in our property inference attack, can easily pick up on any sort of signal
(when the necessary auxiliary knowledge is available), even if it is virtually imperceptible
by some other means.

8.6 Encoding of Private Properties

We can think of an adversary that performs model inversion in Threat Models 8.3 or 8.4
as a weak adversary, as compared to a strong adversary that performs property inference
in Threat Model 8.2. The strong adversary, while perhaps less realistic in practice, serves
as a way to quantify the extent to which property information exists in the reconstructions
it operates on. On the other hand, the weak adversary informs us what a naive adversary
could discover without any special auxiliary knowledge.

As we have seen in Section 8.5, the strong adversary succeeds equally on robust and
non-robust models, despite the fact that watermarks are not recovered as plainly on non-
robust models as on their robust counterparts. This suggests that the differences between
these types of models is perhaps not in the extent to which they leak private information,
but rather, the extent to which the information is readily accessible to be exploited by a
weak adversary.

In fact, we find that in severe cases, the leakage of robust models is so egregious that even
entire training instances are encoded directly in hyperplanes determined by the geometry
induced by a model’s parameters. The remainder of this section will endeavor to provide
high-level intuition as to how and why robust models might encode private information in
such an overt manner.

8.6.1 Metric Alignment of Robust Features

In their framework for analyzing non-robust features that give rise to adversarial examples,
Ilyas et al. [65] consider the learned features of a model to induce a metric on the model’s
inputs. Adversarial examples arise when this metric is misaligned with the `p metric used
for the adversary’s perturbation budget. Conversely, [65, Theorem 2] states that as the ad-
versary’s perturbation budget, ε, is increased, adversarial training blends the metric induced
by the learned features with the adversary’s `p metric. Taken intuitively, this suggests that
robust models may tend to learn parameters that roughly compute `p distances.
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Consider how a network might learn to compute the distance from an input, x, to some
centroid, c. For the sake of our analysis we will begin by considering a dense network with
one hidden layer. The pre-activation output of the first layer is given as hpxq “ xW ` b,
where W is an n ˆ k weight matrix, and b is a bias vector in Rk. Consider the squared `2
distance from x to c, given by Equation 8.13, which can be rewritten as Equation 8.14.

d`2px, cq
2 “ ||x´ c||22 (8.13)

“ ´2cTx` ||x||22 ` ||c||
2
2 (8.14)

According to Equation 8.14, if we set some column vector wi P Rn of W to ´2c, and we
set bi to ||c||22, then the ith output of h will be given by hipxq “ d`2px, cq

2 ´ ||x||22. If the
norm of each data point is roughly the same, i.e., say ||x|| « Ě||x|| for points in the support
of D, then the ||x||22 term can be incorporated into bi such that h approximately computes
squared `2 distances to c.

One natural hypothesis then, is that if we train our simple dense network to be robust,
some of the features it might encode might correspond to distances to learned centroids,
which would be apparent directly from the weights. If the capacity of the network (cor-
responding to k in our simple case) is large compared to the number of training points,
these centroids might correspond to specific training points. In a less over-parameterized
setting, the centroids might instead correspond to clusters of points—though this would not
preclude them from containing information shared by groups of instances.

Even in networks with more than one hidden layer, we occasionally find that the first-
layer weights do indeed contain this sort of information, which can be revealed by simply
visualizing the weight columns as an image. However, we do not need to consider only the
first layer. To extend our intuition to larger networks we will consider a geometric view of
neural networks.

Previous work has observed that ReLU networks divide their input space into a polyhedral
complex, where the polyhedral regions correspond to activation patterns (i.e., which ReLUs
are switched on/off) and the boundaries between regions correspond to inputs for which a
particular neuron (corresponding to the boundary in question) takes a pre-activation value
of zero [44, 69, 119]. For a first-layer neuron, i, the corresponding boundary lies in a single
hyperplane with normal vector given by wi. Thus when we visualize the network’s weight
columns, we are actually visualizing specific boundaries in the network’s polyhedral complex.

We can visualize other boundaries as well. The boundaries of higher-layer neurons do
not correspond to a single hyperplane, but they can be visualized with respect to a fixed
polyhedral region whose face lies in some n-dimensional hyperplane. In practice, these hy-
perplanes are easy to compute because they correspond to the input gradients of individual
neurons [44].

8.6.2 Uncovering Encodings in Black-box Settings

We return to comment on the black-box threat model (Threat Model 8.4) alluded to in
Section 8.1.3. In recent work, Rolnick and Kording [119] introduced an algorithm for faith-
fully reverse-engineering ReLU networks by analyzing the boundaries of the corresponding
polyhedral complex. In brief, the algorithm detects points that intersect with faces in the
polyhedral complex via a binary search over a line spanning the input space that detects
inflections in the network’s output. Hyperplanes corresponding to each face are then ap-
proximated by sampling several points from line segments that intersect the hyperplane.
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Figure 8.17: Example of explicit instance leakage via the weights of an adversarially-trained dense
network. In each pair of images, the weight-based reconstruction is shown on the left, and the most
similar training instance (measured by SSIM) is shown on the right for comparison.

In theory, this process can be used to reconstruct a network in its entirety, transforming
the black-box setting to a white-box setting. However, as observed previously, in some cases
the network may have encoded sensitive information overtly in the boundary hyperplanes,
meaning that simply recovering a single offending hyperplane would suffice. This means that
the number of queries required for a weak adversary to obtain private information could
be substantially less than would be typically required to complete Rolnick and Kording’s
reverse-engineering procedure. In the following section, we present results obtained using a
variant of this approach tailored to our setting.

8.6.3 Property Encoding and Catastrophic Leakage

Let us return to our hypothesis that robust models might be encouraged to overtly encode
training set information in their induced geometry, which would become apparent upon
inspection of the model’s weights. Here, we test this intuition by directly visualizing the
first-layer weights in an adversarially-trained dense network.

Our dense architecture contains 1,000 neurons in each hidden layer, meaning that there
are 1,000 possible weight columns to visualize in the first layer. To understand which of
these contain information traceable to the training set, we find the most similar training
instance (measured by SSIM) to each of the weight columns, and sort the resulting pairs
of weight columns and training instances by similarity. We then visualize the best matches
side-by-side. For this experiment we produced a model with PGD adversarial training on
LFW-12 without watermarks. The weight-based reconstructions that were most similar to
training points are shown with the corresponding training instances in Figure 8.17.

Strikingly, we see a strong resemblance between the reconstructions and entire specific
training instances, demonstrating a severe privacy violation beyond simply encoding a pri-
vate watermark. For example, in the first reconstruction on the left, we see a picture of
Serena Williams that includes her hand anomalously placed over her mouth.

On the same architecture, we do not see the same phenomenon with CIFAR-10. Pre-
sumably this is because on CIFAR-10, which contains 50,000 training instances, our dense
architecture is not over-parameterized as it is for LFW which contains just under 1,000
training instances. Thus, according to our intuition from Section 8.6.1, the CIFAR-10 model
might instead encode averages of several instances, which would not be meaningful to a
human observer in the same way.

122



Identifying, Analyzing, and Addressing Weaknesses in Deep Networks

Figure 8.18: Black-box reconstructions derived from weight matrix columns recovered via a black-
box model extraction attack derived from Rolnick and Kording [119]. In each pair of images, the
reconstruction is shown on the right, and the most similar training instance (measured by SSIM)
is shown on the left for comparison.

Black-box Variants

In Section 8.6.2 we also pointed out that reconstructions would be possible in a black-box set-
ting by adapting a network reverse-engineering procedure from prior work [119]. Figure 8.18
shows results obtained in the same way as Figure 8.17, except that the reconstructions are
derived from the reverse-engineered weights, rather than the model weights themselves.

We see that the reverse-engineered reconstructions are visually almost indistinguishable
from the original reconstructions, leading to many of the same matches. This bears out quan-
titatively as well; the average cosine similarity between the original weight columns and the
reverse-engineered weight columns is 0.98. These results demonstrate that fundamentally,
a black-box adversary is no less capable at uncovering overtly-leaked private information.
While the black-box adversary requires many queries to the target model this limitation is
not as severe as might be expected; though it required roughly 5.5 million queries to recon-
struct the entire model, the adversary only needs to come across one offending hyperplane,
which can be obtained in roughly 1,600 queries per attempt.

8.7 Related Work

Membership inference

Early membership inference attacks predate the rise of deep learning, and originally targeted
statistical summaries. Homer et al. [62] proposed what is considered the first membership
inference attack on genomic data in 2008. Since then, a number of studies [52, 123, 130, 152]
have looked into membership attacks on statistics commonly published in genome-wide
association studies.

More recently, membership inference attacks have been applied to machine learning mod-
els. While some of this work has focused on classic machine learning algorithms, such as
support vector machines (SVMs) and hidden Markov models (HMMs) [5], as deep learning
has become increasingly ubiquitous, membership inference attacks have been particularly
directed at deep neural networks. An array of recent efforts [94, 121, 128, 161] have taken
varying approaches to membership inference against deep networks in a standard super-
vised learning setting. Additionally, membership inference has been studied against gener-
ative adversarial networks (GANs) [54], and in the context of collaborative, or federated,
learning [61, 101].
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Black-box attacks We study membership inference as it applies to deep networks in
classic supervised learning problems. Most of the prior work in this area [93, 94, 121, 128, 161]
has used the black-box threat model. Yeom et al. [161] showed that generalization error
necessarily leads to membership vulnerability; a natural consequence of this is that a simple
“naive” attack (naive), which predicts a point is a member if and only if it was classified
correctly, can be found to be quite effective on models that overfit to a large degree. Other
approaches have leveraged not only the predictions of the model, but the confidence outputs.

A particularly canonical approach, along these lines, is the attack introduced by Shokri
et al. [128] (shadow-bb). In this approach, a the auxiliary data, S̃, is partitioned into two
parts, S̃in and S̃out. A shadow model is trained on S̃in, and its outputs on S̃in and S̃out are
used to produce Yin and Yout, respectively. Next, the attack model is trained on Yin (labeled
1, indicating Yin represents the shadow model’s output on points it saw during training),
and Yout (labeled 0). The attack model in the shadow model approach learns to leverage the
disparity in prediction confidences on training instances the target model has overfit to, and
has been shown to be successful at membership inference on models that have sufficiently
high generalization error. A few other membership inference approaches [54, 121] have made
use of this same technique. In addition our property inference attack also takes inspiration
from this approach.

Despite the fact that shadow model attacks leverage more information than the naive
attack, we find in our evaluation (Section 6.4) that often, the shadow model attack fails to
outperform the naive attack. One potential reason for this finding is that the learned attack
model used by this approach may itself be subject to overfitting. This may be especially
true if the attack model picks up on behavior particular to one of the shadow models rather
than the true target model. Furthermore, the confidence and entropy of the target model’s
softmax output is likely to be closely related to whether the target model’s prediction was
correct or not, meaning that the softmax outputs may not provide substantially different
information from that used by naive.

White-box attacks Intuitively, while some information is leaked via the behavior of
a model, the details of the structure and the parameters of the model are clear culprits
for information leakage. However, few, if any, prior approaches have successfully leveraged
this extra information. While Hayes et al. [54] describe a “white-box” attack in their work
on membership inference attacks applied to generative adversarial networks (GANs), the
attack uses access only the outputs of the discriminator portion of the GAN, rather than
the learned weights of either the discriminator or the generator; thus their approach is
not white-box in the same sense. Meanwhile, Nasr et al. [107] demonstrated that a simple
extension of the black-box shadow model approach to utilize internal activations does not
result in higher membership inference accuracies than the original black-box approach. This
is perhaps unsurprising, as the internal units of the shadow models are not likely to have
any relation to those of the target model (see Section 8.3).

While Nasr et al. proposed an alternative white-box attack that additionally leverages
the gradients of the target model’s loss function with respect to its weights (which SGD
approximately brings to zero on the training points at convergence), in contrast to our
work, this attack required a further relaxed threat model, in which the attacker has access
to as much as half of the target model’s training data. The reliance on the target model’s
training set suggests that Nasr et al.’s attack simply learns differences between the training
and auxiliary data, without offering any general insights as to how those differences manifest
in the model. Our approach does not require this extra knowledge for the attacker, utilizing
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a more restrictive threat model, under which, to our knowledge, no other effective white-box
attacks have been proposed.

Robustness, Interpretability, and Privacy

As discussed in Section 8.4, existing literature has drawn the connection between robustness
and model interpretability. Much of this work comes from the ML explainability literature,
and has focused on demonstrating and justifying the observation that gradient-based expla-
nations on robust models are more intuitive and better align with salient objects in image
classifiers [37, 65, 154]. It has also been demonstrated that feature visualizations on robust
models are more recognizable than on non-robust models [60, 148]. However, our work is
the first to make the connection between these observations and neural network privacy ex-
plicit. Specifically, we make the observation that feature visualizations are a form of model
inversion, and subsequently show that attributes of reconstructions on robust models can
be quantitatively and qualitatively linked to private attributes of the model’s training set.

Other work by Yeom et al. [162] has separately found that robust networks may be more
susceptible to certain kinds of membership inference attacks. These findings complement
ours, however, they primarily implicate the fact that the robustness of adversarially-trained
models generalizes poorly. That is, adversarially-trained models are more robust on points
from their training set than on previously unseen points, while standard-trained models
tend to be robust on neither. Thus, robust loss serves as a good indicator of membership on
adversarially-trained models, but not on their standard-trained counterparts.

On the other hand, our work points to a different source of vulnerability, related to the
types of the features learned by robust models, and the way those features are encoded.
Although we focus on property rather than membership inference, our findings, in contrast
to those of Yeom et al., ultimately indicate that robust models do not necessarily leak more
private information than standard models—rather, it is the way in which private information
is leaked that differs. This difference can be reconciled with the results of Yeom et al. with
the latter subtle point. Namely, the adversary of Yeom et al. can be considered weak in the
sense that it relies primarily on only robust loss as an indicator of membership; meanwhile,
it is possible that a stronger adversary might be able to use more information to perform
equally well on non-robust models for which robust loss is a poor predictor of membership.

Property Privacy

While privacy is often associated with features of specific data points, the privacy literature
has also investigated the privacy of properties that apply to groups of training instances or
even the training data as a whole. Property privacy is most often studied though property
inference attacks like the one presented in Section 8.5, which have been studied in the
past [5, 20, 45, 102].

Because it focuses on distributional rather than instance-specific attributes, property
inference is typically considered beyond the scope of canonical differential privacy (DP) a
rigorous notion of privacy developed by Dwork et al. [34]. Although DP gracefully degrades
when applied to groups of correlated records [34, Theorem 2.2], this analysis is typically too
stringent to be useful for large sub-populations of an entire dataset.

Without a direct connection to a strong privacy notion such as DP, treating dataset
properties as private may come under question. Specifically, prior work on property inference
attacks typically lack control with respect to the association between the property of interest
and the predictive task itself [5, 20, 45]. It is difficult to claim that a model should not reveal
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the target property in scenarios with clear association (e.g. gender and income prediction),
as there is not a sufficient distinction between these properties and the premises of statistical
learning in the first place. After all, we expect our model to learn general features that are
relevant to its learning objective.

Some previous attempts have been made to address this concern, however. Melis et al.
[102] perform property inference with respect to properties that empirically have low corre-
lation with the predictive task (e.g. the presence of glasses in a gender classifier), articulated
via the Pearson correlation coefficient. However, it is not clear that small Pearson correla-
tion is sufficient to guarantee a total lack of association and, moreover, is not sufficient to
make the assertion that complex models should have no cause to internalize such intuitively
irrelevant properties. On the other hand, our study of synthetic watermarks allows us to
justify the claim that our target properties should be expected not to be disclosed, and thus
to study the extent to which models encode irrelevant features. Specifically, because our
experimental setup grants us control over the generative process by which properties occur
in the training data, we can be sure that the properties in question are truly independent
of the learning task.

Reconstructions

The seminal work on model inversion is by Fredrikson et al. [43]; it showed that simple dense
models trained on the AT&T Faces dataset can be inverted to leak personally identifiable
reconstructions of training instances. However, Fredrikson et al. focus on reconstructing
individuals in the training set, whereas we focus on reconstructing information pertaining to
distributional properties of the training data for our reconstruction-based property inference
attack. Moreover, not all of our reconstruction attacks are performed by solving a model
inversion-esque optimization problem by maximizing class confidence scores—rather, we also
perform hyperplane attacks that overtly exploit the geometry induced by ReLU activations
and target particular neurons.

Other work [61, 102, 121] has considered GAN-based reconstruction attacks that reveal
both distributional properties of and instance level information about the training data.
However, these works consider collaborative and online learning scenarios that are not di-
rectly comparable to our traditional classification setting. Moreover, these works all require
auxiliary generative models to compute reconstructions, whereas we sample reconstructions
directly from the classifier itself.
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Feature-Wise Bias Amplification

Bias amplification occurs when the distribution over prediction outputs is skewed in compar-
ison to the prior distribution of the prediction target. For example, in a two-class prediction
task where 60% of instances belong to class A and 40% to class B, one would expect a
model’s overall predictions to match this 60-40 split. However, we would say that the model
exhibits bias amplification if its overall predictions tended towards, e.g., 75% class A and
25% class B.

This phenomenon has been observed in several contexts with many of the more recent
examples appearing in the algorithmic fairness literature [12, 18, 139, 171], as deep networks
that appear to stereotype have been interpreted by some as a possible social issue—in
addition to the more clear implications regarding the conceptual soundness of such models.
For example, Zhao et al. [171] found that a model tasked with identifying the agent in
images depicting various actions was five times more likely to identify the agent as a woman
when the corresponding action was cooking, while women were only twice as likely to be the
agent in such scenes in the training set. While this now-classic example is perhaps rather
innocuous—despite the clear defect in the model’s decision process that it illuminates—one
could imagine that a model relying heavily on demographic prior information may have
more serious repercussions in government applications that determine personalized verdicts,
where it is essential that subjects are treated on an individual basis.

Intuitively, bias amplification is always undesirable, since it necessarily implies imperfect
accuracy. In the strictest sense, however, this is not entirely true: as we will see, bias am-
plification may be unavoidable in contexts where the available features are not sufficiently
informative. Indeed, from a Bayesian perspective, the prior is a valid signal to factor into
decisions made under uncertainty. When a classifier has access only to a limited set of simple
features, it is unclear whether the data can even be reasonably separated. For example, the
solvency of a loan applicant may not be ascertainable from his or her income and current
liabilities, just as the quality of a job applicant may not be determinable from his or her
resume. In such cases, a classifier cannot be perfectly accurate, but may be able to maximize
expected rewards by generalizing about, e.g., a job applicant’s educational institution.

Nevertheless, in practice, bias amplification has been reported in contexts where the
features presumably contain sufficient information to classify accurately, suggesting that it
can in fact be a detriment to realizing full utility.

Several factors can cause bias amplification in practice. Classifiers trained to minimize
empirical risk may not be sufficiently penalized for ignoring minority classes, and thus bias
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amplification is often thought to be result of class imbalance in the training data [17]. There
are a myriad of empirical investigations of the effects of class imbalance in machine learning
and different ways of mitigating these effects [23, 53, 55, 98, 99, 110, 150]. However, as we
show through analysis and experiments, bias amplification can arise in cases where the class
prior is not severely skewed, and even when it is unbiased. Thus, techniques for dealing with
class imbalance alone cannot explain or address all cases of bias amplification.

Specifically, our work identifies a new source of bias that can be attributed to a subopti-
mal weighting of particular features in the model. We refer to this strictly detrimental form
of bias amplification as feature-wise bias amplification (Leino et al. [86]). Feature-wise bias
amplification constitutes a violation of conceptual soundness, as it implies that the model
does not use features appropriately or justifiably.

9.1 Analyzing Bias Amplification in Binary Classifiers

In this section, we provide a formalization of bias amplification for binary classifiers, and
show that in some cases it may be unavoidable. Namely, a Bayes-optimal classifier trained
on poorly separated data can end up predicting one label nearly always, even if the bias
in the prior distribution over labels is minimal. While our analysis makes strong generative
assumptions, we show that its results hold qualitatively on real data that resemble these
assumptions. We begin by formalizing the setting.

We consider the standard binary classification problem of predicting a label y P t0, 1u
given features x P Rn. We assume that data are generated from some unknown distribution
D, and we let p˚ “ Prry “ 1s be the prior probability that the label from a randomly
selected point iss 1. Without loss of generality, we will assume that p˚ ě 1{2; i.e., class 1
is the majority class (if a majority class exists). Definition 9.1 formalizes bias amplification
in this setting. Intuitively, bias amplification corresponds to the probability that the model
predicts class 1 in excess of the prior p˚.

Definition 9.1 (Bias Amplification). Let FS : Rn Ñ t0, 1u be a binary classifier trained on
a training set, S, drawn i.i.d. from D. The bias amplification of FS on D, written BDpFSq,
is given by

BDpFSq “ E
px,yq„D

“

FSpxq ´ y
‰

While bias amplification is given as a property of a particular learned model, we can lift
this definition to learning rules to characterize rules that are expected to amplify bias on
training sets drawn from D. We say that a learning rule is bias amplifying (Definition 9.2)
on data distribution D if it tends to produce models that exhibit bias amplification.

Definition 9.2 (Bias Amplifying Rules). Let FS : Rn Ñ t0, 1u be a binary classifier trained
according to learning rule, A, on a training set, S, of N samples drawn i.i.d. from D. We
say that A is bias amplifying if

E
S„DN

“

BDphSq
‰

ą 0

Typically, a classifier’s main goal is to produce accurate predictions. A learning rule
that always produces a classifier with maximal accuracy—i.e., that minimizes the expected
number of errors on labeled points px, yq „ D—ought to be considered optimal according to
this view. However, what if this optimal learning rule is bias amplifying? While this prospect
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seems counter-intuitive, we will demonstrate that it is in fact possible. This suggests that
bias amplification is unavoidable in some cases, in that it may be necessary to achieve
optimal accuracy. In the remainder of this section, we prove this surprising result.

Consider a special case of binary classification in which the data are generated as follows:
first, the label y P t0, 1u is drawn according to a Bernoulli distribution with parameter p˚;
then features are drawn according to a Gaussian distribution with mean µ˚y , and covariance
matrix Σ˚ (Equation 9.1).

y „ Bernoullipp˚q x „ N pµ˚y ,Σ˚q (9.1)

We will further assume that Σ˚ is a diagonal matrix, meaning that the features of x are
conditionally independent given the class label, and thus the Bayes-optimal predictor for
this data can be expressed as the logistic classifier h˚ given by Equation 9.2 [106].

h˚pxq “
1

1` exppwTx` bq
(9.2)

where w “ Σ˚´1pµ˚1 ´ µ
˚
0 q,

b “ ´
1

2
pµ˚1 ´ µ

˚
0 q
Tw ` log

ˆ

p˚

1´ p˚

˙

Suppose that we have access to some omniscient learning rule, A˚, that produces h˚

on every training set, S. The question of whether or not A˚ is bias amplifying then simply
reduces to asking whether or not BDph

˚q ą 0. Theorem 9.1 shows that BDph
˚q is strictly

a function of the class prior p˚ and the Mahalanobis distance, D, between the class means,
µ˚1 and µ˚0 . A particular corollary of Theorem 9.1 is that A˚ is bias amplifying if (and only
if) p˚ ą 0; thus, when the prior is unbiased, the optimal (for D) model’s predictions remain
unbiased (Corollary 9.2).

Theorem 9.1. Let x be distributed according to Equation 9.1, y be Bernoulli with pa-
rameter p˚, D be the Mahalanobis distance between the class means µ˚0 , µ

˚
1 , and β “

´D´1 logpp˚{p1´ p˚qq. Then the bias amplification of the Bayes-optimal classifier h˚ is:

BDph
˚q “ 1´ p˚ ´ p1´ p˚qΦ

`

β ` D
2

˘

´ p˚Φ
`

β ´ D
2

˘

Proof. Let X,Y be random variables drawn from D, where D is given according to Equa-
tion 9.1. As noted above, the the Bayes-optimal classifier, h˚, can be expressed as a lin-
ear weighted sum in terms of parameters w and b as given by Equation 9.2, such that
Pr rY “ 1 | X “ xs “ h˚pxq.

As X has covariance Σ˚ and mean µy (when Y “ yq, The random variable wTX is a uni-
variate Gaussian with variance wTΣ˚w and mean wTµ˚y when Y “ y. Thus the probability
that h˚ predicts class 1 on X, given Y “ y (Equation 9.3) can be expressed as Equation 9.4
where Φ is the CDF of the standard normal distribution.

Pr rh˚pXq “ 1 | Y “ ys “ Pr
“

wTX ą ´b | Y “ y
‰

(9.3)

“ 1´ Φ

˜

´b´ wTµ˚y
?
wTΣ˚w

¸

(9.4)

Next, we notice that the quantity wT pµ˚1 ´µ
˚
0 q “ pµ

˚
1 ´µ

˚
0 q
TΣ˚´1pµ˚1 ´µ

˚
0 q is the square

of the Mahalanobis distance between the class means, D2. Thus we obtain Equations 9.5
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and 9.6 expressing the numerator in Equation 9.4 in terms of D for when Y “ 0 and Y “ 1,
respectively. Similarly, we observe that

?
wTΣ˚w in the denominator in Equation 9.4 is

exactly D.

´b´ wTµ˚0 “
1

2
wT pµ˚1 ´ µ

˚
0 q ´ log

p˚

1´ p˚

“ ´ log

ˆ

p˚

1´ p˚

˙

`
D2

2
(9.5)

´b´ wTµ˚1 “ ´ log

ˆ

p˚

1´ p˚

˙

´
1

2
wT pµ˚1 ´ µ

˚
0 q

“ ´
D2

2
´ log

p˚

1´ p˚
(9.6)

Using the law of total probability we obtain (9.7); substituting in D according to our
observations above, we obtain (9.8), and substituting in β yields (9.9).

Pr rh˚pXq “ 1s “ Pr rh˚pXq “ 1 | Y “ 0sPr rY “ 0s ` Pr rh˚pXq “ 1 | Y “ 1sPr rY “ 1s

“ p1´ p˚q

ˆ

1´ Φ

ˆ

´b´ wTµ˚0?
wTΣ˚w

˙˙

` p˚
ˆ

1´ Φ

ˆ

´b´ wTµ˚1?
wTΣ˚w

˙˙

(9.7)

“ 1´ p1´ p˚q ¨ Φ

¨

˝

log
´

p˚

1´p˚

¯

D
`
D

2

˛

‚´ p˚ ¨ Φ

¨

˝

log
´

p˚

1´p˚

¯

D
´
D

2

˛

‚ (9.8)

“ 1´ p1´ p˚q ¨ Φ

ˆ

β `
D

2

˙

´ p˚ ¨ Φ

ˆ

β ´
D

2

˙

(9.9)

Finally, by linearity of expectation, Definition 9.1 yields Equation 9.10.

BDph
˚q “ Erh˚pXq ´ Y s “ Pr rh˚pXq “ 1s ´ p˚ (9.10)

Combining Equation 9.10 with Equation 9.9 gives us our desired result.

Corollary 9.2. When x is distributed according to Equation 9.1 and p˚ “ 1{2, BDph
˚q “ 0.

Figure 9.1 shows BDph
˚q as a function of p˚ for several values of D. As the means grow

closer together, there is less information available to make reliable predictions, and the label
prior is used as the more informative signal. Note that BDph

˚q is bounded by 1{2, and the
critical point corresponds to bias “saturation” where the model essentially always predicts
class 1. From this, it becomes clear that the extent to which over-prediction occurs grows
rather quickly when the means are moderately close. For example when p˚ “ 3{4 and the
class means are separated by distance 1{2, the classifier will predict Y “ 1 with probability
close to one.

Table 9.2 shows the effect on real data available on the UCI repository classified us-
ing Gaussian Naive Bayes (GNB) classification. These datasets were chosen because their
distributions roughly correspond to the naive Bayes assumption of conditional feature in-
dependence. In each case, bias amplification occurs in approximate correspondence with
Theorem 9.1, tracking the empirical class prior and class distance to Figure 9.1.
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Figure 9.1: Bias amplification of Bayes-optimal classifier as given by Theorem 9.1 in terms of the
Mahalanobis distance D between class means and prior probability p˚ of observing the label “1.”

dataset D p˚ BDpFSq % acc

banknote 1.87 0.56 0.04 84.1
breast cancer wisc 1.81 0.63 0.02 94.2
drug consumption 0.86 0.78 0.12 75.6
pima diabetes 1.15 0.66 0.08 79.9

Table 9.2: Bias amplification on real datasets classified using a GNB model.

The results stated by Theorem 9.1 and Corollary 9.2, while perhaps surprising, can be
more intuitively understood when taken to their logical ends. Suppose that none of the
features carry any information about the label whatsoever—i.e., µ˚1 “ µ˚0 . In such a case,
the best we can hope to do for classifying the data accurately is to resort to predicting the
majority class on all points. From this reasoning, it is perhaps clear that the cases where
bias amplification is unavoidable correspond to those where the features are not sufficiently
informative to separate the data by class, leading to uncertainty in our predictions. The
less certainty we have, the more valuable the prior is for providing the best estimate of the
label.

9.2 Feature Asymmetry and Gradient Descent

When the learning rule does not produce a Bayes-optimal predictor, it may be the case that
excess bias can safely be removed without harming accuracy. To support this claim, we begin
by turning our attention to logistic regression classifiers trained using stochastic gradient
descent (SGD). Logistic regression predictors for data generated according to Equation 9.1
converge in the limit to the same Bayes-optimal predictors studied in Proposition 9.1 and
Corollary 9.2 [106]. Meanwhile, such models make fewer assumptions about the data and
are therefore more widely-applicable; but as we demonstrate in this section, this flexibility
comes at the expense of an inductive bias that can lead to systematic bias in the learned
predictors. To show this, we continue under our assumption that x and y are generated
according to Equation 9.1, and consider the case where p˚ “ 1{2. In this case, according
to Corollary 9.2, any bias amplification that emerges during must come from differences
between the trained classifier hS and the Bayes-optimal h˚.
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Figure 9.3: (a), (b): Expected bias as a function of (a) number of weak features and (b) variance
of the weak features, shown for models trained on N “ 100, 500, 1000 instances. σw in (a) is fixed at
10, and in (b) the number of features is fixed at 256. (c): Extent of overestimation of weak-feature
coefficients in logistic classifiers trained with stochastic gradient descent, in terms of the amount
of training data. The vertical axis is the difference in magnitude between the trained coefficient
(hS) and that of the Bayes-optimal predictor (h˚). In (a)-(c), data is generated according to
Equation 9.11 with σs “ 1, and results are averaged over 100 training runs.

Feature Asymmetry

We will demonstrate empirically that SGD on logistic regressors is a bias-amplifying learning
rule when the data exhibit certain forms of feature asymmetries. To define what is meant
by “feature asymmetry” in our context, consider the orientation of each feature xj as given
by the sign of µ1j ´ µ0j . The sign of each coefficient in h˚ will correspond to its feature
orientation, so we can think of each feature as being “towards” either class 0 or class 1.
Likewise, we can view the full set of features as being asymmetric towards y when there are
more features oriented towards y than towards 1´ y.

In addition to the orientation of a feature, we find the relative strength of the feature plays
an important role in the observed bias amplification. Informally, we consider a feature to be
“weak” if its corresponding influence in the Bayes-optimal predictor is small, and “strong”
if its corresponding influence is large. That is, weak features are relatively less important in
determining the class label than strong features. In reality, there is no particular numerical
cutoff to classify a feature as weak or strong, as indeed there is no strict dichotomy between
weak and strong features. Nonetheless, we will use the terms “weak” and “strong” features
for illustrative purposes, and our experiments in this section will impose a clear dichotomy
between the two.

Our experiments demonstrate that on synthetic data generated in accordance with the
naive Bayes assumption (Equation 9.1), logistic regressors learned via SGD exhibit consis-
tent bias towards the class with more weak features oriented in its direction, beyond what
is characterized in Theorem 9.1. Specifically, we consistently observe bias amplification even
when p˚ “ 1{2. Our analysis from Section 9.1 indicates that in such settings, the optimal
predictor exhibits no bias amplification; thus, the bias amplification we observe here cannot
be justified on the grounds of improving model utility in the face of uncertainty.

Figure 9.3 explores this phenomenon through synthetic Gaussian data exhibiting the
sort of feature asymmetry described above, in which the strongly-predictive features have
low variance σs “ 1, and the weakly-predictive features have relatively higher variance
σw ą 1—note that in the Gaussian naive Bayes setting, for a fixed separation between class
means, the optimal weight (equal to its influence) of a feature is inversely proportional to its
variance. Specifically, the data used here follows Equation 9.1 with the parameters shown
in Equation 9.11. Essentially, we maintain an even prior over classes 0 and 1, and provide
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one strong feature oriented towards each class, with the remaining features weakly oriented
towards class 1. The mean-separation between classes is fixed at 1.0 for each feature,

p˚ “ 1{2

µ˚0 “ p0, 1, 0, . . . , 0q

µ˚1 “ p1, 0, 1, . . . , 1q

Σ˚ “

»

—

—

—

—

—

–

σs
σs

σw
. . .

σw

fi

ffi

ffi

ffi

ffi

ffi

fl

(9.11)

Figure 9.3a demonstrates that as the disparity in weak features towards class 1 increases,
so does the expected bias towards that class. As noted, this bias cannot be explained by
Theorem 9.1, because this data is distributed with p˚ “ 1{2. Rather, it is clear that the effect
diminishes as the training size increases leading hS to converge towards h˚.

Figure 9.3b demonstrates that for a fixed disparity in weak features, the features must be
sufficiently weak in order to cause bias amplification. This suggests that a feature imbalance
alone is not sufficient for causing bias amplification in the learning rule. Moreover, the weak
features, rather than the strong features, are primarily responsible for the bias, demonstrated
by the fact that the bias amplification decreases σw approaches σs “ 1. As the training size
increases, the amount of variance required to cause bias increases. However, when the weak
features have sufficiently high variance, their impact on the bias and accuracy of the model
eventually tends to diminish, presumably because the model will ultimately decrease the
influence of features that become indistinguishable from noise.

With a finite training sample, the weights learned by any learning rule that converges
to the Bayes-optimal predictor will inevitably contain some error. Figure 9.3c plots the
average (signed) error between the weak feature weights of hS and of h˚ as the training
set size increases. That is, if there are n weak features and the weights of hS and h˚ are
ŵ and w, respectively, the y-axis of Figure 9.3c plots 1

n

řn
i“1 ŵi`2 ´ wi`2 (note that the

indexing of ŵ and w reflects the fact that there are two strong features). We see from
Figure 9.3c that the weights of the weak features are consistently overestimated by SGD
prior to convergence, with this effect being more pronounced the weaker the features are
and the further we are from convergence. This suggests that the vulnerability of SGD to this
phenomenon may be because it is inductively biased towards overestimating the importance
of the relatively weaker features. In effect, this means that prior to convergence, the errors
in the weights steering the model’s predictions will accumulate in favor of the class with
more weak features, all else being equal. Thus, because this mode of bias amplification can
be traced to the model’s incorrect weighting of features, we refer to the phenomenon as
“feature-wise” bias amplification.

In addition to the insights provided through our experiments thus far, we further hypoth-
esize that (1) error in the weights of relatively weaker features leads to disproportionately
more errors than error in the weights of relatively stronger features, and (2) overestimation
of weak features negatively impacts the model more than underestimation (provided the
sign of the influence is not flipped).

Feature-wise Bias Amplification in Other Settings

While feature-wise bias amplification may arise when methods other than SGD-based logistic
regression are used to produce the model, Figure 9.4 shows that it occurs consistently in
models trained using SGD. In particular, we discovered the same bias amplification effect
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Figure 9.4: Bias from linear classifiers on data generated according to Equation 9.11 with σs “ 1
(i.e., generated in the same manner as the experiments in Figure 9.3), averaged over 100 training
runs. The SVM trained using SMO used penalty C “ 1.0 and the linear kernel. Not shown are
results for classifiers trained with SGD using modified Huber, squared hinge, and perceptron losses,
all of which closely match the two curves shown here for SGD classifiers.

in the asymmetric feature setting when using SGD on multiple different loss functions; this
suggests that it is SGD that is bias amplifying, and not logistic loss in particular.

On the other hand, comparable classifiers trained using other learning rules may not nec-
essarily exhibit the same phenomenon. For example, Figure 9.4 shows that logistic regression
trained with L-BFGS [92] exhibits less bias amplification than when trained with SGD, and
remains unbiased for much larger numbers of weak features. Similarly, support vector ma-
chines trained using SMO [115] exhibited essentially no bias amplification in the asymmetric
feature regime considered in our analysis. By comparison, support vector machines trained
with SGD result in the same bias amplification as logistic regressors.

While we cannot perform the same type of analysis on deep networks (as results regarding
the Bayes-optimal predictor for such models are lacking), ...view evidence... that some form
of feature-wise bias amplification occurs in deep networks; i.e., the phenomenon is not limited
to linear models.

9.3 Mitigating Feature-Wise Bias Amplification

In order to further test the hypothesis that the presence of weak features may lead to bias
amplification in models trained with SGD, we consider the implications our analysis from
Section 9.2 raises for the mitigation of feature-wise bias amplification. Specifically, we pro-
pose that a tailored feature selection procedure that removes weak features will reduce the
degree of bias amplification observed. Since our analysis shows that feature-wise bias am-
plification is fundamentally avoidable—in that it is not necessary for maximizing the utility
of the model—we should expect that particularly effective mitigation measures should not
harm accuracy. If our conjecture from Section 9.2 is indeed correct that underestimating the
importance of weak features is less harm than overestimating their performance, removing
the weak features—equivalent to underestimating their importance as zero—will have a net
positive impact on the model’s performance. In the remainder of this section we present
experiments that evaluate the extent to which these insights can be validated through their
translation to effective mitigation techniques.

134



Identifying, Analyzing, and Addressing Weaknesses in Deep Networks

dataset features instances

CIFAR-10-binary 2,352 12,000
CelebA-attractiveness 116,412 202,599
Arcene 10,000 200
Colon 2,000 62
Glioma 22,283 85
Micromass 1,300 571
PC/Mac 1,943 3,289
Prostate 5,966 102
Smokers 19,993 187
Synthetic 1,002 100

Table 9.5: Number of features and instances for each dataset used in our evaluation.

Experimental Setup

We begin by describing the datasets, models and mitigation approaches used in our evalu-
ation.

Datasets. We performed experiments over eight tabular binary classification datasets
from various domains (rows 3-11 in Table 9.6) and two image classification datasets (CIFAR-
10, CelebA). Table 9.5 details the number of features and instances for each dataset. Among
the tabular datasets, all were obtained from the scikit-feature repository,1 except for micro-
mass, which was obtained from the UCI repository.2 The synthetic dataset was generated
in the manner described by Equation 9.11 in Section 9.2, containing one strongly-predictive
feature (σ2

s “ 1) for each class, 1,000 weak features (σ2
w “ 3), and p˚ “ 1{2. To adhere to the

binary setting for which bias amplification was defined, we created a binary classification
problem from CIFAR-10 from the “bird” and “frog” classes. We selected these classes as
they showed the greatest posterior disparity on a network we trained on the original dataset.
For CelebA, we used the attractiveness annotation (provided with the dataset) as a binary
learning target.

Models. On the tabular datasets, we used simple logistic regression models trained to
convergence using SGD. Each experiment was repeated over 20 training runs on a randomly
selected stratified train/test split, and the results were averaged. For the image datasets, we
used a deep convolutional architecture, VGG-16, to test the extent to which feature-wise bias
amplification arises in non-linear networks. We slice deep networks at their penultimate layer,
which we interpret as a linear classifier, g on top of a deep feature extractor, h. Thus, when
referencing the “features” of a deep model, we refer to the latent representation produced
by h.

Mitigation Approaches. We include three mitigation approaches in our evaluation, two
of which can be considered post hoc feature selection, and one which is a training regularizer
that discourages the learning of weak features. The first feature selection method, which we
call the “feature parity” approach, is motivated by the fact that bias amplification may be
caused by a disparity in the number of features oriented towards each class. We can attempt
to remedy this disparity by enforcing parity in the number of features for each class. To

1See http://featureselection.asu.edu.
2See http://archive.ics.uci.edu/ml.
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dataset p˚ (%) asymm. (%) BDphSq (%)
BDphSq (%) (post-fix)

acc. (%)
acc. (%) (post-fix)

par exp `1 par exp `1

CIFAR-10-binary 50.0 52.0 1.8 1.7 0.4 - 93.0 93.1 94.0 -
CelebA-attractiveness 50.4 50.2 7.7 7.7 0.2 - 79.6 79.6 79.9 -

arcene 56.0 57.7 2.7 0.6 1.2 1.7 68.9 69.0 74.2 69.4
colon 64.5 51.0 23.1 22.9 22.6 35.5 58.5 58.7 58.7 64.5
glioma 69.4 54.8 17.4 17.4 12.2 17.0 76.3 76.3 76.7 75.44
micromass 69.0 54.1 0.68 0.66 0.69 0.68 98.4 98.4 98.4 98.4
pc/mac 50.5 60.6 1.6 1.6 1.4 1.6 89.0 89.0 88.0 89.0
prostate 51.0 44.4 47.3 47.2 9.8 28.1 52.7 52.8 90.2 71.3
smokers 51.9 50.4 47.4 45.4 8.0 33.0 50.0 50.7 59.0 51.2

synthetic 50.0 99.9 24.1 17.2 23.6 5.7 74.9 77.9 74.8 71.4

Table 9.6: Bias measured on real datasets, and results of applying one of three mitigation strate-
gies: feature parity (par), experts (exp), and `1 regularization. The columns give: p˚, the class prior
for the majority class (y “ 1); the feature asymmetry (asymm.) given as the fraction of features
oriented towards y “ 1; BDphSq, the bias amplification of the learned model on test data, which
we measure before and after each fix; and the test accuracy, (acc.), the test accuracy before and
after each fix. The first two rows contain the experiments on deep networks, and the remainder
are averaged from 20 training runs of logistic regression optimized via SGD. We did not apply `1
regularization to the experiments on deep networks.

avoid removing features that are useful for correct predictions, we order the features by
their influence on the model’s output, removing the least influential features from the class
receiving the majority of the features until parity is reached. If the model has a bias term,
we adjust it by subtracting the product of each removed coefficient and the mean of its
corresponding feature in order to preserve the calibration of the model. We simulate the
removal of a feature by simply setting each of its outgoing weights to zero.

The second feature selection approach, which we term the “expert” approach (in refer-
ence to an experiment in a similar spirit by Leino et al. [85]), takes the more nuanced view
gleaned from Figure 9.3b, which suggests that it is not only the number of weak features
that matters, but their relative strength as well. Thus, rather than considering the num-
ber of features for each class, we can instead remove all features whose strength is below
some threshold. We parameterize this approach in terms of two parameters, α and β, where
we preserve the α features with the most positive influence and β features with the most
negative influence, removing the remaining features which are relatively weaker in their re-
spective directions. In our experiments, we determine α and β by finding the values that
minimize the bias amplification on the training data subject to not harming accuracy. We
note that this is always possible by selecting all the features, but we did not typically observe
this procedure resulting in a degenerate solution.

Finally, we consider `1 regularization as a possible approach, as it encourages sparsity in
the learned weights, and discourages assigning nonzero small-valued weights. However, the
intuition of this approach is obfuscated by the fact that it modifies the training procedure
itself.

Evaluation Results

Our results are shown in Table 9.6. To summarize, on every dataset we consider, at least
one of the proposed mitigation methods proves effective at reducing the classifier’s bias
amplification. In all but two cases, the expert method showed the best performance in
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terms of bias amplification removal, and was able to reduce bias amplification in all but one
case. In terms of accuracy, our feature selection approaches nearly always improve classifier
performance—in some cases significantly.

Notably, in each case where feature parity removed bias amplification, the accuracy was
likewise improved, supporting our claim that bias resulting from asymmetric feature regimes
is avoidable. However, in most cases, the benefit from applying feature parity is rather small.
The arcene dataset is the exception, which is likely due to the fact that it has large feature
asymmetry in the original model, leaving ample opportunity for improvement through the
feature parity approach.

On the other hand, the results in Table 9.6 suggest that the expert approach is the most
effective mitigation technique, both in terms of bias removal and accuracy improvement.
In most datasets, this approach reduced bias while improving accuracy, often substantially.
This effect is best exemplified on the prostate dataset, where the experts approach removed
80% of the bias amplification while improving accuracy from 57.7% to 90.2%. Similarly, for
arcene and smokers, experts removed over 50% of the bias amplification while improving
accuracy by 5 and 9 percentage points respectively.

Meanwhile, `1 regularization proved least reliable at removing bias amplification subject
to not harming accuracy. In many cases, it was unable to remove much bias amplifica-
tion (glioma, micromass, PC/Mac). Though it performed better on several real datasets
(arcene, prostate, smokers), even removing up to 40% of the bias amplification on the
prostate dataset, it was consistently outperformed by either the parity or expert method.
Additionally, on the colon dataset, it made bias amplification significantly worse.

The feature orientations observed on CIFAR-10-binary and CelebA-attractiveness reveal
that deep networks tend to compute features with less asymmetry than exhibited by the
tabular data in our evaluation; we expect this to render the feature parity approach less
effective on deep networks. Our mitigation results confirm this, although on CIFAR-10-
binary, enforcing feature parity had some effect on bias amplification and a proportional
positive effect on accuracy. The experts approach, on the other hand, continued to perform
well for the deep models. While this approach generally had a greater effect on accuracy than
bias for the linear models, this trend reversed for deep networks, where the decrease in bias
amplification was consistently greater than the increase in accuracy. For example, the 7.7%
of excessive bias in the original CelebA-attractiveness model was reduced by approximately
98% to 0.2%, effectively eliminating it from the model’s predictions. The overall effect on
accuracy remained modest (0.3% improvement).

These results on deep networks may be somewhat surprising, considering that our anal-
ysis is driven by observations derived on simple linear classifiers. While the improvements
in accuracy are not as significant as those seen on linear classifiers, they align with our ex-
pectations regarding bias reduction in linear models. This suggests that future work might
improve on these results by adapting the analysis and approaches described in this chapter
to better suit deep networks.
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Conclusion

With the rapidly growing success of deep networks at tasks accessible only to humans not
long ago, it is sometimes easy to forget that “artificial intelligence” is far from solved. As
we have explored in this thesis, despite their remarkable progress over the years, neural
networks have several peculiar shortcomings and vulnerabilities. For example, we have seen
that deep networks are easily fooled by small, meaningless perturbations (Part II), and may
leak sensitive information about the data they are trained on (Part III). These weaknesses
serve as a reminder that the success of deep networks remains shallow compared to the lofty
goal of truly “intelligent” machines.

When neural networks appear to match human performance in some problem setting,
it is natural to ask how their success comes about. Does the success of neural networks
at human tasks imply that both utilize similar processes? In many tasks, this would be
the ideal; some indication of convergence between human and machine logic would give us
confidence in a network’s ability to handle inputs it was not explicitly tested on. Conceptual
soundness (Chapter 2) captures this sentiment—when the model encodes and uses features
that agree with human intuition, it is easier to believe its good behavior will generalize.

By contrast, a model may learn completely different ways of accomplishing its objectives—
i.e., ways that are not conceptually sound. It is natural to ask though, is this a problem?
Human and machine reasoning may simply be different by nature—is our way necessarily
better? In response to such lines of inquiry, the work in this thesis ultimately suggests that
conceptually unsound behavior lies at the heart of many of the weaknesses that cause mod-
ern machine learning to fall short of “human-level” performance (despite occasional claims
to the contrary). These findings give rightful pause to any inclination towards accepting
opaque machinery that cannot be corroborated by human intuition.

Well designed explanations (Chapter 3) allow us to evaluate the degree to which learned
models are conceptually sound. Crucially, explanations should allow us to distinguish be-
tween models that are complex, yet conceptually sound, and those that are unintelligible and
brittle (see Chapter 4 for further discussion). To this end, an objective look at the logic and
encodings employed by typical deep networks reveals the truth—that modern deep networks
are seldom conceptually sound. To remedy this, we must turn to improving the quality of
the underlying models.

One major barrier to obtaining conceptual soundness is contemporary learning algo-
rithms’ proclivity to encode non-robust features (see Chapter 5) as representational “short-
cuts” for optimizing their learning objectives. In addition to the complications this causes
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for conceptual soundness, such features compromise the security of the resulting network,
as they lead to adversarial examples (see Chapter 5). Both consequences can be mitigated
through a robust learning objective, which precludes small-norm adversarial examples and
the non-robust features that give rise to them. With aid from our contributions, robust
training is becoming more effective and scalable, and we anticipate continued effort in the
directions laid out in our work from Chapters 6 and 7 will bring continued progress to larger
and more challenging domains in the foreseeable future. Still, far from being solved, ex-
tending robust learning to “semantic” attacks is an outstanding challenge with less tangible
solutions (see Chapter 7 for further discussion).

Finally, the work in the third part of this thesis reveals that robustness to malicious
input perturbations is only the first step in achieving trustworthy “human-like” intelligence.
Specifically, we uncover several orthogonal weaknesses and vulnerabilities relating to the
conceptual soundness of deep networks, affecting both model privacy (Chapter 8) and cali-
bration (Chapter 9). The insights in our work illuminate key mechanisms behind unsound
network behavior; at the same time, we expect they will serve as important guidance for
improving conceptual soundness in the neural networks of the future.
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Appendix A

Further Details on GloRo Nets

A.1 Tighter Bounds for Theorem 6.1

Note that in the formulation of GloRo Nets given in Section 6.1, we assume that the predicted
class, j, will decrease by the maximum amount within the ε-ball, while all other classes
increase by their respective maximum amounts. This is a conservative assumption that
guarantees local robustness; however, in practice, we can dispose of this assumption by
instead calculating the Lipschitz constant of the margin by which the logit of the predicted
class surpasses the other logits, fj ´ fi.

The margin Lipschitz constant of f , defined for a pair of classes, i ‰ j, is given by
Definition A.1.

Definition A.1. Margin Lipschitz Constant For network, f : Rn Ñ Rm, and classes
i ‰ j P rms, K˚ij is an upper bound on the margin Lipschitz constant of f if @x1, x2,

|fjpx1q ´ fipx1q ´ pfjpx2q ´ fipx2qq|

||x1 ´ x2||
ď K˚ij

We now define a variant of GloRo Nets as follows: For input, x, let j “ F pxq, i.e., j is
the label assigned by the underlying model to be instrumented. Define f̄ εi pxq ::“ fipxq, and
f̄ εKpxq ::“ maxi‰jtfipxq ` εK

˚
iju.

Theorem A.1. Under this variant, if F̄ εpxq ‰ K, then F̄ εpxq “ F pxq and F is ε-locally-
robust at x.

Proof. The proof is similar to the proof of Theorem 6.1 (Section 6.1). Let j “ F pxq. As
before, when F̄ εpxq ‰ K, we see that F̄ εpxq “ j “ F pxq.

Now assume x1 satisfies ||x´x1|| ď ε. Let K˚ij be an upper bound on the margin Lipschitz
constant. Then, @i

|fjpxq ´ fipxq ´ pfjpx
1q ´ fipx

1qq| ď K˚ijε (A.1)

We proceed to show that for any such x1, F px1q is also j. In other words, @i ‰ j,
fipx

1q ă fjpx
1q. By applying (A.1), we obtain (A.2). Next, (A.3) follows from the fact that

f̄ εKpxq “ maxi‰j
 

fipxq `K
˚
ijε

(

. We then obtain (A.4) from the fact that fjpxq ą f̄ εKpxq, as
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x d(x)

Figure A.1: Illustration of a function, g, constructed to satisfy Theorem 6.3. The points in S
are shown in light and dark gray, with different shades indicating different labels. The Voronoi
tessellation is outlined in black, and the faces belonging to the decision boundary are highlighted
in bold. The level curves of g are shown in various shades of gray and correspond to points, x, at
some fixed distance, dpxq, from the decision boundary.

F̄ εpxq “ j ‰ K.

�
��fipxq ` fjpxq ´�

��fipxq ´ fjpx
1q ` fipx

1q

ď fipxq ` |fjpxq ´ fipxq ´ pfjpx
1q ´ fipx

1qq|

ď fipxq `K
˚
ijε (A.2)

ď f̄ εKpxq (A.3)

ă fjpxq (A.4)

Rearranging terms, we obtain that fipx
1q ă fjpx

1q. Thus, F px1q “ j; this means that F is
locally robust at x.

A.2 Proof of Theorem 6.3

Theorem. Let f be a binary classifier that predicts 1 ðñ fpxq ą 0. Let KLpx, εq be the
local Lipschitz constant of f at point x with radius ε.

Suppose that for some finite set of points, S, @x P S, |fpxq| ą εKLpx, εq, i.e., all points in
S can be verified via the local Lipschitz constant.

Then there exists a classifier, g, with global Lipschitz constant KG, such that @x P S, (1)
g makes the same predictions as f on S, and (2) |gpxq| ą εKG, i.e., all points in S can be
verified via the global Lipschitz constant.

Proof. Let T be the Voronoi tessellation generated by the points in S. Each Voronoi cell,
Cj P T , corresponds to the set of points that are closer to pj P S than to any other point in
S; and the face, Fij P T , which separates cells Ci and Cj , corresponds to the set of points
that are equidistant from pi and pj .
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Let B “ tFij : signpfppiqq ‰ signpfppjqqu, i.e., the set of faces in the Voronoi tessellation
that separate points that are classified differently by f (note that B corresponds to the
boundary of the 1-nearest-neighbor classifier for the points in S).

Consider a point, x. Let px P S be the closest point in S to x, i.e., the point corresponding
to the Voronoi cell containing x. Let dpxq “ ||projpxÑ Bq´x||; that is, dpxq is the minimum
distance from x to any point in any of the faces in B. Then define

gpxq “ sign
`

fppxq
˘dpxq

ε

First, observe that gpxq ą 0 ðñ fpxq ą 0 follows from the fact that dpxq and ε are
non-negative, thus the sign of gpxq is derived from the sign of fpxq.

Next, we show that the global Lipschitz constant of g, KG, is at most 1{ε, that is, @x1, x2,

|gpx1q ´ gpx2q|

||x1 ´ x2||
ď

1

ε

Consider two points, x1 and x2, and let p1 and p2 be the points in S corresponding to
the respective Voronoi cells of x1 and x2.

First, consider the case where signpfpp1qq ‰ signpfpp2qq, i.e., x1 and x2 are on opposite
sides of the boundary, B. In this case,

|gpx1q ´ gpx2q| “
pdpx1q ` dpx2qq

ε
,

and thus it suffices to show that dpx1q ` dpx2q ď ||x1 ´ x2||.

Assume for the sake of contradiction that dpx1q ` dpx2q ą ||x1´ x2||. Note that because
x1 and x2 belong in Voronoi cells with different classifications from f , the line segment
connecting x1 and x2 must cross the boundary, B, at some point c. Therefore, ||x1´c||`||x2´

c|| “ ||x1´x2|| ă dpx1q`dpx2q; without loss of generality, this implies that ||x1´c|| ă dpx1q.
But since c P F P B, this contradicts that dpx1q is the minimum distance from x1 to B.�

Next, consider the case where signpfpp1qq “ signpfpp2qq. In this case

|gpx1q ´ gpx2q| “
|dpx1q ´ dpx2q|

ε
,

and thus, without loss of generality, it suffices to show that dpx1q ´ dpx2q ď ||x1 ´ x2||.

Assume for the sake of contradiction that dpx1q ´ dpx2q ą ||x1 ´ x2||. Thus dpx1q ą

||x1 ´ x2|| ` dpx2q. However, this suggests that we can take the path from x1 to x2 to B
with a smaller total distance than dpx1q, contradicting that dpx1q is the minimum distance
from x1 to B.�

We now show that @p P S, |gppq| ě 1, i.e., dppq ě ε. In other words, we must show
that the distance of any point, p P S to the boundary, B, is at least ε. Consider a point,
x, on some face, Fij P B. This point is equidistant from pi and pj P S, on which f makes
different predictions; and every other point in S is at least as far from x as pi and pj . I.e.,
||pi ´ x|| “ ||pj ´ x|| ď ||p´ x||, @p P S. By the triangle inequality, 2||pi ´ x|| ě ||pi ´ pj ||,
and by Lemma 6.4, ||pi ´ pj || ě 2ε. Thus ||p´ x|| ě ε, @p P S; therefore every point on the
boundary is at least ε from p P S.

Putting everything together, we have that @p P S, |gppq| ě 1 ě εKG.
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method clean (%) PGD (%) VRA(%)

MNIST pε “ 0.3q

ReLU GloRo 98.7 97.4 94.6
BCP 93.4 89.5 84.7
KW 98.9 97.8 94.0
MMR 98.2 96.2 93.6

MNIST pε “ 1.58q

ReLU GloRo 92.8 67.0 51.9
LMT 86.5 53.6 40.6
BCP 92.4 65.8 47.9
KW 88.1 67.9 44.5

CIFAR-10 pε “ 36{255q

ReLU GloRo 67.9 61.3 51.0
LMT 63.1 58.3 38.1
BCP 65.7 60.8 51.3
KW 60.1 56.2 50.9

Table A.2: Comparison of ReLU-based GloRo Nets against wide set of certifiable training ap-
proaches approaches that also use ReLU-based architectures, showing the VRA, PGD accuracy,
and clean accuracy of each approach. Best results are highlighted in bold.

Note that while Theorem 6.3 is stated for binary classifiers, the result holds for cate-
gorical classifiers as well. We can modify the construction of g from the above proof in a
straightforward way to accommodate categorical classifiers. In the case where there are m
different classes, the output of g has m dimensions, each corresponding to a different class.
Then, for x in a Voronoi cell corresponding to px P S with label, j, we define gjpxq ::“ dpxq{ε

and gipxq ::“ 0 @i ‰ j. We can see that, for all pairs of classes, i and j, the Lipschitz
constant of gi ´ gj in this construction is the same as the Lipschitz constant of g in the
above proof, since only one dimension of the output of g changes at once. Thus, we can use
the global bound suggested in Appendix A.1 to certify the points in S.

A.3 Results on ReLU Networks

Here we include additional results showing that GloRo Nets trained with ReLU activations
outperform other methods that use ReLU-based architectures. The results are shown in
Table A.2.

A.4 Hyperparameters

The full set of hyperparameters used for the experiments in Section 6.4 are shown in Ta-
ble A.3, and those for the additional experiments in Appendix A.3 are shown in Table A.4
We explain each column below and discuss how a particular value is selected for each hy-
perparameter. Code for reproducing our results can be found at https://github.com/

klasleino/gloro.

Architectures. To denote architectures, we use cpC,K, Sq to denote a convolutional layer
with C output channels, a kernel of size KˆK, and strides of width S. We use SAME padding

146

https://github.com/klasleino/gloro
https://github.com/klasleino/gloro


Identifying, Analyzing, and Addressing Weaknesses in Deep Networks

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

2C2F

GloRo

MNIST None 0 512 500 0.3 0.3

initialization init lr lr decay loss ε schedule power iter

orthogonal 1e-3 decay to 1e-6 0.1,2.0,500 single 5

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

4C3F

GloRo

MNIST None 0 512 200 1.74 1.58

initialization init lr lr decay loss ε schedule power iter

orthogonal 1e-3 decay to 1e-6 1.5 log 5

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

6C2F

GloRo

CIFAR-10 tfds 0 512 800 0.141 0.141

initialization init lr lr decay loss ε schedule power iter

orthogonal 1e-3 decay to 1e-6 1.2 log 5

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

8C2F

GloRo

Tiny-Imagenet default 0 512 800 0.141 0.141

optimizer init lr lr decay loss ε schedule power iter

default 1e-4 decay to 5e-6 1.2,10,800 log 5

Table A.3: Hyperparameters used for training (MinMax) GloRo Nets.
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architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

2C2F

GloRo

MNIST None 0 256 500 0.45 0.3

initialization init lr lr decay loss ε schedule power iter

default 1e-3 decay to 1e-6 0,2,500 single 10

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

4C3F

GloRo

MNIST None 0 256 300 1.75 1.58

initialization init lr lr decay loss ε schedule power iter

default 1e-3 decay to 5e-6 0,3,300 single 10

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

6C2F

GloRo

CIFAR-10 default 20 256 800 0.1551 0.141

initialization init lr lr decay loss ε schedule power iter

default 1e-3 decay to 1e-6 1.2 log 5

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

8C2F

GloRo

Tiny-Imagenet default 0 256 500 0.16 0.141

initialization init lr lr decay loss ε schedule power iter

default 2.5e-4 decay to 5e-7 1,10,500 single 1

Table A.4: Hyperparameters used for training (ReLU) GloRo Nets.
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unless noted otherwise. We use dpDq to denote a dense layer with D output dimensions.
We use MinMax [4] or ReLU activations (see Appendix A.3) after each layer except the top
of the network, and do not include an explicit Softmax activation. Using this notation, the
architectures referenced in Section 6.4 are as shown in the following list.

• 2C2F: c(16,4,2).c(32,4,2).d(100).d(10)

• 4C3F: c(32,3,1).c(32,4,2).c(64,3,1).c(64,4,2).d(512).d(512).d(10)

• 6C2F: c(32,3,1).c(32,3,1).(32,4,2).(64,3,1) .c(64,3,1).c(64,4,2).d(512).d(10)

• 8C2F: c(64,3,1).c(64,3,1).c(64,4,2).c(128,3,1).c(128,4,2).c(256,3,1).(256,4,2).d(200)

We arrived at these architectures in the following way. 2C2F, 4C3F and 6C2F are used in
prior work [30, 82, 157] to evaluate the verifiable robustness, and we used them to facilitate a
direct comparison on training cost and verified accuracy. For Tiny-ImageNet, we additionally
explored the architecture described in [82] for use with that dataset, but found that removing
one dense and one convolutional layer (denoted by 8C2F in the list above) produced the
same (or better) verified accuracy, but lowered the total training cost.

Data Preprocessing. For all datasets, we scaled the features to the range [0,1]. On
some datasets, we used the following data augmentation pipeline ImageDataGenerator from
tf.keras, which is denoted by default in Table A.4 and A.3.

rotation_range=20

width_shift_range=0.2

height_shift_range=0.2

horizontal_flip=True

shear_range=0.1

zoom_range=0.1

When integrating our code with tensorflow-dataset, we use the following augmenta-
tion pipeline and denote it as tfds in Table A.4 and A.3.

horizontal_flip=True

zoom_range=0.25

random_brightness=0.2

Our use of augmentation follows the convention established in prior work [82, 157]: we
only use it on CIFAR and Tiny-Imagenet, but not on MNIST.

Epsilon Scheduling. Prior work has also established a convention of gradually scaling ε
up to a value that is potentially larger than the one used to measure verified accuracy leads
to better results. We made use of the following schemes for accomplishing this.

• No scheduling: we use ‘single’ to denote we εtrain for all epochs.

• Linear scheduling: we use a string ‘x,y,e’ to denote the strategy that at training epoch
t, we use εt “ x ` py ´ xq ˚ pt{eq if t ď e. When t ą e, we use the provided εtrain to
keep training the model.
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• Logarithmic scheduling: we use ‘log’ to denote that we increase the epsilon with a
logarithmic rate from 0 to εtrain.

We found that scheduling ε is often unnecessary when instead scheduling the TRADES
parameter λ (discussed later in this section), which appears to be more effective for that
loss. To select a scheme for scheduling ε, we compared the results of the three options listed
above, and selected the one that achieved the highest verified accuracy. If there was no
significant difference in this metric, then we instead selected the schedule with the least
complexity, assuming the following order: single, (x,y,e), log. When applying (x,y,e)
and log, we began the schedule on the first epoch, and ended it on p# epochsq{2.

Initialization & Optimization. In Table A.4, default refers to the Glorot uniform ini-
tialization, given by tf.keras.initializers.GlorotUniformpq. The string ‘ortho’ refers to
an orthogonal initialization given by tf.keras.initializers.Orthogonalpq. To select an
initialization, we compared the verified accuracy achieved by either, and selected the one
with the highest metric. In the case of a tie, we defaulted to the Glorot uniform initial-
ization. We used the adam optimizer to perform gradient descent in all experiments, with
the initial learning rate specified in Table A.4 and A.3, and default values for the other
hyperparameters (β1 “ 0.9, β2 “ 0.999, ε “ 1e´ 07, amsgrad disabled).

Learning Rate Scheduling. We write ‘decay to lb’ to denote a schedule that contin-
uously decays the learning rate to lb at a negative-exponential rate, starting the decay at
p#epochsq{2. To select lb, we searched over values lb P t1ˆ10´7, 5ˆ10´7, 1ˆ10´6, 5ˆ10´6u,
selecting the value that led to the best VRA. We note that for all datasets except Tiny-
Imagenet, we used the default initial rate of 1ˆ 10´3. On Tiny-Imagenet, we observed that
after several epochs at this rate, as well as at 5ˆ 10´4, the loss failed to decrease, so again
halved it to arrive at 2.5ˆ 10´4.

Batch size & Epochs. For all experiments, we used mini-batches of 256 instances. Be-
cause our method does not impose a significant memory overhead, we found that this batch
size made effective use of available hardware resources, increasing training time without
impacting verified accuracy, when compared to minibatch sizes 128 and 512. Because the
learning rate, ε, and λ schedules are all based on the total number of epochs, and can have
a significant effect on the verified accuracy, we did not monitor convergence to determine
when to stop training. Instead, we trained for epochs in the range r100, 1000s in increments
of 100, and when verified accuracy failed to increase with more epochs, attempted training
with fewer epochs (in increments of 50), stopping the search when the verified accuracy
began to decrease again.

Warm-up. Lee et al. [82] noted improved performance when models were pre-trained for
a small number of epochs before optimizing the robust loss. We found that this helped in
some cases with GloRo networks as well, in particular on CIFAR-10, where we used the
same number of warm-up epochs as prior work.

TRADES Scheduling. When using the TRADES loss described in Section 6.3, we found
that scheduling λ often yielded superior results. We use ‘x,y,e’ to denote that at epoch t,
we set λt “ x` py ´ xq ˚ pt{eq if t ă e else λt “ y. We write ‘x’ to denote we use λ “ x all
the time. To select the final λ, we trained on values in the range r1, 10s in increments of 1,
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and on finding the whole number that yielded the best result, attempted to further refine
it by increasing in increments 0.1.

Power Iteration. As discussed in Section 6.3, we use power iteration to compute the spec-
tral norm for each layer to find the layer-wise Lipschitz constants. In Table A.4, power iter
denotes the number of iterations we run for each update during training. We tried values
in the set t1, 2, 5, 10u, breaking ties to favor fewer iterations for less training cost. After
each epoch, we ran the power iteration until convergence (with tolerance 1ˆ 10´5), and all
of the verified accuracy results reported in Section 6.4 are calculated using a global bound
based on running power iteration to convergence as well. Since the random variables used
in the power iterations are initialized as tf.Variables, they are stored in .h5 files together
with the architecture and network parameters. Therefore, one can directly use the converged
random variables from the training phase during the test phase.

Search Strategy. Because of the number of hyperparameters involved in our evaluation,
and limited hardware resources, we did not perform a global grid search over all combinations
of hyperparameters discussed here. We plan to do so in future work, as it is possible that
results could improve as we may have missed better settings than those explored to produce
the numbers reported in our evaluation. Instead, we adopted a greedy strategy, prioritizing
the choices that we believed would have the greatest impact on verified accuracy and training
cost. In general, we explored parameter choices in the following order: ε schedule, λ schedule,
# epochs, LR decay, warm-up, initialization, # power iterations, mini-batch size.

A.5 Measuring Memory Usage

In our experiments, we used TensorFlow to train and evaluate standard and GloRo net-
works, and Pytorch to train and evaluate KW and BCP (since Wong et al. [157] and Lee
et al. [82] implement their respective methods in Pytorch). To measure memory usage, we
invoked tf.contrib.memory stats.MaxBytesInUsepq at the end of each epoch for standard
and GloRo networks, and took the peak active use from torch.cuda.memory summarypq at
the end of each epoch for KW and BCP.

We note that some differences may arise as a result of differences in memory efficiency
between Tensorflow and Pytorch. In particular, Pytorch enables more control over memory
management than does Tensorflow. In order to mitigate this difference as much as possible,
we did not disable gradient tracking when evaluating certification times and memory usage
in Pytorch. While gradient tracking is unnecessary for certification (it is only required for
training), Tensorflow does not allow this optimization, so by forgoing it the performance
results recorded in Figure 6.8b in Section 6.4 are more comparable across frameworks.
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Further Details on
Robustness Relaxations

B.1 Discussion of the Method Proposed by Jia et al.

In recent work, Jia et al. [68] also proposed an approach that aims to capture certified
robustness for top-k predictions. In this section, we provide details on differences between
this work and ours; particularly the shortcomings of this approach that our work addresses.

Recall our notation from Section 7.2, where, for neural network, f , we define F kpxq as
the set of classes corresponding to the top k logit values in fpxq. The approach of Jia et al.
provides a probabilistic bound on the radius, rkj pxq, under which a given class j P F kpxq will
remain in the top-k predictions. That is, Jia et al. provide a probabilistic guarantee that
Equation B.1 holds.

@x1 . ||x´ x1|| ď rkj pxq ùñ j P F kpx1q (B.1)

In their evaluation, Jia et al. consider a point, x, to be certified at radius, ε, if rky˚ ě ε,
where y˚ is the ground truth label for x. This presents a problem for certifying unseen
points as the ground truth cannot be known. We therefore stipulate that certification must
be independent of the true label of the point being certified. Moreover, replacing the ground
truth with the predicted label is unsatisfactory, because the purpose of generalizing to top-k
predictions is to consider cases where any of the predictions in F kpxq may be correct.

While Jia et al. do not address this issue, one straightforward adaptation of their
approach is to take the minimum certified radius over all classes in F kpxq. That is, let
rkpxq “ minjPFkpxqtr

k
j pxqu. We see that this leads to a natural guarantee given by Equa-

tion B.2, which can be certified without knowledge of the ground truth class. In short,
Equation B.2 holds because by taking the minimum rkj , we are guaranteed that all of the

top k classes will remain in the top k classes under perturbations bounded by rkpxq.

@x1 . ||x´ x1|| ď rkpxq ùñ F kpxq “ F kpx1q (B.2)

We note however, that when certification is determined by comparing rkpxq to a fixed
radius, Equation B.2 is equivalent to our proposed definition for top-k robustness (Defini-
tion 7.1). As discussed in Section 7.2, this is also not a satisfactory robustness analogue to
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top-k accuracy as it does not relax local robustness. We therefore argue that RTK robustness
(Definition 7.2) should be used to certify the robustness of top-k predictions.

B.2 Correctness of RTK GloRo Nets

Theorem. Let g be an RTK GloRo Net as defined by Equation 7.1. Then, if the maximal
output of gpxq is not K, then F is RTK ε-locally-robust at x.

Proof. Let y “ F pxq “ argmaxitfipxqu. Assume that the maximal output of gpxq is not K,
i.e., Di such that gKpxq ă gipxq ď gypxq “ fypxq. By the definition of gK in Equation 7.1, we
obtain (B.3). By the definition of y, we obtain (B.4).

fypxq ą max
i
tfipxq ´mpxqu (B.3)

“ fypxq ´mpxq (B.4)

Thus, we have that mpxq is positive. As mpxq is defined as maxkďKtm
kpxqu, this means

that there exists some k˚ ď K such that mk˚pxq ą 0 (B.5).
We recall from the definition of RTK robustness, we must show that there exists some

k ď K such that for all x1 at distance no greater than ε from x, F kpxq “ F kpx1q. We proceed

to show that k˚ is such a k; i.e., ||x´ x1|| ď ε ùñ F k
˚

pxq “ F k
˚

px1q.
From (B.5) we expand the definition of mkpxq to obtain (B.6); and the definition of mk

j

to obtain (B.7).

0 ă mk˚pxq (B.5)

“ min
jPFk˚ pxq

!

mk˚

j pxq
)

(B.6)

“ min
jPFk˚ pxq, iRFk˚ pxq

#

fjpxq ´ fipxq ´ εKji

+

(B.7)

We observe that (B.7) implies (B.8).

@j P F k
˚

pxq, i R F k
˚

pxq . fipxq ` εKji ă fjpxq (B.8)

Next, we assume x1 satisfies ||x ´ x1|| ď ε. As Kji is an upper bound on the Lipschitz
constant of fj ´ fi we obtain (B.9).

|fjpxq ´ fipxq ´ pfjpx
1q ´ fipx

1qq|

||x´ x1||
ď Kji

ùñ |fjpxq ´ fipxq ´ pfjpx
1q ´ fipx

1qq| ď Kjiε (B.9)

Thus we argue as follows for all j P F k
˚

pxq and i R F k
˚

pxq. First, by applying (B.9), we
obtain (B.10). Then, by applying (B.8) we obtain (B.11).

fipxq ` fjpxq ´ fipxq ´ fjpx
1q ` fipx

1q

ď fipxq ` |fjpxq ´ fipxq ´ fjpx
1q ` fipx

1q|

ď fipxq ` εKji (B.10)

ă fjpxq (B.11)
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By rearranging the terms in the above inequality, we obtain (B.12).

@j P F k
˚

pxq, i R F k
˚

pxq . fipx
1q ă fjpx

1q (B.12)

Finally, we realize that (B.12) is equivalent to F k
˚

pxq “ F k
˚

px1q. To see why, consider the
following. Let Z “ t@i . fipx

1qu be the set of all logit values produced by f on x1 (assume

WLOG each logit value is unique), and let Zk˚ “ t@j P F
k˚pxq . fjpx

1qu be the subset of

Z containing the logit values of fpx1q corresponding to the classes in F k
˚

pxq. By (B.12) we
have that for all z P Zk˚ and z1 P ZzZk˚ , z ą z1. Thus, Zk˚ contains the top k˚ elements
of Z.

Putting everything together, we conclude that Dk ď K : ||x ´ x1|| ď ε ùñ F kpxq “
F kpx1q.

B.3 Discussion of Other Certification Techniques

While many certification methods have been proposed and studied in the past, we use the
GloRo Net approach to certification for two key reasons. First, GloRo Nets have been shown
to be among the top state-of-the-art methods for deterministic `2 certification, matching or
outperforming the VRA of all other deterministic methods recently surveyed by Leino et al.
[88]. Second, GloRo Nets provide an elegant way for incorporating our robustness objectives
into a certifiable training procedure, as certified training can be reduced to simply performing
overapproximate certification.

However, leveraging other types of techniques for certifying our proposed robustness
properties remains an interesting possibility for future work to explore. We now present a
discussion of how other certification techniques in the literature may be adapted to incor-
porate RTK and affinity robustness.

Randomized Smoothing. Jia et al. [68] suggest a technique based on randomized smooth-
ing that is in the same spirit as RTK robustness. While we point out several problems with
their approach, Appendix B.1 describes how to adapt their technique to get an equivalent
property to top-k robustness (Definition 7.1). However, as we argue in Section 7.2, RTK
robustness (Definition 7.2) is the correct analogue to top-k accuracy.

In general, RTK robustness can be certified given a method to certify top-k accuracy,
by iteratively checking whether top-k robustness holds for any k in t1, ...,Ku. Thus, it
should be possible to adapt the method of Jia et al. to correctly certify RTK robustness via
randomized smoothing. A naive implementation of this would be very expensive (following
the approach outlined in Appendix B.1), however, as it would require OpK2q calls to Jia
et al.’s method, which is already expensive. On hardware similar to our own, we estimate
such an implementation would take about a minute to evaluate and certify each instance.1

Future work may be able to determine a more efficient way to achieve this.
Finally, we note that although randomized smoothing can, in theory, obtain certificates

without any requirements on the original model, in order to get reasonable performance, it is
necessary to augment the data with Gaussian noise during training—this allows the model
to behave well under the noise that will be introduced at evaluation time. It is therefore
possible that for similar reasons, additional training considerations would be important to
make use of the relaxed guarantee in smoothed models.

1This computation would require evaluating the underlying model on 100,000 samples (the number of
samples required for adequate smoothing [26]) K2 times.
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1-Lipschitz Models. Recently, a few similar certification approaches to GloRo Nets have
been proposed, which use orthonormal projections to ensure the model is 1-Lipschitz [147].
When the model is 1-Lipschitz, certification simply requires a margin of ε between the top
logit output and the others. Because these techniques achieve robustness through Lipschitz-
ness, the certification procedure in Algorithm 7.1 would also apply to such methods.

Primarily, these approaches differ from GloRo Nets in the way they are trained, target-
ing robustness though a hinge-like loss function that encourages a sufficiently large margin
between classes. Because of the nuances of RTK robustness, it is less clear how RTK ro-
bustness could be achieved with a simple loss function (e.g., RTK robustness is a naturally
disjunctive property, and the network should have a choice in which k to target). However,
the GloRo training we propose avoids the challenges of redesigning a proper loss function,
and would still work to train models with orthonormalized kernels.

Convex Relaxation/Bound Propagation. It is not immediately clear to us how to
achieve RTK (or Affinity) robustness with approaches like KW [157] or IBP-based meth-
ods [82], but we believe this could be an interesting future direction. It may be possible
to change these methods to ensure a margin between the kth class and the pk ` 1qth class.
This in turn could be used as a step in certifying RTK robustness as noted in our discussion
of Randomized Smoothing. Note, however, that this would likely mean that KW and IBP
would require multiple propagations to handle RTK robustness, making them more expen-
sive (while the analysis of the GloRo approach only needs to consider the logits, which only
need to be computed once).

An additional important issue, moreover, is incorporating RTK robustness into the learn-
ing objective. Because of the disjunctive nature of RTK robustness, it is not obvious how to
design the loss function to promote it. GloRo Nets avoid this issue because they essentially
make an equivalence between the problem of certification and the robust learning objective.

B.4 Correctness of Affinity GloRo Nets

Theorem. Let g be an Affinity GloRo Net as defined by Equation 7.3. Then, if the maximal
output of gpxq is not K, then F is affinity ε-locally-robust at x.

Proof. The proof follows a similar approach to the proof of Theorem 7.1. Let y “ F pxq “
argmaxitfipxqu. Assume that the maximal output of gpxq is not K, i.e., Di such that gKpxq ă
gipxq ď gypxq “ fypxq. By the definition of gK in Equation 7.3, we obtain (B.13). By the
definition of y, we obtain (B.14).

fypxq ą max
i
tfipxq ´mpS, xqu (B.13)

“ fypxq ´mpS, xq (B.14)

Thus, we have that mpS, xq is positive. From the definition of mpS, xq in Equation 7.2,

we conclude that there exists some k˚ and some S˚ P S, such that F k
˚

pxq Ď S˚ and

mk˚pxq ą 0.
We recall from the definition of affinity robustness, we must show that there exists some

k and S such that for all x1 at distance no greater than ε from x, F kpxq “ F kpx1q and

F kpxq Ď S. We proceed to show that ||x´x1|| ď ε ùñ F k
˚

pxq “ F k
˚

px1q ^ F k
˚

pxq Ď S˚.
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From our observations above, we have that F k
˚

pxq Ď S˚, therefore it suffices to simply

show that ||x ´ x1|| ď ε ùñ F k
˚

pxq “ F k
˚

px1q, given that mk˚pxq ą 0. As mkpxq
is defined the same for both Affinity GloRo Nets (Equation 7.3) and RTK GloRo Nets
(Equation 7.1), the remainder of the proof proceeds exactly as the proof for Theorem 7.1 in
Appendix B.2.

B.5 Experimental Details and Hyperparameters

Hardware. All experiments were run on an NVIDIA TITAN RTX GPU with 24 GB of
RAM, and a 4.2GHz Intel Core i7-7700K with 32 GB of RAM.

Data Splits. On CIFAR-100 and Tiny-Imagenet, we used the standard train-test split.
We are unaware of any “standard” train-test split for EuroSAT; thus we used 2{3 of the data
for the training set and 1{3 of the data for the test set.

Architectures. For CIFAR-100 and EuroSAT we used a simple convolutional architecture
consisting of two blocks with width 32 and 64 respectively—each containing a convolutional
layer with 3ˆ3 followed by a down-sampling layer—followed by two dense hidden layers with
width 256 each. For Tiny-Imagenet we used the same architecture as was used previously
by Lee et al. [82] and subsequently Leino et al. [88]. This architecture consists of three
convolutional blocks followed by a dense layer of width 256. The first block is composed of
two convolutional layers with 3ˆ 3 filters and 64 channels followed by a strided convolution
with 4 ˆ 4 filters and 64 channels. The first block is the same as the first block, but with
a width of 128. The third block has one convolutional layer with 3 ˆ 3 filters and 256
channels followed by a strided convolution with 4 ˆ 4 filters and 256 channels. For ACAS
Xu, we used a dense network consisting of three hidden layers with 1,000 neurons each. In all
networks, we used min-max activations [4] rather than ReLU activations, as these have been
observed to achieve better performance with GloRo Nets [88]. Similarly, down-sampling in
the CIFAR-100 and EuroSAT models was achieved via invertible down-sampling [4] rather
than max-pooling.

Hyperparameters. Details on the hyperparameters used to train each model presented
in the evaluation in Section 7.4 are given in Table B.1. All models were trained using the
ADAM optimizer.

GloRo Nets (and our variations thereof in Chapter 7) make use of the underlying model’s
Lipschitz constant, which is approximated using the power method (see [88] for more details).
Prior to evaluation, the power method is run to convergence, however, during training we
run a fixed number of iterations on each batch. For each of the models in our evaluation we
used two power iterations on each training batch.

We used a continuous learning rate schedule, where the learning rate was adjusted on
each epoch. A description of the learning rate schedule is given in Table B.1. E.g., learning
rate schedule of “10´3 Ñ 10´6 after half” means that the learning rate begins at 10´3 and
halfway through training the learning rate decays exponentially to reach 10´6 on the final
epoch.

For each model, we used one of two loss functions adapted for GloRo Nets as proposed
by Leino et al. [88], specified in the “loss function” column of Table B.1: cross-entropy or
TRADES (see [88] for more details on these loss functions). The TRADES loss function takes
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dataset guarantee epochs batch size learning rate schedule loss function TRADES schedule

EuroSAT standard 200 256 10´3 Ñ 10´6 after half TRADES 0.01 Ñ 1.2 log half
EuroSAT RT3 200 256 10´3 Ñ 10´6 after half TRADES 1.0 Ñ 1.2
EuroSAT highway+river affinity 200 256 10´3 Ñ 10´6 after half cross-entropy N/A

EuroSAT highway+river+agriculture affty. 200 256 10´3 Ñ 10´6 after half cross-entropy N/A

CIFAR-100 standard 200 256 10´3 Ñ 10´6 after half TRADES 0.01 Ñ 1.2 log half
CIFAR-100 RT5 200 256 10´3 Ñ 10´6 after half TRADES 0.01 Ñ 1.2 log half
CIFAR-100 superclass affinity 200 256 10´3 Ñ 10´6 after half TRADES 0.01 Ñ 1.2 log half

Tiny-Imagenet RT5 200 256 2.5 ¨ 10´5 Ñ 5 ¨ 10´6 after half TRADES 1.0 Ñ 10.0 half

ACAS Xu targeted affinity 100 128 10´3 Ñ 5 ¨ 10´6 after half cross-entropy N/A

Table B.1: Hyperparameters for each model used in the evaluation in Section 7.4.

an additional hyperparameter, λ, which was scheduled during training. Where applicable,
the “TRADES schedule” column describes how this parameter was scheduled over training.
For example, “0.01 Ñ 1.2 log half” means that λ was initialized to 0.1 and was increased
logarithmically each epoch (i.e., it increases at a decreasing rate) to reach a final value of
1.2 halfway through training; and “1.0 Ñ 1.2” means that λ was initialized to 1.0 and was
increased linearly to reach 1.2 on the final epoch.

B.6 Further CIFAR-100 Results

Additional Samples of RT5-Certifiable Points. In Section 7.4.3, we provide a few se-
lected samples of correctly-classified, RT5-certifiable points with their corresponding robust
prediction sets (Figure 7.6). Figure B.2 provides a larger random sample of such examples,
illustrating the types of non-top-1 guarantees that are typically achieved by an RT5 GloRo
Net on CIFAR-100.

Comparing Top-k Relaxations to Reducing the Number of Classes. To an extent,
relaxations like RTK robustness are somewhat similar to considering a classification problem
with fewer unique classes. We note, however, that achieving RTK VRA is still more difficult
than achieving the same standard VRA with 1{K the number of classes. This is because the
loosest top-k guarantee on a given point might be some k ă K, in which case the correct
class for that instance would need to be among the top k classes rather than the top K (see
Section 7.4.1:Metrics for details on how RTK and standard VRA are computed). E.g., some
points receive only a top-1 guarantee even under a relaxed robustness variant, meaning that
for those points to count towards the RTK VRA, they would need to be classified exactly
correctly, not simply result in the correct label appearing among the top K outputs.

For the sake of examining this juxtaposition, we trained a network on CIFAR-100 for
RT10 robustness in order to compare against state-of-the-art results on CIFAR-10 (which
has similar images and 1{K the number of classes). Leino et al. [88] find the state-of-the-art
standard VRA on CIFAR-10 with radius of ε “ 0.141 to be approximately 58%. Meanwhile,
we were able to achieve approximately 55% RT10 VRA on CIFAR-100 with the same radius.
Thus, these findings are essentially in line with the intuition that RTK robustness is similar
to, but slightly more challenging than the objective of standard robustness with 1{K the
number of classes.

158



Identifying, Analyzing, and Addressing Weaknesses in Deep Networks

skyscraper, 
dolphin

streetcar, 
train, bus

orchid, tulip chair, couch table, chair, 
television

lion, leopard bus, streetcar crab, 
motorcycle

wardrobe, 
television

rose, tulip, 
orchid, poppy

maple tree, 
oak tree, 

willow tree, 
pine tree

pickup truck, 
motorcycle, 

tractor

sea, cloud, 
mountain

oak tree, 
pine tree

rose, orchid, 
tulip, poppy

streetcar, bus pickup truck, 
train

sea, plain, 
cloud, mountain

castle, house maple tree, 
oak tree, 

willow tree

streetcar, 
bus, tractor

oak tree, 
pine tree, 

maple tree, 
willow tree

castle, house, 
streetcar

trout, shark shark, 
dolphin, 

whale, seal

oak tree, 
maple tree, 
pine tree, 

willow tree

cockroach, 
beetle

skyscraper, 
mountain

orange, pear, 
sweet pepper

rose, tulip, 
poppy

plate, clock cockroach, 
beetle

house, castle ray, worm, 
shark

maple tree, 
oak tree, 

willow tree

bicycle, 
tractor, 

motorcycle

bus, 
streetcar, 

pickup truck

poppy, tulip, 
orange, rose

sweet pepper, 
orange

sunflower, 
tulip, poppy

poppy, rose, 
tulip

apple, rose, 
tulip

maple tree, 
willow tree, 

oak tree

pickup truck, 
motorcycle, bus

road, bridge

poppy, tulip, 
orchid, rose

bus, tractor, 
streetcar, 

train

crab, lobster orchid, tulip wardrobe, 
television

trout, 
crocodile

caterpillar, 
butterfly

bicycle, 
motorcycle

keyboard, snake

Figure B.2: Random samples of CIFAR-100 instances that are both correctly classified and cer-
tified as top-k robust for k ą 1. The classes included in the RT5 robustness guarantee are given
beneath each image.
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Further Details on White-box
Membership Inference

C.1 Defenses Against Membership Inference

Concerns about privacy, underscored by concrete threats such as the white-box membership
inference attacks developed in Chapter 8, have also motivated research to provide adequate
defenses against such threats. In this section we explore the ability of some of the commonly-
proposed mitigation techniques to defend against our attack. In particular, we focus on
differential privacy [34] and regularization. We find that, while both are useful to a degree,
neither dropout nor ε-differentially private training with a large ε, are necessarily sufficient
for mitigating the privacy risk posed by our attack.

Differential Privacy

Differential privacy (DP) [34] is often seen as the gold standard for private models, as models
trained with differential privacy have provable guarantees against membership inference.
Namely, Yeom et al. [161] showed that, given an ε-differentially private learning algorithm,
an adversary can achieve an advantage of at most eε´1. Differential privacy has been applied
to many areas of machine learning, including logistic regression [22], SVMs [120], and more
recently, deep learning [1, 127]. However, current methods for ensuring differential privacy
are typically costly with respect to the accuracy of the model, particularly for small values
of ε, which give a better privacy guarantee. For this reason, in practice, ε is often chosen to
be quite large; for example, in 2017, Apple was found to use an effective epsilon as high as
16 in some of its routines [142].

We used the Tensorflow Privacy library [100], an implementation of the moments accoun-
tant method [1], which guarantees pε, δq-differential privacy, to study the practical efficacy of
our attack on protected models. This method utilizes several hyperparameters from which ε
is derived; for uniformity, we modified only the noise multiplier to achieve the desired ε, and
used heuristics described in the original paper [1] to select the remaining hyperparameters.
While a different tuning of the hyperparameters may result in a different privacy-utility
trade-off, the privacy guarantee depends only on ε and δ, not the hyperparameters directly.
In each case, δ was selected to be smaller than 1{N where N is the size of the dataset.
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Figure C.1: Attack accuracies against models trained with either dropout or (ε, δ)-differential
privacy for various values of ε.

Figure C.1 shows the effectiveness the nn-wb attack against models trained with differ-
ential privacy for various values of ε on each dataset. The train and test accuracies of the
corresponding differentially-private target models are shown in Table C.2. First, we note
that as expected, when ε decreases the adversary’s effectiveness quickly declines. However,
when ε is large (ε “ 16), our attack occasionally performs essentially the same on the
differentially-private model as on the undefended model. For example, on BCW, PD, and
LFW, 16-DP provided less defense than simple regularization, while harming the accuracy
of the model. Similarly, on Hep, 16-DP reduced the effectiveness of nn-wb, but not below
the effectiveness of shadow-bb on the corresponding undefended model. These findings sug-
gest that the practical benefits of large-ε-differential privacy cannot be taken for granted; in
general, differential privacy may only be effective for sufficiently small ε.

Nevertheless, it is clear that a practical adversary is unlikely to achieve performance
that is tight with the theoretical bound. For both the undefended model and the models
trained with DP for ε ą ln 2 « 0.69, the theoretical bound on the adversary’s accuracy is
100%, which no attack was able to achieve. On the other hand, for ε “ 0.25, the theoretical
maximum accuracy of the adversary is 64.2%. In most such cases, our attack fared far poorer
than this, coming closest on LFW, where our attack achieved 53.5% accuracy (25% of the
theoretical maximum advantage) on the 0.25-DP model. Thus, we conclude that because
the accuracy of a real adversary is not likely to be tight with the worst-case guarantee, it is
indeed pragmatic to select a somewhat large ε. However, our evaluation shows that ε should
not be chosen to be too large, or else the operative benefits of differential privacy may be
lost. Furthermore, the success of a given value of ε appears to vary across different datasets
and models. One must therefore be careful when making a practical selection for ε; to this
end, we suggest that our attack may be useful in assessing which values of ε are appropriate
for a given application.

An apparent drawback of the examined method for obtaining differential privacy, re-
vealed in our evaluation, is the steep cost in performance (Figure C.2), which is particularly
high for small ε. Despite the fact that our attack became far less effective for small ε, this cost
limits the practicality of the defense, highlighting the need for more research in this area.
The results we find here align with recent work [67], in which Jayaraman and Evans showed
that the privacy leakage tends to increase as ε becomes large enough to avoid a significant
loss in accuracy. Indeed, only on the German Credit dataset did 16-DP provide a good
defense while nearly maintaining the accuracy of the unprotected model. In the other cases
we evaluated, either our attack performed comparably on the DP and unprotected models,
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dataset no defense dropout ε “ 0.25 ε “ 1 ε “ 4 ε “ 16

BCW train 0.987 0.982 0.601 0.654 0.767 0.778
test 0.944 0.961 0.609 0.675 0.763 0.808

PD train 0.789 0.784 0.680 0.678 0.681 0.683
test 0.756 0.783 0.673 0.651 0.649 0.654

Hep train 0.997 0.992 0.534 0.695 0.700 0.729
test 0.810 0.849 0.555 0.786 0.803 0.817

GC train 0.937 0.932 0.625 0.656 0.680 0.707
test 0.701 0.730 0.610 0.661 0.687 0.698

Adult train 0.861 0.860 0.501 0.500 0.500 0.501
test 0.849 0.859 0.500 0.501 0.500 0.499

MNIST train 1.000 0.998 0.107 0.129 0.243 0.330
test 0.973 0.987 0.106 0.132 0.251 0.331

LFW train 1.000 0.999 0.109 0.137 0.214 0.428
test 0.842 0.835 0.116 0.119 0.200 0.463

CIFAR10 train 0.999 0.996 0.100 0.098 0.103 0.100
test 0.621 0.664 0.101 0.100 0.105 0.093

CIFAR100 train 0.999 0.977 0.010 0.010 0.010 0.011
test 0.257 0.312 0.010 0.010 0.011 0.011

Table C.2: Train and test accuracies for models trained with either dropout or (ε, δ)-differential
privacy for various values of ε.

or the accuracy of the private model was significantly lower than that of the unprotected
model.

Abadi et al. [1] mitigate the high cost in accuracy by first pre-training on public data,
and then fine-tuning only the top layers with differential privacy on the private training
set. While this public transfer learning approach may not always be possible, it has two key
benefits, the first being that the resulting model’s performance is far less poor. Second, only
the final layers of such a model are trained on the private data, and thus our attack may
only be able to effectively target those layers. Our experiments [83] show that our attack is
far more effective when all layers are leveraged, and that the earlier layers often account for
a sizable portion of the information leakage. This suggests that, when possible, a transfer
learning scheme like that of Abadi et al. could be a practical defense.

Regularization

Given the connection between membership inference and overfitting, regularization, such as
dropout [138], which aims to reduce overfitting, has also been proposed to combat mem-
bership inference. Generalization alone is not sufficient to protect against membership in-
ference [161], and in fact, our empirical results (Chapter 8, Section 8.3.3) show that we can
successfully attack even models with negligible generalization error; however, dropout has
been shown not only to reduce overfitting, but to strengthen privacy guarantees in neural
networks [66]. Figure C.1 shows the accuracy of our attack with and without dropout. We
find that dropout does not significantly impact the accuracy of our attack in most cases.
However, as opposed to DP, dropout is typically beneficial to the performance of the model,
while providing a modest defense. In this light, regularization (including dropout) may in
fact be the more practical defensive measure, insofar as it improves test accuracy, because

163



APPENDIX C. FURTHER DETAILS ON WHITE-BOX MEMBERSHIP INFERENCE

better generalization does appear to make membership more difficult, though clearly not
impossible, for an attacker.

Still, we warn that this may not be universally true of all forms of regularization, even
regularization that improves generalization—as we have demonstrated, a model can still
leak membership information through its parameters while making correct predictions on
unseen points.

Defenses in the Black-box Setting

For membership inference in the black-box setting, Shokri et al. [128] also propose a number
of other possible defenses, such as restricting the prediction vector to the top k classes, or
increasing the entropy of the prediction vector via increasing the normalization temperature
of the softmax. However, these defenses are easily circumvented in the white-box setting, as
the pre-modified outputs are still available to an attacker in this threat model.

Similarly, Salem et al. [121] propose a defense called model stacking, in which two models
are trained separately on the training data and a third model makes predictions based on
the outputs of the first two. While Salem et al. found this to be an effective defense against
black-box approaches, this defense is likewise circumvented in the white-box setting, as the
initial two models are available to the attacker.
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D.1 Additional Imagenet Reconstructions

Figure D.1 shows additional ImageNet feature visualizations using more sophisticated tech-
niques than Figure 8.10. In particular, we perform the optimization using a 2D FFT param-
eterization of the image, rather than optimization directly in pixel space—this technique
was suggested by Olah et al. [109]. This FFT preconditioning approach has the benefit of
de-correlating pixels, allowing for larger step sizes and faster convergence. We also use ran-
dom rotations, which Olah et al. found improved perceptual quality of feature visualizations
for individual neurons. This encourages reconstructions that are structurally invariant to
rotation.

We also add i.i.d. Gaussian noise to the model parameters each step of the optimization
process (resetting the parameters each time to maintain stationarity), which was inspired by
the observation of Terzi et al. [143] that adding noise scaled by the inverse Fisher Information
Matrix of the model parameters once at the beginning of training improves reconstruction
quality. This iterative noise emphasizes the most significant model parameters with respect
to the classification loss that we optimize, which is conceptually similar to global weight

Figure D.1: Similar reconstructions to Figure 8.10, except that more sophisticated feature visu-
alization techniques are used.
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pruning with a fixed threshold. Intuitively, the idea is to drown out the contribution of
neurons that are only weakly associated (in terms of input gradients) with a particular
classification output.

D.2 Set Transformer Details

The set transformer we use is a direct TensorFlow adaptation of the PyTorch implementa-
tion1 provided by Lee et al. [81]. In particular, the encoder is a stack of two Induced Set
Attention Blocks (ISABs) [81, Eq. (14)] and the decoder is a row-wise Feed-Forward network
(rFF) followed by a Set Attention Block (SAB) and finally a Pooling Multi-headed Atten-
tion (PMA) layer [81, Eq. (15)-(16)]. We use the same default parameters as the authors’
implementation,2 which uses a hidden dimension of 128 and 4 attention heads. The PMA
block uses 8 seed vectors. The only difference is that our decoder reduces the output to a
single vector of logits rather than a set of multiple vectors, as would be done in set-to-set
translation.

1https://github.com/juho-lee/set_transformer
2https://github.com/juho-lee/set_transformer/blob/master/models.py
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[122] Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Bach, and Klaus-Robert
Müller. Evaluating the Visualization of What a Deep Neural Network has Learned. In IEEE
Transactions on Neural Networks and Learning Systems, 2017.

[123] Sriram Sankararaman, Guillaume Obozinski, Michael I Jordan, and Eran Halperin. Genomic
Privacy and Limits of Individual Detection in a Pool. In Nature Genetics, 2009.

[124] Hanie Sedghi, Vineet Gupta, and Philip M. Long. The Singular Values of Convolutional
Layers. In International Conference on Learning Representations (ICLR), 2019.

[125] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi
Parikh, and Dhruv Batra. Grad-CAM: Why did you say that? Visual Explanations from Deep
Networks via Gradient-based Localization. In International Conference on Computer Vision
(ICCV), 2017.

174



Identifying, Analyzing, and Addressing Weaknesses in Deep Networks

[126] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Accessorize to a
Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition. In ACM Conference
on Computer and Communications Security (CCS), 2016.

[127] Reza Shokri and Vitaly Shmatikov. Privacy-Preserving Deep Learning. In ACM Conference
on Computer and Communications Security (CCS), 2015.

[128] Reza Shokri, Marco Stronati, and Vitaly Shmatikov. Membership Inference Attacks against
Machine Learning Models. In IEEE Symposium on Security and Privacy (S&P), 2016.

[129] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning Important Features
Through Propagating Activation Differences. 2017.

[130] Suyash S. Shringarpure and Carlos D. Bustamante. Privacy Risks from Genomic Data-
Sharing Beacons. In The American Journal of Human Genetics, 2015.

[131] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep Inside Convolutional Net-
works: Visualising Image Classification Models and Saliency Maps, 2014.

[132] Sahil Singla and Soheil Feizi. Bounding Singular Values of Convolution Layers, 2019.

[133] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable Distributional Robustness
with Principled Adversarial Training. In International Conference on Learning Representa-
tions (ICLR), 2018.

[134] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin Wattenberg.
SmoothGrad: Removing Noise by Adding Noise, 2017.

[135] Congzheng Song and Vitaly Shmatikov. Overlearning Reveals Sensitive Attributes, 2019.

[136] Liwei Song, Reza Shokri, and Prateek Mittal. Privacy Risks of Securing Machine Learning
Models Against Adversarial Examples. In ACM Conference on Computer and Communica-
tions Security (CCS), 2019.

[137] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving
for Simplicity: The All Convolutional Net, 2015.

[138] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. In Journal of
Machine Learning Research, 2014.
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