
Architectural Techniques for Improving
NAND Flash Memory Reliability

Yixin Luo

CMU-CS-18-101
March 2018

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee
Onur Mutlu, Chair
Phillip B. Gibbons

James C. Hoe
Yu Cai, SK Hynix

Erich F. Haratsch, Seagate Technology

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2018 Yixin Luo

This research was sponsored by Samsung, Qualcomm, AMD, the Oracle Software Engineering Innovation Foun-
dation, Facebook, and the National Science Foundation under grant numbers CCF-0953246, CNS-1065112, CNS-
1320531, and CNS-1409723.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Flash Memory, NAND Flash Memory, 3D NAND Flash Memory, Solid-state
Drives (SSD), Nonvolatile Memory (NVM), Integrated Circuit Reliability, Error Characteriza-
tion, Error Mitigation, Error Correction, Error Recovery, Data Recovery, Process Variation, Data
Retention, Memory Systems, Memory Controllers, Data Storage Systems, Fault Tolerance, Com-
puter Architecture

Abstract

Over the past decade, NAND flash memory has rapidly grown in popularity
within modern computing systems, thanks to its short random access latency, high
internal parallelism, low static power consumption, and small form factor. Today,
NAND flash memory is widely used as the primary storage medium for smartphones,
personal laptops, and data center servers. This growth in flash memory popularity
has been sustained by the decreasing cost per bit of NAND flash memory devices
over each technology generation, which is due to the increased storage density. The
higher density, however, comes at a cost of reduced storage reliability. Unreliable
primary data storage could lead to permanent loss of valuable data. Thus, we must
improve NAND flash memory reliability to prevent data loss.

Existing techniques to keep NAND flash memory reliable are costly. For exam-
ple, a strong error correcting code (ECC), such as low-density parity-check (LDPC)
code, is typically used to tolerate up to a relatively high raw bit error rate (e.g.,
between 10−3 and 10−2) from the flash memory. However, such ECC requires sig-
nificant redundancy, high latency, and high area overhead in today’s designs. To
tolerate more errors in future generations of NAND flash memories, a stronger ECC
is needed, which requires an even larger amount of data redundancy, latency and
area overhead than the ECC used in today’s flash memory. Such ECC is not only
very costly, but it also may not be as effective as other novel techniques that are spe-
cialized for different error types. Our goal in this dissertation is to greatly improve
flash memory reliability at low cost.

We identify three opportunities to improve the cost-efficiency of flash reliability
enhancement techniques. First, we can adapt the flash controller to various NAND
flash memory error characteristics, or even to the error characteristics of each indi-
vidual flash chip. Second, we can adapt the flash controller to how the host uses the
NAND flash memory, e.g., application access patterns and environmental tempera-
ture. Third, the flash chips are typically managed by a powerful controller within the
Solid-State Drive (SSD). This powerful computing resource is underutilized when
the SSD is idle or when the workload has low access intensity. We can use the
flash controller to optimize flash reliability in the background without capacity or
performance loss.

To exploit these opportunities in improving flash memory reliability, the main
thesis of our approach is to specialize the flash controller algorithms to the device
and workload characteristics, rather than using powerful but expensive generic error
tolerance techniques such as ECC. In this dissertation, we (1) develop a new under-
standing of the NAND flash memory error characteristics and the workload behavior
through rigorous experimental characterization, and (2) design smart flash controller

algorithms based on this new understanding to improve flash reliability at low cost.
To this end, we make four major contributions.

First, we propose a new technique called WARM to improve flash memory life-
time. The key idea is to identify and exploit the write-hotness of the workload in
the flash controller in order to improve flash reliability. We show that existing write-
hotness agnostic techniques lead to redundant refresh operations that degrade flash
lifetime. WARM manages write-hot data and write-cold data differently, and effec-
tively improves flash lifetime with low hardware and performance overhead.

Second, we propose a new framework to learn an online flash channel model
that predicts the underlying threshold voltage distribution of each flash chip. The
threshold voltage distribution decides the error characteristics of the flash chip and
changes over time due to flash memory wearout. We show that existing analytical
threshold voltage distribution models are unsuitable for online flash channel model-
ing, as they are either inaccurate or expensive to compute. We show that Student’s
t-distribution and the power law distribution can be used to model the static and dy-
namic (changing) behavior of the threshold voltage distribution with high accuracy
and low latency. We also show that a variety of existing techniques can be tuned
using this online model to improve flash memory lifetime.

Third, we perform the first detailed, comprehensive characterization and analy-
sis of 3D NAND flash memory errors. Through this analysis, we identify three new
error characteristics in 3D NAND flash memory due to its unique structure and cell
design. We develop models for two of the new error characteristics that are signifi-
cant in current-generation 3D NAND flash chips. We develop four new mechanisms
within the flash controller to mitigate the three new error types, and thus greatly
reduce the error rate, at low cost.

Fourth, we perform the first experimental characterization of the self-recovery
effect on 3D NAND flash memory and show that dwell time, i.e., the idle time be-
tween write cycles, and temperature significantly impact retention loss speed and
program accuracy. We develop a new unified model of these effects, called the
Unified self-Recovery and Temperature model (URT). Using this model, we pro-
pose a new technique called HeatWatch to mitigate errors due to early retention loss
in 3D NAND flash memory. HeatWatch reduces the raw bit error rate by tuning the
read reference voltages to the dwell time of the workload and the operating tempera-
ture of the flash memory. We show that HeatWatch efficiently tracks the temperature
and dwell time of NAND flash memory and greatly mitigates retention errors in 3D
NAND flash memory using this information.

Overall, this dissertation (1) deepens the understanding of the error characteris-
tics of both planar and 3D NAND flash memory through rigorous experimental char-
acterization and, (2) develops new flash controller algorithms that improve NAND
flash memory reliability (both lifetime and error rate) at low cost by taking advan-
tage of the flash device and workload characteristics that we find based on our new
understandings.

iv

Acknowledgments

First of all, I would like to thank my adviser, Onur Mutlu, for always trusting me
to do good work, encouraging me whenever a paper gets rejected, giving me enough
resources and opportunities to do great research, and pushing me to keep improving
my presentation and writing skills.

I am grateful to Saugata Ghose, Yu Cai, and Erich Haratsch for being both my
mentors and collaborators. I am grateful to the members of my PhD committee:
Phillip Gibbons and James Hoe for their valuable feedback and for making the final
steps towards my PhD very smooth. I am grateful to Deb Cavlovich who allowed
me to focus on my research by magically solving all other problems.

I am grateful to SAFARI group members that were more than just lab mates.
Saugata Ghose was not only a great mentor and collaborator to me who helped me
improve in all aspects, but also a great friend who was always available for help.
Hongyi Xin was like a big brother to me who was always supportive and gave me
kind advice that kept me on track during my early struggles, and was never dis-
appointing to have a fun discussion with about bioinformatics or history. Rachata
Ausavarungnirun was a fantastic cook and was always kind to share his delicious
food that reminded me of my grandmother’s cooking. Donghyuk Lee encouraged
me when it was most needed, and taught me his highest work ethic and kindness by
example. Justin Meza helped me improve my writing and presentation skills during
my early years in a very friendly manner. Chris Fallin was kind and patient enough
to share his wisdom and time for insightful research discussions, which helped to
improve my research skills. Kevin Chang was a perfect role model for me to fol-
low, who also happened to share similar hobbies with me. Yoongu Kim pushed me
to work harder and keep improving my research, and set a high standard for the
group in terms of quality of research, writing, and presentation. Vivek Seshadri,
Gennady Pekhimenko, Samira Khan were always eager to share valuable research
and career advice. Kevin Hsieh was a great roommate at the PDL Retreat, and was
always friendly to chat with. Amirali Boroumand was a nice buddy until he cold-
bloodedly left us for nicer weather in California. I also thank other members of
the SAFARI group for their assistance and support: Yang Li, Nandita Vijaykumar,
Jamie Liu, HanBin Yoon, Ben Jaiyen, Damla Senol, Arash Tavakkol, Minesh Patel,
and Jeremie Kim.

During my time at Carnegie Mellon, I met a lot of wonderful people: Haox-
ian Chen, Yan Gu, Yihan Sun, Yu Zhao, Yong He, Yanzhe Yang, Junchen Jiang,
Xuezhi Wang, Abutalib Aghayev, Jin Kyu Kim, Joy Arulraj, Lin Ma, Michael
Zhang, Huanchen Zhang, Jinliang Wei, Dominic Chen, Guangshuo Liu, Junyan Zhu,
Tianshi Li, Jiyuan Zhang, and many others who helped and supported me in many
different ways. I am also grateful to people in the PDL and CALCM groups, for

accepting me into their communities and for all the feedback and comments that
helped improve my work significantly.

I am grateful to my internship mentors for giving me the opportunities and re-
sources to do research that is not only practical enough to benefit the company but
also forward-looking enough to lead to this thesis. At Microsoft Research, I had
the privilege to closely work with Jie Liu, Sriram Govindan, Bikash Sharma, Mark
Santaniello, and Aman Kansal. At Seagate, I had the privilege to closely work with
Erich Haratsch, Ludovic Danjean, Thuy Nguyen, Hakim Alhussien, Sundararajan
Sankaranarayanan, Lei Chen, Hongmei Xie, and many others.

I would like to acknowledge the enormous love and support that I received from
my friends and family. Firstly, I would like to thank my girlfriend, Fan Yang, for all
her understanding and support that made me brave and focused enough to finish my
PhD. I would like to thank my friends all over the world: Kaiyu Shen, Zixiao Chen,
Siyuan Sun, Haishan Zhu, Yifei Huang, Yuqin Mu, Pengyao Chen, Xuanxuan and
her lovely family, and many others who really helped me through my hardest days
and brought me a lot of joy whenever I visited. Lastly, I would like to thank my
parents, who raised me to be the person I am today. I thank my mother, Yi, for her
encouragement, support, love, and sacrifice. I thank my father, Wenping, for setting
a high standard for success.

vi

Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 The Problem: The Cost of Flash Reliability . 1

1.1.1 Flash Reliability Problems . 1
1.1.2 The Cost of Improving Flash Reliability 3

1.2 Related Work . 4
1.2.1 NAND Flash Memory Error Characterization 4
1.2.2 Improving Flash Reliability with Device Awareness 4
1.2.3 Improving Flash Reliability with Workload Awareness 5
1.2.4 Summary . 5

1.3 Thesis Statement and Overview . 6
1.3.1 WARM—Write-hotness Aware Retention Management 6
1.3.2 Online Flash Channel Modeling and Its Applications 7
1.3.3 3D NAND Flash Memory Error Characterization and Mitigation 7
1.3.4 HeatWatch: Self-Recovery and Temperature Aware Retention Error Mit-

igation . 8
1.4 Thesis Outline . 9
1.5 Contributions . 9

2 Basics of Modern SSDs and NAND Flash Memory 13
2.1 State-of-the-Art SSD Architecture . 13

2.1.1 Flash Memory Organization . 14
2.1.2 Memory Channel . 15
2.1.3 SSD Controller . 15
2.1.4 Design Tradeoffs for Reliability . 24

2.2 NAND Flash Memory Basics . 26
2.2.1 Storing Data in a Flash Cell . 26
2.2.2 Flash Block Design . 28
2.2.3 Read Operation . 29
2.2.4 Program and Erase Operations . 30

vii

3 Flash Memory Reliability: Background and Related Work 33
3.1 NAND Flash Memory Error Characteristics . 33

3.1.1 P/E Cycling Errors . 35
3.1.2 Program Errors . 35
3.1.3 Cell-to-Cell Program Interference Errors 36
3.1.4 Data Retention Errors . 37
3.1.5 Read Disturb Errors . 38
3.1.6 Self-Recovery Effect . 38
3.1.7 Large-Scale Studies on SSD Errors . 40

3.2 Error Mitigation . 43
3.2.1 Shadow Program Sequencing . 44
3.2.2 Neighbor-Cell Assisted Error Correction 45
3.2.3 Refresh Mechanisms . 47
3.2.4 Read-Retry . 50
3.2.5 Voltage Optimization . 50
3.2.6 Hot Data Management . 55
3.2.7 Adaptive Error Mitigation Mechanisms 56

3.3 Error Correction and Data Recovery Techniques 59
3.3.1 Error-Correcting Codes Used in SSDs 59
3.3.2 Error Correction Flow . 69
3.3.3 BCH and LDPC Error Correction Strength 73
3.3.4 SSD Data Recovery . 75

3.4 Emerging Reliability Issues for 3D NAND Flash Memory 77
3.4.1 3D NAND Flash Design and Operation 77
3.4.2 Errors in 3D NAND Flash Memory . 79
3.4.3 Changes in Error Mitigation for 3D NAND Flash Memory 81

3.5 Similar Errors in Other Memory Technologies 82
3.5.1 Cell-to-Cell Interference Errors in DRAM 82
3.5.2 Data Retention Errors in DRAM . 82
3.5.3 Read Disturb Errors in DRAM . 86
3.5.4 Large-Scale DRAM Error Studies . 88
3.5.5 Latency-Related Errors in DRAM . 90
3.5.6 Error Correction in DRAM . 92
3.5.7 Errors in Emerging Nonvolatile Memory Technologies 93

4 WARM—Write-hotness Aware Retention Management 94
4.1 Motivation . 95

4.1.1 Retention Time Relaxation . 95
4.1.2 Refresh Overhead Mitigation . 96
4.1.3 Opportunities to Exploit Write-Hotness 97

4.2 Mechanism . 98
4.2.1 Partitioning Data Using Write-Hotness 98
4.2.2 Flash Management Policies . 101
4.2.3 Implementation and Overheads . 103

viii

4.3 Methodology . 103
4.4 Evaluations . 104

4.4.1 Hot Pool and Cooldown Window Sizes 106
4.4.2 Lifetime Improvement . 107
4.4.3 Improvement in Endurance Capacity . 107
4.4.4 Reduction of Refresh Operations . 109
4.4.5 Impact on Performance . 110
4.4.6 Sensitivity Studies . 111

4.5 Limitations . 113
4.6 Conclusion . 113

5 Online Flash Channel Modeling and Its Applications 115
5.1 Motivation . 116
5.2 Characterization Methodology . 116
5.3 Static Distribution Model . 118

5.3.1 Gaussian-based Model . 118
5.3.2 Normal-Laplace-based Model . 120
5.3.3 Student’s t-based Model . 123
5.3.4 Model Validation and Comparison . 125

5.4 Dynamic Modeling . 129
5.4.1 Static Model Trends Over P/E Cycles 129
5.4.2 Power Law-based Model . 133
5.4.3 Model Validation . 134

5.5 Example Applications . 136
5.5.1 Raw Bit Error Rate Estimation . 136
5.5.2 Optimal Read Reference Voltage Prediction 137
5.5.3 Expected Lifetime Estimation . 139
5.5.4 Soft Information Estimation for LDPC Codes 140
5.5.5 Improving Flash Performance . 140

5.6 Related Work . 141
5.7 Limitations . 142
5.8 Conclusion . 142

6 3D NAND Flash Memory Error Characterization and Mitigation 143
6.1 3D NAND Error Characterization Overview . 144

6.1.1 Methodology . 145
6.2 Key Characterization Results . 146

6.2.1 Layer-to-Layer Process Variation . 146
6.2.2 Early Retention Loss . 148
6.2.3 Retention Interference . 150
6.2.4 Summary . 151

6.3 Comprehensive Characterization Results . 154
6.3.1 Write-Induced Errors . 154
6.3.2 Early Retention Loss . 159

ix

6.3.3 Read-Induced Errors . 162
6.3.4 Layer-To-Layer Process Variation . 167
6.3.5 Bitline-to-Bitline Process Variation . 168

6.4 3D NAND Error Models . 169
6.4.1 Process Variation Model . 169
6.4.2 Retention Loss Model . 170

6.5 3D NAND Error Mitigation Techniques . 172
6.5.1 LaVAR: Layer Variation Aware Reading 172
6.5.2 LI-RAID: Layer-Interleaved RAID . 173
6.5.3 ReMAR: Retention Model Aware Reading 175
6.5.4 ReNAC: Mitigating Retention Interference 177
6.5.5 Implications on Systems Reliability . 178

6.6 Limitations . 179
6.7 Conclusion . 179

7 HeatWatch: Self-Recovery and Temperature Aware Retention Error Mitigation 180
7.1 Characterizing the Self-Recovery Effect . 180

7.1.1 Characterization Methodology . 181
7.1.2 Characterizing the Dwell Time Effect 182
7.1.3 Characterizing the Temperature Effect 186
7.1.4 Characterizing the Recovery Cycle Effect 189
7.1.5 Summary of Key Observations . 190

7.2 Self-Recovery Effect Modeling . 190
7.2.1 Program Variation Component . 190
7.2.2 Effective Retention/Dwell Time Component 191
7.2.3 Self-Recovery and Retention Component 192

7.3 Improving 3D NAND Reliability . 193
7.3.1 Observations . 193
7.3.2 HeatWatch Mechanism . 195
7.3.3 Evaluation . 197

7.4 Related Work . 199
7.5 Limitations . 200
7.6 Conclusion . 200

8 System-Level Implications and Lessons Learned 202
8.1 System-Level Implications . 202

8.1.1 Impact on Tolerable Write Frequency 202
8.1.2 Impact on ECC Cost . 203
8.1.3 Impact on Performance and Flash Management Policies 203

8.2 Lessons Learned . 204
8.2.1 Combining Large-Scale and Small-Scale Characterization Studies 204
8.2.2 Improve Systems Reliability Rather Than Device Reliability Alone . . . 204

9 Conclusions 205

x

10 Future Research Directions 207
10.1 Temperature Effects on Read Operations . 207
10.2 SSD Errors At Scale . 208

10.2.1 3D NAND Errors In the Field . 208
10.2.2 Predicting and Preventing SSD Failures 209
10.2.3 Tolerating Reliability Variation Across SSDs 209

10.3 Enabling Cold Storage in SSDs . 210
10.3.1 Identifying Suitable Data for SSD Cold Storage 210
10.3.2 Increasing SSD Retention Time . 211
10.3.3 Increasing SSD Capacity . 211

Other Works of This Author 213

Bibliography 214

xi

List of Figures

1.1 (a) Flash reliability (i.e., P/E cycle lifetime and raw bit error rate) and (b) ECC
redundancy for each NAND flash memory technology node (for single-level cell,
i.e., SLC devices for 90 nm to 72 nm technology nodes; for multi-level cell, i.e.,
MLC devices for 50 nm technology node; for triple-level cell, i.e., TLC devices
for 32 nm to 20 nm technology nodes). 2

1.2 Threshold voltage distribution for MLC NAND flash memory. 2
1.3 Shifted threshold voltage distribution for MLC NAND flash memory. 3

2.1 (a) SSD system architecture, showing controller (Ctrl) and chips. (b) Detailed
view of connections between controller components and chips. 13

2.2 Flash memory organization. 14
2.3 Data path protection employed within the controller. 20
2.4 Example layout of ECC codewords, logical blocks, and superpage-level parity

for superpage n in superblock m. In this example, we assume that a logical block
contains two codewords. 23

2.5 Relationship between write amplification (WA) and the overprovisioning factor
(OP). 25

2.6 Flash cell (i.e., floating gate transistor) cross section. 27
2.7 Threshold voltage distribution of MLC (top) and TLC (bottom) NAND flash

memory. 27
2.8 Internal organization of a flash block. 28
2.9 Voltages applied to flash cell transistors on a bitline to perform (a) read, (b) pro-

gram, and (c) erase operations. 29
2.10 Two-step programming algorithm for MLC flash. 31
2.11 Foggy-fine programming algorithm for TLC flash. 31

3.1 Pictorial depiction of errors accumulating within a NAND flash block as P/E
cycle count increases. 34

3.2 Threshold voltage distribution shifts and widening can cause the distributions
of two neighboring states to overlap with each other (compare to Figure 2.7),
leading to read errors. 34

3.3 Impact of program errors during two-step programming on cell threshold voltage
distribution. 36

3.4 Immediately-adjacent cells that can induce program interference on a victim cell
that is on wordline N and bitline M. 37

xii

3.5 Distribution of uncorrectable errors across SSDs used in Facebook’s data centers. 41
3.6 Pictorial and abstract depiction of the pattern of SSD failure rates observed in

real SSDs operating in a modern data center. An SSD fails at different rates
during distinct periods throughout the SSD lifetime. 42

3.7 SSD failure rate vs. the amount of data written to the SSD. The three periods
of failure rates, shown pictorially and abstractly in Figure 3.6, are annotated on
each graph: (1) early detection, (2) early failure, and (3) useful life/wearout. . . . 42

3.8 SSD failure rate vs. operating temperature. 43
3.9 Order in which the pages of each wordline (WL) are programmed using (a) a bad

programming sequence, and using shadow sequencing for (b) MLC and (c) TLC
NAND flash. The bold page programming operations for WL1 induce cell-to-
cell program interference when WL0 is fully programmed. 45

3.10 Overview of neighbor-cell-assisted error correction (NAC). 46
3.11 Overview of in-place refresh mechanism for MLC NAND flash memory. 48
3.12 Finding the optimal read reference voltage after the threshold voltage distribu-

tions overlap (left), and raw bit error rate as a function of the selected read refer-
ence voltage (right). 51

3.13 Disparity-based read reference voltage approximation to find Vinitial for MLC
NAND flash memory. Each circle represents a cell, where a dashed border in-
dicates that the LSB is undetermined, a solid border indicates that the LSB is
known, a hollow circle indicates that the MSB is unknown, and a filled circle
indicates that the MSB is known. 52

3.14 Dynamic pass-through voltage tuning at different retention ages. 54
3.15 Comparison of space used for user data, overprovisioning, and ECC between a

fixed ECC and a multi-rate ECC mechanism. 56
3.16 Illustration of how multi-rate ECC switches to different ECC codewords (i.e.,

ECCi) as the RBER grows. OPi is the overprovisioning factor used for engine
ECCi, and WAi is the resulting write amplification value. 57

3.17 Lifetime improvements of using multi-rate ECC over using a fixed ECC coding
rate. 58

3.18 States used when a TLC cell (with 8 states) is downgraded to an MLC cell (with
4 states). 58

3.19 BCH decoding steps. 61
3.20 Example LDPC code for a seven-bit codeword with a four-bit data message

(stored in bits c0, c1, c2, and c3) and three parity check equations (i.e., n = 7,
k = 4), represented as (a) an H matrix and (b) a Tanner graph. 64

3.21 LDPC decoding steps for a single level of hard or soft decoding. 66
3.22 (a) Example error correction flow using BCH codes and LDPC codes, with aver-

age latency of each BCH/LDPC stage. (b) The corresponding codeword failure
rate for each LDPC stage. 71

3.23 LDPC hard decoding and the first two levels of LDPC soft decoding, showing
the Vre f value added at each level, and the resulting threshold voltage ranges
(R0–R3) used for flash cell categorization. 73

xiii

3.24 Raw bit error rate versus uncorrectable bit error rate for BCH codes, hard LDPC
codes, and soft LDPC codes. 74

3.25 Some retention-prone (P) and retention-resistant (R) cells are incorrectly read
after charge leakage due to retention time. RFR identifies and corrects the incor-
rectly read cells based on their leakage behavior. 76

3.26 Cross section of a charge trap transistor, used as a flash cell in 3D charge trap
NAND flash memory. 78

3.27 Organization of flash cells in an M-layer 3D charge trap NAND flash memory
chip, where each block consists of M wordlines and N bitlines. 79

3.28 DRAM retention time vs. operating temperature, normalized to the retention time
of each DRAM cell at 50 ◦C. 83

3.29 Negative performance and power consumption effects of refresh in contemporary
and future DRAM devices. We expect that as the capacity of each DRAM chip
increases, (a) the refresh latency, (b) the DRAM throughput lost during refresh
operations, and (c) the power consumed by refresh will all increase. 84

3.30 Cumulative distribution of the number of cells in a DRAM module with a re-
tention time less than the value on the x-axis, plotted for seven different DRAM
modules. 85

3.31 RowHammer error rate vs. manufacturing dates of 129 DRAM modules we tested. 87
3.32 Number of victim cells (i.e., number of bit errors) when an aggressor row is

repeatedly activated, for three representative DRAM modules from three major
manufacturers. We label the modules in the format Xyyww

n , where X is the man-
ufacturer (A, B, or C), yyww is the manufacture year (yy) and week of the year
(ww), and n is the number of the selected module. 87

3.33 Distribution of memory errors among servers with errors (a), which resembles
a power law distribution. Memory errors follow a Pareto distribution among
servers with errors (b). 89

3.34 Relative failure rate for servers with different chip densities. Higher densities
(related to newer technology nodes) show a trend of higher failure rates. 89

3.35 Bit error rates of tested DRAM modules as we reduce the DRAM access latency
(i.e., the tRCD timing parameter). 91

4.1 P/E cycle endurance from different amounts of internal retention time without
refresh. 95

4.2 Fraction of P/E cycles consumed by refresh operations. 96
4.3 Cumulative distribution function of writes to pages for 16 evaluated workload

traces. Total data footprints for our workloads are 217.6GB, i.e., 1.0% on the
x-axis represents 2.176GB of data. 97

4.4 Write-hot data identification algorithm using two virtual queues and monitoring
windows. 99

4.5 Write-hotness aware retention management policy overview. 100
4.6 Absolute flash memory lifetime for Baseline, WARM, FCR, WARM+FCR, ARFCR,

and WARM+ARFCR configurations. Note that the y-axis uses a log scale. 107

xiv

4.7 Normalized flash memory lifetime improvement when WARM is applied on top
of Baseline, FCR, and ARFCR configurations. 108

4.8 WARM endurance capacity, normalized to Baseline. 108
4.9 Flash writes for FCR (left bar) and WARM+FCR (right bar), broken down into host

writes to the hot/cold pool (host_hot/host_cold), garbage collection writes
(gc), refresh writes (ref), and writes generated by WARM for migrations from
the hot pool to the cold pool (hot2cold). 109

4.10 WARM average response time, normalized to Baseline. 110
4.11 Flash memory lifetime improvement for WARM, FCR, WARM+FCR, ARFCR, and

WARM+ARFCR configurations under different amounts of over-provisioning, nor-
malized to the Baseline lifetime for each over-provisioning amount. Note that
the y-axis uses a log scale. 111

4.12 Flash memory lifetime improvements for WARM+FCR over FCR under different
refresh rate assumptions. 112

4.13 Fraction of P/E cycles consumed by refresh operations after applying WARM+FCR

for a (a) 3-day, (b) 3-week, or (c) 3-month refresh period. Solid trend lines show
the fraction consumed by FCR only, from Figure 4.2, for comparison. Note that
the x-axis uses a log scale. 113

5.1 Methodology for finding the threshold voltage of an MLC NAND flash memory
cell. 117

5.5 Modeling error of the evaluated threshold voltage distribution models, at various
P/E cycle counts. 126

5.6 Overall latency breakdown of the three evaluated threshold voltage distribution
models for static modeling. 128

5.7 Change in mean value of each state’s threshold voltage distribution as P/E cy-
cle count increases, for the static Student’s t-based model (blue circles) and the
dynamic model (red line). 130

5.8 Change in standard deviation of each state’s threshold voltage distribution as P/E
cycle count increases, for the static Student’s t-based model (blue circles) and
the dynamic model (red line). 131

5.9 Change in tail values (ν) of each state’s threshold voltage distribution as P/E
cycle count increases, for the static Student’s t-based model (blue circles) and
the dynamic model (red line). 132

5.10 Change in log value of the program error probability as P/E cycle count increases,
for the static Student’s t-based model (blue circles) and the dynamic model (red
line). 133

5.11 Threshold voltage distribution as predicted by our dynamic model for 20K P/E
cycles, using characterization data from 2.5K, 5K, 7.5K, and 10K P/E cycles,
shown as solid/dashed lines. Markers represent data measured from real NAND
flash chips at 20K P/E cycles. 135

5.12 Modeling error of predicted threshold voltage distribution for our dynamic model
at 20K P/E cycles, using characterization data from N different P/E cycles. . . . 135

xv

5.13 Actual and modeled raw bit error rate using the three evaluated threshold volt-
age distribution models when reading with fixed default read reference voltages
(Vre f), across different P/E cycle counts. 137

5.14 Actual and modeled optimal read reference voltages (Vopt) using the three eval-
uated threshold voltage distribution models at different P/E cycle counts. 138

5.15 RBER achieved by actual and modeled optimal read reference voltages (Vopt)
using the three evaluated threshold voltage distribution models at different P/E
cycle counts. 139

6.1 3D NAND threshold voltage distribution before (black) and after (red) the data
is subject to a high number of errors. 146

6.2 Layer-to-layer variation of RBER. 147
6.3 Optimal read reference voltage variation across layers. 148
6.4 Retention error rate comparison between 3D NAND and planar NAND flash

memory. 149
6.5 Optimal read reference voltages, for varying retention ages. 150
6.6 Retention interference at 10K P/E cycles. 151
6.7 Program/erase variation errors vs. P/E cycles. 155
6.8 Mean of distribution for program/erase variation error model, as the P/E cycle

count increases. 156
6.9 Standard deviation of distribution for program/erase variation error model, as the

P/E cycle count increases. 156
6.10 Optimal read reference voltages vs. P/E cycles. 157
6.11 Interference correlation for a victim cell, as a result of programming on aggressor

cells of varying distance. 158
6.12 Interference vs. P/E cycle. 159
6.13 RBER variation across retention age, broken down by (1) MSB or LSB page,

and by (2) the state transition of each flash cell. 160
6.14 Mean of distribution for retention loss error model, as retention age increases. . . 161
6.15 Standard deviation of distribution for retention loss error model, as retention age

increases. 161
6.16 Read variation error, varying over the RBER. 162
6.17 Read variation error vs. read offset. 163
6.18 RBER vs. read disturb counts. 164
6.19 Distribution mean vs. read disturb counts. 164
6.20 Distribution standard deviation vs. read disturb counts. 165
6.21 Optimal read reference voltages vs. read disturb counts. 165
6.22 Read disturb error increase rate vs. P/E cycle. 166
6.23 Distribution mean increase rate vs. P/E cycle. 166
6.24 Layer-to-layer variation of distribution mean. 167
6.25 Layer-to-layer variation of distribution width. 167
6.26 RBER variation across bitline. 168
6.27 Distribution mean variation across bitlines. 169
6.28 RBER distribution within a flash block. 170

xvi

6.29 RBER reduction using process-variation-aware optimal read reference voltage. . 173
6.30 LI-RAID layout example for an SSD with 4 chips and with 4 wordlines in each

flash block. 174
6.31 Worst-case RBER at 10,000 P/E cycles when applying different error mitigation

techniques. 175
6.32 Achievable 3D NAND endurance when refreshing periodically at different inter-

vals. 176
6.33 RBER reduction using retention-aware optimal read reference voltage. 177
6.34 RBER reduction using retention-aware optimal read reference voltage. 178

7.1 Change in RBER over retention time for flash pages that were programmed using
different dwell times. 183

7.2 Threshold voltage distribution before and after a long retention time, for different
dwell times. 184

7.3 Threshold voltage distribution mean vs. retention time for different dwell times. . 185
7.4 Retention loss speed (left) and program offset (right), for different dwell times. . 186
7.5 RBER over retention time at 10,000 P/E cycles under different programming

temperatures. 187
7.6 Threshold voltage distribution right after programming at different programming

temperatures, predicted by our retention loss model (Equation 7.1). 187
7.7 Retention loss speed (left) and program offset (right) across different program-

ming temperatures. 188
7.8 Retention loss speed vs. recovery cycles. 189
7.9 SRRM prediction accuracy. 193
7.10 Change in flash lifetime due to write intensity and environmental temperature

(tr = 3 months). 194
7.11 RBER vs. |Vre f −Vopt | distance. 195
7.12 Measured and URT-predicted Vopt . 195
7.13 RBER vs. P/E cycle count. 198
7.14 P/E cycle lifetime for each workload. 199

xvii

List of Tables

2.1 Tradeoff between strength of error correction configuration and amount of SSD
space left for overprovisioning. 26

3.1 List of different types of errors mitigated by various NAND flash error mitigation
mechanisms. 44

4.1 Parameters of the simulated flash-based SSD. 104
4.2 Source and description of simulated traces. 105
4.3 Hot pool and cooldown window sizes as set dynamically by WARM. H%: Hot

pool size as a percentage of total flash drive capacity. CW: Cooldown window
size in number of blocks. 106

5.1 Modeling error of the evaluated threshold voltage distribution models, at various
P/E cycle counts. 126

5.2 Computation and storage complexity comparison for the three evaluated thresh-
old distribution models. 127

6.1 Summary of flash error characteristics of 3D NAND and planar NAND flash
memory. 153

6.2 Model parameters for 3D NAND retention loss. t is retention time, PEC is P/E
cycle lifetime. 171

xviii

Chapter 1

Introduction

1.1 The Problem: The Cost of Flash Reliability

In many modern servers and mobile devices, NAND flash memory (i.e., “flash” or “NAND
flash”) is used as the primary persistent storage device due to its lower access latency compared
to a magnetic disk drive. As we generate more data at an increasingly faster speed, the need
for higher density NAND flash memory also increases. In the past decade, flash density has
increased by more than 1000× through aggressive process technology scaling from 90 nm to
15 nm. This rapid increase in flash density, however, has come at the cost of severely degraded
flash memory reliability and lifetime, as is shown in Figure 1.1a. For example, the number
of times that a cell can be reliably programmed and erased before wearing out (i.e., P/E cycle
lifetime, shown as the blue curve in Figure 1.1a) has dropped from 10,000 times for 72 nm NAND
flash (for a single-level cell, i.e., SLC device) to only 1,000 times for 20 nm NAND flash (for
a triple-level cell, i.e., TLC device). In the meantime, data reliability, measured by the number
of bit errors in a unit of data stored within the flash memory (i.e., raw bit error rate, shown
as the orange curve in Figure 1.1a), increased by seven orders of magnitude from technology
node 90 nm to 20 nm. Since the data stored on primary storage is often the only copy, unreliable
data storage could lead to permanent loss of valuable data. Thus, we must improve NAND flash
memory reliability to prevent data loss.

1.1.1 Flash Reliability Problems

First, we briefly introduce the basics of NAND flash memory to better understand the flash re-
liability problems. More detailed background on modern flash-memory-based solid-state drives
(SSDs) and NAND flash memory can be found in Chapter 2. In NAND flash memory, each flash
cell consists of a transistor that can store charge. A flash cell represents a certain data value based
on the threshold voltage (Vth) of its transistor. In multi-level cell (MLC) flash memory, each cell
stores two bits of data. A threshold voltage window (i.e., a state) is assigned for each possible
two-bit value. Figure 1.2 shows the four possible states (i.e., ER, P1, P2, P3) in MLC flash mem-
ory, along with their corresponding two-bit values (i.e., the most significant bit, MSB, or, the
least significant bit, LSB). The state of each flash cell can be read by applying one of three read

1

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0

2

4

6

8

10

12

90 72 50 32 25 20

R
aw

 B
it

 E
rr

o
r

R
at

e

P/
E

C
yc

le
 L

if
et

im
e

(T
h

o
u

sa
n

d
s)

Technology Node (nm)

P/E Cycle Lifetime Raw Bit Error Rate

(a) Decreasing flash reliability

0

2

4

6

8

10

12

14

16

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

90 72 50 32 25 20

EC
C

 R
ed

u
n

d
an

cy
 (

%
)

R
aw

 B
it

 E
rr

o
r

R
at

e

Technology Node (nm)

Raw Bit Error Rate ECC Redundancy

(b) Increasing ECC Redundancy

Figure 1.1: (a) Flash reliability (i.e., P/E cycle lifetime and raw bit error rate) and (b) ECC
redundancy for each NAND flash memory technology node (for single-level cell, i.e., SLC
devices for 90 nm to 72 nm technology nodes; for multi-level cell, i.e., MLC devices for 50 nm
technology node; for triple-level cell, i.e., TLC devices for 32 nm to 20 nm technology nodes).
Reproduced from [244].

reference voltages (i.e., Va, Vb, and Vc) to the cell. Before each flash cell can be programmed to a
new state, i.e., be written, the flash cell needs to be erased to the ER state. Due to the combina-
tion of program variation, i.e., the variation in program operations, and manufacturing process
variation, the threshold voltage of cells programmed to the same state follow a Gaussian-like
distribution across the voltage window of the state [23, 195, 260], depicted as the curve for each
state in Figure 1.2.

Pr
ob

ab
ili

ty
D

en
si

ty

Va Vb Vc

Threshold Voltage (Vth)

P1
01

P2
00

P3
10

ER
11

MSB LSB

Figure 1.2: Threshold voltage distribution for MLC NAND flash memory.

The reliability problems in NAND flash memory are caused by various types of noise that
arise from writing, reading, or idling of the NAND flash memory, or from process variation [21,
22, 23, 24, 26, 27, 33, 35, 219, 252]. Such noise shifts the threshold voltage distribution across
the read reference voltages, as we show by comparing the relative position of the original and the
shifted distributions in Figure 1.3. As a consequence of this shift, some of the cells are misread
as being in a different state than the state they were programmed to. This phenomenon leads to a
number of raw bit errors. More detailed background on the various types of NAND flash memory

2

errors can be found in Section 3.1. These errors include P/E cycling errors [23, 195, 260],
cell-to-cell program interference errors [24, 26], program errors [34, 195, 260], read disturb
errors [35, 260], retention errors [22, 27], and process variation errors [21, 269]. For instance,
a flash cell wears out each time we write data to it via program or erase operations. Thus, the
P/E cycling error rate increases over multiple program/erase operation cycles, or P/E cycles. As
another example, the electrical charge stored in a flash cell leaks over time. Thus, the retention
error rate increases during the idle time after the data is programmed to the cell, or retention
time. To limit the raw bit error rate to a tolerable level, flash vendors guarantee reliable operation
only for a limited number of P/E cycle lifetime and a limited amount of retention time [124].

Pr
ob

ab
ili

ty
D

en
si

ty

Va Vb Vc

Threshold Voltage (Vth)

P1 P2 P3ER

Raw bit errors

Shifted
Original

Figure 1.3: Shifted threshold voltage distribution for MLC NAND flash memory. Reproduced
from [199].

1.1.2 The Cost of Improving Flash Reliability
To improve the reliable operation of NAND flash memory in the presence of raw bit errors, the
common modern approach is to trade-off storage density or performance for higher reliability.
We call this the “naive approach”. For example, a strong error correcting code (ECC) or a re-
dundant array of independent disk (RAID) techniques use data redundancy to detect and correct
raw bit errors, trading off storage density for better reliability. As Figure 1.1b shows, in order to
tolerate the significant increase in raw bit error rate that happens when going from a 90 nm tech-
nology node to a 20 nm technology node, the amount of redundant storage reserved for ECC (i.e.,
ECC redundancy, shown as the green curve in Figure 1.1b) has to increase exponentially from
∼2% to ∼14%. Today’s NAND flash memory-based solid-state drives (SSDs) use low-density
parity-check (LDPC) codes. The ECC redundancy required by LDPC codes for a certain error
correction capability, i.e., the ability to correct a certain number of errors, is already approaching
the theoretical limit, known as the Shannon limit [203, 204, 294]. Further improving the error
correction capability of the ECC requires either higher ECC redundancy or larger coding gran-
ularity. The former greatly degrades storage density. The latter greatly degrades performance
and also increases the hardware overhead of the ECC decoder/encoder [22, 25]. Another naive
way to improve NAND flash memory reliability is to increase the precision of program and erase
operations to mitigate write-induced errors. However, this method significantly increases write
latency, degrading SSD performance.

Compared to the naive approach of providing better ECC at high cost and high performance
overhead, we believe it is more appealing to develop new techniques to achieve better flash reli-
ability without trading off storage density or performance. These new techniques would enable
flash vendors to scale NAND flash memory density more aggressively and would make NAND

3

flash technology appealing for even more use cases and applications in future computing sys-
tems. These new techniques would also enable us to increase the storage density or performance
by tuning down flash reliability when it is not required. For example, in geo-replicated data cen-
ters, data reliability is already handled by application-level error tolerance techniques. Thus, in
these data centers, single-device reliability can be lowered to improve storage density by using
quadruple-level cell (QLC) technology, which is very unreliable. If we could accomplish this
without degrading data loss guarantees, we could buy back the data redundancy caused by data
center geo-replication, reducing the total cost of ownership (TCO) of the data center. Our goal in
this dissertation is to build a fundamental understanding of flash devices and application behavior
to enable such techniques.

1.2 Related Work
Several prior works characterize NAND flash memory errors and develop mechanisms to im-
prove flash reliability. In this section, we discuss some closely related prior approaches. We
group prior works based on their high-level approach and discuss their shortcomings.

1.2.1 NAND Flash Memory Error Characterization
Prior work has characterized all types of raw bit errors in planar (or 2D) NAND flash memory,
including P/E cycling errors [23, 33, 195, 219, 260], program errors [34, 195, 260], cell-to-cell
program interference errors [24, 26, 33], retention errors [22, 27, 33, 219], read disturb errors [33,
35, 219, 252], and process variation errors [21, 269]. The findings from these characterizations
can be found in Section 3.1.

While these works altogether have comprehensively studied the error characteristics of pla-
nar NAND flash memory, the raw data from these past characterization works are unavailable to
the public for further analysis. These past characterizations were also done on the devices that
are old by today’s standards. Our new and more detailed characterization of much newer planar
NAND flash memory in Chapter 5 allow us to develop new, and more accurate, online models
and mitigation techniques for raw bit errors in more modern flash memory chips. Our character-
ization in Chapter 6 covers all these errors in the new 3D NAND flash memory (or 3D NAND)
devices and compares the error characteristics of 3D NAND with the results in prior work to
uncover the differences between 3D NAND and planar NAND flash memories.

1.2.2 Improving Flash Reliability with Device Awareness
Flash memory device characteristics (i.e., NAND flash memory error characteristics) signifi-
cantly affect flash reliability [21, 23, 27, 32, 33, 35, 219, 252]. Many prior works propose
mechanisms to take advantage of these device characteristics to improve flash reliability. For
example, prior work proposes mechanisms that periodically learn and adapt the read reference
voltage to the threshold voltage distribution shift to mitigate P/E cycling errors, retention errors,
and read disturb errors [27, 35, 252]. To mitigate cell-to-cell program interference errors, prior
work proposes a technique that reads the values stored in neighboring cells to assist correcting

4

errors when a normal read operation fails [24, 26]. To reduce program errors in modern MLC
NAND flash memory, recent work proposes to buffer the data stored in the LSB page within the
flash chip [34]. To mitigate retention errors, prior work proposes to use various flash refresh
techniques that periodically rewrite all data with high retention age [22, 25]. To mitigate read
disturb errors, prior work proposes to opportunistically reduce the pass-through voltage, i.e., the
highest possible read reference voltage, when the retention age is low [35].

While these works demonstrate that improving flash reliability with device awareness has
many benefits in planar NAND, none of these works exploit an online model of flash device
characteristics or design mechanisms customized for 3D NAND. In Chapter 5, we propose new
techniques that further increase flash device characteristics awareness to improve flash reliabil-
ity by learning an online model of the flash cells within the flash controller and adapting flash
controller policies to this online model. The mechanisms we propose in Chapters 6 and 7 are
designed for the unique error characteristics that we find in 3D NAND.

1.2.3 Improving Flash Reliability with Workload Awareness

Flash reliability varies significantly depending on the workload data access pattern [22, 24, 26,
32, 33, 35]. Thus, to improve flash reliability and lifetime, prior work proposes better flash
management techniques to ensure a friendly data access pattern by optimizing flash controller
algorithms. For example, to reduce unnecessary erase operations, prior work optimizes the flash
page allocation policy to achieve higher spatial locality of write operations [94, 201, 202, 254].
Prior work also proposes techniques to minimize P/E cycles consumed by metadata within the
flash controller [71, 255]. To mitigate program interference errors, prior work proposes to use
certain program sequence, instead of allowing random writes, also managed by the controller [24,
26, 255]. To mitigate read disturb errors, prior work proposes to redistribute read-hot pages
across different flash blocks [185].

While these works demonstrate several effective examples of improving flash reliability with
workload awareness, none of these works design mechanisms to mitigate retention errors. The
technique we propose in Chapter 4 partitions data with different write-hotness and applies the
most suitable flash management policy for each partition to mitigate retention errors. The tech-
niques we propose in Chapter 7 exploits workload write-intensity awareness and environment
temperature awareness to mitigate retention errors in 3D NAND.

1.2.4 Summary

Demonstrated by these prior works, exploiting both device characteristics and application be-
havior in the flash controller often leads to significant reliability improvements with low over-
head. This dissertation further improves, expands, or complements these techniques by exploit-
ing newly-discovered (1) modern device characteristics and (2) application behavior character-
istics, to greatly improve both bit error rate and lifetime of the state-of-the-art flash memory
devices.

5

1.3 Thesis Statement and Overview
Our goal in this dissertation is to improve flash reliability at low cost and with low performance
overhead. As we can see, the naive approach of providing better ECC trades off storage density
or performance for improving flash reliability, and thus does not meet our goal of low cost and
low performance overhead. To this end, our thesis statement is that,

NAND flash memory reliability can be improved at low cost and with low perfor-
mance overhead by deploying various architectural techniques that are aware of
higher-level application behavior and underlying flash device characteristics.

Our approach is to understand flash memory device error characteristics and workload behav-
ior through rigorous experimental characterization, and to design intelligent and efficient flash
controller algorithms that utilize this understanding to improve flash reliability. This approach
is based on three observations. First, we can take advantage of higher-level application behavior
such as write frequency and locality, and develop the most suitable and customized flash reliabil-
ity techniques for different types of data stored in the NAND flash memory. Second, we can take
advantage of underlying device characteristics, such as variations in temperature, retention time,
or error rate, to develop more efficient device-aware reliability techniques. Third, we can take
advantage of the unused computing resources in the flash controller during idle time to enable
more effective flash reliability techniques. In this dissertation, we investigate four directions to
exploit the above three observations and efficiently improve flash reliability.

1.3.1 WARM—Write-hotness Aware Retention Management

Due to charge leakage from the flash cells, data retention errors increase over time after the
data has been programmed onto NAND flash memory, i.e., the retention time. To mitigate
retention errors, we limit the amount of retention time in NAND flash memory by providing a
limited amount of guaranteed internal retention time, the duration for which the flash memory
correctly holds data within its P/E cycle lifetime. Flash lifetime can be extended by relaxing this
internal retention time. However, such relaxation cannot be exposed externally to the workload to
avoid altering the expected data integrity property of a flash memory device, or the non-volatility
property expected from a storage device. Reliability mechanisms, most prominently refresh,
restore the duration of data integrity, but greatly reduce the lifetime improvement from retention
time relaxation by performing a large number of write operations. We find that retention time
relaxation can be achieved more efficiently by exploiting heterogeneity in write-hotness, i.e., the
frequency at which each page is written.

We propose WARM, a write-hotness aware retention management policy for flash memory.
This is an example of our approach that exploits application-level write-hotness and device level
retention characteristics to improve flash lifetime. The key idea of WARM is to identify and
to physically group together write-hot data within the flash device, allowing the flash controller
to selectively perform retention time relaxation with little cost. When applied alone, WARM
improves overall flash lifetime by an average of 3.24× over a baseline that does not relax the
internal retention time, across a variety of real I/O workload traces. When WARM is applied
together with an adaptive refresh mechanism, the average lifetime improves by 12.9× over the

6

baseline. More details are in Chapter 4 and our MSST 2015 paper [194].

1.3.2 Online Flash Channel Modeling and Its Applications

NAND flash memory can be treated as a noisy channel. Each flash cell stores data as the thresh-
old voltage of a floating gate transistor. The threshold voltage can shift as a result of various
types of circuit-level noise, introducing errors when data is read from the channel and ultimately
reducing flash lifetime. An accurate model of the threshold voltage distribution across flash cells
can enable mechanisms within the flash controller that improve channel reliability and device
lifetime. Unfortunately, existing threshold voltage distribution models are either not accurate
enough or have high computational complexity, which makes them unsuitable for online imple-
mentation within the controller.

We propose a new, low-complexity flash memory channel model, built upon a modified ver-
sion of the Student’s t-distribution and the power law, which captures the threshold voltage dis-
tribution and predicts future distribution shifts as wear increases. This is an example of our ap-
proach that exploits the unused computing resources in the flash controller and enables greater
device-awareness. Using our experimental characterization of the state-of-the-art 1X nm (i.e.,
15–19 nm) multi-level cell planar NAND flash chips, we show that our model is highly accurate
(with an average modeling error of 0.68%), and also simple to compute within the flash controller
(requiring 4.41 times less computation time than the most accurate prior model, with negligible
decrease in accuracy). Our model also predicts future threshold voltage distribution shifts with a
2.72% average modeling error.

We demonstrate several example applications of our new model in the flash controller, which
improve flash channel reliability significantly, including a new mechanism to predict the remain-
ing lifetime of a flash device. Our evaluations for two of these applications show that our model:
(1) helps improve flash memory lifetime by 48.9% and/or (2) enables the flash device to safely
sustain 69.9% more write operations than manufacturer specifications. More details are in Chap-
ter 5 and our IEEE JSAC 2016 paper [195].

1.3.3 3D NAND Flash Memory Error Characterization and Mitigation

Compared to planar NAND flash memory, 3D NAND flash memory uses a new flash cell design,
and vertically stacks dozens of silicon layers in a single chip. This allows 3D NAND flash mem-
ory to increase storage density using a much less aggressive manufacturing process technology
than planar NAND flash memory. The circuit-level and structural changes in 3D NAND flash
memory significantly alter how different error sources affect the reliability of the memory.

Through experimental characterization of real, state-of-the-art 3D NAND flash memory
chips, we find that 3D NAND flash memory exhibits three new error sources that were not pre-
viously observed in planar NAND flash memory: (1) layer-to-layer process variation, where
the error rate of each layer of memory in the 3D stack is very different; (2) early retention loss,
where charge leaks quickly out of a flash cell soon after the cell is programmed; and (3) retention
interference, where the charge leakage speed of a flash cell depends on the value stored in the
neighboring cell.

7

Based on our experimental results, we develop new analytical models for layer-to-layer pro-
cess variation and retention loss effects in 3D NAND flash memory. Motivated by our new
findings and models, we develop four new techniques to mitigate process variation and early
retention loss in 3D NAND flash memory. These techniques are examples of our approach that
exploits device awareness in the flash controller. Our first technique, layer-to-layer variation
aware reading (LaVAR), reduces the effect of layer-to-layer process variation by tuning the read
reference voltage for each layer. Our second technique, layer-interleaved RAID (LI-RAID), reor-
ganizes how pages from different layers are paired together for RAID to reduce the overall error
count. Our third technique, retention model aware reading (ReMAR), uses our retention model
to adapt the read reference voltage to each cell based on the cell’s retention age. Our fourth
technique, neighbor-cell assisted retention interference correction (NARIC), mitigates retention
interference by predicting and adapting the read reference voltages to the amount of interference
during each read operation. Compared with similar state-of-the-art error mitigation techniques
developed for planar NAND flash memory, LaVAR and ReMAR reduce the average raw bit error
rate by 51.9% and 43.3%, respectively, while LI-RAID reduces the worst-case RBER by 66.9%.
We conclude that our newly-proposed techniques successfully mitigate the new error patterns
that we discover in 3D NAND flash memory. More details are in Chapter 6 and our paper under
submission [198].

1.3.4 HeatWatch: Self-Recovery and Temperature Aware Retention Error
Mitigation

NAND flash memory wearout can be partially repaired on its own during the idle time between
program or erase operations (known as the dwell time), via a phenomenon known as the self-
recovery effect [224, 337]. We can exploit the self-recovery effect to significantly improve flash
lifetime, by applying high temperature to the flash memory during P/E cycling to amplify the
self-recovery effect. As NAND flash memory lifetime continues to reduce due to reduced relia-
bility, the self-recovery effect provides an appealing opportunity to mitigate the poor lifetime.

While flash self-recovery has been studied for planar 2D NAND flash memory in the
past [224, 337], the self-recovery effect in 3D NAND flash memory is not well known, de-
spite the rapidly-growing commercial popularity of 3D NAND flash memory. We close this gap
by characterizing the effects of self-recovery and temperature on real, state-of-the-art 3D NAND
devices. We show that these effects significantly change the program accuracy (i.e., the robust-
ness of flash program operations) and the retention loss speed (i.e., the speed at which a flash cell
leaks charge). We demonstrate that self-recovery and temperature affect 3D NAND flash quite
differently from how they affect planar NAND flash, rendering prior models of self-recovery
and temperature ineffective for 3D NAND flash. Using our characterization results, we develop
a new unified model for 3D NAND self-recovery and temperature effects called URT, Unified
self-Recovery and Temperature. URT provides a model for raw bit error rate and threshold volt-
age distribution based on wearout, retention time, dwell time, and temperature.

Based on our new findings and our new model, we propose HeatWatch, a mechanism that
aims to improve 3D NAND flash reliability and lifetime. This is an example of our approach
that improves flash reliability by exploiting device-level behavior. The key idea of HeatWatch

8

is to optimize read operations by adapting to the dwell time of the workload and the current
operating temperature. HeatWatch first efficiently tracks flash temperature and the time of each
operation online. Then, HeatWatch uses this information to apply URT in order to optimize the
read reference voltages. Our detailed experimental evaluations show that HeatWatch reduces the
raw bit error rate by 93.5% and improves flash lifetime by 3.85× over a baseline using a fixed
read voltage, averaged across 28 real workload traces. More details are in Chapter 7 and our
HPCA 2018 paper [199].

1.4 Thesis Outline
In Chapter 2, we introduce the basics of modern SSDs and NAND flash memory. In Chapter 3,
we provide additional background and discuss related work on NAND flash memory reliability.
A significant fraction of the material in Chapter 2 and Chapter 3 is borrowed from the author’s
co-authored work that appears as an invited paper in the Proceedings of the IEEE [33] and placed
on arxiv.org [32]. In Chapter 4, we introduce WARM, which is published in MSST [194]. In
Chapter 5, we introduce online flash channel modeling, which is published in JSAC [195]. In
Chapter 6, we introduce our characterization, modeling, and mitigation techniques for 3D NAND
flash memory, which is currently under submission [198]. In Chapter 7, we introduce HeatWatch,
which is published in HPCA [199].

1.5 Contributions
To our knowledge, this dissertation is the first to propose various device- and workload-aware
techniques in the flash controller that significantly improve both planar NAND and 3D NAND
reliability at low cost. This dissertation makes the following major contributions to the field:

1. We propose a new technique called WARM that exploits the write-hotness of the workload
in the flash controller to eliminate redundant flash refresh operations. Chapter 4 describes
WARM in detail.

1.1. We propose Write-hotness Aware Retention Management (WARM), a heterogeneous
retention management policy for NAND flash memory that physically partitions
write-hot data and write-cold data into two separate groups of flash blocks, so that we
can relax the retention time for only the write-hot data without the need for refreshing
such data. We show that doing so improves flash lifetime by 3.24× on average across
a variety of server and system workloads, over a write-hotness-oblivious baseline that
does not perform any refresh. WARM can also be combined with an adaptive refresh
mechanism [22, 25] to further improve flash lifetime by 12.9× over the baseline.

1.2. We propose a mechanism that combines write-hotness-aware retention management
with an adaptive refresh mechanism [22, 25]. By using WARM and applying refresh
to write-cold data, we can further improve flash lifetime due to the benefits of both
techniques. We show that the combined approach improves flash lifetime by 1.21×
over using adaptive refresh alone homogeneously across the entire flash memory.

9

1.3. We propose a simple, yet effective, window-based online algorithm to identify
frequently-written pages. This mechanism can dynamically adapt to workload be-
havior and correctly size the identified subset of write-hot pages. This mechanism
fully exploits the existing data structures in the flash controller to keep track of the
write-hotness to reduce the tracking overhead. We believe this mechanism can also
be used for purposes other than lifetime management, such as cache performance and
energy management.

2. We propose a new framework that effectively learns an online model for the flash channel,
while the controller and memory are under operation. Our new model can be learned with
low performance overhead and can accurately emulate the error characteristics of each
flash chip. Chapter 5 describes our framework and its applications.

2.1. We provide an experimental characterization of the threshold voltage distribution,
and how the distribution changes with wear, for state-of-the-art 1X-nm MLC planar
NAND flash memory chips. Like prior work, we find that program errors can cause
the tail of the distribution to fatten significantly, but, unlike prior work, we observe
that this fat tail can show up much earlier in the lifetime of the flash device than
previously thought.

2.2. We propose a new, simple, and accurate static model for the threshold voltage distri-
bution of MLC NAND flash memory at a particular P/E cycle count, based upon our
modified version of the Student’s t-distribution. The model is capable of accurately
capturing the threshold voltage distribution, with a 0.68% average modeling error,
while requiring little computation in the flash controller.

2.3. We propose a new model to dynamically estimate how the threshold voltage distri-
bution shifts as a function of P/E cycles. This model works in conjunction with our
proposed static model, and it accurately predicts how the threshold voltage distribu-
tion changes in the future, with an average modeling error of 2.72%.

2.4. We demonstrate several practical uses of our online threshold voltage distribution
model in a flash controller, which allows the flash controller to dynamically adapt its
policies to threshold voltage shifts and thereby better improve flash memory relia-
bility. We propose a new mechanism to estimate the actual remaining flash lifetime,
based on the expected growth in bit error rate. Our mechanisms improve flash mem-
ory lifetime by 48.9% and/or enable the flash device to safely endure 69.9% more
P/E cycles than the manufacturer specification.

3. We perform a detailed, comprehensive characterization and analysis of 3D NAND flash
memory errors using state-of-the-art, real 3D NAND flash memory chips. Through this
analysis, we observe three new error characteristics in 3D NAND flash memory due to its
unique structure and cell design. To mitigate these errors, we develop four new mecha-
nisms within the flash controller, called LaVAR, LI-RAID, ReMAR, and NARIC. Chapter 6
describes our characterization and analysis, and the proposed mechanisms in detail.

3.1. We perform the first comprehensive experimental characterization of 3D NAND
flash memory errors using real, state-of-the-art MLC 3D NAND flash memory chips.

10

Based on this characterization, we present an in-depth comparison and analysis of
the different error characteristics of the well-known error types between 3D NAND
and planar NAND flash memories.

3.2. We present the first in-depth analysis of layer-to-layer process variation, early reten-
tion loss, and retention interference, three new error characteristics inherent to 3D
NAND flash memory.

3.3. We develop new analytical models for (1) layer-to-layer process variation and
(2) early retention loss in 3D NAND flash memory.

3.4. We propose a new mechanism called Layer Variation Aware Reading (LaVAR) to
mitigate the effect of layer-to-layer process variation. LaVAR uses our layer-to-layer
process variation model to fine-tune the read reference voltage independently for each
3D stack memory layer. On average, LaVAR reduces raw bit error rate by 43.3% over
a variation-agnostic baseline.

3.5. We propose a new RAID (i.e., Redundant Array of Independent Disks) scheme called
Layer-Interleaved RAID (LI-RAID) to mitigate the error rate variation between pages
within each block caused by manufacturing process variation and MSB-LSB varia-
tion. LI-RAID eliminates the page with the worst-case error rate within a block by
pairing up pages from different layers and from different bits within a cell. By doing
this, LI-RAID reduces 99th-percentile tail raw bit error rate by 63.8% over a baseline
using LaVAR.

3.6. We propose a new mechanism called Retention Model Aware Reading (ReMAR) to
mitigate early retention errors in 3D NAND. ReMAR tracks the retention age of the
data by recording the programming time of each block and uses our retention model
to adapt the read reference voltage to the retention age of the data. On average,
ReMAR reduces raw bit error rate by 51.9% over a retention-agnostic baseline.

3.7. We propose Neighbor-cell Assisted Retention Interference Correction (NARIC) to
mitigate retention interference in 3D NAND devices. NARIC improves upon
Neighbor-cell Assisted Correction (NAC) [26], previously proposed to mitigate only
cell-to-cell program interference. In addition to NAC, NARIC also predicts and
adapts the read reference voltages to the amount of retention interference based on
the threshold voltage of the cells on adjacent wordlines.

4. We propose a new technique called HeatWatch, a new mechanism to improve 3D NAND
flash memory reliability. We observe that, due to self-recovery, data retention in 3D NAND
is significantly affected by temperature and dwell time. HeatWatch significantly improves
flash reliability in 3D NAND by adapting the flash controller algorithms to self-recovery
and temperature. Chapter 7 describes our characterization of self-recovery effect and Heat-
Watch in detail.

4.1. Using real, state-of-the-art 3D charge trap NAND flash chips from a major vendor, we
experimentally characterize the effects of self-recovery and temperature on retention
loss speed and program variation. We show that 3D NAND flash memory exhibits
different self-recovery and temperature effects than planar NAND flash memory.

11

4.2. Based on our experimental characterization data, we construct URT, a unified model
for retention loss, wearout, self-recovery, and temperature in 3D NAND flash mem-
ory. Our model quantifies these four effects to accurately predict the raw bit error rate
and threshold voltage shift.

4.3. We propose HeatWatch, a mechanism for 3D NAND flash memory that improves
flash reliability and lifetime. HeatWatch (1) tracks the temperature, dwell time, and
retention time online, and (2) sends this information to URT to accurately predict
the optimal read reference voltage. By using the predicted optimal read reference
voltage for flash read operations, HeatWatch reduces the raw bit error rate by 93.5%,
and improves flash lifetime by 3.85×, over a baseline that uses a fixed read reference
voltage.

12

Chapter 2

Basics of Modern SSDs and NAND Flash
Memory

In this chapter, we introduce the basic background of how modern SSDs work internally (Sec-
tion 2.1), and how NAND flash memory operates to store data (Section 2.2). This background
knowledge helps us understand the root cause of reliability issues for flash-memory-based SSDs
as well as the state-of-the-art techniques to mitigate these issues, which are introduced in Chap-
ter 3, and the new techniques we propose in Chapters 4–7.

2.1 State-of-the-Art SSD Architecture
In order to understand the root causes of reliability issues within SSDs, we first provide an
overview of the system architecture of a state-of-the-art SSD. The SSD consists of a group of
NAND flash memories (or chips) and a controller, as shown in Figure 2.1. A host computer
communicates with the SSD through a high-speed host interface (e.g., AHCI, NVMe; see Sec-
tion 2.1.3), which connects to the SSD controller. The controller is then connected to each of the
NAND flash chips via memory channels.

Ct
rl

Chip

Chip

Chip

Chip

Ch
ip

Ch
ip

Ch
ip

Ch
ip

(a) (b)

HO
ST

Controller

Ho
st

 In
te

rfa
ce

(A
HC

I,
NV

M
e)

Co
m

pr
es

sio
n

DRAM
Manager

and Buffers

Sc
ra

m
bl

er

EC
C

En
gin

e

DRAM

Ch
ip

Ch
ip

Ch
ip

Ch
an

ne
l h

–1
Ch

an
ne

l 1
Ch

an
ne

l 0

…Processors
(Firmware) Channel

Processors

Processors
(Firmware)

Processors
(Firmware)

Figure 2.1: (a) SSD system architecture, showing controller (Ctrl) and chips. (b) Detailed view
of connections between controller components and chips. Adapted from [32].

13

2.1.1 Flash Memory Organization

Figure 2.2 shows an example of how NAND flash memory is organized within an SSD. The
flash memory is spread across multiple flash chips, where each chip contains one or more flash
dies, which are individual pieces of silicon wafer that are connected together to the pins of the
chip. Contemporary SSDs typically have 4–16 chips per SSD, and can have as many as 16 dies
per chip. Each chip is connected to one or more physical memory channels, and these memory
channels are not shared across chips. A flash die operates independently of other flash dies, and
contains between one and four planes. Each plane contains hundreds to thousands of flash blocks.
Each block is a 2D array that contains hundreds of rows of flash cells (typically 256–1024 rows)
where the rows store contiguous pieces of data. Much like banks in a multi-bank memory (e.g.,
DRAM banks [40, 150, 152, 166, 168, 169, 170, 225, 234, 235]), the planes can execute flash
operations in parallel, but the planes within a die share a single set of data and control buses [2].
Hence, an operation can be started in a different plane in the same die in a pipelined manner,
every cycle. Figure 2.2 shows how blocks are organized within chips across multiple channels.
In the rest of this work, without loss of generality, we assume that a chip contains a single die.

Chip c–1
Die d–1

Pl
an

e
0

Pl
an

e
1

. . .

m
n

m
n

…
…

…
…

Die 1

Pl
an

e
0

Pl
an

e
1

Pl
an

e
p–

1

. . .

m
n

m
n

m
n

…
…

…
…

…
…

Channel 0

Plane p–1

Chip 0

. . .

Channel h–1

Block b–1

Page n

…
…

...
...Die 0

Pl
an

e
0

Pl
an

e
1

Pl
an

e
p–

1

. . .

…
…

…
…

…
…

Superblock m

. . .

mmm
Block m…

…nnn Page n Superpage n

Figure 2.2: Flash memory organization. Reproduced from [32].

Data in a block is written at the unit of a page, which is typically between 8 and 16 kB in size
in NAND flash memory. All read and write operations are performed at the granularity of a page.
Each block typically contains hundreds of pages. Blocks in each plane are numbered with an ID
that is unique within the plane, but is shared across multiple planes. Within the block, each page
is numbered in sequence. The controller firmware groups blocks with the same ID number across
multiple chips and planes together into a superblock. Within each superblock, the pages with the
same page number are considered a superpage. The controller opens one superblock (i.e., an
empty superblock is selected for write operations) at a time, and typically writes data to the
NAND flash memory one superpage at a time to improve sequential read/write performance and
make error correction efficient, since some parity information is kept at superpage granularity
(see Section 2.1.3). Having the ability to write to all of the pages in a superpage simultaneously,
the SSD can fully exploit the internal parallelism offered by multiple planes/chips, which in turn
maximizes write throughput.

14

2.1.2 Memory Channel

Each flash memory channel has its own data and control connection to the SSD controller, much
like a main memory channel has to the DRAM controller [87, 102, 103, 117, 150, 151, 153, 155,
226, 231, 234, 235, 305, 306, 307]. The connection for each channel is typically an 8- or 16-bit
wide bus between the controller and one of the flash memory chips [2]. Both data and flash
commands can be sent over the bus.

Each channel also contains its own control signal pins to indicate the type of data or command
that is on the bus. The address latch enable (ALE) pin signals that the controller is sending an
address, while the command latch enable (CLE) pin signals that the controller is sending a flash
command. Every rising edge of the write enable (WE) signal indicates that the flash memory
should write the piece of data currently being sent on the bus by the SSD controller. Similarly,
every rising edge of the read enable (RE) signal indicates that the flash memory should send the
next piece of data from the flash memory to the SSD controller.

Each flash memory die connected to a memory channel has its own chip enable (CE) signal,
which selects the die that the controller currently wants to communicate with. On a channel, the
bus broadcasts address, data, and flash commands to all dies within the channel, but only the die
whose CE signal is active reads the information from the bus and executes the corresponding
operation.

2.1.3 SSD Controller

The SSD controller, shown in Figure 2.1b, is responsible for (1) handling I/O requests received
from the host, (2) ensuring data integrity and efficient storage, and (3) managing the underlying
NAND flash memory. To perform these tasks, the controller runs firmware, which is often re-
ferred to as the flash translation layer (FTL). FTL tasks are executed on one or more embedded
processors that exist inside the controller. The controller has access to DRAM, which can be
used to store various controller metadata (e.g., how host memory addresses map to physical SSD
addresses) and to cache relevant (e.g., frequently accessed) SSD pages [213, 279].

When the controller handles I/O requests, it performs a number of operations on both the
requests and the data. For requests, the controller schedules them in a manner that ensures
correctness and provides high/reasonable performance. For data, the controller scrambles the
data to improve raw bit error rates, performs ECC encoding/decoding, and in some cases com-
presses/decompresses and/or encrypts/decrypts the data and employs superpage-level data par-
ity. To manage the NAND flash memory, the controller runs firmware that maps host data to
physical NAND flash pages, performs garbage collection on flash pages that have been invali-
dated, applies wear leveling to evenly distribute the impact of writes on NAND flash reliability
across all pages, and manages bad NAND flash blocks. We briefly examine the various tasks of
the SSD controller.

Scheduling Requests

The controller receives I/O requests over a host controller interface (shown as Host Interface in
Figure 2.1b), which consists of a system I/O bus and the protocol used to communicate along

15

the bus. When an application running on the host system needs to access the SSD, it generates
an I/O request, which is sent by the host over the host controller interface. The SSD controller
receives the I/O request, and inserts the request into a queue. The controller uses a scheduling
policy to determine the order in which the controller processes the requests that are in the queue.
The controller then sends the request selected for scheduling to the FTL (part of the Firmware
shown in Figure 2.1b).

The host controller interface determines how requests are sent to the SSD and how the re-
quests are queued for scheduling. Two of the most common host controller interfaces used
by modern SSDs are the Advanced Host Controller Interface (AHCI) [116] and NVM Ex-
press (NVMe) [247, 316, 317]. AHCI builds upon the Serial Advanced Technology Attachment
(SATA) system bus protocol [290], which was originally designed to connect the host system to
magnetic hard disk drives. AHCI allows the host to use advanced features with SATA, such as
native command queuing (NCQ). When an application executing on the host generates an I/O
request, the application sends the request to the operating system (OS). The OS sends the request
over the SATA bus to the SSD controller, and the controller adds the request to a single command
queue. NCQ allows the controller to schedule the queued I/O requests in a different order than
the order in which requests were received (i.e., requests are scheduled out of order). As a result,
the controller can choose requests from the queue in a manner that maximizes the overall SSD
performance (e.g., a younger request can be scheduler earlier than an older request that requires
access to a plane that is occupied with serving another request). A major drawback of AHCI and
SATA is the limited throughput they enable for SSDs [346], as the protocols were originally de-
signed to match the much lower throughput of magnetic hard disk drives. For example, a modern
magnetic hard drive has a sustained read throughput of 300 MB/s [289], whereas a modern SSD
has a read throughput of 3500 MB/s [283]. However, AHCI and SATA are widely deployed
in modern computing systems, and they currently remain a common choice for the SSD host
controller interface.

To alleviate the throughput bottleneck of AHCI and SATA, many manufacturers have started
adopting host controller interfaces that use the PCI Express (PCIe) system bus [264]. A pop-
ular standard interface for the PCIe bus is the NVM Express (NVMe) interface [247]. Unlike
AHCI, which requires an application to send I/O requests through the OS, NVMe directly ex-
poses multiple SSD I/O queues to the applications executing on the host. By directly exposing
the queues to the applications, NVMe simplifies the software I/O stack, eliminating most OS
involvement [346], which in turn reduces communication overheads. An SSD using the NVMe
interface maintains a separate set of queues for each application (as opposed to the single queue
used for all applications with AHCI) within the host interface. With more queues, the controller
(1) has a larger number of requests to select from during scheduling, increasing its ability to uti-
lize idle resources (i.e., channels, dies, planes; see Section 2.1.1); and (2) can more easily manage
and control the amount of interference that an application experiences from other concurrently-
executing applications. Currently, NVMe is used by modern SSDs that are designed mainly
for high-performance systems (e.g., enterprise servers, data centers [345, 346]). Recent work
describes the state-of-the-art request scheduling algorithms in more detail [316, 317].

16

Flash Translation Layer

The main duty of the FTL (which is part of the Firmware shown in Figure 2.1) is to manage the
mapping of logical addresses (i.e., the address space utilized by the host) to physical addresses in
the underlying flash memory (i.e., the address space for actual locations where the data is stored,
visible only to the SSD controller) for each page of data [63, 94]. By providing this indirection
between address spaces, the FTL can remap the logical address to a different physical address
(i.e., move the data to a different physical address) without notifying the host. Whenever a page
of data is written to by the host or moved for underlying SSD maintenance operations (e.g.,
garbage collection [44, 350]; see Section 2.1.3), the old data (i.e., the physical location where the
overwritten data resides) is simply marked as invalid in the physical block’s metadata, and the
new data is written to a page in the flash block that is currently open for writes (see Section 2.2.4
for more detail on how writes are performed).

The FTL is also responsible for wear leveling, to ensure that all of the blocks within the SSD
are evenly worn out [44, 350]. By evenly distributing the wear (i.e., the number of P/E cycles that
take place) across different blocks, the SSD controller reduces the heterogeneity of the amount
of wearout across these blocks, thereby extending the lifetime of the device. The wear-leveling
algorithm is invoked when the current block that is being written to is full (i.e., no more pages in
the block are available to write to), and it enables the controller to select a new block from the
free list to direct the future writes to. The wear-leveling algorithm dictates which of the blocks
from the free list is selected. One simple approach is to select the block in the free list with
the lowest number of P/E cycles to minimize the variance of the wearout amount across blocks,
though many algorithms have been developed for wear leveling [43, 83].

Garbage Collection

When the host issues a write request to a logical address stored in the SSD, the SSD controller
performs the write out of place (i.e., the updated version of the page data is written to a different
physical page in the NAND flash memory), because in-place updates cannot be performed (see
Section 2.2.4). The old physical page is marked as invalid when the out-of-place write completes.
Fragmentation refers to the waste of space within a block due to the presence of invalid pages.
In a fragmented block, a fraction of the pages are invalid, but these pages are unable to store new
data until the page is erased. Due to circuit-level limitations, the controller can perform erase
operations only at the granularity of an entire block (see Section 2.2.4 for details). As a result,
until a fragmented block is erased, the block wastes physical space within the SSD. Over time,
if fragmented blocks are not erased, the SSD will run out of pages that it can write new data to.
The problem becomes especially severe if the blocks are highly fragmented (i.e., a large fraction
of the pages within a block are invalid).

To reduce the negative impact of fragmentation on usable SSD storage space, the FTL period-
ically performs a process called garbage collection. Garbage collection finds highly-fragmented
flash blocks in the SSD and recovers the wasted space due to invalid pages. The basic garbage
collection algorithm [44, 350] (1) identifies the highly-fragmented blocks (which we call the se-
lected blocks), (2) migrates any valid pages in a selected block (i.e., each valid page is written
to a new block, its virtual-to-physical address mapping is updated, and the page in the selected

17

block is marked as invalid), (3) erases each selected block (see Section 2.2.4), and (4) adds a
pointer to each selected block into the free list within the FTL. The garbage collection algorithm
typically selects blocks with the highest number of invalid pages. When the controller needs a
new block to write pages to, it selects one of the blocks currently in the free list.

We briefly discuss five optimizations that prior works propose to improve the performance
and/or efficiency of garbage collection [2, 61, 94, 98, 105, 194, 271, 335, 350]. First, the
garbage collection algorithm can be optimized to determine the most efficient frequency to in-
voke garbage collection [271, 350], as performing garbage collection too frequently can delay
I/O requests from the host, while not performing garbage collection frequently enough can cause
the controller to stall when there are no blocks available in the free list. Second, the algorithm
can be optimized to select blocks in a way that reduces the number of page copy and erase op-
erations required each time the garbage collection algorithm is invoked [98, 271]. Third, some
works reduce the latency of garbage collection by using multiple channels to perform garbage
collection on multiple blocks in parallel [2, 105]. Fourth, the FTL can minimize the latency of
I/O requests from the host by pausing erase and copy operations that are being performed for
garbage collection, in order to service the host requests immediately [61, 335]. Fifth, pages can
be grouped together such that all of the pages within a block become invalid around the same
time [94, 105, 194]. For example, the controller can group pages with (1) a similar degree of
write-hotness (i.e., the frequency at which a page is updated; see Section 3.2.6) or (2) a similar
death time (i.e., the time at which a page is overwritten). Garbage collection remains an active
area of research.

Flash Reliability Management

The SSD controller performs many background optimizations that improve flash reliability.
These flash reliability management techniques, as we will discuss in more detail in Section 3.2,
can effectively improve flash lifetime at a very low cost, since the optimizations are usually per-
formed during idle times, when the interference with the running workload is minimized. These
management techniques sometimes require small metadata storage in memory (e.g., for storing
the near-optimal read reference voltages [27, 35, 195]), or require a timer (e.g., for triggering
refreshes in time [22, 25]).

Compression

Compression can reduce the size of the data written to minimize the number of flash cells worn
out by the original data. Some controllers provide compression, as well as decompression, which
reconstructs the original data from the compressed data stored in the flash memory [181, 364].
The controller may contain a compression engine, which, for example, performs the LZ77 or
LZ78 algorithms. Compression is optional, as some types of data being stored by the host (e.g.,
JPEG images, videos, encrypted files, files that are already compressed) may not be compress-
ible.

18

Data Scrambling and Encryption

The occurrence of errors in flash memory is highly dependent on the data values stored into the
memory cells [21, 24, 26]. To reduce the dependence of the error rate on data values, an SSD
controller first scrambles the data before writing it into the flash chips [36, 142]. The key idea
of scrambling is to probabilistically ensure that the actual value written to the SSD contains an
equal number of randomly distributed zeroes and ones, thereby minimizing any data-dependent
behavior. Scrambling is performed using a reversible process, and the controller descrambles
the data stored in the SSD during a read request. The controller employs a linear feedback shift
register (LFSR) to perform scrambling and descrambling. An n-bit LFSR generates 2n−1 bits
worth of pseudo-random numbers without repetition. For each page of data to be written, the
LFSR can be seeded with the logical address of that page, so that the page can be correctly de-
scrambled even if maintenance operations (e.g., garbage collection) migrate the page to another
physical location, as the logical address is unchanged. (This also reduces the latency of main-
tenance operations, as they do not need to descramble and rescramble the data when a page is
migrated.) The LFSR then generates a pseudo-random number based on the seed, which is then
XORed with the data to produce the scrambled version of the data. As the XOR operation is
reversible, the same process can be used to descramble the data.

In addition to the data scrambling employed to minimize data value dependence, several
SSD controllers include data encryption hardware [64, 104, 331]. An SSD that contains data
encryption hardware within its controller is known as a self-encrypting drive (SED). In the con-
troller, data encryption hardware typically employs AES encryption [64, 69, 243, 331], which
performs multiple rounds of substitutions and permutations to the unencrypted data in order to
encrypt it. AES employs a separate key for each round [69, 243]. In an SED, the controller
contains hardware that generates the AES keys for each round, and performs the substitutions
and permutations to encrypt or decrypt the data using dedicated hardware [64, 104, 331].

Error-Correcting Codes

ECC is used to detect and correct the raw bit errors that occur within flash memory. A host writes
a page of data, which the SSD controller splits into one or more chunks. For each chunk, the
controller generates a codeword, consisting of the chunk and a correction code. The strength of
protection offered by ECC is determined by the coding rate, which is the chunk size divided by
the codeword size. A higher coding rate provides weaker protection, but consumes less storage,
representing a key reliability tradeoff in SSDs.

The ECC algorithm employed (typically BCH [14, 107, 177, 297] or LDPC [84, 85, 203,
204, 297, 362]; see Section 3.3), as well as the length of the codeword and the coding rate,
determine the total error correction capability, i.e., the maximum number of raw bit errors that
can be corrected by ECC. ECC engines in contemporary SSDs are able to correct data with a
relatively high raw bit error rate (e.g., between 10−3 and 10−2 [124]) and return data to the host
at an error rate that meets traditional data storage reliability requirements (e.g., a post-correction
error rate of 10−15 in the JEDEC standard [121]). The error correction failure rate (PECFR) of an
ECC implementation, with a codeword length of l where the codeword has an error correction

19

capability of t bits, can be modeled as:

PECFR =
l

∑
k=t+1

(
l
k

)
(1−BER)(l−k)BERk (2.1)

where BER is the bit error rate of the NAND flash memory. We assume in this equation that
errors are independent and identically distributed.

In addition to the ECC information, a codeword contains cyclic redundancy checksum (CRC)
parity information [279]. When data is being read from the NAND flash memory, there may be
times when the ECC algorithm incorrectly indicates that it has successfully corrected all errors in
the data, when uncorrected errors remain. To ensure that incorrect data is not returned to the user,
the controller performs a CRC check in hardware to verify that the data is error free [266, 279].

Data Path Protection

In addition to protecting the data from raw bit errors within the NAND flash memory, newer SSDs
incorporate error detection and correction mechanisms throughout the SSD controller, in order
to further improve reliability and data integrity [279]. These mechanisms are collectively known
as data path protection, and protect against errors that can be introduced by the various SRAM
and DRAM structures that exist within the SSD.1 Figure 2.3 illustrates the various structures
within the controller that employ data path protection mechanisms. There are three data paths
that require protection: (1) the path for data written by the host to the flash memory, shown as a
red solid line in Figure 2.3; (2) the path for data read from the flash memory by the host, shown
as a green dotted line; and (3) the path for metadata transferred between the firmware (i.e., FTL)
processors and the DRAM, shown as a blue dashed line.

Ho
st

 In
te

rfa
ce

(P
CI

e,
 S

AT
A,

 SA
S)

Host
FIFO

Buffer

DR
AM

 (u
se
sM

PE
CC

)

Processors
(Firmware)

Processors
(Firmware)

Processors
(Firmware)

DRAM
Manager

NA
ND

 Fl
as

h
In

te
rfa

ce
HFIFO Parity

Generator
MPECC

Generator

HFIFO Parity
Check

MPECC
Check

HFIFO Parity
Check

HFIFO Parity
Generator

MPECC Generator

MPECC Check

NAND
FIFO

Buffer

ECC
Encoder

MPECC
Check

ECC
Decoder

MPECC
Generator

CRC
Check

CRC
Generator

CRC
Generator

CRC Check

1

2
3

4

5 6 7

Figure 2.3: Data path protection employed within the controller. Reproduced from [32].

In the write data path of the controller (the red solid line shown in Figure 2.3), data received
from the host interface (¶ in the figure) is first sent to a host FIFO buffer (·). Before the data is
written into the host FIFO buffer, the data is appended with memory protection ECC (MPECC)

1See Section 3.5 for a discussion on the possible types of errors that can be present in DRAM.

20

and host FIFO buffer (HFIFO) parity [279]. The MPECC parity is designed to protect against
errors that are introduced when the data is stored within DRAM (which takes place later along the
data path), while the HFIFO parity is designed to protect against SRAM errors that are introduced
when the data resides within the host FIFO buffer. When the data reaches the head of the host
FIFO buffer, the controller fetches the data from the buffer, uses the HFIFO parity to correct any
errors, discards the HFIFO parity, and sends the data to the DRAM manager (¸). The DRAM
manager buffers the data (which still contains the MPECC information) within DRAM (¹), and
keeps track of the location of the buffered data inside the DRAM. When the controller is ready
to write the data to the NAND flash memory, the DRAM manager reads the data from DRAM.
Then, the controller uses the MPECC information to correct any errors, and discards the MPECC
information. The controller then encodes the data into an ECC codeword (º), generates CRC
parity for the codeword, and then writes both the codeword and the CRC parity to a NAND flash
FIFO buffer (») [279]. When the codeword reaches the head of this buffer, the controller uses
CRC parity to detect any errors in the codeword, and then dispatches the data to the flash interface
(¼), which writes the data to the NAND flash memory. Until the controller successfully write
the data to the NAND flash memory, the data write is not considered durable. This is because the
data stored in the DRAM or FIFO buffers can be lost if there is a power failure event [3]. The
read data path of the controller (the green dotted line shown in Figure 2.3) performs the same
procedure as the write data path, but in reverse order [279].

Aside from buffering data along the write and read paths, the controller uses the DRAM to
store essential metadata, such as the table that maps each host data address to a physical block
address within the NAND flash memory [213, 279]. In the metadata path of the controller (the
blue dashed line shown in Figure 2.3), the metadata is often read from or written to DRAM by
the firmware processors. In order to ensure correct operation of the SSD, the metadata must not
contain any errors. As a result, the controller uses memory protection ECC (MPECC) for the
metadata stored within DRAM [193, 279], just as it did to buffer data along the write and read
data paths. Due to the lower rate of errors in DRAM compared to NAND flash memory (see Sec-
tion 3.5), the employed memory protection ECC algorithms are not as strong as BCH or LDPC.
We describe common ECC algorithms employed for DRAM error correction in Section 3.5.

Bad Block Management

Due to process variation or uneven wearout, a small number of flash blocks may have a much
higher raw bit error rate (RBER) than an average flash block. Mitigating or tolerating the RBER
on these flash blocks often requires a much higher cost than the benefit of using them. Thus, it
is more efficient to identify and record these blocks as bad blocks, and avoid using them to store
useful data. There are two types of bad blocks: original bad blocks (OBBs), which are defective
due to manufacturing issues (e.g., process variation), and growth bad blocks (GBBs), which fail
during runtime [318].

The flash vendor performs extensive testing, known as bad block scanning, to identify OBBs
when a flash chip is manufactured [218]. Initially, all blocks are kept in the erased state, and
contain the value 0xFF in each byte (see Section 2.2.1). Inside each OBB, the bad block scanning
procedure writes a specific data value (e.g., 0x00) to a specific byte location within the block that
indicates the block status. A good block (i.e., a block without defects) is not modified, and thus

21

its block status byte remains at the value 0xFF. When the SSD is powered up for the first time,
the SSD controller iterates through all blocks and checks the value stored in the block status byte
of each block. Any block that does not contain the value 0xFF is marked as bad, and is recorded
in a bad block table stored in the controller. A small number of blocks in each plane are set aside
as reserved blocks (i.e., blocks that are not used during normal operation), and the bad block
table automatically remaps any operation originally destined to an OBB to one of the reserved
blocks. The bad block table remaps an OBB to a reserved block in the same plane, to ensure that
the SSD maintains the same degree of parallelism when writing to a superpage, thus avoiding
performance loss. Less than 2% of all blocks in the SSD are expected to be OBBs [248].

The SSD identifies growth bad blocks during runtime by monitoring the status of each block.
Each superblock contains a bit vector indicating which of its blocks are GBBs. After each pro-
gram or erase operation to a block, the SSD reads the status reporting registers to check the
operation status. If the operation has failed, the controller marks the block as a GBB in the su-
perblock bit vector. At this point, the controller uses superpage-level parity to recover the data
that was stored in the GBB (see Section 2.1.3), and all data in the superblock is copied to a
different superblock. The superblock containing the GBB is then erased. When the superblock
is subsequently opened, blocks marked as GBBs are not used, but the remaining blocks can store
new data.

Superpage-Level Parity

In addition to ECC to protect against bit-level errors, many SSDs employ RAID-like parity [76,
132, 217, 262]. The key idea is to store parity information within each superpage to protect data
from ECC failures that occur within a single chip or plane. Figure 2.4 shows an example of how
the ECC and parity information are organized within a superpage. For a superpage that spans
across multiple chips, dies, and planes, the pages stored within one die or one plane (depending
on the implementation) are used to store parity information for the remaining pages. Without
loss of generality, we assume for the rest of this section that a superpage that spans c chips and d
dies per chip stores parity information in the pages of a single die (which we call the parity die),
and that it stores user data in the pages of the remaining (c× d)− 1 dies. When all of the user
data is written to the superpage, the SSD controller XORs the data together one plane at a time
(e.g., in Figure 2.4, all of the pages in Plane 0 are XORed with each other), which produces the
parity data for that plane. This parity data is written to the corresponding plane in the parity die,
e.g., Plane 0 page in Die (c×d)−1 in the figure.

22

Logical Block

. . .

Data ECC
Plane 0, Block m, Page n

… Data ECC Data ECC

RAID Parity
Plane 0, Block m, Page n

RAID Parity
Plane 1, Block m, Page n

ECC Codeword

Data ECC
Plane 1, Block m, Page n

… Data ECC Data ECC

Data ECC
Plane 0, Block m, Page n

… Data ECC Data ECC

Data ECC
Plane 1, Block m, Page n

… Data ECC Data ECC
+

+

Die 0

Die (c×d)–2

Die (c×d)–1

. . .

Figure 2.4: Example layout of ECC codewords, logical blocks, and superpage-level parity for
superpage n in superblock m. In this example, we assume that a logical block contains two
codewords. Reproduced from [32].

The SSD controller invokes superpage-level parity when an ECC failure occurs during a
host software (e.g., OS, file system) access to the SSD. The host software accesses data at the
granularity of a logical block (LB), which is indexed by a logical block address (LBA). Typically,
an LB is 4 kB in size, and consists of several ECC codewords (which are usually 512 BB to 2 kB
in size) stored consecutively within a flash memory page, as shown in Figure 2.4. During the LB
access, a read failure can occur for one of two reasons. First, it is possible that the LB data is
stored within a hidden GBB (i.e., a GBB that has not yet been detected and excluded by the bad
block manager). The probability of storing data in a hidden GBB is quantified as PHGBB. Note
that because bad block management successfully identifies and excludes most GBBs, PHGBB is
much lower than the total fraction of GBBs within an SSD. Second, it is possible that at least
one ECC codeword within the LB has failed (i.e., the codeword contains an error that cannot be
corrected by ECC). The probability that a codeword fails is PECFR (see Section 2.1.3). For an LB
that contains K ECC codewords, we can model PLBFail , the overall probability that an LB access
fails (i.e., the rate at which superpage-level parity needs to be invoked), as:

PLBFail = PHGBB +[1−PHGBB]× [1− (1−PECFR)
K] (2.2)

In Equation 2.2, PLBFail consists of (1) the probability that an LB is inside a hidden GBB (left side
of the addition); and (2) for an LB that is not in a hidden GBB, the probability of any codeword
failing (right side of the addition).

When a read failure occurs for an LB in plane p, the SSD controller reconstructs the data
using the other LBs in the same superpage. To do this, the controller reads the LBs stored in
plane p in the other (c× d)− 1 dies of the superpage, including the LBs in the parity die. The
controller then XORs all of these LBs together, which retrieves the data that was originally stored
in the LB whose access failed. In order to correctly recover the failed data, all of the LBs from
the (c×d)−1 dies must be correctly read. The overall superpage-level parity failure probability
Pparity (i.e., the probability that more than one LB contains a failure) for an SSD with c chips of

23

flash memory, with d dies per chip, can be modeled as [262]:

Pparity = PLBFail× [1− (1−PLBFail)
(c×d)−1] (2.3)

Thus, by designating one of the dies to contain parity information (in a fashion similar to RAID
4 [262]), the SSD can tolerate the complete failure of the superpage data in one die without
experiencing data loss during an LB access.

2.1.4 Design Tradeoffs for Reliability
Several design decisions impact the SSD lifetime (i.e., the duration of time that the SSD can be
used within a bounded probability of error without exceeding a given performance overhead). To
capture the tradeoff between these decisions and lifetime, SSD manufacturers use the following
model:

Lifetime (Years) =
PEC× (1+OP)

365×DWPD×WA×Rcompress
(2.4)

In Equation 2.4, the numerator is the total number of full drive writes the SSD can endure
(i.e., for a drive with an X-byte capacity, the number of times X bytes of data can be written).
The number of full drive writes is calculated as the product of PEC, the total P/E cycle en-
durance of each flash block (i.e., the number of P/E cycles the block can sustain before its raw
error rate exceeds the ECC correction capability), and 1+OP, where OP is the overprovisioning
factor selected by the manufacturer. Manufacturers overprovision the flash drive by providing
more physical block addresses, or PBAs, to the SSD controller than the advertised capacity of
the drive, i.e., the number of logical block addresses (LBAs) available to the operating system.
Overprovisioning improves performance and endurance, by providing additional free space in
the SSD so that maintenance operations can take place without stalling host requests. OP is
calculated as:

OP =
PBA count−LBA count

LBA count
(2.5)

The denominator in Equation 2.4 is the number of full drive writes per year, which is calcu-
lated as the product of days per year (i.e., 365), DWPD, and the ratio between the total size of the
data written to flash media and the size of the data sent by the host (i.e., WA×Rcompress). DWPD
is the number of full disk writes per day (i.e., the number of times per day the OS writes the
advertised capacity’s worth of data). DWPD is typically less than 1 for read-intensive applica-
tions, and could be greater than 5 for write-intensive applications [22]. WA (write amplification)
is the ratio between the amount of data written into NAND flash memory by the controller over
the amount of data written by the host machine. Write amplification occurs because various pro-
cedures (e.g., garbage collection [44, 350]; and remapping-based refresh, Section 3.2.3) in the
SSD perform additional writes in the background. For example, when garbage collection selects
a block to erase, the pages that are remapped to a new block require background writes. Rcompress,
or the compression ratio, is the ratio between the size of the compressed data and the size of the
uncompressed data, and is a function of the entropy of the stored data and the efficiency of the
compression algorithms employed in the SSD controller. In Equation 2.4, DWPD and Rcompress
are largely determined by the workload and data compressibility, and cannot be changed to op-
timize flash lifetime. For controllers that do not implement compression, we set R compress to

24

1. However, the SSD controller can trade off other parameters between one another to optimize
flash lifetime. We discuss the most salient tradeoffs next.

Tradeoff Between Write Amplification and Overprovisioning. As mentioned in Sec-
tion 2.1.3, due to the granularity mismatch between flash erase and program operations, garbage
collection occasionally remaps remaining valid pages from a selected block to a new flash block,
in order to avoid block-internal fragmentation. This remapping causes additional flash memory
writes, leading to write amplification. In an SSD with more overprovisioned capacity, the amount
of write amplification decreases, as the blocks selected for garbage collection are older and tend
to have fewer valid pages. For a greedy garbage collection algorithm and a random-access work-
load, the correlation between WA and OP can be calculated [75, 108], as shown in Figure 2.5. In
an ideal SSD, both WA and OP should be minimal, i.e., WA = 1 and OP = 0%, but in reality there
is a tradeoff between these parameters: when one increases, the other decreases. As Figure 2.5
shows, WA can be reduced by increasing OP, and with an infinite amount of OP, WA converges
to 1. However, the reduction of WA is smaller when OP is large, resulting in diminishing returns.

0
1
2
3
4
5
6
7
8
9

10
11
12

0% 10% 20% 30% 40% 50%

W
rit

e
Am

pl
ifi

ca
tio

n

Overprovisioning

Figure 2.5: Relationship between write amplification (WA) and the overprovisioning factor (OP).
Reproduced from [32].

In reality, the relationship between WA and OP is also a function of the storage space uti-
lization of the SSD. When the storage space is not fully utilized, many more pages are available,
reducing the need to invoke garbage collection, and thus WA can approach 1 without the need
for a large amount of OP.

Tradeoff Between P/E Cycle Endurance and Overprovisioning. PEC and OP can be
traded against each other by adjusting the amount of redundancy used for error correction, such as
ECC and superpage-level parity (as discussed in Section 2.1.3). As the error correction capability
increases, PEC increases because the SSD can tolerate the higher raw bit error rate that occurs at
a higher P/E cycle count. However, this comes at a cost of reducing the amount of space available
for OP, since a stronger error correction capability requires higher redundancy (i.e., more space).
Table 2.1 shows the corresponding OP for four different error correction configurations for an
example SSD with 2.0 TB of advertised capacity and 2.4 TB (20% extra) of physical space. In
this table, the top two configurations use ECC-1 with a coding rate of 0.93, and the bottom
two configurations use ECC-2 with a coding rate of 0.90, which has higher redundancy than
ECC-1. Thus, the ECC-2 configurations have a lower OP than the top two. ECC-2, with its
higher redundancy, can correct a greater number of raw bit errors, which in turn increases the

25

P/E cycle endurance of the SSD. Similarly, the two configurations with superpage-level parity
have a lower OP than configurations without superpage-level parity, as parity uses a portion of
the overprovisioned space to store the parity bits.

Table 2.1: Tradeoff between strength of error correction configuration and amount of SSD space
left for overprovisioning.

Error Correction Configuration Overprovisioning Factor
ECC-1 (0.93), no superpage-level parity 11.6%

ECC-1 (0.93), with superpage-level parity 8.1%
ECC-2 (0.90), no superpage-level parity 8.0%

ECC-2 (0.90), with superpage-level parity 4.6%

When the ECC correction strength is increased, the amount of overprovisioning in the SSD
decreases, which in turn increases the amount of write amplification that takes place. Manufac-
turers must find and use the correct tradeoff between ECC correction strength and the overprovi-
sioning factor, based on which of the two is expected to provide greater reliability for the target
applications of the SSD.

2.2 NAND Flash Memory Basics
A number of underlying properties of the NAND flash memory used within the SSD affect SSD
management, performance, and reliability [12, 16, 219]. In this section, we present a primer
on NAND flash memory and its operation, to prepare the reader for understanding our further
discussion on error sources (Section 3.1) and mitigation mechanisms (Section 3.2). Recall from
Section 2.1.1 that within each plane, flash cells are organized as multiple 2D arrays known as
flash blocks, each of which contains multiple pages of data, where a page is the granularity at
which the host reads and writes data. We first discuss how data is stored in NAND flash memory.
We then introduce the three basic operations supported by NAND flash memory: read, program,
and erase.

2.2.1 Storing Data in a Flash Cell
NAND flash memory stores data as the threshold voltage of each flash cell, which is made up of
a floating gate transistor. Figure 2.6 shows a cross section of a floating gate transistor. On top
of a flash cell is the control gate (CG) and below is the floating gate (FG). The floating gate is
insulated on both sides, on top by an inter-poly oxide layer and at the bottom by a tunnel oxide
layer. As a result, the electrons programmed on the floating gate do not discharge even when
flash memory is powered off.

26

Control Gate (CG)

n+ n+Source Drain

Substrate

Floating
Gate
(FG)

Oxide

Oxide

Figure 2.6: Flash cell (i.e., floating gate transistor) cross section. Reproduced from [32].

For single-level cell (SLC) NAND flash, each flash cell stores a 1-bit value, and can be
programmed to one of two threshold voltage states, which we call the ER and P1 states. Multi-
level cell (MLC) NAND flash stores a 2-bit value in each cell, with four possible states (ER,
P1, P2, and P3), and triple-level cell (TLC) NAND flash stores a 3-bit value in each cell with
eight possible states (ER, P1–P7). Each state represents a different value, and is assigned a
voltage window within the range of all possible threshold voltages. Due to variation across
program operations, the threshold voltage of flash cells programmed to the same state is initially
distributed across this voltage window.

Figure 2.7 illustrates the threshold voltage distribution of MLC (top) and TLC (bottom)
NAND flash memories. The x-axis shows the threshold voltage (Vth), which spans a certain volt-
age range. The y-axis shows the probability density of each voltage level across all flash memory
cells. The threshold voltage distribution of each threshold voltage state can be represented as a
probability density curve that spans over the state’s voltage window.

ER
(11)

P1
(01)

P2
(00)

P3
(10)

ER
(111)

P1
(011)

P2
(001)

P3
(101)

P4
(100)

P5
(000)

P6
(010)

P7
(110)

Threshold Voltage (Vth)

Va Vb Vc Vpass

Pr
ob

ab
ili

ty

De
ns

ity

Threshold Voltage (Vth)

Pr
ob

ab
ili

ty

De
ns

ity Va Vb Vc Vd Ve Vf Vg Vpass

MSB LSB

MSB LSBCSB

MLC NAND Flash Memory

TLC NAND Flash Memory

Figure 2.7: Threshold voltage distribution of MLC (top) and TLC (bottom) NAND flash memory.
Reproduced from [32].

We label the distribution curve for each state with the name of the state and a corresponding
bit value. Note that some manufacturers may choose to use a different mapping of values to
different states. The bit values of adjacent states are separated by a Hamming distance of 1. We
break down the bit values for MLC into the most significant bit (MSB) and least significant bit
(LSB), while TLC is broken down into the MSB, the center significant bit (CSB), and the LSB.

27

The boundaries between neighboring threshold voltage windows, which are labeled as Va, Vb,
and Vc for the MLC distribution in Figure 2.7, are referred to as read reference voltages. These
voltages are used by the SSD controller to identify the voltage window (i.e., state) of each cell
upon reading the cell.

2.2.2 Flash Block Design

Figure 2.8 shows the high-level internal organization of a NAND flash memory block. Each
block contains multiple rows of cells (typically 128–512 rows). Each row of cells is connected
together by a common wordline (WL, shown horizontally in Figure 2.8), typically spanning
32K–64K cells. All of the cells along the wordline are logically combined to form a page in
an SLC NAND flash memory. For an MLC NAND flash memory, the MSBs of all cells on the
same wordline are combined to form an MSB page, and the LSBs of all cells on the wordline are
combined to form an LSB page. Similarly, a TLC NAND flash memory logically combines the
MSBs on each wordline to form an MSB page, the CSBs on each wordline to form a CSB page,
and the LSBs on each wordline to form an LSB page. In MLC NAND flash memory, each flash
block contains 256–1024 flash pages, each of which are typically 8 kB to 16 kB in size.

BL
 0

BL
 1

BL
 2

BL
 3

BL
 M

-1

BL
 M

WL 0

SA

GND

SA SA SA SA SA

WL 1

WL N-1
WL N

Sense
Amplifiers

GSL
ground select

SSL
string select

WL 2

W
or

dl
in

es

Bitlines

Figure 2.8: Internal organization of a flash block. Reproduced from [32].

Within a block, all cells in the same column are connected in series to form a bitline (BL,
shown vertically in Figure 2.8) or string. All cells in a bitline share a common ground (GND) on
one end, and a common sense amplifier (SA) on the other for reading the threshold voltage of one
of the cells when decoding data. Bitline operations are controlled by turning the ground select
line (GSL) and string select line (SSL) transistor of each bitline on or off. The SSL transistor
is used to enable operations on a bitline, and the GSL transistor is used to connect the bitline to
ground during a read operation [223]. The use of a common bitline across multiple rows reduces
the amount of circuit area required for read and write operations to a block, improving storage
density.

28

2.2.3 Read Operation

Data can be read from NAND flash memory by applying read reference voltages onto the control
gate of each cell, to sense the cell’s threshold voltage. To read the value stored in a single-level
cell, we need to distinguish only the state with a bit value of 1 from the state with a bit value
of 0. This requires us to use only a single read reference voltage. Likewise, to read the LSB
of a multi-level cell, we need to distinguish only the states where the LSB value is 1 (ER and
P1) from the states where the LSB value is 0 (P2 and P3), which we can do with a single read
reference voltage (Vb in the top half of Figure 2.7). To read the MSB page, we need to distinguish
the states with an MSB value of 1 (ER and P3) from those with an MSB value of 0 (P1 and P2).
Therefore, we need to determine whether the threshold voltage of the cell falls between Va and
Vc, requiring us to apply each of these two read reference voltages (which can require up to two
consecutive read operations) to determine the MSB.

Reading data from a triple-level cell is similar to the data read procedure for a multi-level
cell. Reading the LSB for TLC again requires applying only a single read reference voltage (Vd
in the bottom half of Figure 2.7). Reading the CSB requires two read reference voltages to be
applied, and reading the MSB requires four read reference voltages to be applied.

As Figure 2.8 shows, cells from multiple wordlines (WL in the figure) are connected in series
on a shared bitline (BL) to the sense amplifier, which drives the value that is being read from the
block onto the memory channel for the plane. In order to read from a single cell on the bitline, all
of the other cells (i.e., unread cells) on the same bitline must be switched on to allow the value
that is being read to propagate through to the sense amplifier. The NAND flash memory achieves
this by applying the pass-through voltage onto the wordlines of the unread cells, as shown in
Figure 2.9a. When the pass-through voltage (i.e., the maximum possible threshold voltage Vpass)
is applied to a flash cell, the source and the drain of the cell transistor are connected, regardless
of the voltage of the floating gate. Modern flash memories guarantee that all unread cells are
passed through to minimize errors during the read operation [35].

(a) Read

Vpass
Vpass

Vpass

Vread

(b) Program

Vpass
Vpass

Vpass

Vprogram

(c) Erase

GND

GND

GND

GND

GNDGSL
on

SSL
on

GSL
off

SSL
on

GSL
floating

SSL
floating

GNDGND

SA SA SA

body bias:
GND

body bias:
Verase

body bias:
GND

Figure 2.9: Voltages applied to flash cell transistors on a bitline to perform (a) read, (b) program,
and (c) erase operations. Reproduced from [32].

29

2.2.4 Program and Erase Operations
The threshold voltage of a floating gate transistor is controlled through the injection and ejection
of electrons through the tunnel oxide of the transistor, which is enabled by the FowlerNordheim
(FN) tunneling effect [12, 81, 263]. The tunneling current (JFN) [16, 263] can be modeled as:

JFN = αFNE2
oxe−βFN/Eox (2.6)

In Equation 2.6, αFN and βFN are constants, and Eox is the electric field strength in the tunnel
oxide. As Equation 2.6 shows, JFN is exponentially correlated with Eox.

During a program operation, electrons are injected into the floating gate of the flash cell
from the substrate when applying a high positive voltage to the control gate (see Figure 2.6
for a diagram of the flash cell). The pass-through voltage is applied to all of the other cells
on the same bitline as the cell that is being programmed as shown in Figure 2.9b. When data
is programmed, charge is transferred into the floating gate through FN tunneling by repeatedly
pulsing the programming voltage, in a procedure known as incremental step-pulse programming
(ISPP) [12, 219, 308, 327]. During ISPP, a high programming voltage (Vprogram) is applied for
a very short period, which we refer to as a step-pulse. ISPP then verifies the current voltage of
the cell using the voltage Vveri f y. ISPP repeats the process of applying a step-pulse and verifying
the voltage until the cell reaches the desired target voltage. In the modern all-bitline NAND flash
memory, all flash cells in a single wordline are programmed concurrently. During programming,
when a cell along the wordline reaches its target voltage but other cells have yet to reach their
target voltage, ISPP inhibits programming pulses to the cell by turning off the SSL transistor of
the cell’s bitline.

In SLC NAND flash and older MLC NAND flash, one-shot programming is used, where all
of the ISPP step-pulses required to program a cell are applied back to back until all cells in the
wordline are fully programmed. One-shot programming does not interleave the program opera-
tions to a wordline with the program operations to another wordline. In newer MLC NAND flash,
the lack of interleaving between program operations can introduce a significant amount of cell-
to-cell program interference on the cells of immediately-adjacent wordlines (see Section 3.1.3).

To reduce the impact of program interference, the controller employs two-step programming
for sub-40 nm MLC NAND flash [24, 256]: it first programs the LSBs into the erased cells of
an unprogrammed wordline, and then programs the MSBs of the cells using a separate program
operation [23, 34, 255, 256]. Between the programming of the LSBs and the MSBs, the con-
troller programs the LSBs of the cells in the wordline immediately above [23, 34, 255, 256].
Figure 2.10 illustrates the two-step programming algorithm. In the first step, a flash cell is par-
tially programmed based on its LSB value, either staying in the ER state if the LSB value is 1,
or moving to a temporary state (TP) if the LSB value is 0. The TP state has a mean voltage that
falls between states P1 and P2. In the second step, the LSB data is first read back into an internal
buffer register within the flash chip to determine the cell’s current threshold voltage state, and
then further programming pulses are applied based on the MSB data to increase the cell’s thresh-
old voltage to fall within the voltage window of its final state. Programming in MLC NAND
flash is discussed in detail in [34] and [23].

30

0. Erase

1. Program
LSB

2. Program
MSB

ER
(X1)

TP
(X0)

ER
(XX)

Vth

Vth

ER
(11)

P1
(01)

P2
(00)

P3
(10)

Threshold Voltage (Vth)

Figure 2.10: Two-step programming algorithm for MLC flash. Reproduced from [32].

TLC NAND flash takes a similar approach to the two-step programming of MLC, with a
mechanism known as foggy-fine programming [182], which is illustrated in Figure 2.11. The
flash cell is first partially programmed based on its LSB value, using a binary programming
step in which very large ISPP step-pulses are used to significantly increase the voltage level.
Then, the flash cell is partially programmed again based on its CSB and MSB values to a new
set of temporary states (these steps are referred to as foggy programming, which uses smaller
ISPP step-pulses than binary programming). Due to the higher potential for errors during TLC
programming as a result of the narrower voltage windows, all of the programmed bit values are
buffered after the binary and foggy programming steps into SLC buffers that are reserved in each
chip/plane. Finally, fine programming takes place, where these bit values are read from the SLC
buffers, and the smallest ISPP step-pulses are applied to set each cell to its final threshold voltage
state. The purpose of this last fine programming step is to fine tune the threshold voltage such
that the threshold voltage distributions are tightened (bottom of Figure 2.11).

ER A B C

ER D

ER

ER
(111)

D E F G

P1
(011)

P2
(001)

P3
(101)

P4
(100)

P5
(000)

P6
(010)

P7
(110)

Vth

Vth

0. Erase

1. Binary
Program

2. Foggy
Program

Threshold Voltage (Vth)

3. Fine
Program

Vth

Figure 2.11: Foggy-fine programming algorithm for TLC flash. Reproduced from [32].

Though programming sets a flash cell to a specific threshold voltage using programming
pulses, the voltage of the cell can drift over time after programming. When no external voltage

31

is applied to any of the electrodes (i.e., CG, source, and drain) of a flash cell, an electric field still
exists between the FG and the substrate, generated by the charge present in the FG. This is called
the intrinsic electric field [16], and it generates stress-induced leakage current (SILC) [12, 73,
242], a weak tunneling current that leaks charge away from the FG. As a result, the voltage that a
cell is programmed to may not be the same as the voltage read for that cell at a subsequent time.

In NAND flash, a cell can be reprogrammed with new data only after the existing data in the
cell is erased. This is because ISPP can only increase the voltage of the cell. The erase operation
resets the threshold voltage state of all cells in the flash block to the ER state. During an erase
operation, electrons are ejected from the FG of the flash cell into the substrate by inducing a high
negative voltage on the cell transistor. The negative voltage is induced by setting the CG of the
transistor to GND, and biasing the transistor body (i.e., the substrate) to a high voltage (Verase), as
shown in Figure 2.9c. Because all cells in a flash block share a common transistor substrate (i.e.,
the bodies of all transistors in the block are connected together), a flash block must be erased in
its entirety [223].

32

Chapter 3

Flash Memory Reliability:
Background and Related Work

In this chapter, we provide the background and related work on reliability issues in NAND flash
memory. First, we provide a thorough introduction on NAND flash memory error character-
istics concluded from prior work (Section 3.1). Second, we survey state-of-the-art techniques
in modern SSDs that mitigate NAND flash memory errors (Section 3.2). Third, we introduce
state-of-the-art error correction and recovery techniques that tolerate NAND flash memory er-
rors (Section 3.3). Fourth, we introduce the state-of-the-art 3D NAND flash memory technology
and the emerging reliability issues for 3D NAND devices using this technology (Section 3.4).
Fifth, we discuss similar errors in other memory technologies and how we tolerate them in mod-
ern computing systems (Section 3.5).

3.1 NAND Flash Memory Error Characteristics
Each block in NAND flash memory is used in a cyclic fashion, as is illustrated by the observed
raw bit error rates seen over the lifetime of a flash memory block in Figure 3.1. At the beginning
of a cycle, known as a program/erase (P/E) cycle, an erased block is opened (i.e., selected for
programming). Data is then programmed into the open block one page at a time. After all of the
pages are programmed, the block is closed, and none of the pages can be reprogrammed until the
whole block is erased. At any point before erasing, read operations can be performed on a valid
programmed page (i.e., a page containing data that has not been modified by the host). A page is
marked as invalid when the data stored at that page’s logical address by the host is modified. As
ISPP can only inject more charge into the floating gate but cannot remove charge from the gate,
it is not possible to modify data to a new arbitrary value in place within existing NAND flash
memories. Once the block is erased, the P/E cycling behavior repeats until the block is worn
out (i.e., the block can no longer avoid data loss over the course of the minimum data retention
period guaranteed by the manufacturer). Although the 5x-nm (i.e., 50 nm to 59 nm) generation
of MLC NAND flash could endure∼10,000 P/E cycles per block before being worn out, modern
1x-nm (i.e., 15 nm to 19 nm) MLC and TLC NAND flash can endure only ∼3,000 and ∼1,000
P/E cycles per block, respectively [157, 205, 260, 355].

33

time

RB
ER Read disturb errors

Retention errors

P/E cycling errors
Program errors
Cell-to-cell interference errors

......

N-1
Program/Erase Cycles

N N+1

increase in errors from N to
N+1 P/E cycles due to wearout

Figure 3.1: Pictorial depiction of errors accumulating within a NAND flash block as P/E cycle
count increases. Reproduced from [32].

As shown in Figure 3.1, several different types of errors can be introduced at any point during
the P/E cycling process: P/E cycling errors, program errors, errors due to cell-to-cell program
interference, data retention errors, and errors due to read disturb. As discussed in Section 2.2.1,
the threshold voltage of flash cells programmed to the same state is distributed across a voltage
window due to variation across program operations and across different flash cells. Several types
of errors introduced during the P/E cycling process, such as data retention and read disturb, cause
the threshold voltage distribution of each state to shift and widen. Due to the shift and widening,
the tails of the distributions of each state can enter the margin that originally existed between
each of the two neighboring states’ distributions. Thus, the threshold voltage distributions of
different states can start overlapping, as shown in Figure 3.2. When the distributions overlap
with each other, the read reference voltages can no longer correctly identify the state of some
flash cells in the overlapping region, leading to raw bit errors during a read operation.

ER
(11)

P1
(01)

P2
(00)

P3
(10)

Threshold Voltage (Vth)

Va Vb Vc

Pr
ob

ab
ili

ty

De
ns

ity

overlap

Figure 3.2: Threshold voltage distribution shifts and widening can cause the distributions of two
neighboring states to overlap with each other (compare to Figure 2.7), leading to read errors.
Reproduced from [32].

In this section, we discuss the causes of each type of error in detail. We later discuss mitiga-
tion techniques for these flash memory errors in Section 3.2, and provide procedures to recover
in the event of data loss in Section 3.3.

34

3.1.1 P/E Cycling Errors
A P/E cycling error occurs when either (1) an erase operation fails to reset a cell to the ER
state; or (2) when a program operation fails to set the cell to the desired target state. P/E cycling
errors occur because electrons become trapped in the tunnel oxide after stress from repeated P/E
cycles. Errors due to such electron trapping (which we refer to as P/E cycling noise) continue
to accumulate over the lifetime of a NAND flash block. This behavior is called wearout, and
it refers to the phenomenon where, as more writes are performed to a block, there are a greater
number of raw bit errors that must be corrected, exhausting more of the fixed error correction
capability of the ECC (see Section 2.1.3).

More findings on the nature of wearout and the impact of wearout on NAND flash memory
errors and lifetime can be found in prior works from our research group [19, 21, 23, 195]. Recent
work studies P/E cycling errors and proposes to change the ER state distribution to securely hide
data in flash [365].

3.1.2 Program Errors
Program errors occur when data read directly from the NAND flash array contains errors, and
the erroneous values are used to program the new data. Program errors occur in two major
cases: (1) partial programming during two-step or foggy-fine programming, and (2) copyback
(i.e., when data is copied inside the NAND flash memory during a maintenance operation) [109].
During two-step programming for MLC NAND flash memory (see Figure 2.10), in between the
LSB and MSB programming steps of a cell, threshold voltage shifts can occur on the partially-
programmed cell. These shifts occur because several other read and program operations to
cells in other pages within the same block may take place, causing interference to the partially-
programmed cell. Figure 3.3 illustrates how the threshold distribution of the ER state widens and
shifts to the right after the LSB value is programmed (step 1 in the figure). The widening and
shifting of the distribution causes some cells that were originally partially programmed to the ER
state (with an LSB value of 1) to be misread as being in the TP state (with an LSB value of 0) dur-
ing the second programming step (step 2 in the figure). As shown in Figure 3.3, the misread LSB
value leads to a program error when the final cell threshold voltage is programmed [34, 195, 260].
Some cells that should have been programmed to the P1 state (representing the value 01) are in-
stead programmed to the P2 state (with the value 00), and some cells that should have been
programmed to the ER state (representing the value 11) are instead programmed to the P3 state
(with the value 10).

35

0. Erase

1. Program
LSB

2. Program
MSB

ER
(X1)

TP
(X0)

ER
(XX)

Vth

Vth

ER
(11)

P1
(01)

P2
(00)

P3
(10)

Vth

ERP1
Program errors

LSB should be 1, but is incorrectly programmed to 0

Interference shifts/widens
ER distributionVref

Figure 3.3: Impact of program errors during two-step programming on cell threshold voltage
distribution. Reproduced from [32].

More findings on the nature of program errors and the impact of program errors on NAND
flash memory lifetime can be found in prior works from our research group [34, 195].

3.1.3 Cell-to-Cell Program Interference Errors
Program interference refers to the phenomenon where the programming of a flash cell induces
errors on adjacent flash cells within a flash block [24, 26, 68, 88, 174]. The interference occurs
due to parasitic capacitance coupling between these cells. As a result, when the threshold volt-
age of an adjacent flash cell increases, the threshold voltage of the victim cell increases as well.
The unintended threshold voltage shifts can eventually move a cell into a different state than the
one it was originally programmed to, leading to a bit error.

Prior works have shown, based on the experimental analysis of modern MLC NAND flash
memory chips, that the threshold voltage change of the victim cell can be accurately modeled
as a linear combination of the threshold voltage changes of the adjacent cells when they are
programmed, using linear regression with least-square-error estimation [24, 26]. The cells that
are physically located immediately next to the victim cell (called the immediately-adjacent cells)
are the major contributors to the cell-to-cell interference of a victim cell [24]. Figure 3.4 shows
the eight immediately-adjacent cells for a victim cell in 2D planar NAND flash memory.

36

Wordline N+1

Wordline N

Wordline N-1

Bitline M Bitline M+1Bitline M-1

Victim
Cell

Bitline
Neighbor

Bitline
Neighbor

Wordline
Neighbor

Wordline
Neighbor

Diagonal
Neighbor

Diagonal
Neighbor

Diagonal
Neighbor

Diagonal
Neighbor

Figure 3.4: Immediately-adjacent cells that can induce program interference on a victim cell that
is on wordline N and bitline M. Reproduced from [32].

The amount of interference that program operations to the immediately-adjacent cells can
induce on the victim cell is expressed as:

∆Vvictim = ∑
X

KX ∆VX (3.1)

where ∆Vvictim is the change in voltage of the victim cell due to cell-to-cell program interference,
KX is the coupling coefficient between cell X and the victim cell, and ∆VX is the threshold voltage
change of cell X during programming. The coupling coefficient is directly related to the effective
capacitance C between cell X and the victim cell, which can be calculated as:

C = εS/d (3.2)

where ε is the permittivity, S is the effective cell area of cell X that faces the victim cell, and d
is the distance between the cells. Of the immediately-adjacent cells, the wordline neighbor cells
have the greatest coupling capacitance with the victim cell, as they likely have a large effective
facing area to, and a small distance from, the victim cell compared to other surrounding cells.

The coupling coefficient grows as the feature size decreases [24, 26]. As NAND flash mem-
ory process technology scales down to smaller feature sizes, cells become smaller and get closer
to each other, which increases the effective capacitance between them. As a result, at smaller
feature sizes, it is easier for an immediately-adjacent cell to induce program interference on a
victim cell. We conclude that (1) the program interference an immediately-adjacent cell induces
on a victim cell is primarily determined by the distance between the cells and the immediately-
adjacent cell’s effective area facing the victim cell; and (2) the wordline neighbor cell causes the
highest such interference, based on empirical measurements.

More findings on the nature of cell-to-cell program interference and the impact of cell-to-cell
program interference on NAND flash memory errors and lifetime can be found in prior works
from our research group [19, 24, 26, 34].

3.1.4 Data Retention Errors
Retention errors are caused by charge leakage over time after a flash cell is programmed, and
are the dominant source of flash memory errors, as demonstrated previously [21, 22, 25, 27,

37

219, 312]. As flash memory process technology scales to smaller feature sizes, the capacitance
of a flash cell, and the number of electrons stored on it, decreases. State-of-the-art (i.e., 1x-
nm) MLC flash memory cells can store only ∼100 electrons [355]. Gaining or losing several
electrons on a cell can significantly change the cell’s voltage level and eventually alter its state.
Charge leakage is caused by the unavoidable trapping of charge in the tunnel oxide [27, 173].
The amount of trapped charge increases with the electrical stress induced by repeated program
and erase operations, which degrade the insulating property of the oxide.

Two failure mechanisms of the tunnel oxide lead to retention loss. Trap-assisted tunneling
(TAT) occurs because the trapped charge forms an electrical tunnel, which exacerbates the weak
tunneling current, SILC (see Section 2.2.4). As a result of this TAT effect, the electrons present
in the floating gate (FG) leak away much faster through the intrinsic electric field. Hence, the
threshold voltage of the flash cell decreases over time. As the flash cell wears out with increasing
P/E cycles, the amount of trapped charge also increases [27, 173], and so does the TAT effect.
At high P/E cycles, the amount of trapped charge is large enough to form percolation paths
that significantly hamper the insulating properties of the gate dielectric [27, 73], resulting in
retention failure. Charge detrapping, where charge previously trapped in the tunnel oxide is freed
spontaneously, can also occur over time [27, 73, 173, 347]. The charge polarity can be either
negative (i.e., electrons) or positive (i.e., holes). Hence, charge detrapping can either decrease or
increase the threshold voltage of a flash cell, depending on the polarity of the detrapped charge.

More findings on the nature of data retention and the impact of data retention behavior on
NAND flash memory errors and lifetime can be found in prior works from our research group [19,
21, 22, 25, 27].

3.1.5 Read Disturb Errors
Read disturb is a phenomenon in NAND flash memory where reading data from a flash cell
can cause the threshold voltages of other (unread) cells in the same block to shift to a higher
value [21, 35, 68, 88, 219, 252, 310]. While a single threshold voltage shift is small, such shifts
can accumulate over time, eventually becoming large enough to alter the state of some cells and
hence generate read disturb errors.

The failure mechanism of a read disturb error is similar to the mechanism of a normal pro-
gram operation. A program operation applies a high programming voltage (e.g., +15 V) to the
cell to change the cell’s threshold voltage to the desired range. Similarly, a read operation ap-
plies a high pass-through voltage (e.g., +6 V) to all other cells that share the same bitline with
the cell that is being read. Although the pass-through voltage is not as high as the programming
voltage, it still generates a weak programming effect on the cells it is applied to [35], which can
unintentionally change these cells’ threshold voltages.

More findings on the nature of read disturb and the impact of read disturb on NAND flash
memory errors and lifetime can be found in prior works from our research group [35].

3.1.6 Self-Recovery Effect
NAND flash memory has a limited lifetime because of transistor wearout as a flash cell is repeat-
edly programmed and erased. After each additional P/E cycle, a greater number of electrons get

38

inadvertently trapped within the flash cell, which changes the threshold voltage of the transis-
tor [32, 33]. This threshold voltage change introduces errors and, thus, reduces the flash lifetime.
Some of these inadvertently-trapped electrons gradually escape during the idle time between
consecutive P/E cycles, i.e., the dwell time. The escape (i.e., detrapping) of the inadvertently-
trapped electrons is known as the self-recovery effect [220], as it partially undoes (i.e., repairs)
the wearout of the cell.

The self-recovery effect repairs the damage caused by flash wearout during the time between
two P/E cycles, by detrapping some of the inadvertently-trapped charge [50, 176, 220, 224, 337,
338]. In this dissertation, we refer to the delay between consecutive program operations as the
dwell time. The amount of repair done by self-recovery is affected by two factors: (1) dwell time
and (2) operating temperature.

During the dwell time of a flash cell, a fraction of the charge that was inadvertently trapped
in the tunnel oxide is slowly detrapped [220]. The reduction of inadvertently-trapped charge
in a cell reduces the number of retention and program variation errors, and thus can extend the
NAND flash memory lifetime. For a fixed retention time, a larger dwell time reduces the number
of retention errors [220]. A recovery cycle refers to a P/E cycle where the program operation is
followed by an extended dwell time. Since 3D NAND flash memory errors are dominated by
retention errors [55, 221, 353], reducing the retention error rate by performing recovery cycles
can increase flash lifetime significantly.

A higher operating temperature for NAND flash memory increases electron mobility [27,
220]. As a result, a short retention time at high temperature has the same retention loss effect
as a longer retention time at room temperature [27], which we call the effective retention time.
Similarly, a short dwell time at high temperature has the same self-recovery effect as a longer
dwell time at room temperature [220], called the effective dwell time. The equivalence between
time elapsed at a certain temperature and the corresponding effective time at room temperature
can be modeled using Arrhenius’ Law [6, 27, 126, 220]:

AF(T1,T2) =
t1
t2

= exp
(

Ea

kB
·
(

1
T1
− 1

T2

))
(3.3)

In Equation 3.3, AF is the acceleration factor between t1 and t2, where t1 is the reten-
tion or dwell time under temperature T1, and t2 is the retention or dwell time under tempera-
ture T2. kB is the Boltzmann constant, which is 8.62e−5 eV/K. Ea is the activation energy,
which is a manufacturing-process-dependent constant. For a planar NAND flash memory de-
vice, Ea = 1.1 eV [124]. To our knowledge, there is no public literature that reports the value of
Ea for 3D NAND flash memory.

Prior work has proposed idealized circuit-level models for the self-recovery (or self-healing)
effect [224, 337], demonstrating significant opportunities for using the self-recovery effect to
improve flash reliability and lifetime. Based on the assumptions about how self-recovery effect
works, prior work has also proposed techniques to exploit this effect to improve flash lifetime
such as heal-leveling [45], write throttling [176], and heat-accelerated self-recovery [337]. How-
ever, these previous results are not yet convincing enough to show that self-recovery effect can
successfully improve flash lifetime on real devices, because they lack real experimental data and
evidence supporting the self-recovery effect on modern flash devices. Our characterization in

39

Chapter 7 is the first to demonstrate and comprehensively evaluate the benefit of self-recovery
effect using experimental data from real 3D NAND flash memory chips.

3.1.7 Large-Scale Studies on SSD Errors
The error characterization studies we have discussed so far examine the susceptibility of real
NAND flash memory devices to specific error sources, by conducting controlled experiments on
individual flash devices in controlled environments. To examine the aggregate effect of these
error sources on flash devices that operate in the field, several recent studies have analyzed the
reliability of SSDs deployed at a large scale (e.g., hundreds of thousands of SSDs) in produc-
tion data centers [213, 241, 285]. Unlike the controlled low-level error characterization studies
discussed in Sections 3.1.1 through 3.1.5, these large-scale studies analyze the observed errors
and error rates in an uncontrolled manner, i.e., based on real data center workloads operating at
field conditions (as opposed to carefully controlling access patterns and operating conditions).
As such, these large-scale studies can study flash memory behavior and reliability using only a
black-box approach, where they are able to access only the registers used by the SSD to record
select statistics. Because of this, their conclusions are usually correlational in nature, as op-
posed to identifying the underlying causes behind the observations. On the other hand, these
studies incorporate the effects of a real system, including the system software stack and real
workloads [213] and real operational conditions in data centers, on the flash memory devices,
which is not present in the controlled small-scale studies.

These recent large-scale studies have made a number of observations across large sets of
SSDs employed in the data centers of large internet companies: Facebook [213], Google [285],
and Microsoft [241]. We highlight six key observations from these studies about the SSD failure
rate, which is the fraction of SSDs that have experienced at least one uncorrectable error.

First, the number of uncorrectable errors observed varies significantly for each SSD. Fig-
ure 3.5 shows the distribution of uncorrectable errors per SSD across a large set of SSDs used
by Facebook. The distributions are grouped into six different platforms that are deployed in
Facebook’s data center.1 For every platform, prior work observes that the top 10% of SSDs,
when sorted by their uncorrectable error count, account for over 80% of the total uncorrectable
errors observed across all SSDs for that platform. Prior work finds that the distribution of uncor-
rectable errors across all SSDs belonging to a platform follows a Weibull distribution, which is
shown using a solid black line in Figure 3.5.

1Each platform has a different combination of SSDs, host controller interfaces, and workloads. The six platforms
are described in detail in [213].

40

Figure 3.5: Distribution of uncorrectable errors across SSDs used in Facebook’s data centers.
Reproduced from [213].

Second, the SSD failure rate does not increase monotonically with the P/E cycle count. In-
stead, prior work observes several distinct periods of reliability, as illustrated pictorially and
abstractly in Figure 3.6, which is based on data obtained from analyzing errors in SSDs used
in Facebook’s data centers [213]. The failure rate increases when the SSDs are relatively new
(shown as the early detection period in Figure 3.6), as the SSD controller identifies unreliable
NAND flash cells during the initial read and write operations to the devices and removes them
from the address space (see Section 2.1.3). As the SSDs are used more, they enter the early
failure period, where failures are less likely to occur. When the SSDs approach the end of their
lifetime (useful life/wearout in the figure), the failure rate increases again, as more cells become
unreliable due to wearout. Figure 3.7 shows how the measured failure rate changes as more
writes are performed to the SSDs (i.e., how real data collected from Facebook’s SSDs corre-
sponds to the pictorial depiction in Figure 3.6) for the same six platforms shown in Figure 3.5.
Prior work observes that the failure rates in each platform exhibit the distinct periods that are
illustrated in Figure 3.6. For example, let us consider the SSDs in Platforms A and B, which
have more data written to their cells than SSDs in other platforms. Prior work observes from
Figure 3.7 that for SSDs in Platform A, there is an 81.7% increase from the failure rate during
the early detection period to the failure rate during the wearout period [213].

41

Figure 3.6: Pictorial and abstract depiction of the pattern of SSD failure rates observed in real
SSDs operating in a modern data center. An SSD fails at different rates during distinct periods
throughout the SSD lifetime. Reproduced from [213].

directly to flash cells), cells are read, programmed, and erased,
and unreliable cells are identified by the SSD controller, re-
sulting in an initially high failure rate among devices. Figure 4
pictorially illustrates the lifecycle failure pattern we observe,
which is quantified by Figure 5.

Figure 5 plots how the failure rate of SSDs varies with the
amount of data written to the flash cells. We have grouped
the platforms based on the individual capacity of their SSDs.
Notice that across most platforms, the failure rate is low when
little data is written to flash cells. It then increases at first
(corresponding to the early detection period, region 1 in the
figures), and decreases next (corresponding to the early failure
period, region 2 in the figures). Finally, the error rate gener-
ally increases for the remainder of the SSD’s lifetime (corre-
sponding to the useful life and wearout periods, region 3 in
the figures). An obvious outlier for this trend is Platform C –
in Section 5, we observe that some external characteristics of
this platform lead to its atypical lifecycle failure pattern.

Note that different platforms are in different stages in their
lifecycle depending on the amount of data written to flash
cells. For example, SSDs in Platforms D and F, which have
the least amount of data written to flash cells on average, are
mainly in the early detection or early failure periods. On the
other hand, SSDs in older Platforms A and B, which have
more data written to flash cells, span all stages of the lifecycle
failure pattern (depicted in Figure 4). For SSDs in Platform
A, we observe up to an 81.7% difference between the failure
rates of SSDs in the early detection period and SSDs in the
wearout period of the lifecycle.

As explained before and as depicted in Figure 4, the lifecy-
cle failure rates we observe with the amount of data written
to flash cells does not follow the conventional bathtub curve.
In particular, the new early detection period we observe across
the large number of devices leads us to investigate why this
“early detection period” behavior exists. Recall that the early
detection period refers to failure rate increasing early in life-
time (i.e., when a small amount of data is written to the SSD).
After the early detection period, failure rate starts decreasing.

We hypothesize that this non-monotonic error rate behav-
ior during and after the early detection period can be ac-
counted for by a two-pool model of flash blocks: one pool
of blocks, called the weaker pool, consists of cells whose error

rate increases much faster than the other pool of blocks, called
the stronger pool. The weaker pool quickly generates uncor-
rectable errors (leading to increasing failure rates observed in
the early detection period as these blocks keep failing). The
cells comprising this pool ultimately fail and are taken out of
use early by the SSD controller. As the blocks in the weaker
pool are exhausted, the overall error rate starts decreasing (as
we observe after the end of what we call the early detection
period) and it continues to decrease until the more durable
blocks in the stronger pool start to wear out due to typical
use.

We notice a general increase in the duration of the lifecycle
periods (in terms of data written) for SSDs with larger capac-
ities. For example, while the early detection period ends after
around 3 TB of data written for 720 GB and 1.2TB SSDs (in
Platforms A, B, C, and D), it ends after around 10 TB of data
written for 3.2 TB SSDs (in Platforms E and F). Similarly, the
early failure period ends after around 15 TB of data written
for 720 GB SSDs (in Platforms A and B), 28 TB for 1.2 TB
SSDs (in Platforms C and D), and 75 TB for 3.2 TB SSDs (in
Platforms E and F). This is likely due to the more flexibility
a higher-capacity SSD has in reducing wear across a larger
number of flash cells.

4.2 Data Read from Flash Cells
Similar to data written, our framework allows us to measure

the amount of data directly read from flash cells over each
SSD’s lifetime. Prior works in controlled environments have
shown that errors can be induced due to read-based access
patterns [5, 32, 6, 8]. We are interested in understanding how
prevalent this effect is across the SSDs we examine.

Figure 6 plots how failure rate of SSDs varies with the
amount of data read from flash cells. For most platforms (i.e.,
A, B, C, and F), the failure rate trends we see in Figure 6 are
similar to those we observed in Figure 5. We find this similar-
ity when the average amount of data written to flash cells by
SSDs in a platform is more than the average amount of data
read from the flash cells. Platforms A, B, C, and F show this
behavior.2

2Though Platform B has a set of SSDs with a large amount of
data read, the average amount of data read across all SSDs in
this platform is less than the average amount of data written.

●

●

●

●

●

●
●

●

●

●

●

●

●

0e+00 4e+13 8e+13

Data written (B)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform A Platform B

1 2 3

● ● ● ● ● ● ● ● ●
● ● ●

● ●
●

● ●

0.0e+00 1.0e+14

Data written (B)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform C Platform D

1 2 3

● ●
● ●

●
● ●

●

●

●

●

●

●

0.0e+00 1.5e+14 3.0e+14

Data written (B)
0.

00
0.

50
1.

00

S
S

D
 fa

ilu
re

 ra
te

● Platform E Platform F

1 2 3

Figure 5: SSD failure rate vs. the amount of data written to flash cells. SSDs go through several distinct
phases throughout their life: increasing failure rates during early detection of less reliable cells (1), decreasing
failure rates during early cell failure and subsequent removal (2), and eventually increasing error rates during
cell wearout (3).

directly to flash cells), cells are read, programmed, and erased,
and unreliable cells are identified by the SSD controller, re-
sulting in an initially high failure rate among devices. Figure 4
pictorially illustrates the lifecycle failure pattern we observe,
which is quantified by Figure 5.

Figure 5 plots how the failure rate of SSDs varies with the
amount of data written to the flash cells. We have grouped
the platforms based on the individual capacity of their SSDs.
Notice that across most platforms, the failure rate is low when
little data is written to flash cells. It then increases at first
(corresponding to the early detection period, region 1 in the
figures), and decreases next (corresponding to the early failure
period, region 2 in the figures). Finally, the error rate gener-
ally increases for the remainder of the SSD’s lifetime (corre-
sponding to the useful life and wearout periods, region 3 in
the figures). An obvious outlier for this trend is Platform C –
in Section 5, we observe that some external characteristics of
this platform lead to its atypical lifecycle failure pattern.

Note that different platforms are in different stages in their
lifecycle depending on the amount of data written to flash
cells. For example, SSDs in Platforms D and F, which have
the least amount of data written to flash cells on average, are
mainly in the early detection or early failure periods. On the
other hand, SSDs in older Platforms A and B, which have
more data written to flash cells, span all stages of the lifecycle
failure pattern (depicted in Figure 4). For SSDs in Platform
A, we observe up to an 81.7% difference between the failure
rates of SSDs in the early detection period and SSDs in the
wearout period of the lifecycle.

As explained before and as depicted in Figure 4, the lifecy-
cle failure rates we observe with the amount of data written
to flash cells does not follow the conventional bathtub curve.
In particular, the new early detection period we observe across
the large number of devices leads us to investigate why this
“early detection period” behavior exists. Recall that the early
detection period refers to failure rate increasing early in life-
time (i.e., when a small amount of data is written to the SSD).
After the early detection period, failure rate starts decreasing.

We hypothesize that this non-monotonic error rate behav-
ior during and after the early detection period can be ac-
counted for by a two-pool model of flash blocks: one pool
of blocks, called the weaker pool, consists of cells whose error

rate increases much faster than the other pool of blocks, called
the stronger pool. The weaker pool quickly generates uncor-
rectable errors (leading to increasing failure rates observed in
the early detection period as these blocks keep failing). The
cells comprising this pool ultimately fail and are taken out of
use early by the SSD controller. As the blocks in the weaker
pool are exhausted, the overall error rate starts decreasing (as
we observe after the end of what we call the early detection
period) and it continues to decrease until the more durable
blocks in the stronger pool start to wear out due to typical
use.

We notice a general increase in the duration of the lifecycle
periods (in terms of data written) for SSDs with larger capac-
ities. For example, while the early detection period ends after
around 3 TB of data written for 720 GB and 1.2TB SSDs (in
Platforms A, B, C, and D), it ends after around 10 TB of data
written for 3.2 TB SSDs (in Platforms E and F). Similarly, the
early failure period ends after around 15 TB of data written
for 720 GB SSDs (in Platforms A and B), 28 TB for 1.2 TB
SSDs (in Platforms C and D), and 75 TB for 3.2 TB SSDs (in
Platforms E and F). This is likely due to the more flexibility
a higher-capacity SSD has in reducing wear across a larger
number of flash cells.

4.2 Data Read from Flash Cells
Similar to data written, our framework allows us to measure

the amount of data directly read from flash cells over each
SSD’s lifetime. Prior works in controlled environments have
shown that errors can be induced due to read-based access
patterns [5, 32, 6, 8]. We are interested in understanding how
prevalent this effect is across the SSDs we examine.

Figure 6 plots how failure rate of SSDs varies with the
amount of data read from flash cells. For most platforms (i.e.,
A, B, C, and F), the failure rate trends we see in Figure 6 are
similar to those we observed in Figure 5. We find this similar-
ity when the average amount of data written to flash cells by
SSDs in a platform is more than the average amount of data
read from the flash cells. Platforms A, B, C, and F show this
behavior.2

2Though Platform B has a set of SSDs with a large amount of
data read, the average amount of data read across all SSDs in
this platform is less than the average amount of data written.

●

●

●

●

●

●
●

●

●

●

●

●

●

0e+00 4e+13 8e+13

Data written (B)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform A Platform B

1 2 3

● ● ● ● ● ● ● ● ●
● ● ●

● ●
●

● ●

0.0e+00 1.0e+14

Data written (B)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform C Platform D

1 2 3

● ●
● ●

●
● ●

●

●

●

●

●

●

0.0e+00 1.5e+14 3.0e+14

Data written (B)
0.

00
0.

50
1.

00

S
S

D
 fa

ilu
re

 ra
te

● Platform E Platform F

1 2 3

Figure 5: SSD failure rate vs. the amount of data written to flash cells. SSDs go through several distinct
phases throughout their life: increasing failure rates during early detection of less reliable cells (1), decreasing
failure rates during early cell failure and subsequent removal (2), and eventually increasing error rates during
cell wearout (3).

directly to flash cells), cells are read, programmed, and erased,
and unreliable cells are identified by the SSD controller, re-
sulting in an initially high failure rate among devices. Figure 4
pictorially illustrates the lifecycle failure pattern we observe,
which is quantified by Figure 5.

Figure 5 plots how the failure rate of SSDs varies with the
amount of data written to the flash cells. We have grouped
the platforms based on the individual capacity of their SSDs.
Notice that across most platforms, the failure rate is low when
little data is written to flash cells. It then increases at first
(corresponding to the early detection period, region 1 in the
figures), and decreases next (corresponding to the early failure
period, region 2 in the figures). Finally, the error rate gener-
ally increases for the remainder of the SSD’s lifetime (corre-
sponding to the useful life and wearout periods, region 3 in
the figures). An obvious outlier for this trend is Platform C –
in Section 5, we observe that some external characteristics of
this platform lead to its atypical lifecycle failure pattern.

Note that different platforms are in different stages in their
lifecycle depending on the amount of data written to flash
cells. For example, SSDs in Platforms D and F, which have
the least amount of data written to flash cells on average, are
mainly in the early detection or early failure periods. On the
other hand, SSDs in older Platforms A and B, which have
more data written to flash cells, span all stages of the lifecycle
failure pattern (depicted in Figure 4). For SSDs in Platform
A, we observe up to an 81.7% difference between the failure
rates of SSDs in the early detection period and SSDs in the
wearout period of the lifecycle.

As explained before and as depicted in Figure 4, the lifecy-
cle failure rates we observe with the amount of data written
to flash cells does not follow the conventional bathtub curve.
In particular, the new early detection period we observe across
the large number of devices leads us to investigate why this
“early detection period” behavior exists. Recall that the early
detection period refers to failure rate increasing early in life-
time (i.e., when a small amount of data is written to the SSD).
After the early detection period, failure rate starts decreasing.

We hypothesize that this non-monotonic error rate behav-
ior during and after the early detection period can be ac-
counted for by a two-pool model of flash blocks: one pool
of blocks, called the weaker pool, consists of cells whose error

rate increases much faster than the other pool of blocks, called
the stronger pool. The weaker pool quickly generates uncor-
rectable errors (leading to increasing failure rates observed in
the early detection period as these blocks keep failing). The
cells comprising this pool ultimately fail and are taken out of
use early by the SSD controller. As the blocks in the weaker
pool are exhausted, the overall error rate starts decreasing (as
we observe after the end of what we call the early detection
period) and it continues to decrease until the more durable
blocks in the stronger pool start to wear out due to typical
use.

We notice a general increase in the duration of the lifecycle
periods (in terms of data written) for SSDs with larger capac-
ities. For example, while the early detection period ends after
around 3 TB of data written for 720 GB and 1.2TB SSDs (in
Platforms A, B, C, and D), it ends after around 10 TB of data
written for 3.2 TB SSDs (in Platforms E and F). Similarly, the
early failure period ends after around 15 TB of data written
for 720 GB SSDs (in Platforms A and B), 28 TB for 1.2 TB
SSDs (in Platforms C and D), and 75 TB for 3.2 TB SSDs (in
Platforms E and F). This is likely due to the more flexibility
a higher-capacity SSD has in reducing wear across a larger
number of flash cells.

4.2 Data Read from Flash Cells
Similar to data written, our framework allows us to measure

the amount of data directly read from flash cells over each
SSD’s lifetime. Prior works in controlled environments have
shown that errors can be induced due to read-based access
patterns [5, 32, 6, 8]. We are interested in understanding how
prevalent this effect is across the SSDs we examine.

Figure 6 plots how failure rate of SSDs varies with the
amount of data read from flash cells. For most platforms (i.e.,
A, B, C, and F), the failure rate trends we see in Figure 6 are
similar to those we observed in Figure 5. We find this similar-
ity when the average amount of data written to flash cells by
SSDs in a platform is more than the average amount of data
read from the flash cells. Platforms A, B, C, and F show this
behavior.2

2Though Platform B has a set of SSDs with a large amount of
data read, the average amount of data read across all SSDs in
this platform is less than the average amount of data written.

●

●

●

●

●

●
●

●

●

●

●

●

●

0e+00 4e+13 8e+13

Data written (B)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform A Platform B

1 2 3

● ● ● ● ● ● ● ● ●
● ● ●

● ●
●

● ●

0.0e+00 1.0e+14

Data written (B)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform C Platform D

1 2 3

● ●
● ●

●
● ●

●

●

●

●

●

●

0.0e+00 1.5e+14 3.0e+14

Data written (B)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform E Platform F

1 2 3

Figure 5: SSD failure rate vs. the amount of data written to flash cells. SSDs go through several distinct
phases throughout their life: increasing failure rates during early detection of less reliable cells (1), decreasing
failure rates during early cell failure and subsequent removal (2), and eventually increasing error rates during
cell wearout (3).

Figure 3.7: SSD failure rate vs. the amount of data written to the SSD. The three periods of
failure rates, shown pictorially and abstractly in Figure 3.6, are annotated on each graph: (1) early
detection, (2) early failure, and (3) useful life/wearout. Reproduced from [213].

Third, the raw bit error rate grows with the age of the device even if the P/E cycle count
is held constant, indicating that mechanisms such as silicon aging likely contribute to the error
rate [241].

Fourth, the observed failure rate of SSDs has been noted to be significantly higher than the
failure rates specified by the manufacturers [285].

Fifth, higher operating temperatures can lead to higher failure rates, but modern SSDs employ
throttling techniques that reduce the access rates to the underlying flash chips, which can greatly
reduce the negative reliability impact of higher temperatures [213]. For example, Figure 3.8
shows the SSD failure rate as the SSD operating temperature varies, for SSDs from the same six
platforms shown in Figure 3.5 [213]. Prior work observes that at an operating temperature range
of 30 ◦C to 40 ◦C, SSDs either (1) have similar failure rates across the different temperatures, or
(2) experience slight increases in the failure rate as the temperature increases. As the tempera-

42

ture increases beyond 40 ◦C, the SSDs fall into three categories: (1) temperature-sensitive with
increasing failure rate (Platforms A and B), (2) less temperature-sensitive (Platforms C and E),
and (3) temperature-sensitive with decreasing failure rate (Platforms D and F). There are two fac-
tors that affect the temperature sensitivity of each platform: (1) some, but not all, of the platforms
employ techniques to throttle SSD activity at high operating temperatures to reduce the failure
rate (e.g., Platform D); and (2) the platform configuration (e.g., the number of SSDs in each
machine, system airflow) can shorten or prolong the effects of higher operating temperatures.

●
● ●

●

●

●

●

30 40 50 60

Average temperature (°C)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform A Platform B

●
● ● ● ●

●

35 45 55 65

Average temperature (°C)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform C Platform D

● ●

● ●
●

●
●

● ●

30 40 50 60 70

Average temperature (°C)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform E Platform F

Figure 10: SSD failure rate vs. temperature. Operational temperatures of 30 to 40◦C generally show increas-
ing failure rates. Failure trends at and above 40◦C follow three distinct failure rate patterns: increasing, not
sensitive, and decreasing.

reduction: whether or not an SSD has throttled its operation
in order to reduce its power consumption. Performing a large
number of writes to an SSD consumes power and increases the
temperature of the SSD. Figure 11 plots, for each temperature,
the fraction of machines that have ever been throttled. Exam-
ining this figure confirms that Platforms A and B, where no
machines or few machines have been throttled, exhibit behav-
ior that is typical for SSDs without much preventative action
against temperature increases. In these platforms, as temper-
ature increases, failure rate of SSDs increases.

In contrast to Platforms A and B, Platforms C and E, which
are less temperature-sensitive, throttle their SSDs more ag-
gressively across a range of temperatures. From Figure 10 we
can see that throttled SSDs have lower failure rates (in Plat-
forms C and E) compared to SSDs that are throttled less or
not throttled at all (Platforms A and B). We attribute the
relatively low SSD failure rate for Platforms C and E we have
observed in our measurements to the very aggressive throttling
that occurs for SSDs in these two platforms. Such throttling
could potentially reduce performance, though we are not able
to examine this effect.

SSDs in Platforms D and F employ a relatively low amount
of throttling (Figure 11), but exhibit the counter-intuitive
trend of decreasing failure rate with increased temperature.
Recall from Section 4.1 that these SSDs are predominantly
in their early detection and early failure periods and so the
failure rates for most SSDs in these platforms are relatively
high compared to their peers in Platforms C and E. It is likely

that a combination of power throttling and some other form of
temperature-dependent throttling employed by the SSD con-
troller that we are not able to measure is responsible for re-
ducing the failure rate among the SSDs in Platforms D and F
as temperature increases.

5.2 Bus Power Consumption
According to the PCIe standard, the nominal bus power

consumption for the PCIe ×4 SSDs that we analyze is 10 W
(regardless of PCIe version 1 or 2). Our infrastructure allows
us to measure the average amount of power consumed on the
PCIe bus by SSDs. As power consumption in servers can lead
to increased electricity use for operation and cooling in data
centers, we are interested in understanding the role that SSD
power draw plays with respect to errors.

Figure 12 plots the failure rate for SSDs that operate at
different average amounts of bus power consumption. Recall
that Platforms A and B use PCIe v1 and that Platforms C
through F use PCIe v2. We make three observations about
the operation of these SSDs. First, PCIe v2 SSDs (Platforms
C through F) support twice the bandwidth of PCIe v1 SSDs
(Platforms A and B) by operating at twice the frequency, lead-
ing to around twice the amount of power consumed between
the two sets of SSDs: SSDs supporting PCIe v1 operate in
the range of 4 to 7.5 W and SSDs supporting PCIe v2 oper-
ate in the range of 8 to 14.5 W. Second, we find that the bus
power that SSDs consume can vary over a range of around
2× between the SSDs that consume the least bus power and

● ● ● ● ● ● ●

30 40 50 60

Average temperature (°C)

0.
00

0.
50

1.
00

Platform A

Th
ro

ttl
ed

 S
S

D
 fr

ac
tio

n

● ● ● ● ● ●

30 35 40 45 50 55

Average temperature (°C)

0.
00

0.
50

1.
00

Platform B

●

● ● ● ●

●

35 40 45 50 55 60

Average temperature (°C)

0.
00

0.
50

1.
00

Platform C

● ● ● ● ● ● ●

35 45 55 65

Average temperature (°C)

0.
00

0.
50

1.
00

Platform D

● ●
●

●

● ●
●

●

●

30 40 50 60 70

Average temperature (°C)

0.
00

0.
50

1.
00

Platform E

● ● ●
●

● ●

35 40 45 50 55 60

Average temperature (°C)

0.
00

0.
50

1.
00

Platform F

Figure 11: Fraction of SSDs ever throttled vs. SSD temperature. While SSDs in some platforms are never
throttled (A and B), others are throttled more aggressively (C and E).

●
● ●

●

●

●

●

30 40 50 60

Average temperature (°C)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform A Platform B

●
● ● ● ●

●

35 45 55 65

Average temperature (°C)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform C Platform D

● ●

● ●
●

●
●

● ●

30 40 50 60 70

Average temperature (°C)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform E Platform F

Figure 10: SSD failure rate vs. temperature. Operational temperatures of 30 to 40◦C generally show increas-
ing failure rates. Failure trends at and above 40◦C follow three distinct failure rate patterns: increasing, not
sensitive, and decreasing.

reduction: whether or not an SSD has throttled its operation
in order to reduce its power consumption. Performing a large
number of writes to an SSD consumes power and increases the
temperature of the SSD. Figure 11 plots, for each temperature,
the fraction of machines that have ever been throttled. Exam-
ining this figure confirms that Platforms A and B, where no
machines or few machines have been throttled, exhibit behav-
ior that is typical for SSDs without much preventative action
against temperature increases. In these platforms, as temper-
ature increases, failure rate of SSDs increases.

In contrast to Platforms A and B, Platforms C and E, which
are less temperature-sensitive, throttle their SSDs more ag-
gressively across a range of temperatures. From Figure 10 we
can see that throttled SSDs have lower failure rates (in Plat-
forms C and E) compared to SSDs that are throttled less or
not throttled at all (Platforms A and B). We attribute the
relatively low SSD failure rate for Platforms C and E we have
observed in our measurements to the very aggressive throttling
that occurs for SSDs in these two platforms. Such throttling
could potentially reduce performance, though we are not able
to examine this effect.

SSDs in Platforms D and F employ a relatively low amount
of throttling (Figure 11), but exhibit the counter-intuitive
trend of decreasing failure rate with increased temperature.
Recall from Section 4.1 that these SSDs are predominantly
in their early detection and early failure periods and so the
failure rates for most SSDs in these platforms are relatively
high compared to their peers in Platforms C and E. It is likely

that a combination of power throttling and some other form of
temperature-dependent throttling employed by the SSD con-
troller that we are not able to measure is responsible for re-
ducing the failure rate among the SSDs in Platforms D and F
as temperature increases.

5.2 Bus Power Consumption
According to the PCIe standard, the nominal bus power

consumption for the PCIe ×4 SSDs that we analyze is 10 W
(regardless of PCIe version 1 or 2). Our infrastructure allows
us to measure the average amount of power consumed on the
PCIe bus by SSDs. As power consumption in servers can lead
to increased electricity use for operation and cooling in data
centers, we are interested in understanding the role that SSD
power draw plays with respect to errors.

Figure 12 plots the failure rate for SSDs that operate at
different average amounts of bus power consumption. Recall
that Platforms A and B use PCIe v1 and that Platforms C
through F use PCIe v2. We make three observations about
the operation of these SSDs. First, PCIe v2 SSDs (Platforms
C through F) support twice the bandwidth of PCIe v1 SSDs
(Platforms A and B) by operating at twice the frequency, lead-
ing to around twice the amount of power consumed between
the two sets of SSDs: SSDs supporting PCIe v1 operate in
the range of 4 to 7.5 W and SSDs supporting PCIe v2 oper-
ate in the range of 8 to 14.5 W. Second, we find that the bus
power that SSDs consume can vary over a range of around
2× between the SSDs that consume the least bus power and

● ● ● ● ● ● ●

30 40 50 60

Average temperature (°C)

0.
00

0.
50

1.
00

Platform A

Th
ro

ttl
ed

 S
S

D
 fr

ac
tio

n

● ● ● ● ● ●

30 35 40 45 50 55

Average temperature (°C)

0.
00

0.
50

1.
00

Platform B

●

● ● ● ●

●

35 40 45 50 55 60

Average temperature (°C)

0.
00

0.
50

1.
00

Platform C

● ● ● ● ● ● ●

35 45 55 65

Average temperature (°C)

0.
00

0.
50

1.
00

Platform D

● ●
●

●

● ●
●

●

●

30 40 50 60 70

Average temperature (°C)

0.
00

0.
50

1.
00

Platform E

● ● ●
●

● ●

35 40 45 50 55 60

Average temperature (°C)

0.
00

0.
50

1.
00

Platform F

Figure 11: Fraction of SSDs ever throttled vs. SSD temperature. While SSDs in some platforms are never
throttled (A and B), others are throttled more aggressively (C and E).

●
● ●

●

●

●

●

30 40 50 60

Average temperature (°C)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform A Platform B

●
● ● ● ●

●

35 45 55 65

Average temperature (°C)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform C Platform D

● ●

● ●
●

●
●

● ●

30 40 50 60 70

Average temperature (°C)

0.
00

0.
50

1.
00

S
S

D
 fa

ilu
re

 ra
te

● Platform E Platform F

Figure 10: SSD failure rate vs. temperature. Operational temperatures of 30 to 40◦C generally show increas-
ing failure rates. Failure trends at and above 40◦C follow three distinct failure rate patterns: increasing, not
sensitive, and decreasing.

reduction: whether or not an SSD has throttled its operation
in order to reduce its power consumption. Performing a large
number of writes to an SSD consumes power and increases the
temperature of the SSD. Figure 11 plots, for each temperature,
the fraction of machines that have ever been throttled. Exam-
ining this figure confirms that Platforms A and B, where no
machines or few machines have been throttled, exhibit behav-
ior that is typical for SSDs without much preventative action
against temperature increases. In these platforms, as temper-
ature increases, failure rate of SSDs increases.

In contrast to Platforms A and B, Platforms C and E, which
are less temperature-sensitive, throttle their SSDs more ag-
gressively across a range of temperatures. From Figure 10 we
can see that throttled SSDs have lower failure rates (in Plat-
forms C and E) compared to SSDs that are throttled less or
not throttled at all (Platforms A and B). We attribute the
relatively low SSD failure rate for Platforms C and E we have
observed in our measurements to the very aggressive throttling
that occurs for SSDs in these two platforms. Such throttling
could potentially reduce performance, though we are not able
to examine this effect.

SSDs in Platforms D and F employ a relatively low amount
of throttling (Figure 11), but exhibit the counter-intuitive
trend of decreasing failure rate with increased temperature.
Recall from Section 4.1 that these SSDs are predominantly
in their early detection and early failure periods and so the
failure rates for most SSDs in these platforms are relatively
high compared to their peers in Platforms C and E. It is likely

that a combination of power throttling and some other form of
temperature-dependent throttling employed by the SSD con-
troller that we are not able to measure is responsible for re-
ducing the failure rate among the SSDs in Platforms D and F
as temperature increases.

5.2 Bus Power Consumption
According to the PCIe standard, the nominal bus power

consumption for the PCIe ×4 SSDs that we analyze is 10 W
(regardless of PCIe version 1 or 2). Our infrastructure allows
us to measure the average amount of power consumed on the
PCIe bus by SSDs. As power consumption in servers can lead
to increased electricity use for operation and cooling in data
centers, we are interested in understanding the role that SSD
power draw plays with respect to errors.

Figure 12 plots the failure rate for SSDs that operate at
different average amounts of bus power consumption. Recall
that Platforms A and B use PCIe v1 and that Platforms C
through F use PCIe v2. We make three observations about
the operation of these SSDs. First, PCIe v2 SSDs (Platforms
C through F) support twice the bandwidth of PCIe v1 SSDs
(Platforms A and B) by operating at twice the frequency, lead-
ing to around twice the amount of power consumed between
the two sets of SSDs: SSDs supporting PCIe v1 operate in
the range of 4 to 7.5 W and SSDs supporting PCIe v2 oper-
ate in the range of 8 to 14.5 W. Second, we find that the bus
power that SSDs consume can vary over a range of around
2× between the SSDs that consume the least bus power and

● ● ● ● ● ● ●

30 40 50 60

Average temperature (°C)

0.
00

0.
50

1.
00

Platform A

Th
ro

ttl
ed

 S
S

D
 fr

ac
tio

n

● ● ● ● ● ●

30 35 40 45 50 55

Average temperature (°C)

0.
00

0.
50

1.
00

Platform B

●

● ● ● ●

●

35 40 45 50 55 60

Average temperature (°C)

0.
00

0.
50

1.
00

Platform C

● ● ● ● ● ● ●

35 45 55 65

Average temperature (°C)

0.
00

0.
50

1.
00

Platform D

● ●
●

●

● ●
●

●

●

30 40 50 60 70

Average temperature (°C)

0.
00

0.
50

1.
00

Platform E

● ● ●
●

● ●

35 40 45 50 55 60

Average temperature (°C)

0.
00

0.
50

1.
00

Platform F

Figure 11: Fraction of SSDs ever throttled vs. SSD temperature. While SSDs in some platforms are never
throttled (A and B), others are throttled more aggressively (C and E).

Figure 3.8: SSD failure rate vs. operating temperature. Reproduced from [213].

Sixth, while SSD failure rates are higher than specified by the manufacturers, the overall
occurrence of uncorrectable errors is lower than expected [213] because (1) effective bad block
management policies (see Section 2.1.3) are implemented in SSD controllers; and (2) certain
types of error sources, such as read disturb [213, 241] and incomplete erase operations [241],
have yet to become a major source of uncorrectable errors at the system level.

3.2 Error Mitigation
Several different types of errors can occur in NAND flash memory, as we described in Sec-
tion 3.1. As NAND flash memory continues to scale to smaller technology nodes, the magnitude
of these errors has been increasing [205, 260, 354]. This, in turn, uses up the limited error cor-
rection capability of ECC more rapidly than in past flash memory generations and shortens the
lifetime of modern SSDs. To overcome the decrease in lifetime, a number of error mitigation
techniques have been designed. These techniques exploit intrinsic properties of the different
types of errors to reduce the rate at which they lead to raw bit errors. In this section, we discuss
how the flash controller mitigates each of the error types via various proposed error mitigation
mechanisms. Table 3.1 shows the techniques we overview and which errors (from Section 3.1)
they mitigate.

43

Table 3.1: List of different types of errors mitigated by various NAND flash error mitigation
mechanisms.

Error Type

Mitigation
Mechanism P/

E
C

yc
lin

g
[2

1,
23

,1
95

](
§3

.1
.1

)

Pr
og

ra
m

[3
4,

19
5,

26
0]

(§
3.

1.
2)

C
el

l-t
o-

C
el

lI
nt

er
fe

re
nc

e
[2

1,
24

,2
6,

17
4]

(§
3.

1.
3)

D
at

a
R

et
en

tio
n

[2
1,

22
,2

5,
27

,2
19

](
§3

.1
.4

)

R
ea

d
D

is
tu

rb
[2

1,
35

,8
8,

21
9]

(§
3.

1.
5)

Shadow Program Sequencing
X

[24, 34] (Section 3.2.1)
Neighbor-Cell Assisted Error

XCorrection [26] (Section 3.2.2)
Refresh

X X
[22, 25, 222, 250] (Section 3.2.3)

Read-Retry
X X X

[23, 82, 349] (Section 3.2.4)
Voltage Optimization

X X X
[27, 35, 122] (Section 3.2.5)

Hot Data Management
X X X X X

[95, 96, 194] (Section 3.2.6)
Adaptive Error Mitigation

X X X X X
[31, 51, 99, 332, 336] (Section 3.2.7)

3.2.1 Shadow Program Sequencing

As discussed in Section 3.1.3, cell-to-cell program interference is a function of the distance
between the cells of the wordline that is being programmed and the cells of the victim wordline.
The impact of program interference is greatest on a victim wordline when either of the victim’s
immediately-adjacent wordlines is programmed (e.g., if we program WL1 in Figure 2.8, WL0
and WL2 experience the greatest amount of interference). Early MLC flash memories used one-
shot programming, where both the LSB and MSB pages of a wordline are programmed at the
same time. As flash memory scaled to smaller process technologies, one-shot programming
resulted in much larger amounts of cell-to-cell program interference. As a result, manufacturers
introduced two-step programming for MLC NAND flash (see Section 2.2.4), where the SSD
controller writes values of the two pages within a wordline in two independent steps.

The SSD controller minimizes the interference that occurs during two-step programming
by using shadow program sequencing [24, 34, 255] to determine the order that data is written
to different pages in a block. If we program the LSB and MSB pages of the same wordline
back to back, as shown in Figure 3.9a, both programming steps induce interference on a fully-
programmed wordline (i.e., a wordline where both the LSB and MSB pages are already written).

44

For example, if the controller programs both pages of WL1 back to back, shown as bold page
programming operations in Figure 3.9a, the program operations induce a high amount of interfer-
ence on WL0, which is fully programmed. The key idea of shadow program sequencing is to en-
sure that a fully-programmed wordline experiences interference minimally, i.e., only during MSB
page programming (and not during LSB page programming). In shadow program sequencing,
prior work assigns a unique page number to each page within a block, as shown in Figure 3.9b.
The LSB page of wordline i is numbered page 2i−1, and the MSB page is numbered page 2i+2.
The only exceptions to the numbering are the LSB page of wordline 0 (page 0) and the MSB page
of the last wordline n (page 2n+1). Two-step programming writes to pages in increasing order
of page number inside a block [24, 34, 255], such that a fully-programmed wordline experiences
interference only from the MSB page programming of the wordline directly above it, shown as
the bold page programming operation in Figure 3.9b. With this programming order/sequence,
the LSB page of the wordline above, and both pages of the wordline below, do not cause in-
terference to fully-programmed data [24, 34, 255], as these two pages are programmed before
programming the MSB page of the given wordline. Foggy-fine programming in TLC NAND
flash (see Section 2.2.4) uses a similar ordering to reduce cell-to-cell program interference, as
shown in Figure 3.9c.

WL 5

WL 4

WL 3

WL 2

WL 1

WL 0
LSB MSB
0 2

1 4

3 6

5 8

7 10

9 11

(b) MLC shadow
program sequence

(c) TLC shadow
program sequence

LSB CSB MSB
0

1

3

6

9

12

2

4

7

10

13

15

5

8

11

14

16

17WL 5

WL 4

WL 3

WL 2

WL 1

WL 0

WL 5

WL 4

WL 3

WL 2

WL 1

WL 0
LSB MSB
0 1

2 3

4 5

6 7

8 9

10 11

(a) Bad MLC
program sequence

Figure 3.9: Order in which the pages of each wordline (WL) are programmed using (a) a bad
programming sequence, and using shadow sequencing for (b) MLC and (c) TLC NAND flash.
The bold page programming operations for WL1 induce cell-to-cell program interference when
WL0 is fully programmed. Reproduced from [32].

Shadow program sequencing is an effective solution to minimize cell-to-cell program in-
terference on fully-programmed wordlines during two-step programming, and is employed in
commercial SSDs today.

3.2.2 Neighbor-Cell Assisted Error Correction
The threshold voltage shift that occurs due to program interference is highly correlated with the
values stored in the cells of the immediately-adjacent wordlines, as we discussed in Section 3.1.3.
Due to this correlation, knowing the value programmed in the immediately-adjacent cell (i.e., a
neighbor cell) makes it easier to correctly determine the value stored in the flash cell that is being

45

read [26]. We describe a recently-proposed error correction method that takes advantage of this
observation, called neighbor-cell-assisted error correction (NAC). The key idea of NAC is to use
the data values stored in the cells of the immediately-adjacent wordline to determine a better set
of read reference voltages for the wordline that is being read. Doing so leads to a more accurate
identification of the logical data value that is being read, as the data in the immediately-adjacent
wordline was partially responsible for shifting the threshold voltage of the cells in the wordline
that is being read when the immediately-adjacent wordline was programmed.

Figure 3.10 shows an operational example of NAC that is applied to eight bitlines (BL) of
an MLC flash wordline. The SSD controller first reads a flash page from a wordline using the
standard read reference voltages (step 1 in Figure 3.10). The bit values read from the wordline
are then buffered in the controller. If there are no errors uncorrectable by ECC, the read was
successful, and nothing else is done. However, if there are errors that are uncorrectable by
ECC, we assume that the threshold voltage distribution of the page shifted due to cell-to-cell
program interference, triggering further correction. In this case, NAC reads the LSB and MSB
pages of the wordline immediately above the requested page (i.e., the adjacent wordline that was
programmed after the requested page) to classify the cells of the requested page (step 2). NAC
then identifies the cells adjacent to (i.e., connected to the same bitline as) the ER cells (i.e., cells
in the immediately above wordline that are in the ER state), such as the cells on BL1, BL3, and
BL7 in Figure 3.10. NAC rereads these cells using read reference voltages that compensate for
the threshold voltage shift caused by programming the adjacent cell to the ER state (step 3). If
ECC can correct the remaining errors, the controller returns the corrected page to the host. If
ECC fails again, the process is repeated using a different set of read reference voltages for cells
that are adjacent to the P1 cells (step 4). If ECC continues to fail, the process is repeated for
cells that are adjacent to P2 and P3 cells (steps 5 and 6, respectively, which are not shown in the
figure) until either ECC is able to correct the page or all possible adjacent values are exhausted.

BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7
Originally-programmed value 11 00 01 10 11 00 01 00

1. Read (using Vopt) with errors 01 00 00 00 11 10 00 01

N
A
C

2. Read adjacent wordline P2 ER P2 ER P1 P3 P1 ER
3. Correct cells adjacent to ER 01 00 00 10 11 10 00 00
4. Correct cells adjacent to P1 01 00 00 10 11 10 01 00

Figure 3.10: Overview of neighbor-cell-assisted error correction (NAC). Reproduced from [32].

NAC extends the lifetime of an SSD by reducing the number of errors that need to be cor-
rected using the limited correction capability of ECC. With the use of experimental data collected
from real MLC NAND flash memory chips, prior work shows that NAC extends the NAND flash
memory lifetime by 33% [26]. Previous work from our research group [26] provides a detailed
description of NAC, including a theoretical treatment of why it works and a practical implemen-
tation that minimizes the number of reads performed, even in the case when the neighboring
wordline itself has errors.

46

3.2.3 Refresh Mechanisms

As we see in Figure 3.1, during the time period after a flash page is programmed, retention (Sec-
tion 3.1.4) and read disturb (Section 3.1.5) can cause an increasing number of raw bit errors to
accumulate over time. This is particularly problematic for a page that is not updated frequently.
Due to the limited error correction capability, the accumulation of these errors can potentially
lead to data loss for a page with a high retention age (i.e., a page that has not been programmed
for a long time). To avoid data loss, refresh mechanisms have been proposed, where the stored
data is periodically read, corrected, and reprogrammed, in order to eliminate the retention and
read disturb errors that have accumulated prior to this periodic read/correction/reprogramming
(i.e., refresh). The concept of refresh in flash memory is thus conceptually similar to the refresh
mechanisms found in DRAM [39, 120, 186, 187]. By performing refresh and limiting the num-
ber of retention and read disturb errors that can accumulate, the lifetime of the SSD increases
significantly. In this section, we describe three types of refresh mechanisms used in modern
SSDs: remapping-based refresh, in-place refresh, and read reclaim.

Remapping-Based Refresh. Flash cells must first be erased before they can be repro-
grammed, due to the fact the programming a cell via ISPP can only increase the charge level
of the cell but not reduce it (Section 2.2.4). The key idea of remapping-based refresh is to pe-
riodically read data from each valid flash block, correct any data errors, and remap the data to
a different physical location, in order to prevent the data from accumulating too many retention
errors [19, 22, 25, 222, 250]. During each refresh interval, a block with valid data that needs to
be refreshed is selected. The valid data in the selected block is read out page by page and moved
to the SSD controller. The ECC engine in the SSD controller corrects the errors in the read data,
including retention errors that have accumulated since the last refresh. A new block is then se-
lected from the free list (see Section 2.1.3), the error-free data is programmed to a page within
the new block, and the logical address is remapped to point to the newly-programmed physi-
cal page. By reducing the accumulation of retention and read disturb errors, remapping-based
refresh increases SSD lifetime by an average of 9x for a variety of disk workloads [22, 25].

Prior work proposes extensions to the basic remapping-based refresh approach. One work,
refresh SSDs, proposes a refresh scheduling algorithm based on an earliest deadline first policy
to guarantee that all data is refreshed in time [222]. The quasi-nonvolatile SSD proposes to use
remapping-based refresh to choose between improving flash endurance and reducing the flash
programming latency (by using larger ISPP step-pulses) [250]. In the quasi-nonvolatile SSD,
refresh requests are deprioritized, scheduled at idle times, and can be interrupted after refreshing
any page within a block, to minimize the delays that refresh can cause for the response time
of pending workload requests to the SSD. A refresh operation can also be triggered proactively
based on the data read latency observed for a page, which is indicative of how many errors the
page has experienced [30]. Triggering refresh proactively based on the observed read latency
(as opposed to doing so periodically) improves SSD latency and throughput [30]. Whenever the
read latency for a page within a block exceeds a fixed threshold, the valid data in the block is
refreshed, i.e., remapped to a new block [30].

In-Place Refresh. A major drawback of remapping-based refresh is that it performs addi-
tional writes to the NAND flash memory, accelerating wearout. To reduce the wearout overhead

47

of refresh, prior work proposes in-place refresh [19, 22, 25]. As data sits unmodified in the SSD,
data retention errors dominate [21, 25, 312], leading to charge loss and causing the threshold
voltage distribution to shift to the left, as we showed in Section 3.1.4. The key idea of in-place
refresh is to incrementally replenish the lost charge of each page at its current location, i.e., in
place, without the need for remapping.

Figure 3.11 shows a high-level overview of in-place refresh for a wordline. The SSD con-
troller first reads all of the pages in the wordline (¶ in Figure 3.11). The controller invokes the
ECC decoder to correct the errors within each page (·), and sends the corrected data back to
the flash chips (¸). In-place refresh then invokes a modified version of the ISPP mechanism
(see Section 2.2.4), which we call Verify-ISPP (V-ISPP), to compensate for retention errors by
restoring the charge that was lost. In V-ISPP, we first verify the voltage currently programmed in
a flash cell (¹). If the current voltage of the cell is lower than the target threshold voltage of the
state that the cell should be in, V-ISPP pulses the programming voltage in steps, gradually in-
jecting charge into the cell until the cell returns to the target threshold voltage (º). If the current
voltage of the cell is higher than the target threshold voltage, V-ISPP inhibits the programming
pulses to the cell.

Flash Chip SSD Controller
Read MSB & LSB pages

ECC Decoder

Controller Processors

❷
Verify current Vth value
(filters out most cells) Correct all errors

❶

❹

❺ Pulse program voltage
(few pulses needed)

Figure 3.11: Overview of in-place refresh mechanism for MLC NAND flash memory. Repro-
duced from [32].

When the controller invokes in-place refresh, it is unable to use shadow program sequencing
(Section 3.2.1), as all of the pages within the wordline have already been programmed. How-
ever, unlike traditional ISPP, V-ISPP does not introduce a high amount of cell-to-cell program
interference (Section 3.1.3) for two reasons. First, V-ISPP programs only those cells that have re-
tention errors, which typically account for less than 1% of the total number of cells in a wordline
selected for refresh [22]. Second, for the small number of cells that are selected to be refreshed,
their threshold voltage is usually only slightly lower than the target threshold voltage, which
means that only a few programming pulses need to be applied. As cell-to-cell interference is
linearly correlated with the threshold voltage change to immediately-adjacent cells [24, 26], the
small voltage change on these in-place refreshed cells leads to only a small interference effect.

One issue with in-place refresh is that it is unable to correct retention errors for cells in lower-
voltage states. Retention errors cause the threshold voltage of a cell in a lower-voltage state to
increase, but V-ISPP cannot decrease the threshold voltage of a cell. To achieve a balance be-
tween the wearout overhead due to remapping-based refresh and errors that increase the threshold
voltage due to in-place refresh, prior work proposes hybrid in-place refresh [19, 22, 25]. The key
idea is to use in-place refresh when the number of program errors (caused due to reprogramming)
is within the correction capability of ECC, but to use remapping-based refresh if the number of
program errors is too large to tolerate. To accomplish this, the controller tracks the number of

48

right-shift errors (i.e., errors that move a cell to a higher-voltage state) [22, 25]. If the number
of right-shift errors remains under a certain threshold, the controller performs in-place refresh;
otherwise, it performs remapping-based refresh. Such a hybrid in-place refresh mechanism in-
creases SSD lifetime by an average of 31x for a variety of disk workloads [22, 25].

Read Reclaim to Reduce Read Disturb Errors. We can also mitigate read disturb errors
using an idea similar to remapping-based refresh, known as read reclaim. The key idea of read
reclaim is to remap the data in a block to a new flash block, if the block has experienced a high
number of reads [95, 96, 148]. To bound the number of read disturb errors, some flash vendors
specify a maximum number of tolerable reads for a flash block, at which point read reclaim
rewrites the data to a new block (just as is done for remapping- based refresh).

Adaptive Refresh and Read Reclaim Mechanisms. For the refresh and read reclaim mech-
anisms discussed above, the SSD controller can (1) invoke the mechanisms at fixed regular in-
tervals; or (2) adapt the rate at which it invokes the mechanisms, based on various conditions
that impact the rate at which data retention and read disturb errors occur. By adapting the mech-
anisms based on the current conditions of the SSD, the controller can reduce the overhead of
performing refresh or read reclaim. The controller can adaptively adjust the rate that the mecha-
nisms are invoked based on (1) the wearout (i.e., the current P/E cycle count) of the NAND flash
memory [22, 25]; or (2) the temperature of the SSD [21, 27].

As we discuss in Section 3.1.4, for data with a given retention age, the number of retention
errors grows as the P/E cycle count increases. Exploiting this P/E cycle dependent behavior of
retention time, the SSD controller can perform refresh less frequently (e.g., once every year)
when the P/E cycle count is low, and more frequently (e.g., once every week) when the P/E
cycle count is high, as proposed and described in prior works from our research group [22, 25].
Similarly, for data with a given read disturb count, as the P/E cycle count increases, the number
of read disturb errors increases as well [35]. As a result, the SSD controller can perform read
reclaim less frequently (i.e., it increases the maximum number of tolerable reads per block before
read reclaim is triggered) when the P/E cycle count is low, and more frequently when the P/E
cycle count is high.

Prior works demonstrate that for a given retention time, the number of data retention errors
increases as the NAND flash memory’s operating temperature increases [21, 27]. To compensate
for the increased number of retention errors at high temperature, a state-of-the-art SSD con-
troller adapts the rate at which it triggers refresh. The SSD contains sensors that monitor the
current environmental temperature every few milliseconds [213, 329]. The controller then uses
the Arrhenius equation [6, 222, 344] to estimate the rate at which retention errors accumulate at
the current temperature of the SSD. Based on the error rate estimate, the controller decides if it
needs to increase the rate at which it triggers refresh to ensure that the data is not lost.

By employing adaptive refresh and/or read reclaim mechanisms, the SSD controller can suc-
cessfully reduce the mechanism overheads while effectively mitigating the larger number of data
retention errors that occur under various conditions.

49

3.2.4 Read-Retry

In earlier generations of NAND flash memory, the read reference voltage values were fixed at
design time [23, 219]. However, several types of errors cause the threshold voltage distribution
to shift, as shown in Figure 3.2. To compensate for threshold voltage distribution shifts, a mech-
anism called read-retry has been implemented in modern flash memories (typically those below
30 nm for planar flash [23, 82, 296, 349]).

The read-retry mechanism allows the read reference voltages to dynamically adjust to
changes in distributions. During read-retry, the SSD controller first reads the data out of NAND
flash memory with the default read reference voltage. It then sends the data for error correction.
If ECC successfully corrects the errors in the data, the read operation succeeds. Otherwise, the
SSD controller reads the memory again with a different read reference voltage. The controller
repeats these steps until it either successfully reads the data using a certain set of read reference
voltages or is unable to correctly read the data using all of the read reference voltages that are
available to the mechanism.

While read-retry is widely implemented today, it can significantly increase the overall read
operation latency due to the multiple read attempts it causes [27]. Mechanisms have been pro-
posed to reduce the number of read-retry attempts while taking advantage of the effective capa-
bility of read-retry for reducing read errors, and read-retry has also been used to enable mitigation
mechanisms for various other types of errors, as we describe in Section 3.2.5. As a result, read-
retry is an essential mechanism in modern SSDs to mitigate read errors (i.e., errors that manifest
themselves during a read operation).

3.2.5 Voltage Optimization

Many raw bit errors in NAND flash memory are affected by the various voltages used within the
memory to enable reading of values. We give two examples. First, a suboptimal read reference
voltage can lead to a large number of read errors (Section 3.1), especially after the threshold
voltage distribution shifts. Second, as we saw in Section 3.1.5, the pass-through voltage can
have a significant effect on the number of read disturb errors that occur. As a result, optimizing
these voltages such that they minimize the total number of errors that are induced can greatly
mitigate error counts. In this section, we discuss mechanisms that can discover and employ the
optimal2 read reference and pass-through voltages.

Optimizing Read Reference Voltages Using Disparity-Based Approximation and Sam-
pling. As we discussed in Section 3.2.4, when the threshold voltage distribution shifts, it is
important to move the read reference voltage to the point where the number of read errors is
minimized. After the shift occurs and the threshold voltage distribution of each state widens,
the distributions of different states may overlap with each other, causing many of the cells
within the overlapping regions to be misread. The number of errors due to misread cells can
be minimized by setting the read reference voltage to be exactly at the point where the distri-
butions of two neighboring states intersect, which we call the optimal read reference voltage

2Or, more precisely, near-optimal, if the read-retry steps are too coarse grained to find the optimal voltage.

50

(Vopt) [24, 26, 27, 195, 252], illustrated in Figure 3.12. Once the optimal read reference voltage
is applied, the raw bit error rate is minimized, improving the reliability of the device.

Px
State

P(x+1)
State

Vth

Vopt

V2 V1

Vinitial

-40 -20 0 20 40
Read Reference Voltage

Ra
w

 B
it

Er
ro

r R
at

e

100

10-1

10-2

10-3

10-4

10-5

ECC Correction
Capability

Vopt

V2

Vinitial

V1

Figure 3.12: Finding the optimal read reference voltage after the threshold voltage distributions
overlap (left), and raw bit error rate as a function of the selected read reference voltage (right).
Reproduced from [32].

One approach to finding Vopt is to adaptively learn and apply the optimal read reference
voltage for each flash block through sampling [27, 52, 65, 339]. The key idea is to periodically
(1) use disparity information (i.e., the ratio of 1s to 0s in the data) to attempt to find a read
reference voltage for which the error rate is lower than the ECC correction capability; and to
(2) use sampling to efficiently tune the read reference voltage to its optimal value to reduce the
read operation latency. Prior characterization of real NAND flash memory [27, 252] found that
the value of Vopt does not shift greatly over a short period of time (e.g., a day), and that all
pages within a block experience similar amounts of threshold voltage shifts, as they have the
same amount of wearout and are programmed around the same time [27, 252]. Therefore, we
can invoke the Vopt learning mechanism periodically (e.g., daily) to efficiently tune the initial
read reference voltage (i.e., the first read reference voltage used when the controller invokes the
read-retry mechanism, described in Section 3.2.4) for each flash block, ensuring that the initial
voltage used by read-retry stays close to Vopt even as the threshold voltage distribution shifts.

The SSD controller searches for Vopt by counting the number of errors that need to be cor-
rected by ECC during a read. However, there may be times where the initial read reference
voltage (Vinitial) is set to a value at which the number of errors during a read exceeds the ECC
correction capability, such as the raw bit error rate for Vinitial in Figure 3.12 (right). When the
ECC correction capability is exceeded, the SSD controller is unable to count how many errors
exist in the raw data. The SSD controller uses disparity-based read reference voltage approx-
imation [52, 65, 339] for each flash block to try to bring Vinitial to a region where the number
of errors does not exceed the ECC correction capability. Disparity-based read reference voltage
approximation takes advantage of data scrambling. Recall from Section 2.1.3 that to minimize
data value dependencies for the error rate, the SSD controller scrambles the data written to the
SSD to probabilistically ensure that an equal number of 0s and 1s exist in the flash memory cells.
The key idea of disparity-based read reference voltage approximation is to find the read reference
voltages that result in approximately 50% of the cells reading out bit value 0, and the other 50%
of the cells reading out bit value 1. To achieve this, the SSD controller employs a binary search
algorithm, which tracks the ratio of 0s to 1s for each read reference voltage it tries. The binary

51

search tests various read reference voltage values, using the ratios of previously tested voltages
to narrow down the range where the read reference voltage can have an equal ratio of 0s to 1s.
The binary search algorithm continues narrowing down the range until it finds a read reference
voltage that satisfies the ratio.

The usage of the binary search algorithm depends on the type of NAND flash memory used
within the SSD. For SLC NAND flash, the controller searches for only a single read reference
voltage. For MLC NAND flash, there are three read reference voltages: the LSB is determined
using Vb, and the MSB is determined using both Va and Vc (see Section 2.2.3). Figure 3.13
illustrates the search procedure for MLC NAND flash. First, the controller uses binary search
to find Vb, choosing a voltage that reads the LSB of 50% of the cells as data value 0 (step 1 in
Figure 3.13). For the MSB, the controller uses the discovered Vb value to help search for Va and
Vc. Due to scrambling, cells should be equally distributed across each of the four voltage states.
The controller uses binary search to set Va such that 25% of the cells are in the ER state, by
ensuring that half of the cells to the left of Vb are read with an MSB of 0 (step 2). Likewise, the
controller uses binary search to set Vc such that 25% of the cells are in the P3 state, by ensuring
that half of the cells to the right of Vb are read with an MSB of 0 (step 3). This procedure is
extended in a similar way to approximate the voltages for TLC NAND flash.

Vth

Pr
ob

ab
ili

ty

De
ns

ity1. Find Vb that
reads 50% of
LSBs as 0s

2. Use Vb to find
Va that reads
50% of MSBs
to the left of
Vb as 0s

50% of all cells 50% of all cells

Vth

Pr
ob

ab
ili

ty

De
ns

ity

50% of cells
on the left

50% of cells
on the left

Vb

3. Use Vb to find
Vc that reads
50% of MSBs
to the right of
Vb as 0s Vth50% of cells

on the right
50% of cells
on the right

VbVa

Pr
ob

ab
ili

ty

De
ns

ity

Figure 3.13: Disparity-based read reference voltage approximation to find Vinitial for MLC
NAND flash memory. Each circle represents a cell, where a dashed border indicates that the
LSB is undetermined, a solid border indicates that the LSB is known, a hollow circle indicates
that the MSB is unknown, and a filled circle indicates that the MSB is known. Reproduced
from [32].

If disparity-based approximation finds a value for Vinitial where the number of errors during a
read can be counted by the SSD controller, the controller invokes sampling-based adaptive Vopt
discovery [27] to minimize the error count, and thus reduce the read latency. Sampling-based
adaptive Vopt discovery learns and records Vopt for the last-programmed page in each block.
Prior work samples only the last-programmed page because it is the page with the lowest data

52

retention age in the flash block. As retention errors cause the higher-voltage states to shift to the
left (i.e., to lower voltages), the last-programmed page usually provides an upper bound of Vopt
for the entire block.

During sampling-based adaptive Vopt discovery, the SSD controller first reads the last-
programmed page using Vinitial , and attempts to correct the errors in the raw data read from the
page. Next, it records the number of raw bit errors as the current lowest error count NERR, and
sets the applied read reference voltage (Vre f) as Vinitial . Since Vopt typically decreases over reten-
tion age, the controller first attempts to lower the read reference voltage for the last-programmed
page, decreasing the voltage to Vre f −∆V and reading the page. If the number of corrected errors
in the new read is less than or equal to the old NERR, the controller updates NERR and Vre f with
the new values. The controller continues to lower the read reference voltage until the number of
corrected errors in the data is greater than the old NERR or the lowest possible read reference volt-
age is reached. Since the optimal threshold voltage might increase in rare cases, the controller
also tests increasing the read reference voltage. It increases the voltage to Vre f +∆V and reads
the last-programmed page to see if NERR decreases. Again, it repeats increasing Vre f until the
number of corrected errors in the data is greater than the old NERR or the highest possible read
reference voltage is reached. The controller sets the initial read reference voltage of the block as
the value of Vre f at the end of this process so that the next time an uncorrectable error occurs,
read-retry starts at a Vinitial that is hopefully closer to the optimal read reference voltage (Vopt).

During the course of the day, as more retention errors (the dominant source of errors on
already-programmed blocks) accumulate, the threshold voltage distribution shifts to the left (i.e.,
voltages decrease), and the initial read reference voltage (i.e., Vinitial) is now an upper bound for
the read-retry voltages. Therefore, whenever read-retry is invoked, the controller now needs to
only decrease the read reference voltages (as opposed to traditional read-retry, which tries both
lower and higher voltages [27]). Sampling-based adaptive Vopt discovery improves the endurance
(i.e., the number of P/E cycles before the ECC correction capability is exceeded) of the NAND
flash memory by 64% and reduces error correction latency by 10% [27], and is employed in
some modern SSDs today.

Other Approaches to Optimizing Read Reference Voltages. One drawback of the
sampling-based adaptive technique is that it requires time and storage overhead to find and record
the per-block initial voltages. To avoid this, the SSD controller can employ an accurate online
threshold voltage distribution model [19, 23], which can efficiently track and predict the shift in
the distribution over time. The model represents the threshold voltage distribution of each state
as a probability density function (PDF), and the controller can use the model to calculate the
intersection of the different PDFs. The controller uses the PDF in place of the threshold voltage
sampling, determining Vopt by calculating the intersection of the distribution of each state in the
model. Chapter 5 demonstrates an example of this approach.

Other prior work examines adapting read reference voltages based on P/E cycle count, re-
tention age, or read disturb. In one such work, the controller periodically learns read reference
voltages by testing three read reference voltages on six pages per block, which the work demon-
strates to be sufficiently accurate [252]. Similarly, error correction using LDPC soft decoding
(see Section 3.3.2) requires reading the same page using multiple sets of read reference voltages
to provide fine-grained information on the probability of each cell representing a bit value 0 or

53

a bit value 1. Another prior work optimizes the read reference voltages to increase the ECC
correction capability without increasing the coding rate [326].

Optimizing Pass-Through Voltage to Reduce Read Disturb Errors. As we discussed in
Section 3.1.5, the vulnerability of a cell to read disturb is directly correlated with the voltage
difference (Vpass−Vth) through the cell oxide [35]. Traditionally, a single Vpass value is used
globally for the entire flash memory, and the value of Vpass must be higher than all potential
threshold voltages within the chip to ensure that unread cells along a bitline are turned on during
a read operation (see Section 2.2.3). To reduce the impact of read disturb, we can tune Vpass
to reduce the size of the voltage difference (Vpass−Vth). However, it is difficult to reduce Vpass
globally, as any cell with a value of Vth >Vpass introduces an error during a read operation (which
we call a pass-through error).

In prior work, we propose a mechanism that can dynamically lower Vpass while ensuring
that it can correct any new pass-through errors introduced. The key idea of the mechanism is
to lower Vpass only for those blocks where ECC has enough leftover error correction capability
(see Section 2.1.3) to correct the newly introduced pass-through errors. When the retention age
of the data within a block is low, prior work finds that the raw bit error rate of the block is
much lower than the rate for the block when the retention age is high, as the number of data
retention and read disturb errors remains low at low retention age [35, 96]. As a result, a block
with a low retention age has significant unused ECC correction capability, which we can use
to correct the pass-through errors we introduce when we lower Vpass, as shown in Figure 3.14.
Thus, when a block has a low retention age, the controller lowers Vpass aggressively, making it
much less likely for read disturbs to induce an uncorrectable error. When a block has a high
retention age, the controller also lowers Vpass, but does not reduce the voltage aggressively, since
the limited ECC correction capability now needs to correct retention errors, and might not have
enough unused correction capability to correct many new pass-through errors. By reducing Vpass
aggressively when a block has a low retention age, we can extend the time before the ECC
correction capability is exhausted, improving the flash lifetime.

P2
(00)

P3
(01)

Low Retention Age

High Retention Age

Vth

Vpass

…
Retention errors

Vth

P2
(00)

P3
(01)

Vpass

…

Pass-through errors

Figure 3.14: Dynamic pass-through voltage tuning at different retention ages. Reproduced
from [32].

The previously-proposed read disturb mitigation mechanism [35] learns the minimum pass-
through voltage for each block, such that all data within the block can be read correctly with
ECC. The previously-proposed learning mechanism works online and is triggered periodically

54

(e.g., daily). The mechanism is implemented in the controller, and has two components. It first
finds the size of the ECC margin M (i.e., the unused correction capability) that can be exploited
to tolerate additional read errors for each block. Once it knows the available margin M, the
previously-proposed mechanism calibrates Vpass on a per-block basis to find the lowest value of
Vpass that introduces no more than M additional raw errors (i.e., there are no more than M cells
where Vth > Vpass). The findings on MLC NAND flash memory show that the mechanism can
improve flash endurance by an average of 21% for a variety of disk workloads [35].

Programming and Erase Voltages. Prior work also examines tuning the programming and
erase voltages to extend flash endurance [122]. By decreasing the two voltages when the P/E
cycle count is low, the accumulated wearout for each program or erase operation is reduced,
which, in turn, increases the overall flash endurance. Decreasing the programming voltage,
however, comes at the cost of increasing the time required to perform ISPP, which, in turn,
increases the overall SSD write latency [122].

3.2.6 Hot Data Management

The data stored in different locations of an SSD can be accessed by the host at different rates.
These pages exhibit high temporal write locality, and are called write-hot pages. Likewise, pages
with a high amount of temporal read locality (i.e., pages that are accessed by a large fraction
of the read operations) are called read-hot pages. A number of issues can arise when an SSD
does not distinguish between write-hot pages and write-cold pages (i.e., pages with low temporal
write locality), or between read-hot pages and read-cold pages (i.e., pages with low temporal read
locality). For example, if write-hot pages and write-cold pages are stored within the same block,
refresh mechanisms (which operate at the block level; see Section 3.2.3) cannot avoid refreshes
to pages that were overwritten recently. This increases not only the energy consumption but also
the write amplification due to remapping-based refresh [194]. Likewise, if read-hot and read-
cold pages are stored within the same block, read-cold pages are unnecessarily exposed to a high
number of read disturb errors [95, 96]. Hot data management refers to a set of mechanisms that
can identify and exploit write-hot or read-hot pages in the SSD. The key idea common to such
mechanisms is to apply special SSD management policies by placing hot pages and cold pages
into separate flash blocks. Chapter 4 demonstrates an example technique using this idea.

Prior work [325] proposes to reuse the correctly functioning flash pages within bad blocks
(see Section 2.1.3) to store write-cold data. This technique increases the total number of usable
blocks available for overprovisioning, and extends flash lifetime by delaying the point at which
each flash chip reaches the upper limit of bad blocks it can tolerate.

RedFTL identifies and replicates read-hot pages across multiple flash blocks, allowing the
controller to evenly distribute read requests to these pages across the replicas [95]. Other works
reduce the number of read reclaims (see Section 3.2.3) that need to be performed by mapping
read-hot data to particular flash blocks and lowering the maximum possible threshold voltage for
such blocks [29, 96]. By lowering the maximum possible threshold voltage for these blocks, the
SSD controller can use a lower Vpass value (see Section 3.2.5) on the blocks without introducing
any additional errors during a read operation. To lower the maximum threshold voltage in these
blocks, the width of the voltage window for each voltage state is decreased, and each voltage

55

window shifts to the left [29, 96]. Another work applies stronger ECC encodings to only read-
hot blocks based on the total read count of the block, in order to increase SSD endurance without
significantly reducing the amount of overprovisioning [28] (see Section 2.1.4 for a discussion on
the tradeoff between ECC strength and overprovisioning).

3.2.7 Adaptive Error Mitigation Mechanisms
Due to the many different factors that contribute to raw bit errors, error rates in NAND flash
memory can be highly variable. Adaptive error mitigation mechanisms are capable of adapting
error tolerance capability to the error rate. They provide stronger error tolerance capability when
the error rate is higher, improving flash lifetime significantly. When the error rate is low, adaptive
error mitigation techniques reduce error tolerance capability to lower the cost of the error miti-
gation techniques. In this section, we examine two types of adaptive techniques: (1) multi-rate
ECC and (2) dynamic cell levels.

Multi-Rate ECC. Some works propose to employ multiple ECC algorithms in the SSD con-
troller [31, 51, 99, 111, 336]. Recall from Section 2.1.4 that there is a tradeoff between ECC
strength (i.e., the coding rate; see Section 2.1.3) and overprovisioning, as a codeword (which
contains a data chunk and its corresponding ECC information) uses more bits when stronger
ECC is employed. The key idea of multi-rate ECC is to employ a weaker codeword (i.e., one
that uses fewer bits for ECC) when the SSD is relatively new and has a smaller number of raw
bit errors, and to use the saved SSD space to provide additional overprovisioning, as shown in
Figure 3.15.

ECC1

ECC4

. . .

ECC

ECC

. . .

User data ECCFixed ECC

Multi-Rate
ECC

100%
capacity

0% 84% 90%

User data OP space

OP space

User data OP space

Figure 3.15: Comparison of space used for user data, overprovisioning, and ECC between a fixed
ECC and a multi-rate ECC mechanism. Reproduced from [32].

56

1ܣ1ܱܲ1ܹܥܥܧ2ܣ2ܱܲ2ܹܥܥܧ3ܣ3ܱܲ3ܹܥܥܧ

PE1 PE2

4ܣ4ܱܲ4ܹܥܥܧ
P/E Cycles

Ra
w

 B
it

Er
ro

r
Ra

te

PE3

T1
T2
T3

0

Figure 3.16: Illustration of how multi-rate ECC switches to different ECC codewords (i.e., ECCi)
as the RBER grows. OPi is the overprovisioning factor used for engine ECCi, and WAi is the
resulting write amplification value. Reproduced from [32].

Let us assume that the controller contains a configurable ECC engine that can support n
different types of ECC codewords, which we call ECCi. Figure 3.15 shows an example of multi-
rate ECC that uses four ECC engines, where ECC1 provides the weakest protection but has the
smallest codeword, while ECC4 provides the strongest protection with the largest codeword.
We need to ensure that the NAND flash memory has enough space to fit the largest codewords,
e.g., those for ECC4 in Figure 3.15. Initially, when the raw bit error rate (RBER) is low, the
controller employs ECC1, as shown in Figure 3.16. The smaller codeword size for ECC1 provides
additional space for overprovisioning, as shown in Figure 3.15, and thus reduces the effects of
write amplification. Multi-rate ECC works on an interval-by-interval basis. Every interval (in
this case, a predefined number of P/E cycles), the controller measures the RBER. When the
RBER exceeds the threshold set for transitioning from a weaker ECC to a stronger ECC, the
controller switches to the stronger ECC. For example, when the SSD exceeds the first RBER
threshold for switching (T1 in Figure 3.16), the controller starts switching from ECC1 to ECC2.
When switching between ECC engines, the controller uses the ECC1 engine to decode data the
next time the data is read out, and stores a new codeword using the ECC2 engine. This process is
repeated during the lifetime of flash memory for each stronger engine ECCi, where each engine
has a corresponding threshold that triggers switching [31, 51, 99], as shown in Figure 3.16.

Multi-rate ECC allows the same maximum P/E cycle count for each block as if ECCn was
used throughout the lifetime of the SSD, but reduces write amplification and improves perfor-
mance during the periods where the lower strength engines are employed, by providing addi-
tional overprovisioning (see Section 2.1.4) during those times. As the lower-strength engines use
smaller codewords (e.g., ECC1 versus ECC4 in Figure 3.15), the resulting free space can instead
be employed to further increase the amount of overprovisioning within the NAND flash memory,
which in turn increases the total lifetime of the SSD. We compute the lifetime improvement by
modifying Equation 2.4 (Section 2.1.4) to account for each engine, as follows:

Lifetime =
n

∑
i=1

PECi× (1+OPi)

365×DWPD×WAi×Rcompress
(3.4)

In Equation 3.4, WAi and OPi are the write amplification and overprovisioning factor for ECCi,
and PECi is the number of P/E cycles that ECCi is used for. Manufacturers can set parameters to
maximize SSD lifetime in Equation 3.4, by optimizing the values of WAi and OPi.

57

Figure 3.17 shows the lifetime improvements for a four-engine multi-rate ECC, with the cod-
ing rates for the four ECC engines (ECC1–ECC4) set to 0.90, 0.88, 0.86, and 0.84 (recall that a
lower coding rate provides stronger protection; see Section 2.1.4), over a fixed ECC engine that
employs a coding rate of 0.84. We see that the lifetime improvements of using multi-rate ECC
are: (1) significant, with a 31.2% increase if the baseline NAND flash memory has 15% overpro-
visioning; and (2) greater when the SSD initially has a smaller amount of overprovisioning.

1.00

1.25

1.50

1.75

0% 10% 20% 30%

No
rm

al
ize

d
Lif

et
im

e

Baseline Overprovisioning %

Figure 3.17: Lifetime improvements of using multi-rate ECC over using a fixed ECC coding
rate. Reproduced from [32].

Dynamic Cell Levels. A major reason that errors occur in NAND flash memory is because
the threshold voltage distribution of each state overlaps more with those of neighboring states as
the distributions widen over time. Distribution overlaps are a greater problem when more states
are encoded within the same voltage range. Hence, TLC flash has a much lower endurance than
MLC, and MLC has a much lower endurance than SLC (assuming the same process technology
node). If we can increase the margins between the states’ threshold voltage distributions, the
amount of overlap can be reduced significantly, which in turn reduces the number of errors.

Prior work proposes to increase margins by dynamically reducing the number of bits stored
within a cell, e.g., by going from three bits that encode eight states (TLC) to two bits that
encode four states (equivalent to MLC), or to one bit that encodes two states (equivalent to
SLC) [29, 332]. Recall that TLC uses the ER state and states P1–P7, which are spaced out ap-
proximately equally. When we downgrade a flash block (i.e., reduce the number of states its
cells can represent) from eight states to four, the cells in the block now employ only the ER
state and states P3, P5, and P7. As we can see from Figure 3.18, this provides large margins
between states P3, P5, and P7, and provides an even larger margin between ER and P3. The
SSD controller maintains a list of all of the blocks that have been downgraded. For each read
operation, the SSD controller checks if the target block is in the downgraded block list, and uses
this information to interpret the data that it reads out from the wordline of the block.

ER
(111)

Threshold Voltage (Vth)

P1
(011)

P2
(001)

P3
(101)

P4
(100)

P5
(000)

P6
(010)

P7
(110)

Pr
ob

ab
ili

ty

De
ns

ity

Figure 3.18: States used when a TLC cell (with 8 states) is downgraded to an MLC cell (with 4
states). Reproduced from [32].

58

A cell can be downgraded to reduce various types of errors (e.g., wearout, read disturb). To
reduce wearout, a cell is downgraded when it has high wearout. To reduce read disturb, a cell
can be downgraded if it stores read-hot data (i.e., the most frequently read data in the SSD). By
using fewer states for a block that holds read-hot data, we can reduce the impact of read disturb
because it becomes harder for the read disturb mechanism to affect the distributions enough
for them to overlap. As an optimization, the SSD controller can employ various hot-cold data
partitioning mechanisms (e.g., [28, 29, 95, 194]) to keep read-hot data in specially designated
blocks [28, 29, 95, 96], allowing the controller to reduce the size of the downgraded block list
and isolate the impact of read disturb from read-cold (i.e., infrequently read) data.

Another approach to dynamically increasing the distribution margins is to perform program
and erase operations more slowly when the SSD write request throughput is low [29, 122].
Slower program/erase operations allow the final voltage of a cell to be programmed more pre-
cisely, and reduce the amount of oxide degradation that occurs during programming. As a result,
the distribution of each state is initially much narrower, and subsequent widening of the distri-
butions results in much lower overlap for a given P/E cycle count. This technique improves the
SSD lifetime by an average of 61.2% for a variety of disk workloads [122]. Unfortunately, the
slower program/erase operations come at the cost of higher SSD latency, and are thus not applied
during periods of high write traffic. One way to mitigate the impact of the higher write latency is
to perform slower program/erase operations only during garbage collection, which ensures that
the higher latency occurs only when the SSD is idle [29]. As a result, read and write requests
from the host do not experience any additional delays.

3.3 Error Correction and Data Recovery Techniques
Now that we have described a variety of error mitigation mechanisms that can target various
types of error sources, we turn our attention to the error correction flow that is employed in mod-
ern SSDs as well as data recovery techniques that can be employed when the error correction
flow fails to produce correct data. In this section, we briefly overview the major error correction
steps an SSD performs when reading data. We first discuss two ECC encodings that are typically
used by modern SSDs: Bose–Chaudhuri–Hocquenghem (BCH) codes [14, 107, 177, 297] and
low-density parity-check (LDPC) codes [84, 85, 203, 204, 297] (Section 3.3.1). Next, we go
through example error correction flows for an SSD that uses either BCH codes or LDPC codes
(Section 3.3.2). Then, we compare the error correction strength (i.e., the number of errors that
ECC can correct) when we employ BCH codes or LDPC codes in an SSD (Section 3.3.3). Fi-
nally, we discuss techniques that can rescue data from an SSD when the BCH/LDPC decoding
fails to correct all errors (Section 3.3.4).

3.3.1 Error-Correcting Codes Used in SSDs
Modern SSDs typically employ one of two types of ECC. Bose–Chaudhuri–Hocquenghem
(BCH) codes allow for the correction of multiple bit errors [14, 107, 177, 297], and are
used to correct the errors observed during a single read from the NAND flash memory [177].
Low-density parity-check (LDPC) codes employ information accumulated over multiple read

59

operations to determine the likelihood of each cell containing a bit value 1 or a bit value
0 [84, 85, 203, 204, 297], providing stronger protection at the cost of greater decoding latency
and storage overhead [326, 362]. Next, we describe the basics of BCH and LDPC codes.

Bose–Chaudhuri–Hocquenghem (BCH) Codes

BCH codes [14, 107, 177, 297] have been widely used in modern SSDs during the past decade
due to their ability to detect and correct multi-bit errors while keeping the latency and hardware
cost of encoding and decoding low [48, 177, 207, 215]. For SSDs, BCH codes are designed
to be systematic, which means that the original data message is embedded verbatim within the
codeword. Within an n-bit codeword (see Section 2.1.3), error-correcting codes use the first k
bits of the codeword, called data bits, to hold the data message bits, and the remaining (n− k)
bits, called check bits, to hold error correction information that protects the data bits. BCH codes
are designed to guarantee that they correct up to a certain number of raw bit errors (e.g., t error
bits) within each codeword, which depends on the values chosen for n and k. A stronger error
correction strength (i.e., a larger t) requires more redundant check bits (i.e., (n− k)) or a longer
codeword length (i.e., n).

A BCH code [14, 107, 177, 297] is a linear block code that consists of check bits generated
by an algorithm. The codeword generation algorithm ensures that the check bits are selected such
that the check bits can be used during a parity check to detect and correct up to t bit errors in the
codeword. A BCH code is defined by (1) a generator matrix G, which informs the generation
algorithm of how to generate each check bit using the data bits; and (2) a parity check matrix H,
which can be applied to the codeword to detect if any errors exist. In order for a BCH code to
guarantee that it can correct t errors within each codeword, the minimum separation d (i.e., the
Hamming distance) between valid codewords must be at least d = 2t +1 [297].

BCH Encoding. The codeword generation algorithm encodes a k-bit data message m into
an n-bit BCH codeword c, by computing the dot product of m and the generator matrix G (i.e.,
c = m ·G). G is defined within a finite Galois field GF(2d) = {0,α0,α1, . . . ,α2d−1}, where α is
a primitive element of the field and d is a positive integer [77]. An SSD manufacturer constructs
G from a set of polynomials g1(x),g2(x), . . .g2t(x), where gi(α

i) = 0. Each polynomial generates
a parity bit, which is used during decoding to determine if any errors were introduced. The i-th
row of G encodes the i-th polynomial gi(x). When decoding, the codeword c can be viewed as
a polynomial c(x). Since c(x) is generated by gi(x) which has a root α i, α i should also be a
root of c(x). The parity check matrix H is constructed such that cHt calculates c(αi). Thus, the
element in the i-th row and j-th column of H is Hi j = α(j−1)(i+1). This allows the decoder to
use H to quickly determine if any of the parity bits do not match, which indicates that there are
errors within the codeword. BCH codes in SSDs are typically designed to be systematic, which
guarantees that a verbatim copy of the data message is embedded within the codeword. To form
a systematic BCH code, the generator matrix and the parity check matrix are transformed such
that they contain the identity matrix.

BCH Decoding. When the SSD controller is servicing a read request, it must extract the data
bits (i.e., the k-bit data message m) from the BCH codeword that is stored in the NAND flash
memory chips. Once the controller retrieves the codeword, which we call r, from NAND flash

60

memory, it sends r to a BCH decoder. The decoder performs five steps, as illustrated in Fig-
ure 3.19, which correct the retrieved codeword r to obtain the originally-written codeword c, and
then extract the data message m from c. In Step 1, the decoder uses syndrome calculation to de-
tect if any errors exist within the retrieved codeword r. If no errors are detected, the decoder uses
the retrieved codeword as the original codeword, c, and skips to Step 5. Otherwise, the decoder
continues on to correct the errors and recover c. In Step 2, the decoder uses the syndromes from
Step 1 to construct an error location polynomial, which encodes the locations of each detected
bit error within r. In Step 3, the decoder extracts the specific location of each detected bit error
from the error location polynomial. In Step 4, the decoder corrects each detected bit error in
the retrieved codeword r to recover the original codeword c. In Step 5, the decoder extracts the
data message from the original codeword c. We describe the algorithms most commonly used by
BCH decoders in SSDs [56, 177, 191] for each step in detail below.

STEP 2
Construct

Error Location
Polynomial

STEP 1
Syndrome

Calculation
retrieved

codeword (r)
Errors
in r?

YES
STEP 3

Extract Error
Locations

error location
polynomial (σ)

STEP 4
Correct
Errors

+
error bit

vector (e)

STEP 5
Extract

Message

NO

original
codeword (c)

k-bit data
message (m)

Figure 3.19: BCH decoding steps.

Step 1—Syndrome Calculation: To determine whether the retrieved codeword r contains any
errors, the decoder computes the syndrome vector, S, which indicates how many of the parity
check polynomials no longer match with the parity bits originally computed during encoding.
The i-th syndrome, Si, is set to one if parity bit i does not match its corresponding polynomial,
and to zero otherwise. To calculate S, the decoder calculates the dot product of r and the parity
check matrix H (i.e., S = r ·H). If every syndrome in S is set to 0, the decoder does not detect
any errors within the codeword, and skips to Step 5. Otherwise, the decoder proceeds to Step 2.

Step 2—Constructing the Error Location Polynomial: A state-of-the-art BCH decoder uses
the Berlekamp–Massey algorithm [11, 48, 209, 280] to construct an error location polynomial,
σ(x), whose roots encode the error locations of the codeword:

σ(x) = 1+σ1 · x+σ2 · x2 + . . .+σb · xb (3.5)

In Equation 3.5, b is the number of raw bit errors in the codeword.
The polynomial is constructed using an iterative process. Since b is not known initially,

the algorithm initially assumes that b = 0 (i.e., σ(x) = 1). Then, it updates σ(x) by adding
a correction term to the equation in each iteration, until σ(x) successfully encodes all of the
errors that were detected during syndrome calculation. In each iteration, a new correction term

61

is calculated using both the syndromes from Step 1 and the σ(x) equations from prior iterations
of the algorithm, as long as these prior values of σ(x) satisfy certain conditions. This algorithm
successfully finds σ(x) after n = (t + b)/2 iterations, where t is the maximum number of bit
errors correctable by the BCH code [77].

Note that (1) the highest order of the polynomial, b, is directly correlated with the number
of errors in the codeword; (2) the number of iterations, n, is also proportional to the number of
errors; (3) each iteration is compute-intensive, as it involves several multiply and add operations;
and (4) this algorithm cannot be parallelized across iterations, as the computation in each iteration
is dependent on the previous ones.

Step 3—Extracting Bit Error Locations from the Error Polynomial: A state-of-the-art de-
coder applies the Chien search [53, 297] on the error location polynomial to find the location of
all raw bit errors that have been detected during Step 1 in the retrieved codeword r. Each bit
error location is encoded with a known function f [280]. The error polynomial from Step 2 is
constructed such that if the i-th bit of the codeword has an error, the error location polynomial
σ(f (i)) = 0; otherwise, if the i-th bit does not have an error, σ(f (i)) 6= 0. The Chien search
simply uses trial-and-error (i.e., tests if σ(f (i)) is zero), testing each bit in the codeword starting
at bit 0. As the decoder needs to correct only the first k bits of the codeword that contain the data
message m, the Chien search needs to evaluate only k different values of σ(f (i)). The algorithm
builds a bit vector e, which is the same length as the retrieved codeword r, where the i-th bit of
e is set to one if bit i of r contains a bit error, and is set to zero if bit i of r does not contain an
error, or if i≥ k (since there is no need to correct the parity bits).

Note that (1) the calculation of σ(f (i)) is compute-intensive, but can be parallelized because
the calculation of each bit i is independent of the other bits, and (2) the complexity of Step 3 is
linearly correlated with the number of detected errors in the codeword.

Step 4—Correcting the Bit Errors: The decoder corrects each detected bit error location by
flipping the bit at that location in the retrieved codeword r. This simply involves XORing r with
the error vector e created in Step 3. After the errors are corrected, the decoder now has the
estimated value of the originally-written codeword c (i.e., c = r⊕e). The decoded version of c is
only an estimate of the original codeword, since if r contains more bit errors than the maximum
number of errors (t) that the BCH can correct, there may be some uncorrectable errors that were
not detected during syndrome calculation (Step 1). In such cases, the decoder cannot guarantee
that it has determined the actual original codeword. In a modern SSD, the bit error rate of a
codeword after BCH correction is expected to be less than 10−15 [121].

Step 5—Extracting the Message from the Codeword: As we discuss above, during BCH
codeword encoding, the generator matrix G contains the identity matrix, to ensure that the k-bit
message m is embedded verbatim into the codeword c. Therefore, the decoder recovers m by
simply truncating the last (n− k) bits from the n-bit codeword c.

BCH Decoder Latency Analysis. We can model the latency of the state-of-the-art BCH
decoder (T dec

BCH) that we described above as:

T dec
BCH = TSyndrome +N ·TBerlekamp +

k
p
·TChien (3.6)

In Equation 3.6, TSyndrome is the latency for calculating the syndrome, which is determined by

62

the size of the parity check matrix H; TBerlekamp is the latency of one iteration of the Berlekamp–
Massey algorithm; N is the total number of iterations that the Berlekamp–Massey algorithm
performs; TChien is the latency for deciding whether or not a single bit location contains an error,
using the Chien search; k is the length of the data message m; and p is the number of bits that are
processed in parallel in Step 3. In this equation, TSyndrome, TBerlekamp, k, and p are constants for a
BCH decoder implementation, while N and TChien are proportional to the raw bit error count of
the codeword. Note that Steps 4 and 5 can typically be implemented such that they take less than
one clock cycle in modern hardware, and thus their latencies are not included in Equation 3.6.

Low-Density Parity-Check (LDPC) Codes

LDPC codes [84, 85, 203, 204, 297] are now used widely in modern SSDs, as LDPC codes
provide a stronger error correction capability than BCH codes, albeit at a greater storage
cost [326, 362]. LDPC codes are one type of capacity-approaching codes, which are error-
correcting codes that come close to the Shannon limit, i.e., the maximum number of data mes-
sage bits (kmax) that can be delivered without errors for a certain codeword size (n) under a given
error rate [292, 293]. Unlike BCH codes, LDPC codes cannot guarantee that they will correct a
minimum number of raw bit errors. Instead, a good LDPC code guarantees that the failure rate
(i.e., the fraction of all reads where the LDPC code cannot successfully correct the data) is less
than a target rate for a given number of bit errors. Like BCH codes, LDPC codes for SSDs are
designed to be systematic, i.e., to contain the data message verbatim within the codeword.

An LDPC code [84, 85, 203, 204, 297] is a linear code that, like a BCH code, consists of
check bits generated by an algorithm. For an LDPC code, these check bits are used to form a bi-
partite graph, where one side of the graph contains nodes that represent each bit in the codeword,
and the other side of the graph contains nodes that represent the parity check equations used to
generate each parity bit. When a codeword containing errors is retrieved from memory, an LDPC
decoder applies belief propagation [265] to iteratively identify the bits within the codeword that
are most likely to contain a bit error.

An LDPC code is defined using a binary parity check matrix H, where H is very sparse
(i.e., there are few ones in the matrix). Figure 3.20a shows an example H matrix for a seven-bit
codeword c (see Section 2.1.3). For an n-bit codeword that encodes a k-bit data message, H is
sized to be an (n−k)×n matrix. Within the matrix, each row represents a parity check equation,
while each column represents one of the seven bits in the codeword. As our example matrix has
three rows, this means that our error correction uses three parity check equations (denoted as f).
A bit value 1 in row i, column j indicates that parity check equation fi contains bit c j. Each
parity check equation XORs all of the codeword bits in the equation to see whether the output is
zero. For example, parity check equation f1 from the H matrix in Figure 3.20a is:

f1 = c1⊕ c2⊕ c4⊕ c5 = 0 (3.7)

This means that c is a valid codeword only if H · cT = 0, where cT is the transpose matrix of the
codeword c.

63

C0 C1 C2 C3 C4 C5 C6

F0 F1 F2

(a) H matrix (b) Tanner graph

bit nodes

check nodes
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1101011
0110110
0011101

H

c0 c1 c2 c3 c4 c5 c6

f0
f1
f2

codeword bits

parity check
functions

Figure 3.20: Example LDPC code for a seven-bit codeword with a four-bit data message (stored
in bits c0, c1, c2, and c3) and three parity check equations (i.e., n = 7, k = 4), represented as
(a) an H matrix and (b) a Tanner graph.

In order to perform belief propagation, H can be represented using a Tanner graph [313].
A Tanner graph is a bipartite graph that contains check nodes, which represent the parity check
equations, and bit nodes, which represent the bits in the codeword. An edge connects a check
node Fi to a bit node C j only if parity check equation fi contains bit c j. Figure 3.20b shows the
Tanner graph that corresponds to the H matrix in Figure 3.20a. For example, since parity check
equation f1 uses codeword bits c1, c2, c4, and c5, the F1 check node in Figure 3.20b is connected
to bit nodes C1, C2, C4, and C5.

LDPC Encoding. As was the case with BCH, the LDPC codeword generation algorithm
encodes a k-bit data message m into an n-bit LDPC codeword c by computing the dot product of
m and a generator matrix G (i.e., c = m ·G). For an LDPC code, the generator matrix is designed
to (1) preserve m verbatim within the codeword, and (2) generate the parity bits for each parity
check equation in H. Thus, G is defined using the parity check matrix H. With linear algebra
based transformations, H can be expressed in the form H = [A, I(n−k)], where H is composed
of A, an (n− k)× k binary matrix, and I(n−k), an (n− k)× (n− k) identity matrix [129]. The
generator matrix G can then be created using the composition G = [Ik,AT], where AT is the
transpose matrix of A.

LDPC Decoding. When the SSD controller is servicing a read request, it must extract the
k-bit data message from the LDPC codeword r that is stored in NAND flash memory. In an
SSD, an LDPC decoder performs multiple levels of decoding [77, 323, 362], which correct the
retrieved codeword r to obtain the originally-written codeword c and extract the data message
m from c. Initially, the decoder performs a single level of hard decoding, where it uses the
information from a single read operation on the codeword to attempt to correct the codeword
bit errors. If the decoder cannot correct all errors using hard decoding, it then initiates the first
level of soft decoding, where a second read operation is performed on the same codeword using
a different set of read reference voltages. The second read provides additional information on
the probability that each bit in the codeword is a zero or a one. An LDPC decoder typically uses
multiple levels of soft decoding, where each new level performs an additional read operation to
calculate a more accurate probability for each bit value. We discuss multi-level soft decoding in
detail in Section 3.3.2.

For each level, the decoder performs five steps, as illustrated in Figure 3.21. At each level,

64

the decoder uses two pieces of information to determine which bits are most likely to contain
errors: (1) the probability that each bit in r is a zero or a one, and (2) the parity check equations.
In Step 1 (Figure 3.21), the decoder computes an initial log likelihood ratio (LLR) for each bit
of the stored codeword. We refer to the initial codeword LLR values as L, where L j is the LLR
value for bit j of the codeword. L j expresses the likelihood (i.e., confidence) that bit j should be a
zero or a one, based on the current threshold voltage of the NAND flash cell where bit j is stored.
The decoder uses L as the initial LLR message generated using the bit nodes. An LLR message
consists of the LLR values for each bit, which are updated by and communicated between the
check nodes and bit nodes during each step of belief propagation.3 In Steps 2 through 4, the
belief propagation algorithm [265] iteratively updates the LLR message, using the Tanner graph
to identify those bits that are most likely to be incorrect (i.e., the codeword bits whose (1) bit
nodes are connected to the largest number of check nodes that currently contain a parity error,
and (2) LLR values indicate low confidence). Several decoding algorithms exist to perform
belief propagation for LDPC codes. The most commonly-used belief propagation algorithm is
the min-sum algorithm [49, 80], a simplified version of the original sum-product algorithm for
LDPC [84, 85] with near-equivalent error correction capability [5]. During each iteration of
the min-sum algorithm, the decoder identifies a set of codeword bits that likely contain errors
and thus need to be flipped. The decoder accomplishes this by (1) having each check node
use its parity check information to determine how much the LLR value of each bit should be
updated by, using the most recent LLR messages from the bit nodes; (2) having each bit node
gather the LLR updates from each bit to generate a new LLR value for the bit, using the most
recent LLR messages from the check nodes; and (3) using the parity check equations to see if
the values predicted by the new LLR message for each node are correct. The min-sum algorithm
terminates under one of two conditions: (1) the predicted bit values after the most recent iteration
are all correct, which means that the decoder now has an estimate of the original codeword c,
and can advance to Step 5; or (2) the algorithm exceeds a predetermined number of iterations,
at which point the decoder moves onto the next decoding level, or returns a decoding failure
if the maximum number of decoding levels have been performed. In Step 5, once the errors
are corrected, and the decoder has the original codeword c, the decoder extracts the k-bit data
message m from the codeword. We describe the steps used by a state-of-the-art decoder in detail
below, which uses an optimized version of the min-sum algorithm that can be implemented
efficiently in hardware [92, 93].

3Note that an LLR message is not the same as the k-bit data message. The data message refers to the actual data
stored within the SSD, which, when read, is modeled in information theory as a message that is transmitted across
a noisy communication channel. In contrast, an LLR message refers to the updated LLR values for each bit of the
codeword that are exchanged between the check nodes and the bit nodes during belief propagation. Thus, there is
no relationship between a data message and an LLR message.

65

STEP 1
Compute Log

Likelihood
Ratio (LLR)

retrieved
codeword (r)

Any
Errors?

YES

STEP 5
Extract

Message

original
codeword (c)

k-bit data
message (m)

STEP 2
Process

Check Nodes

initial LLR
message (L) STEP 3

Process
Bit Nodes

check node LLR
message (R) STEP 4

Parity
Check

bit node LLR
message (Q)

predicted original
codeword (c)

Min-Sum Algorithm Iteration

NO

bit node LLR
message (Q)

Max
Iterations

?
NO

YES

decoding level fails

Figure 3.21: LDPC decoding steps for a single level of hard or soft decoding.

Step 1—Computing the Log Likelihood Ratio (LLR): The LDPC decoder uses the probability
(i.e., likelihood) that a bit is a zero or a one to identify errors, instead of using the bit values di-
rectly. The log likelihood ratio (LLR) is the probability that a certain bit is zero, i.e., P(x= 0|Vth),
over the probability that the bit is one, i.e., P(x = 1|Vth), given a certain threshold voltage range
(Vth) bounded by two threshold voltage values (i.e., the maximum and the minimum voltage of
the threshold voltage range) [326, 362]:

LLR = log
P(x = 0|Vth)

P(x = 1|Vth)
(3.8)

The sign of the LLR value indicates whether the bit is likely to be a zero (when the LLR value
is positive) or a one (when the LLR value is negative). A larger magnitude (i.e., absolute value)
of the LLR value indicates a greater confidence that a bit should be zero or one, while an LLR
value closer to zero indicates low confidence. The bits whose LLR values have the smallest
magnitudes are the ones that are most likely to contain errors.

There are several alternatives for how to compute the LLR values. A common approach for
LLR computation is to treat a flash cell as a communication channel, where the channel takes
an input program signal (i.e., the target threshold voltage for the cell) and outputs an observed
signal (i.e., the current threshold voltage of the cell) [23]. The observed signal differs from
the input signal due to the various types of NAND flash memory errors. The communication
channel model allows us to break down the threshold voltage of a cell into two components:
(1) the expected signal; and (2) the additive signal noise due to errors. By enabling the modeling
of these two components separately, the communication channel model allows us to estimate the
current threshold voltage distribution of each state [23]. The threshold voltage distributions can
be used to predict how likely a cell within a certain voltage region is to belong to a particular
voltage state.

66

One popular variant of the communication channel model assumes that the threshold voltage
distribution of each state can be modeled as a Gaussian distribution [23]. If we use the mean
observed threshold voltage of each state (denoted as µ) to represent the signal, we find that the
P/E cycling noise (i.e., the shift in the distribution of threshold voltages due to the accumulation
of charge from repeated programming operations; see Section 3.1.1) can be modeled as additive
white Gaussian noise (AWGN) [23], which is represented by the standard deviation of the distri-
bution (denoted as σ). The closed-form AWGN-based model can be used to determine the LLR
value for a cell with threshold voltage y, as follows:

LLR(y) =
µ2

1 −µ2
0

2σ2 +
y(µ0−µ1)

σ2 (3.9)

where µ0 and µ1 are the mean threshold voltages for the distributions of the threshold voltage
states for bit value 0 and bit value 1, respectively, and σ is the standard deviation of both dis-
tributions (assuming that the standard deviation of each threshold voltage state distribution is
equal). Since the SSD controller uses threshold voltage ranges to categorize a flash cell, we can
substitute µR j , the mean threshold voltage of the threshold voltage range R j, in place of y in
Equation 3.9.

The AWGN-based LLR model in Equation 3.9 provides only an estimate of the LLR, because
(1) the actual threshold voltage distributions observed in NAND flash memory are not perfectly
Gaussian in nature [23, 195]; (2) the controller uses the mean voltage of the threshold voltage
range to approximate the actual threshold voltage of a cell; and (3) the standard deviations of
each threshold voltage state distribution are not perfectly equal. A number of methods have been
proposed to improve upon the AWGN-based LLR estimate by: (1) using nonlinear transforma-
tions to convert the AWGN-based LLR into a more accurate LLR value [341]; (2) scaling and
rounding the AWGN-based LLR to compensate for the estimation error [342]; (3) initially using
the AWGN-based LLR to read the data, and, if the read fails, using the ECC information from
the failed read attempt to optimize the LLR and to perform the read again with the optimized
LLR [66]; and (4) using online and offline training to empirically determine the LLR values un-
der a wide range of conditions (e.g., P/E cycle count, retention time, read disturb count) [340].
The SSD controller can either compute the LLR values at runtime, or statically store precom-
puted LLR values in a table.

Once the decoder calculates the LLR values for each bit of the codeword, which we call the
initial LLR message L, the decoder starts the first iteration of the min-sum algorithm (Steps 2–4
below).

Step 2—Check Node Processing: In every iteration of the min-sum algorithm, each check
node i (see Figure 3.20) generates a revised check node LLR message Ri j to send to each bit
node j (see Figure 3.20) that is connected to check node i. The decoder computes Ri j as:

Ri j = δi jκi j (3.10)

where δi j is the sign of the LLR message, and κi j is the magnitude of the LLR message. The
decoder determines the values of both δi j and κi j using the bit node LLR message Q′ji. At a high
level, each check node collects LLR values sent from each bit node (Q′ji), and then determines
how much each bit’s LLR value should be adjusted using the parity information available at the

67

check node. These LLR value updates are then bundled together into the LLR message Ri j.
During the first iteration of the min-sum algorithm, the decoder sets Q′ji = L j, the initial LLR
value from Step 1. In subsequent iterations, the decoder uses the value of Q′ji that was generated
in Step 3 of the previous iteration. The decoder calculates δi j, the sign of the check node LLR
message, as:

δi j = ∏
J

sgn(Q′Ji) (3.11)

where J represents all bit nodes connected to check node i except for bit node j. The sign of a
bit node indicates whether the value of a bit is predicted to be a zero (if the sign is positive) or a
one (if the sign is negative). The decoder calculates κi j, the magnitude of the check node LLR
message, as:

κi j = min
J
|Q′Ji| (3.12)

In essence, the smaller the magnitude of Q′ji is, the more uncertain we are about whether the bit
should be a zero or a one. At each check node, the decoder updates the LLR value of each bit
node j, adjusting the LLR by the smallest value of Q′ for any of the other bits connected to the
check node (i.e., the LLR value of the most uncertain bit aside from bit j).

Step 3—Bit Node Processing: Once each check node generates the LLR messages for each
bit node, we combine the LLR messages received by each bit node to update the LLR value of
the bit. The decoder first generates the LLR messages to be used by the check nodes in the next
iteration of the min-sum algorithm. The decoder calculates the bit node LLR message Q ji to
send from bit node j to check node i as follows:

Q ji = L j +∑
I

RI j (3.13)

where I represents all check nodes connected to bit node j except for check node i, and L j is the
original LLR value for bit j generated in Step 1. In essence, for each check node, the bit node
LLR message combines the LLR messages from the other check nodes to ensure that all of the
LLR value updates are propagated globally across all of the check nodes.

Step 4—Parity Check: After the bit node processing is complete, the decoder uses the revised
LLR information to predict the value of each bit. For bit node j, the predicted bit value Pj is
calculated as:

Pj = L j +∑
i

Ri j (3.14)

where i represents all check nodes connected to bit node j, including check node i, and L j is the
original LLR value for bit j generated in Step 1. If Pj is positive, bit j of the original codeword c
is predicted to be a zero; otherwise, bit j is predicted to be a one. Once the predicted values have
been computed for all bits of c, the H matrix is used to check the parity, by computing H · cT . If
H · cT = 0, then the predicted bit values are correct, the min-sum algorithm terminates, and the
decoder goes to Step 5. Otherwise, at least one bit is still incorrect, and the decoder goes back to
Step 2 to perform the next iteration of the min-sum algorithm. In the next iteration, the min-sum
algorithm uses the updated LLR values from the current iteration to identify the next set of bits
that are most likely incorrect and need to be flipped.

68

The current decoding level fails to correct the data when the decoder cannot determine the
correct codeword bit values after a predetermined number of min-sum algorithm iterations. If the
decoder has more soft decoding levels left to perform, it advances to the next soft decoding level.
For the new level, the SSD controller performs an additional read operation using a different set
of read reference voltages than the ones it used for the prior decoding levels. The decoder then
goes back to Step 1 to generate the new LLR information, using the output of all of the read
operations performed for each decoding level so far. We discuss how the number of decoding
levels and the read reference voltages are determined, as well as what happens if all soft decoding
levels fail, in Section 3.3.2.

Step 5—Extracting the Message from the Codeword: As we discuss above, during LDPC
codeword encoding, the generator matrix G contains the identity matrix, to ensure that the code-
word c includes a verbatim version of m. Therefore, the decoder recovers the k-bit data message
m by simply truncating the last (n− k) bits from the n-bit codeword c.

3.3.2 Error Correction Flow
For both BCH and LDPC codes, the SSD controller performs several stages of error correction to
retrieve the data, known as the error correction flow. The error correction flow is invoked when
the SSD performs a read operation. The SSD starts the read operation by using the initial read
reference voltages (Vinitial; see Section 3.2.5) to read the raw data stored within a page of NAND
flash memory into the controller. Once the raw data is read, the controller starts error correction.

69

Algorithm 1 Example BCH/LDPC Error Correction Procedure

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1691

V I. ER ROR COR R ECTION A ND DATA
R ECOV ERY TECHNIQU ES

Now that we have described a variety of error mitigation
mechanisms that can target various types of error sources,
we turn our attention to the error correction flow that is
employed in modern SSDs as well as data recovery tech-
niques that can be employed when the error correction flow
fails to produce correct data.

Modern SSDs typically employ one of two types of
ECC. Bose–Chaudhuri–Hocquenghem (BCH) codes
allow for the correction of multiple bit errors [9], [10],
[92], [93], and are used to correct the errors observed dur-
ing a single read from the NAND flash memory [10]. Low-
density parity-check (LDPC) codes employ information
accumulated over multiple read operations to determine
the likelihood of each cell containing a bit value 1 or a bit
value 0 [9], [94], [95], providing stronger protection at
the cost of greater decoding latency and storage overhead
[11], [73].

In this section, we briefly overview how an SSD performs
error correction when reading data. We first go through an
example error correction flow for an SSD that uses either
BCH codes (Section VI-A) or LDPC codes (Section VI-B).
Next, we compare the error correction strength (i.e., the
number of errors that ECC can correct) when we employ
BCH codes or LDPC codes in an SSD (Section VI-C). Then,
we discuss techniques that can rescue data from an SSD
when the BCH/LDPC decoding fails to correct all errors
(Section VI-D).

A. Error Correction Flow With BCH Codes

The SSD starts a read operation by using the initial read
reference voltages (V initial ; see Section V-E) to read the raw
data stored within a page of NAND flash memory into the
controller. Once the raw data is read, the controller starts
error correction. We first look at the error correction flow
using BCH codes [9], [10], [92], [93]. An example flow of
the stages for BCH decoding is listed in Algorithm 1, and is
shown on the left-hand side of Fig. 30(a). In the first stage,
the ECC engine performs BCH decoding on the raw data,
which reports the total number of bit errors in the data.
If the data cannot be corrected by the implemented BCH
codes, many controllers invoke read-retry (Section V-D) or
read reference voltage optimization (Section V-E) to find a
new set of read reference voltages (V ref) that lower the raw
bit error rate of the data from the error rate when using
V initial . The controller uses the new V ref values to read the
data again, and then repeats the BCH decoding. BCH decod-
ing is hard decoding, where the ECC engine can only use the
hard bit value information (i.e., either a 1 or a 0) read for a
cell using a single set of read reference voltages.

Algorithm 1: Example BCH/LDPC Error Correction
Procedure

First Stage: BCH/LDPC Hard Decoding

Controller gets stored Vinitial values to use as Vref
Flash chips read page using Vref
ECC decoder decodes BCH/LDPC
if ECC succeeds then
Controller sends data to host; exit algorithm
else if number of stage iterations not exceeded then
Controller invokes Vref optimization to new Vref;

repeats stage

end

Second Stage (BCH only): NAC

Controller reads immediately-adjacent wordline W
while ECC fails and all possible voltage states for

adjacent wordline not yet tried do
Controller goes to next neighbor voltage state V
Controller sets Vref based on neighbor voltage state V
Flash chips read page using Vref
Controller corrects cells adjacent to W’s cells that

were programmed to V
ECC decoder decodes BCH
if ECC succeeds then

Controller sends data to host; exit algorithm
end

end

Second Stage (LDPC only): Level X LDPC Soft Decoding

while ECC fails and X < maximum level N do
Controller selects optimal value of Vref

X

Flash chips do read-retry using Vref
X

Controller recomputes LLRXR0 to LLRX
RX

ECC decoder decodes LDPC
if ECC succeeds then
Controller sends data to host; exit algorithm

else
Controller goes to soft decoding level X + 1
end

end

Third Stage: Superpage-Level Parity Recovery

Flash chips read all other pages in the superpage
Controller XORs all other pages in the superpage
if data extraction succeeds then

Controller sends data to host
else

Controller reports uncorrectable error
end

If the controller exhausts the maximum number of read
attempts (specified as a parameter in the controller), it
employs correction techniques such as neighbor-cell-assisted
correction (NAC; see Section V-B) to further reduce the error
rate, as shown in the second BCH stage of Algorithm 1. If NAC

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1691

V I. ER ROR COR R ECTION A ND DATA
R ECOV ERY TECHNIQU ES

Now that we have described a variety of error mitigation
mechanisms that can target various types of error sources,
we turn our attention to the error correction flow that is
employed in modern SSDs as well as data recovery tech-
niques that can be employed when the error correction flow
fails to produce correct data.

Modern SSDs typically employ one of two types of
ECC. Bose–Chaudhuri–Hocquenghem (BCH) codes
allow for the correction of multiple bit errors [9], [10],
[92], [93], and are used to correct the errors observed dur-
ing a single read from the NAND flash memory [10]. Low-
density parity-check (LDPC) codes employ information
accumulated over multiple read operations to determine
the likelihood of each cell containing a bit value 1 or a bit
value 0 [9], [94], [95], providing stronger protection at
the cost of greater decoding latency and storage overhead
[11], [73].

In this section, we briefly overview how an SSD performs
error correction when reading data. We first go through an
example error correction flow for an SSD that uses either
BCH codes (Section VI-A) or LDPC codes (Section VI-B).
Next, we compare the error correction strength (i.e., the
number of errors that ECC can correct) when we employ
BCH codes or LDPC codes in an SSD (Section VI-C). Then,
we discuss techniques that can rescue data from an SSD
when the BCH/LDPC decoding fails to correct all errors
(Section VI-D).

A. Error Correction Flow With BCH Codes

The SSD starts a read operation by using the initial read
reference voltages (V initial ; see Section V-E) to read the raw
data stored within a page of NAND flash memory into the
controller. Once the raw data is read, the controller starts
error correction. We first look at the error correction flow
using BCH codes [9], [10], [92], [93]. An example flow of
the stages for BCH decoding is listed in Algorithm 1, and is
shown on the left-hand side of Fig. 30(a). In the first stage,
the ECC engine performs BCH decoding on the raw data,
which reports the total number of bit errors in the data.
If the data cannot be corrected by the implemented BCH
codes, many controllers invoke read-retry (Section V-D) or
read reference voltage optimization (Section V-E) to find a
new set of read reference voltages (V ref) that lower the raw
bit error rate of the data from the error rate when using
V initial . The controller uses the new V ref values to read the
data again, and then repeats the BCH decoding. BCH decod-
ing is hard decoding, where the ECC engine can only use the
hard bit value information (i.e., either a 1 or a 0) read for a
cell using a single set of read reference voltages.

Algorithm 1: Example BCH/LDPC Error Correction
Procedure

First Stage: BCH/LDPC Hard Decoding

Controller gets stored Vinitial values to use as Vref
Flash chips read page using Vref
ECC decoder decodes BCH/LDPC
if ECC succeeds then
Controller sends data to host; exit algorithm
else if number of stage iterations not exceeded then
Controller invokes Vref optimization to new Vref;

repeats stage

end

Second Stage (BCH only): NAC

Controller reads immediately-adjacent wordline W
while ECC fails and all possible voltage states for

adjacent wordline not yet tried do
Controller goes to next neighbor voltage state V
Controller sets Vref based on neighbor voltage state V
Flash chips read page using Vref
Controller corrects cells adjacent to W’s cells that

were programmed to V
ECC decoder decodes BCH
if ECC succeeds then

Controller sends data to host; exit algorithm
end

end

Second Stage (LDPC only): Level X LDPC Soft Decoding

while ECC fails and X < maximum level N do
Controller selects optimal value of Vref

X

Flash chips do read-retry using Vref
X

Controller recomputes LLRXR0 to LLRX
RX

ECC decoder decodes LDPC
if ECC succeeds then
Controller sends data to host; exit algorithm

else
Controller goes to soft decoding level X + 1
end

end

Third Stage: Superpage-Level Parity Recovery

Flash chips read all other pages in the superpage
Controller XORs all other pages in the superpage
if data extraction succeeds then

Controller sends data to host
else

Controller reports uncorrectable error
end

If the controller exhausts the maximum number of read
attempts (specified as a parameter in the controller), it
employs correction techniques such as neighbor-cell-assisted
correction (NAC; see Section V-B) to further reduce the error
rate, as shown in the second BCH stage of Algorithm 1. If NAC

Algorithm 1 lists the three stages of an example error correction flow, which can be used
to decode either BCH codes or LDPC codes. In the first stage, the ECC engine performs hard
decoding on the raw data. In hard decoding, the ECC engine uses only the hard bit value in-
formation (i.e., either a 1 or a 0) read for a cell using a single set of read reference voltages. If
the first stage succeeds (i.e., the controller detects that the error rate of the data after correction
is lower than a predetermined threshold), the flow finishes. If the first stage fails, then the flow
moves on to the second stage of error correction. The second stage differs significantly for BCH
and for LDPC, which we discuss below. If the second stage succeeds, the flow terminates; other-
wise, the flow moves to the third stage of error correction. In the third stage, the controller tries to
correct the errors using the more expensive superpage-level parity recovery (see Section 2.1.3).
The steps for superpage-level parity recovery are shown in the third stage of Algorithm 1. If the
data can be extracted successfully from the other pages in the superpage, the data from the target
page can be recovered. Whenever data is successfully decoded or recovered, the data is sent to
the host (and it is also reprogrammed into a new physical page to ensure that the corrected data
values are stored for the logical page). Otherwise, the SSD controller reports an uncorrectable
error to the host.

Figure 3.22 compares the error correction flow with BCH codes to the flow with LDPC
codes. Next, we discuss the flows used with both BCH codes (Section 3.3.2) and LDPC codes
(Section 3.3.2).

70

(n
o

so
ft

de
co

di
ng

)

LDPC Hard
Decoding

Superpage-Level Parity Recovery
(Section 1.3.10)

Flow with BCH
(Section 5.2.1)

Flow with LDPC
(Section 5.2.2)

Level 1

Level N

...

Codeword
Failure Rate

10-4

10-5

10-9

10-8

10-7

10-6

10-15

(a) (b)

LDPC
Latency

80 μs

10 ms

80 μs/
level

NAC
(Section 4.2)

BCH Hard Decoding
with Read-Retry

Level 2

Level N–1

BCH
Latency

70 μs/
iteration

10 ms

140 μs
for two

neighboring
reads

+
70 μs

for each
adjacent

value used

Figure 3.22: (a) Example error correction flow using BCH codes and LDPC codes, with average
latency of each BCH/LDPC stage. (b) The corresponding codeword failure rate for each LDPC
stage. Adapted from [32].

Flow Stages for BCH Codes

An example flow of the stages for BCH decoding is shown on the left-hand side of Figure 3.22a.
In the first stage, the ECC engine performs BCH hard decoding on the raw data, which reports
the total number of bit errors in the data. If the data cannot be corrected by the implemented BCH
codes, many controllers invoke read-retry (Section 3.2.4) or read reference voltage optimization
(Section 3.2.5) to find a new set of read reference voltages (Vre f) that lower the raw bit error rate
of the data from the error rate when using Vinitial . The controller uses the new Vre f values to read
the data again, and then repeats the BCH decoding. We discuss the algorithm used to perform
decoding for BCH codes in Section 3.3.1.

If the controller exhausts the maximum number of read attempts (specified as a parameter in
the controller), it employs correction techniques such as neighbor-cell-assisted correction (NAC;
see Section 3.2.2) to further reduce the error rate, as shown in the second BCH stage of Algo-
rithm 1. If NAC cannot successfully read the data, the controller then tries to correct the errors
using the more expensive superpage-level parity recovery (see Section 2.1.3).

Flow Stages for LDPC Codes

An example flow of the stages for LDPC decoding is shown on the right-hand side of Fig-
ure 3.22a. LDPC decoding consists of three major steps. First, the SSD controller performs
LDPC hard decoding, where the controller reads the data using the optimal read reference volt-

71

ages. The process for LDPC hard decoding is similar to that of BCH hard decoding (as shown
in the first stage of Algorithm 1), but does not typically invoke read-retry if the first read attempt
fails. Second, if LDPC hard decoding cannot correct all of the errors, the controller uses LDPC
soft decoding to decode the data (which we describe in detail below). Third, if LDPC soft decod-
ing also cannot correct all of the errors, the controller invokes superpage-level parity. We discuss
the algorithm used to perform hard and soft decoding for LDPC codes in Section 3.3.1.

Soft Decoding. Unlike BCH codes, which require the invocation of expensive superpage-
level parity recovery immediately if the hard decoding attempts (i.e., BCH hard decoding with
read-retry or NAC) fail to return correct data, LDPC decoding fails more gracefully: it can
perform multiple levels of soft decoding (shown in the second stage of Algorithm 1) after hard
decoding fails before invoking superpage-level parity recovery [326, 362]. The key idea of soft
decoding is to use soft information for each cell (i.e., the probability that the cell contains a 1
or a 0) obtained from multiple reads of the cell via the use of different sets of read reference
voltages [77, 84, 85, 203, 204, 297, 362]. Soft information is typically represented by the log
likelihood ratio (LLR; see Section 3.3.1).

Every additional level of soft decoding (i.e., the use of a new set of read reference voltages,
which we call V X

re f for level X) increases the strength of the error correction, as the level adds
new information about the cell (as opposed to hard decoding, where a new decoding step simply
replaces prior information about the cell). The new read reference voltages, unlike the ones
used for hard decoding, are optimized such that the amount of useful information (or mutual
information) provided to the LDPC decoder is maximized [326]. Thus, the use of soft decoding
reduces the frequency at which superpage-level parity needs to be invoked.

Figure 3.23 illustrates the read reference voltages used during LDPC hard decoding and dur-
ing the first two levels of LDPC soft decoding. At each level, a new read reference voltage is
applied, which divides an existing threshold voltage range into two ranges. Based on the bit val-
ues read using the various read reference voltages, the SSD controller bins each cell into a certain
Vth range, and sends the bin categorization of all the cells to the LDPC decoder. For each cell,
the decoder applies an LLR value, precomputed by the SSD manufacturer, which corresponds to
the cell’s bin and decodes the data. For example, as shown in the bottom of Figure 3.23, the three
read reference voltages in Level 2 soft decoding form four threshold voltage ranges (i.e., R0–R3).
Each of these ranges corresponds to a different LLR value (i.e., LLRR0

2 to LLRR3
2 , where LLRR j

i
is the LLR value for range R j in soft decoding level i). Compared with hard decoding (shown
at the top of Figure 3.23), which has only two LLR values, Level 2 soft decoding provides more
accurate information to the decoder, and thus has stronger error correction capability.

72

LDPC
Soft Decoding

Level 2
R0

Vth

Pr
ob

ab
ili

ty

De
ns

ity

R3R1 R2

LDPC
Soft Decoding

Level 1
R0

Vth

Pr
ob

ab
ili

ty

De
ns

ity

R2R1

LDPC
Hard Decoding

R0
Vth

Pr
ob

ab
ili

ty

De
ns

ity

R1

Figure 3.23: LDPC hard decoding and the first two levels of LDPC soft decoding, showing the
Vre f value added at each level, and the resulting threshold voltage ranges (R0–R3) used for flash
cell categorization. Adapted from [32].

Determining the Number of Soft Decoding Levels. If the final level of soft decoding, i.e.,
level N in Figure 3.22a, fails, the controller attempts to read the data using superpage-level par-
ity (see Section 2.1.3). The number of levels used for soft decoding depends on the improved
reliability that each additional level provides, taking into account the latency of performing addi-
tional decoding. Figure 3.22b shows a rough estimation of the average latency and the codeword
failure rate for each stage. There is a tradeoff between the number of levels employed for soft
decoding and the expected read latency. For a smaller number of levels, the additional reliability
can be worth the latency penalty. For example, while a five-level soft decoding step requires up to
480 µs, it effectively reduces the codeword failure rate by five orders of magnitude. This not only
improves overall reliability, but also reduces the frequency of triggering expensive superpage-
level parity recovery, which can take around 10 ms [99]. However, manufacturers limit the num-
ber of levels, as the benefit of employing an additional soft decoding level (which requires more
read operations) becomes smaller due to diminishing returns in the number of additional errors
corrected.

3.3.3 BCH and LDPC Error Correction Strength
BCH and LDPC codes provide different strengths of error correction. While LDPC codes can
offer a stronger error correction capability, soft LDPC decoding can lead to a greater latency for
error correction. Figure 3.24 compares the error correction strength of BCH codes, hard LDPC
codes, and soft LDPC codes [101]. The x-axis shows the raw bit error rate (RBER) of the data
being corrected, and the y-axis shows the uncorrectable bit error rate (UBER), or the error rate
after correction, once the error correction code has been applied. The UBER is defined as the
ECC codeword (see Section 2.1.3) failure rate divided by the codeword length [124]. To ensure

73

a fair comparison, we choose a similar codeword length for both BCH and LDPC codes, and use
a similar coding rate (0.935 for BCH, and 0.936 for LDPC) [101]. We make two observations
from Figure 3.24.

Un
co

rr
ec

ta
bl

e
Bi

t E
rr

or
 R

at
e

Raw Bit Error Rate (x10-3)

BCH
Hard LDPC
Soft LDPC

10-4

10-6

10-8

10-10

10-12

10-14

10-16

1 2 3 4 5 6 7 8 9 10

Soft LDPC
Trigger Point

Improvement
in RBER Reliability Margin

Figure 3.24: Raw bit error rate versus uncorrectable bit error rate for BCH codes, hard LDPC
codes, and soft LDPC codes. Reproduced from [32].

First, we observe that the error correction strength of the hard LDPC code is similar to that
of the BCH codes. Thus, on its own, hard LDPC does not provide a significant advantage over
BCH codes, as it provides an equivalent degree of error correction with similar latency (i.e., one
read operation). Second, we observe that soft LDPC decoding provides a significant advantage
in error correction capability. Contemporary SSD manufacturers target a UBER of 10−16 [124].
The example BCH code with a coding rate of 0.935 can successfully correct data with an RBER
of 1.0×10−3 while remaining within the target UBER. The example LDPC code with a coding
rate of 0.936 is more successful with soft decoding, and can correct data with an RBER as high as
5.0×10−3 while remaining within the target UBER, based on the error rate extrapolation shown
in Figure 3.24. While soft LDPC can tolerate up to five times the raw bit errors as BCH, this
comes at a cost of latency (not shown on the graph), as soft LDPC can require several additional
read operations after hard LDPC decoding fails, while BCH requires only the original read.

To understand the benefit of LDPC codes over BCH codes, we need to consider the combined
effect of hard LDPC decoding and soft LDPC decoding. As discussed in Section 3.3.2, soft
LDPC decoding is invoked only when hard LDPC decoding fails. To balance error correction
strength with read performance, SSD manufacturers can require that the hard LDPC failure rate
cannot exceed a certain threshold, and that the overall read latency (which includes the error
correction time) cannot exceed a certain target [99, 101]. For example, to limit the impact of
error correction on read performance, a manufacturer can require 99.99% of the error correction
operations to be completed after a single read. To meet our example requirement, the hard LDPC
failure rate should not be greater than 10−4 (i.e., 99.99%), which corresponds to an RBER of
2.0× 10−3 and a UBER of 10−8 (shown as Soft LDPC Trigger Point in Figure 3.24). For only
the data that contains one or more failed codewords, soft LDPC is invoked (i.e., soft LDPC is
invoked only 0.01% of the time). For our example LDPC code with a coding rate of 0.936, soft

74

LDPC decoding is able to correct these codewords: for an RBER of 2.0×10−3, using soft LDPC
results in a UBER well below 10−16, as shown in Figure 3.24.

To gauge the combined effectiveness of hard and soft LDPC codes, we calculate the overhead
of using the combined LDPC decoding over using BCH decoding. If 0.01% of the codeword
corrections fail, we can assume that in the worst case, each failed codeword resides in a different
flash page. As the failure of a single codeword in a flash page causes soft LDPC to be invoked
for the entire flash page, our assumption maximizes the number of flash pages that require soft
LDPC decoding. For an SSD with four codewords per flash page, our assumption results in up to
0.04% of the data reads requiring soft LDPC decoding. Assuming that the example soft LDPC
decoding requires seven additional reads, this corresponds to 0.28% more reads when using
combined hard and soft LDPC over BCH codes. Thus, with a 0.28% overhead in the number of
reads performed, the combined hard and soft LDPC decoding provides twice the error correction
strength of BCH codes (shown as Improvement in RBER in Figure 3.24).

In our example, the lifetime of an SSD is limited by both the UBER and whether more
than 0.01% of the codeword corrections invoke soft LDPC, to ensure that the overhead of error
correction does not significantly increase the read latency [101]. In this case, when the lifetime
of the SSD ends, we can still read out the data correctly from the SSD, albeit at an increased
read latency. This is because even though we capped the SSD lifetime to an RBER of 2.0×
10−3 in our example shown in Figure 3.24, soft LDPC is able to correct data with an RBER as
high as 5.0× 10−3 while still maintaining an acceptable UBER (10−16) based on the error rate
extrapolation shown. Thus, LDPC codes have a margin, which we call the reliability margin and
show in Figure 3.24. This reliability margin enables us to trade off lifetime with read latency.

We conclude that with a combination of hard and soft LDPC decoding, an SSD can offer a
significant improvement in error correction strength over using BCH codes.

3.3.4 SSD Data Recovery
When the number of errors in data exceeds the ECC correction capability and the error correction
techniques in Sections 3.3.2 and 3.3.2 are unable to correct the read data, then data loss can occur.
At this point, the SSD is considered to have reached the end of its lifetime. In order to avoid such
data loss and recover (or, rescue) the data from the SSD, we can harness the understanding of data
retention and read disturb behavior. The SSD controller can employ two conceptually similar
mechanisms, Retention Failure Recovery (RFR) [27] and Read Disturb Recovery (RDR) [35],
to undo errors that were introduced into the data as a result of data retention and read disturb,
respectively. The key idea of both of these mechanisms is to exploit the wide variation of different
flash cells in their susceptibility to data retention loss and read disturbance effects, respectively,
in order to correct some of the errors without the assistance of ECC so that the remaining error
count falls within the ECC error correction capability.

When a flash page read fails (i.e., uncorrectable errors exist), RFR and RDR record the
current threshold voltages of each cell in the page using the read-retry mechanism (see Sec-
tion 3.2.4), and identify the cells that are susceptible to generating errors due to retention and
read disturb (i.e., cells that lie at the tails of the threshold voltage distributions of each state,
where the distributions overlap with each other), respectively. We observe that some flash cells
are more likely to be affected by retention leakage and read disturb than others, as a result of

75

process variation [27, 35]. We call these cells retention/read disturb prone, while cells that are
less likely to be affected are called retention/read disturb resistant. RFR and RDR classify the
susceptible cells as retention/read disturb prone or resistant by inducing even more retention and
read disturb on the failed flash page, and then recording the new threshold voltages of the suscep-
tible cells. We classify the susceptible cells by observing the magnitude of the threshold voltage
shift due to the additional retention/read disturb induction.

Susceptible

P

P

Vth

Pr
ob

ab
ili

ty
 D

en
sit

y

P R

Read as X Read as Y

R

P
Programmed to X
Programmed to Y

Original distribution

Distribution after
retention time

Charge leakage
due to retention

R
R

Figure 3.25: Some retention-prone (P) and retention-resistant (R) cells are incorrectly read after
charge leakage due to retention time. RFR identifies and corrects the incorrectly read cells based
on their leakage behavior. Reproduced from [32].

Figure 3.25 shows how the threshold voltage of a retention-prone cell (i.e., a fast-leaking
cell, labeled P in the figure) decreases over time (i.e., the cell shifts to the left) due to retention
leakage, while the threshold voltage of a retention- resistant cell (i.e., a slow-leaking cell, labeled
R in the figure) does not change significantly over time. Retention Failure Recovery (RFR) uses
this classification of retention- prone versus retention-resistant cells to correct the data from the
failed page without the assistance of ECC. Without loss of generality, let us assume that we are
studying susceptible cells near the intersection of two threshold voltage distributions X and Y,
where Y contains higher voltages than X. Figure 3.25 highlights the region of cells considered
susceptible by RFR using a box, labeled Susceptible. A susceptible cell within the box that is
retention prone likely belongs to distribution Y, as a retention-prone cell shifts rapidly to a lower
voltage (see the circled cell labeled P within the susceptible region in the figure). A retention-
resistant cell in the same susceptible region likely belongs to distribution X (see the boxed cell
labeled R within the susceptible region in the figure).

Similarly, Read Disturb Recovery (RDR) uses the classification of read disturb prone versus
read disturb resistant cells to correct data. For RDR, disturb-prone cells shift more rapidly to
higher voltages, and are thus likely to belong to distribution X, while disturb-resistant cells shift
little and are thus likely to belong to distribution Y. Both RFR and RDR correct the bit errors for
the susceptible cells based on such expected behavior, reducing the number of errors that ECC
needs to correct.

RFR and RDR are highly effective at reducing the error rate of failed pages, reducing the
raw bit error rate by 50% and 36%, respectively, as shown in prior works from our research
group [27, 35], where more detailed information and analyses can be found.

76

3.4 Emerging Reliability Issues for 3D NAND Flash Memory
While the demand for NAND flash memory capacity continues to grow, manufacturers have
found it increasingly difficult to rely on manufacturing process technology scaling to achieve in-
creased capacity [257]. Due to a combination of limitations in manufacturing process technology
and the increasing reliability issues as manufacturers move to smaller process technology nodes,
planar (i.e., 2D) NAND flash scaling has become difficult for manufacturers to sustain. This has
led manufacturers to seek alternative approaches to increase NAND flash memory capacity.

Recently, manufacturers have begun to produce SSDs that contain three-dimensional (3D)
NAND flash memory [115, 131, 214, 216, 257, 353]. In 3D NAND flash memory, multiple
layers of flash cells are stacked vertically to increase the density and to improve the scalability
of the memory [353]. In order to achieve this stacking, manufacturers have changed a number of
underlying properties of the flash memory design.

In this section, we examine these changes, and discuss how they affect the reliability of the
flash memory devices. In Section 3.4.1, we discuss the flash memory cell design commonly used
in contemporary 3D NAND flash memory, and how these cells are organized across the multiple
layers. In Section 3.4.2, we discuss how the reliability of 3D NAND flash memory compares to
the reliability of the planar NAND flash memory that we have discussed so far in this chapter. In
Section 3.4.3, we briefly discuss error mitigation mechanisms that cater to emerging reliability
issues in 3D NAND flash memory. In Chapters 6 and 7, we perform a comprehensive error
characterization for 3D NAND using real, state-of-the-art 3D NAND devices, and propose new
techniques to mitigate raw bit errors in 3D NAND flash memory.

3.4.1 3D NAND Flash Design and Operation
As we discuss in Section 2.2.1, NAND flash memory stores data as the threshold voltage of
each flash cell. In planar NAND flash memory, we achieve this using a floating-gate transistor
as a flash cell, as shown in Figure 2.6. The floating-gate transistor stores charge in the floating
gate of the cell, which consists of a conductive material. The floating gate is surrounded on
both sides by an oxide layer. When high voltage is applied to the control gate of the transistor,
charge can migrate through the oxide layers into the floating gate due to Fowler-Nordheim (FN)
tunneling [81] (see Section 2.2.4).

Most manufacturers use a charge trap transistor as the flash cell in 3D NAND flash memo-
ries, instead of using a floating-gate transistor. Figure 3.26 shows the cross section of a charge-
trap transistor. Unlike a floating-gate transistor, which stores data in the form of charge within a
conductive material, a charge trap transistor stores data as charge within an insulating material,
known as the charge trap. In a 3D circuit, the charge trap wraps around a cylindrical transistor
substrate, which contains the source (labeled S in Figure 3.26) and drain (labeled D in the figure),
and a control gate wraps around the charge trap. This arrangement allows the channel between
the source and drain to form vertically within the transistor. As is the case with a floating-gate
transistor, a tunnel oxide layer exists between the charge trap and the substrate, and a gate oxide
layer exists between the charge trap and the control gate.

77

Su
bs

tra
te

Source

Drain

Charge Trap
(Insulator)

Control Gate

Gate Oxide

Tunnel Oxide

Figure 3.26: Cross section of a charge trap transistor, used as a flash cell in 3D charge trap NAND
flash memory.

Despite the change in cell structure, the mechanism for transferring charge into and out of the
charge trap is similar to the mechanism for transferring charge into and out of the floating gate.
In 3D NAND flash memory, the charge trap transistor typically employs FN tunneling to change
the threshold voltage of the charge trap [136, 257].4 When high voltage is applied to the control
gate, electrons are injected into the charge trap from the substrate. As this behavior is similar to
how electrons are injected into a floating gate, read, program, and erase operations remain the
same for both planar and 3D NAND flash memory.

Figure 3.27 shows how multiple charge trap transistors are physically organized within 3D
NAND flash memory to form flash blocks, wordlines, and bitlines (see Section 2.2.2). As men-
tioned above, the channel within a charge trap transistor forms vertically, as opposed to the
horizontal channel that forms within a floating-gate transistor. The vertical orientation of the
channel allows us to stack multiple transistors on top of each other (i.e., along the z-axis) within
the chip, using 3D-stacked circuit integration. The vertically-connected channels form one bit-
line of a flash block in 3D NAND flash memory. Unlike in planar NAND flash memory, where
only the substrates of flash cells on the same bitline are connected together, flash cells along
the same bitline in 3D NAND flash memory share a common substrate and a common insulator
(i.e., charge trap). The FN tunneling induced by the control gate of the transistor forms a tunnel
only in a local region of the insulator, and, thus, electrons are injected only into that local region.
Due to the strong insulating properties of the material used for the insulator, different regions of
a single insulator can have different voltages. This means that each region of the insulator can
store a different data value, and thus, the data of multiple 3D NAND flash memory cells can be
stored reliably in a single insulator. This is because the FN tunneling induced by the control gate
of the transistor forms a tunnel only in a local region of the insulator, and, thus, electrons are
injected only into that local region.

4Note that not all charge trap transistors rely on FN tunneling. Charge trap transistors used for NOR flash mem-
ory change their threshold voltage using channel hot electron injection, also known as hot carrier injection [200].

78

Block K+2
Block K+1

y

z

x Bitline 0

Wordline M–1

Wordline 1

Wordline 0

Substrate
Charge Trap
Control Gate

Bitline N–1Bitline 1

Block K

...

Layer M–1

Layer 1

Layer 0

...

...

Layer M–1

Layer 1

Layer 0

...

...

Layer M–1

Layer 1

Layer 0

... . . .

Metal Wire

Figure 3.27: Organization of flash cells in an M-layer 3D charge trap NAND flash memory chip,
where each block consists of M wordlines and N bitlines.

Each cell along a bitline belongs to a different layer of the flash memory chip. Thus, a
bitline crosses all of the layers within the chip. Contemporary 3D NAND flash memory contains
24–96 layers [79, 131, 143, 257, 319, 353]. Along the y-axis, the control gates of cells within
a single layer are connected together to form one wordline of a flash block. As we show in
Figure 3.27, a block in 3D NAND flash memory consists of all of the flash cells within the same
y-z plane (i.e., all cells that have the same coordinate along the x-axis). Note that, while not
depicted in Figure 3.27, each bitline within a 3D NAND flash block includes a sense amplifier
and two selection transistors used to select the bitline (i.e., the SSL and GSL transistors; see
Section 2.2.2). The sense amplifier and selection transistors are connected in series with the
charge trap transistors that belong to the same bitline, in a similar manner to the connections
shown for a planar NAND flash block in Figure 2.8. More detail on the circuit-level design of
3D NAND flash memory can be found in [119, 136, 159, 311].

Due to the use of multiple layers of flash cells within a single NAND flash memory chip,
which greatly increases capacity per unit area, manufacturers can achieve high cell density with-
out the need to use small manufacturing process technologies. For example, state-of-the-art
planar NAND flash memory uses the 15 nm to 19 nm feature size [195, 260]. In contrast, con-
temporary 3D NAND flash memory uses larger feature sizes (e.g., 30 nm to 50 nm) [282, 353].
The larger feature sizes reduce manufacturing costs, as their corresponding manufacturing pro-
cess technologies are much more mature and have a higher yield than the process technologies
used for small feature sizes. As we discuss in Section 3.4.2, the larger feature size also has an
effect on the reliability of 3D NAND flash memory.

3.4.2 Errors in 3D NAND Flash Memory
While the high-level behavior of 3D NAND flash memory is similar to the behavior of 2D planar
NAND flash memory, there are a number of differences between the reliability of 3D NAND

79

flash and planar NAND flash, which we will look into in Chapter 6. There are two reasons
for the differences in reliability: (1) the use of charge trap transistors instead of floating-gate
transistors, and (2) moving to a larger manufacturing process technology. We categorize the
changes based on the reason for the change below.

Effects of Charge Trap Transistors. Compared to the reliability issues discussed in Sec-
tion 3.1 for planar NAND flash memory, the use of charge trap transistors introduces two key
differences: (1) early retention loss [55, 221, 353], and (2) a reduction in P/E cycling er-
rors [257, 353].

First, early retention loss refers to the rapid leaking of electrons from a flash cell soon af-
ter the cell is programmed [55, 353]. Early retention loss occurs in 3D NAND flash memory
because charge can now migrate out of the charge trap in three dimensions. In planar NAND
flash memory, charge leakage due to retention occurs across the tunnel oxide, which occupies
two dimensions (see Section 3.1.4). In 3D NAND flash memory, charge can leak across both
the tunnel oxide and the insulator that is used for the charge trap, i.e., across three dimensions.
The additional charge leakage takes place for only a few seconds after cell programming. After
a few seconds have passed, the impact of leakage through the charge trap decreases, and the
long-term cell retention behavior is similar to that of flash cells in planar NAND flash mem-
ory [55, 221, 353].

Second, P/E cycling errors (see Section 3.1.1) reduce with 3D NAND flash memory because
the tunneling oxide in charge trap transistors is less susceptible to breakdown than the oxide in
floating-gate transistors during high-voltage operation [221, 353]. As a result, the oxide is less
likely to contain trapped electrons once a cell is erased, which in turn makes it less likely that the
cell is subsequently programmed to an incorrect threshold voltage. One benefit of the reduction
in P/E cycling errors is that the endurance (i.e., the maximum P/E cycle count) for a 3D flash
memory cell has increased by more than an order of magnitude [258, 259].

Effects of Larger Manufacturing Process Technologies. Due to the use of larger manufac-
turing process technologies for 3D NAND flash memory, many of the errors in 2D planar NAND
flash (see Section 3.1) are not as prevalent in 3D NAND flash memory. For example, while read
disturb is a prominent source of errors at small feature sizes (e.g., 20 nm to 24 nm), its effects
are small at larger feature sizes [35]. Likewise, there are much fewer errors due to cell-to-cell
program interference (see Section 3.1.3) in 3D NAND flash memory, as the physical distance
between neighboring cells is much larger due to the increased feature size. As a result, both
cell-to-cell program interference and read disturb are currently not major issues in 3D NAND
flash memory reliability [257, 259, 353].

One advantage of the lower cell-to-cell program interference is that 3D NAND flash memory
uses the older one-shot programming algorithm [258, 259, 356] (see Section 2.2.4). In planar
NAND flash memory, one-shot programming was replaced by two-step programming (for MLC)
and foggy-fine programming (for TLC) in order to reduce the impact of cell-to-cell program
interference on fully-programmed cells (as we describe in Section 2.2.4). The lower interference
in 3D NAND flash memory makes two-step and foggy-fine programming unnecessary. As a
result, none of the cells in 3D NAND flash memory are partially-programmed, significantly
reducing the number of program errors (see Section 3.1.2) that occur [259].

80

Unlike the effects on reliability due to the use of a charge trap transistor, which are likely
longer-term, the effects on reliability due to the use of larger manufacturing process technologies
are expected to be shorter-term. As manufacturers seek to further increase the density of 3D
NAND flash memory, they will reach an upper limit for the number of layers that can be inte-
grated within a 3D-stacked flash memory chip, which is currently projected to be in the range
of 300–512 layers [162, 175]. At that point, manufacturers will once again need to scale down
the chip to smaller manufacturing process technologies [353], which, in turn, will reintroduce
high amounts of read disturb and cell-to-cell program interference (just as it happened for planar
NAND flash memory [24, 26, 35, 154, 256]).

3.4.3 Changes in Error Mitigation for 3D NAND Flash Memory

Due to the reduction in a number of sources of errors, fewer error mitigation mechanisms are
currently needed for 3D NAND flash memory. For example, because the number of errors in-
troduced by cell-to-cell program interference is currently low, manufacturers have reverted to
using one-shot programming (see Section 2.2.4) for 3D NAND flash [258, 259, 356]. As a re-
sult of the currently small effect of read disturb errors, mitigation and recovery mechanisms for
read disturb (e.g., pass-through voltage optimization in Section 3.2.5, Read Disturb Recovery
in Section 3.3.4) may not be needed, for the time being. We expect that once 3D NAND flash
memory begins to scale down to smaller manufacturing process technologies, approaching the
current feature sizes used for planar NAND flash memory, there will be a significant need for 3D
NAND flash memory to use many, if not all, of the error mitigation mechanisms we discuss in
Section 3.2.

To our knowledge, no mechanisms have been designed yet to reduce the impact of early reten-
tion loss, which is a new error mechanism in 3D NAND flash memory. This is in part due to the
reduced overall impact of retention errors in 3D NAND flash memory compared to planar NAND
flash memory [55], since a larger cell contains a greater number of electrons than a smaller cell
at the same threshold voltage. As a result, existing refresh mechanisms (see Section 3.2.3) can
be used to tolerate errors introduced by early retention loss with little modification. However,
as 3D NAND flash memory scales into future smaller technology nodes, the early retention loss
problem may require new mitigation techniques.

While new error mitigation mechanisms have yet to emerge for 3D NAND flash memory,
rigorous studies that examine error characteristics of and error mitigation techniques for 3D
NAND flash memories are yet to be published. These studies (1) may expose additional sources
of errors that have not yet been observed, and that may be unique to 3D NAND flash memory;
and (2) can enable a solid understanding of current error mechanisms in 3D NAND flash memory
so that appropriate specialized mitigation mechanisms can be developed. We expect that future
works will experimentally examine such sources of errors, and will potentially introduce novel
mitigation mechanisms for these errors. Thus, the field (both academia and industry) is currently
in much need of rigorous experimental characterization and analysis of 3D NAND flash memory
devices. Our characterization in Chapter 6 is the first in open literature to comprehensively
characterization all types of NAND flash memory errors in 3D NAND using real, state-of-the-art
MLC 3D charge trap NAND flash memory chips.

81

3.5 Similar Errors in Other Memory Technologies
As we discussed in Section 3.1, there are five major sources of errors in flash-memory-based
SSDs. Many of these error sources can also be found in other types of memory and storage
technologies. In this section, we take a brief look at the major reliability issues that exist within
DRAM and in emerging nonvolatile memories. In particular, we focus on DRAM in our dis-
cussion, as modern SSD controllers have access to dedicated DRAM of considerable capacity
(e.g., 1 GB for every 1 TB of SSD capacity), which exists within the SSD package (see Sec-
tion 2.1). Major sources of errors in DRAM include data retention, cell-to-cell interference, and
read disturb. There is a wide body of work on mitigation mechanisms for the DRAM and emerg-
ing memory technology errors we describe in this section, but we explicitly discuss only a select
number of them here, since a full treatment of such mechanisms is out of the scope of this current
chapter.

3.5.1 Cell-to-Cell Interference Errors in DRAM
Another similarity between the capacitive DRAM cell and the floating gate cell in NAND flash
memory is that they are both vulnerable to cell-to-cell interference. In DRAM, one important
way in which cell-to-cell interference exhibits itself is the data-dependent retention behavior,
where the retention time of a DRAM cell is dependent on the values written to nearby DRAM
cells [137, 138, 139, 140, 187, 261]. This phenomenon is called data pattern dependence
(DPD) [187]. Data pattern dependence in DRAM is similar to the data-dependent nature of
program interference that exists in NAND flash memory (see Section 3.1.3). Within DRAM,
data dependence occurs as a result of parasitic capacitance coupling (between DRAM cells).
Due to this coupling, the amount of charge stored in one cell’s capacitor can inadvertently affect
the amount of charge stored in an adjacent cell’s capacitor [137, 138, 139, 140, 187, 261]. As
DRAM cells become smaller with technology scaling, cell-to-cell interference worsens because
parasitic capacitance coupling between cells increases [137, 187]. More findings on cell-to-cell
interference and the data-dependent nature of cell retention times in DRAM, along with experi-
mental data obtained from modern DRAM chips, can be found in prior works from our research
group [38, 137, 138, 139, 140, 187, 261, 272].

3.5.2 Data Retention Errors in DRAM
DRAM uses the charge within a capacitor to represent one bit of data. Much like the floating
gate within NAND flash memory, charge leaks from the DRAM capacitor over time, leading to
data retention issues. Charge leakage in DRAM, if left unmitigated, can lead to much more rapid
data loss than the leakage observed in a NAND flash cell. While leakage from a NAND flash
cell typically leads to data loss after several days to years of retention time (see Section 3.1.4),
leakage from a DRAM cell leads to data loss after a retention time on the order of milliseconds
to seconds [187].

The retention time of a DRAM cell depends upon several factors, including (1) manufacturing
process variation and (2) temperature [187]. Manufacturing process variation affects the amount
of current that leaks from each DRAM cell’s capacitor and access transistor [187]. As a result, the

82

retention time of the cells within a single DRAM chip vary significantly, resulting in strong cells
that have high retention times and weak cells that have low retention times within each chip. The
operating temperature affects the rate at which charge leaks from the capacitor. As the operating
temperature increases, the retention time of a DRAM cell decreases exponentially [97, 187].
Figure 3.28 shows the change in retention time as we vary the operating temperature, as measured
from real DRAM chips [187]. In Figure 3.28, prior work normalizes the retention time of each
cell to its retention time at an operating temperature of 50 ◦C. As the number of cells is large,
prior work groups the normalized retention times into bins, and plot the density of each bin. Prior
work draws two exponential-fit curves: (1) the peak curve, which is drawn through the most
populous bin at each temperature measured; and (2) the tail curve, which is drawn through the
lowest non-zero bin for each temperature measured. Figure 3.28 provides us with three major
conclusions about the relationship between DRAM cell retention time and temperature. First,
both of the exponential-fit curves fit well, which confirms the exponential decrease in retention
time as the operating temperature increases in modern DRAM devices. Second, the retention
times of different DRAM cells are affected very differently by changes in temperature. Third,
the variation in retention time across cells increases greatly as temperature increases. More
analysis of factors that affect DRAM retention times can be found in recent works from our
research group [70, 137, 138, 139, 140, 187, 261, 272].

50 55 60 65 70
Temperature (C)

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 R

et
en

tio
n

Ti
m

e

Exponential fit, peak
Exponential fit, tail

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fr
ac

tio
n

of
 F

au
lty

 C
el

ls

Figure 3.28: DRAM retention time vs. operating temperature, normalized to the retention time
of each DRAM cell at 50 ◦C. Reproduced from [187].

Due to the rapid charge leakage from DRAM cells, a DRAM controller periodically refreshes
all DRAM cells in place [39, 120, 137, 186, 187, 261, 272] (similar to the techniques discussed
in Section 3.2.3, but at a much smaller time scale). DRAM standards require a DRAM cell to be
refreshed once every 64 ms [120]. As the density of DRAM continues to increase over successive
product generations (e.g., by 128x between 1999 and 2017 [38, 41]), enabled by the scaling of

83

DRAM to smaller manufacturing process technology nodes [206], the performance and energy
overheads required to refresh an entire DRAM module have grown significantly [39, 186]. It is
expected that the refresh problem will get worse and limit DRAM density scaling, as described
in a recent work by Samsung and Intel [134] and by our group [186]. Refresh operations in
DRAM cause both (1) performance loss and (2) energy waste, both of which together lead to
a difficult technology scaling challenge. Refresh operations degrade performance due to three
major reasons. First, refresh operations increase the memory latency, as a request to a DRAM
bank that is refreshing must wait for the refresh latency before it can be serviced. Second,
they reduce the amount of bank-level parallelism available to requests, as a DRAM bank cannot
service requests during refresh. Third, they decrease the row buffer hit rate, as a refresh operation
causes all open rows in a bank to be closed. When a DRAM chip scales to a greater capacity, there
are more DRAM rows that need to be refreshed. As Figure 3.29a shows, the amount of time spent
on each refresh operation scales linearly with the capacity of the DRAM chip. The additional
time spent on refresh causes the DRAM data throughput loss due to refresh to become more
severe in denser DRAM chips, as shown in Figure 3.29b. For a chip with a density of 64 Gbit,
nearly 50% of the data throughput is lost due to the high amount of time spent on refreshing all
of the rows in the chip. The increased refresh time also increases the effect of refresh on power
consumption. As prior work observes from Figure 3.29c, the fraction of DRAM power spent on
refresh is expected to be the dominant component of the total DRAM power consumption, as
DRAM chip capacity scales to become larger. For a chip with a density of 64 Gbit, nearly 50%
of the DRAM chip power is spent on refresh operations. Thus, refresh poses a clear challenge to
DRAM scalability.

0 16 Gb 32 Gb 48 Gb 64 Gb
Device capacity

0

500

1000

1500

2000

2500

A
ut

o-
re

fr
es

h
co

m
m

an
d

la
te

nc
y

(n
s)

Past Future

(a) Refresh latency

2 Gb 4 Gb 8 Gb 16 Gb 32 Gb 64 Gb
Device capacity

0

20

40

60

80

100

T
hr

ou
gh

pu
tl

os
s

(%
tim

e)

DDR3 Future

(b) Throughput loss

2 Gb 4 Gb 8 Gb 16 Gb 32 Gb 64 Gb
Device capacity

0

50

100

150

200

250

300

350
Po

w
er

co
ns

um
pt

io
n

pe
rd

ev
ic

e
(m

W
)

DDR3

Future
Refresh power
Non-refresh power

(c) Power consumption

Figure 3.29: Negative performance and power consumption effects of refresh in contemporary
and future DRAM devices. We expect that as the capacity of each DRAM chip increases, (a) the
refresh latency, (b) the DRAM throughput lost during refresh operations, and (c) the power con-
sumed by refresh will all increase. Reproduced from [186].

To combat the growing performance and energy overheads of refresh, two classes of tech-
niques have been developed. The first class of techniques reduce the frequency of refresh
operations without sacrificing the reliability of data stored in DRAM (e.g., [8, 118, 137,
139, 140, 186, 261, 272, 324]). Various experimental studies of real DRAM chips (e.g.,
[102, 137, 138, 147, 172, 186, 187, 261, 272]) have studied the data retention time of DRAM
cells in modern chips. Figure 3.30 shows the retention time measured from seven different real

84

DRAM modules (by manufacturers A, B, C, D, and E) at an operating temperature of 45 ◦C,
as a cumulative distribution (CDF) of the fraction of cells that have a retention time less than
the x-axis value [187]. Prior work observes from the figure that even for the DRAM module
whose cells have the worst retention time (i.e., the CDF is the highest), fewer than only 0.001%
of the total cells have a retention time smaller than 3 s at 45 ◦C. As shown in Figure 3.28, the
retention time decreases exponentially as the temperature increases. We can extrapolate the ob-
servations from Figure 3.30 to the worst-case operating conditions by using the tail curve from
Figure 3.28. DRAM standards specify that the operating temperature of DRAM should not ex-
ceed 85 ◦C [120]. Using the tail curve, prior work finds that a retention time of 3 s at 45 ◦C
is equivalent to a retention time of 246 ms at the worst-case temperature of 85 ◦C. Thus, the
vast majority of DRAM cells can retain data without loss for much longer than the 64 ms reten-
tion time specified by DRAM standards. The other experimental studies of DRAM chips have
validated this observation as well [102, 137, 138, 147, 172, 186, 261, 272].

0 1 2 3 4 5 6 7
Time (Hours)

45

50

55

60

65

70

75

Te
m

pe
ra

tu
re

 (C
)

50C 55C 60C 65C 70C

(a) Temperature stability during testing

50 55 60 65 70
Temperature (C)

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
et

en
tio

n
Ti

m
e

Exponential fit, peak
Exponential fit, tail

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fr
ac

tio
n

of
 W

ea
k

Ce
lls

(b) Normalized retention time vs. temperature

Figure 7: Impact of temperature

0 1 2 3 4 5 6 7
Retention Time (s)

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

Fr
ac

tio
n

of
 C

el
ls

 w
ith

 R
et

en
tio

n
Ti

m
e
<

X-
A

xi
s

Va
lu

e

C 2Gb

D 1Gb

D 2Gb

A 2Gb

A 1Gb

E 2Gb

B 2Gb

(a) Linear y-axis

0 1 2 3 4 5 6 7
Retention Time (s)

10-9

10-8

10-7

10-6

10-5

10-4

Fr
ac

tio
n

of
 C

el
ls

 w
ith

 R
et

en
tio

n
Ti

m
e
<

X-
A

xi
s

Va
lu

e

C 2Gb
D 1Gb

D 2Gb
A 2Gb

A 1Gb

E 2Gb

B 2Gb

(b) Logarithmic y-axis

Figure 8: Cumulative distribution of retention times

time guard band6 of at least 2x. Conversely, our maximum tested
retention time of ≈ 6.1 s translates to a retention time of ≈ 504 ms
at 85 ◦C.

With these adjusted retention times in mind, it is apparent that
our measured retention time distribution corresponds closely with
the distribution observed by prior work (Figure 2 in [18]), both
qualitatively in the shape of the curve and — for the device families
with relatively few weak cells — quantitatively. However, some
device families have many more weak cells than any of the devices
shown in [18]. This is likely to be a result of technology scaling. [18]
presents measurements for DRAM chips fabricated using 100 nm,
60 nm, and 50 nm processes, while many of the chips we studied
were produced in 2011 or 2012 and could therefore be fabricated

6The difference between the manufacturer-accepted minimum reten-
tion time and the specification-mandated minimum retention time
of 64 ms.

using 36 nm or 32 nm processes [8]. This conclusion is supported by
the observation that, in our results, higher-capacity, later-generation
devices always have a larger number of retention failures than lower-
capacity, older devices (compare A 1Gb vs. A 2Gb, and D 1Gb vs.
D 2Gb, in Figure 8).

From the consistency of our foundational results with prior work,
we conclude that our apparatus and methodology are sound.

5. DATA PATTERN DEPENDENCE
In this section, we investigate data pattern dependence, a phe-

nomenon in which the retention time of DRAM cells changes de-
pending on the data stored in other cells.

5.1 Coverage
Running all of the experiments for a given module produces a

set of bit failures for each retention time, consisting of all of the

Figure 3.30: Cumulative distribution of the number of cells in a DRAM module with a retention
time less than the value on the x-axis, plotted for seven different DRAM modules. Reproduced
from [187].

A number of works take advantage of this variability in data retention time behavior across
DRAM cells, by introducing heterogeneous refresh rates, i.e., different refresh rates for different
DRAM rows. Thus, these works can reduce the frequency at which the vast majority of DRAM
rows within a module are refreshed (e.g., [8, 118, 137, 139, 186, 187, 261, 272, 324]). For exam-
ple, the key idea of RAIDR [186] is to refresh the strong DRAM rows (i.e., those rows that can
retain data for much longer than the minimum 64 ms retention time in the DDR4 standard [120])
less frequently, and refresh the weak DRAM rows (i.e., those rows that can retain data only for
the minimum retention time) more frequently. The major challenge in such works is how to accu-
rately identify the retention time of each DRAM row. To solve this challenge, many recent works
examine (online) DRAM retention time profiling techniques [137, 138, 140, 187, 261, 272].

85

The second class of techniques reduce the interference caused by refresh requests on de-
mand requests (e.g., [39, 230, 304]). These works either change the scheduling order of refresh
requests [39, 230, 304] or slightly modify the DRAM architecture to enable the servicing of
refresh and demand requests in parallel [39].

One critical challenge in developing techniques to reduce refresh overheads is that it is getting
significantly more difficult to determine the minimum retention time of a DRAM cell, as prior
works have shown experimentally on modern DRAM chips [137, 138, 187, 261, 272]. Thus,
determining the correct rate at which to refresh DRAM cells has become more difficult, as also
indicated by industry [134]. This is due to two major phenomena, both of which get worse (i.e.,
become more prominent) with manufacturing process technology scaling. The first phenomenon
is variable retention time (VRT), where the retention time of some DRAM cells can change dras-
tically over time, due to a memoryless random process that results in very fast charge loss via a
phenomenon called trap-assisted gate-induced drain leakage [187, 272, 278, 348]. VRT, as far
as we know, is very difficult to test for, because there seems to be no way of determining that a
cell exhibits VRT until that cell is observed to exhibit VRT, and the time scale of a cell exhibiting
VRT does not seem to be bounded, based on the current experimental data on modern DRAM
devices [187, 261]. The second phenomenon is data pattern dependence (DPD), which we dis-
cuss in Section 3.5.1. Both of these phenomena greatly complicate the accurate determination
of minimum data retention time of DRAM cells. Therefore, data retention in DRAM continues
to be a vulnerability that can greatly affect DRAM technology scaling (and thus performance
and energy consumption) as well as the reliability and security of current and future DRAM
generations.

More findings on the nature of DRAM data retention and associated errors, as well as relevant
experimental data from modern DRAM chips, can be found in prior works from our research
group [38, 39, 102, 137, 138, 139, 140, 172, 186, 187, 233, 261, 272].

3.5.3 Read Disturb Errors in DRAM
Commodity DRAM chips that are sold and used in the field today exhibit read disturb er-
rors [156], also called RowHammer-induced errors [233], which are conceptually similar to the
read disturb errors found in NAND flash memory (see Section 3.1.5). Repeatedly accessing the
same row in DRAM can cause bit flips in data stored in adjacent DRAM rows. In order to access
data within DRAM, the row of cells corresponding to the requested address must be activated
(i.e., opened for read and write operations). This row must be precharged (i.e., closed) when
another row in the same DRAM bank needs to be activated. Through experimental studies on a
large number of real DRAM chips, prior work shows that when a DRAM row is activated and
precharged repeatedly (i.e., hammered) enough times within a DRAM refresh interval, one or
more bits in physically-adjacent DRAM rows can be flipped to the wrong value [156].

Prior work tested 129 DRAM modules manufactured by three major manufacturers (A, B,
and C) between 2008 and 2014, using an FPGA-based experimental DRAM testing infrastruc-
ture [102] (more detail on the experimental setup, along with a list of all modules and their
characteristics, can be found in the original RowHammer paper [156]). Figure 3.31 shows the
rate of RowHammer errors, with the 129 modules that prior work tested categorized based on
their manufacturing date. Prior work finds that 110 of the tested modules exhibit RowHammer

86

errors, with the earliest such module dating back to 2010. In particular, prior work finds that all
of the modules manufactured in 2012–2013 that prior work tested are vulnerable to RowHammer.
Like with many NAND flash memory error mechanisms, especially read disturb, RowHammer
is a recent phenomenon that especially affects DRAM chips manufactured with more advanced
manufacturing process technology generations.

2008 2009 2010 2011 2012 2013 2014
Module Manufacture Date

0

100

101

102

103

104

105

106

E
rr

or
s

pe
r1

09
C

el
ls

A Modules B Modules C Modules

Figure 3.31: RowHammer error rate vs. manufacturing dates of 129 DRAM modules we tested.
Reproduced from [156].

Figure 3.32 shows the distribution of the number of rows (plotted in log scale on the y-axis)
within a DRAM module that flip the number of bits along the x-axis, as measured for example
DRAM modules from three different DRAM manufacturers [156]. Prior work makes two ob-
servations from the figure. First, the number of bits flipped when we hammer a row (known as
the aggressor row) can vary significantly within a module. Second, each module has a different
distribution of the number of rows. Despite these differences, prior work finds that this DRAM
failure mode affects more than 80% of the DRAM chips prior work tested [156]. As indicated
above, this read disturb error mechanism in DRAM is popularly called RowHammer [233].

0 10 20 30 40 50 60 70 80 90 100 110 120
Victim Cells per Aggressor Row

0
100
101
102
103
104
105

C
ou

nt

A1240
23 B1146

11 C1223
19

Figure 3.32: Number of victim cells (i.e., number of bit errors) when an aggressor row is re-
peatedly activated, for three representative DRAM modules from three major manufacturers. We
label the modules in the format Xyyww

n , where X is the manufacturer (A, B, or C), yyww is the
manufacture year (yy) and week of the year (ww), and n is the number of the selected module.
Reproduced from [156].

87

Various recent works show that RowHammer can be maliciously exploited by user-level soft-
ware programs to (1) induce errors in existing DRAM modules [156, 233] and (2) launch attacks
to compromise the security of various systems [15, 18, 90, 91, 233, 276, 287, 288, 322, 343].
For example, by exploiting the RowHammer read disturb mechanism, a user-level program can
gain kernel-level privileges on real laptop systems [287, 288], take over a server vulnerable to
RowHammer [90], take over a victim virtual machine running on the same system [15], and take
over a mobile device [322]. Thus, the RowHammer read disturb mechanism is a prime (and per-
haps the first) example of how a circuit-level failure mechanism in DRAM can cause a practical
and widespread system security vulnerability. We believe similar (yet likely more difficult to
exploit) vulnerabilities exist in MLC NAND flash memory as well, as described in recent work
from our research group [34].

Note that various solutions to RowHammer exist [149, 156, 233], but we do not discuss them
in detail here. Recent work from our research group [233] provides a comprehensive overview. A
very promising proposal is to modify either the memory controller or the DRAM chip such that
it probabilistically refreshes the physically-adjacent rows of a recently-activated row, with very
low probability. This solution is called Probabilistic Adjacent Row Activation (PARA) [156].
Prior work shows that this low-cost, low-complexity solution, which does not require any storage
overhead, greatly closes the RowHammer vulnerability [156].

The RowHammer effect in DRAM worsens as the manufacturing process scales down to
smaller node sizes [156, 233]. More findings on RowHammer, along with extensive experimental
data from real DRAM devices, can be found in prior works from our research group [149, 156,
233].

3.5.4 Large-Scale DRAM Error Studies
Like flash memory, DRAM is employed in a wide range of computing systems, at scale. Thus,
there is a similar need to study the aggregate behavior of errors observed in a large number
of DRAM chips deployed in the field. Akin to the large-scale flash memory SSD reliability
studies discussed in Section 3.1.7, a number of experimental studies characterize the reliability
of DRAM at large scale in the field (e.g., [113, 211, 284, 301, 302]). We highlight three notable
results from these studies.

First, as prior work saw for large-scale studies of SSDs (see Section 3.1.7), the number of
errors observed varies significantly for each DRAM module [211]. Figure 3.33a shows the dis-
tribution of correctable errors across the entire fleet of servers at Facebook over a fourteen-month
period, omitting the servers that did not exhibit any correctable DRAM errors. The x-axis shows
the normalized device number, with devices sorted based on the number of errors they experi-
enced in a month. As prior work saw in the case of SSDs, a small number of servers accounts
for the majority of errors. As prior work sees from Figure 3.33a, the top 1% of servers account
for 97.8% of all observed correctable DRAM errors. The distribution of the number of errors
among servers follows a power law model. Prior work shows the probability density distribution
of correctable errors in Figure 3.33b, which indicates that the distribution of errors across servers
follows a Pareto distribution, with a decreasing hazard rate [211]. This means that a server that
has experienced more errors in the past is likely to experience more errors in the future.

88

(a) (b)

Figure 3.33: Distribution of memory errors among servers with errors (a), which resembles a
power law distribution. Memory errors follow a Pareto distribution among servers with errors
(b). Reproduced from [211].

Second, unlike SSDs, DRAM does not seem to show any clearly discernible trend where
higher utilization and age lead to a greater raw bit error rate [211].

Third, the increase in the density of DRAM chips with technology scaling leads to higher
error rates [211]. The latter is illustrated in Figure 3.34, which shows how different DRAM chip
densities are related to device failure rate. We can see that there is a clear trend of increasing
failure rate with increasing chip density. Prior work finds that the failure rate increases because
despite small improvements in the reliability of an individual cell, the quadratic increase in the
number of cells per chip greatly increases the probability of observing a single error in the whole
chip [211].

●

●

●

Chip density (Gb)

1 2 4

0.
00

0.
50

1.
00

R
el

at
iv

e
se

rv
er

 fa
ilu

re
 r

at
e

Figure 3.34: Relative failure rate for servers with different chip densities. Higher densities (re-
lated to newer technology nodes) show a trend of higher failure rates. Reproduced from [211].
See Section II-E of [211] for the complete definition of the metric plotted on the y-axis, i.e.,
relative server failure rate.

89

3.5.5 Latency-Related Errors in DRAM
Various experimental studies examine the tradeoff between DRAM reliability and latency [37,
38, 41, 42, 102, 146, 167, 171, 172]. These works perform extensive experimental studies on real
DRAM chips to identify the effect of (1) temperature, (2) supply voltage, and (3) manufacturing
process variation that exists in DRAM on the latency and reliability characteristics of different
DRAM cells and chips. The temperature, supply voltage, and manufacturing process variation
all dictate the amount of time that each cell needs to safely complete its operations. Several of the
works from our research group [41, 42, 171, 172] examine how one can reliably exploit different
effects of variation to improve DRAM performance or energy consumption.

Adaptive-Latency DRAM (AL-DRAM) [172] shows that significant variation exists in the
access latency of (1) different DRAM modules, as a result of manufacturing process variation;
and (2) the same DRAM module over time, as a result of varying operating temperature, since
at low temperatures DRAM can be accessed faster. The key idea of AL-DRAM is to adapt
the DRAM latency to the operating temperature and the DRAM module that is being accessed.
Experimental results show that AL-DRAM can reduce DRAM read latency by 32.7% and write
latency by 55.1%, averaged across 115 DRAM modules operating at 55 ◦C [172].

Voltron [42] identifies the relationship between the DRAM supply voltage and access latency
variation. Voltron uses this relationship to identify the combination of voltage and access latency
that minimizes system-level energy consumption without exceeding a user-specified threshold
for the maximum acceptable performance loss. For example, at an average performance loss
of only 1.8%, Voltron reduces the DRAM energy consumption by 10.5%, which translates to
a reduction in the overall system energy consumption of 7.3%, averaged over seven memory-
intensive quad-core workloads [42].

Flexible-Latency DRAM (FLY-DRAM) [41] captures access latency variation across DRAM
cells within a single DRAM chip due to manufacturing process variation. For example, Fig-
ure 3.35 shows how the bit error rate (BER) changes if we reduce one of the timing parameters
used to control the DRAM access latency below the minimum value specified by the manufac-
turer [41]. Prior work uses an FPGA-based experimental DRAM testing infrastructure [102] to
measure the BER of 30 real DRAM modules, over a total of 7500 rounds of tests, as we lower
the tRCD timing parameter (i.e., how long it takes to open a DRAM row) below its standard value
of 13.125 ns.5 In this figure, prior work uses a box plot to summarize the bit error rate measured
during each round. For each box, the bottom, middle, and top lines indicate the 25th, 50th, and
75th percentile of the population. The ends of the whiskers indicate the minimum and maximum
BER of all modules for a given tRCD value. Each round of BER measurement is represented
as a single point overlaid upon the box. From the figure, prior work makes three observations.
First, the BER decreases exponentially as we reduce tRCD. Second, there are no errors when
tRCD is at 12.5 ns or at 10.0 ns, indicating that manufacturers provide a significant latency guard-
band to provide additional protection against process variation. Third, the BER variation across
different models becomes smaller as tRCD decreases. The reliability of a module operating at
tRCD = 7.5 ns varies significantly based on the DRAM manufacturer and model. This variation
occurs because the number of DRAM cells that experience an error within a DRAM chip varies

5More detail on the experimental setup, along with a list of all modules and their characteristics, can be found in
the original FLY-DRAM paper [41].

90

significantly from module to module. Yet, the BER variation across different modules operating
at tRCD = 2.5 ns is much smaller, as most modules fail when the latency is reduced so signifi-
cantly.

From other experiments that prior work describes in the FLY-DRAM paper [41], prior work
finds that there is spatial locality in the slower cells, resulting in fast regions (i.e., regions where
all DRAM cells can operate at significantly-reduced access latency without experiencing errors)
and slow regions (i.e., regions where some of the DRAM cells cannot operate at significantly-
reduced access latency without experiencing errors) within each chip. To take advantage of this
heterogeneity in the reliable access latency of DRAM cells within a chip, FLY-DRAM (1) catego-
rizes the cells into fast and slow regions; and (2) lowers the overall DRAM latency by accessing
fast regions with a lower latency. FLY-DRAM lowers the timing parameters used for the fast re-
gion by as much as 42.8% [41]. FLY-DRAM improves system performance for a wide variety of
real workloads, with the average improvement for an eight-core system ranging between 13.3%
and 19.5%, depending on the amount of variation that exists in each module [41].

2.55.07.510.012.5

tRCD (ns)

10-1010-910-810-710-610-510-410-310-210-1100

B
it

E
rr

or
 R

at
e

(B
E

R
)

Figure 3.35: Bit error rates of tested DRAM modules as we reduce the DRAM access latency
(i.e., the tRCD timing parameter). Reproduced from [41].

Design-Induced Variation-Aware DRAM (DIVA-DRAM) [171] identifies the latency vari-
ation within a single DRAM chip that occurs due to the architectural design of the chip. For
example, a cell that is further away from the row decoder requires a longer access time than a
cell that is close to the row decoder. Similarly, a cell that is farther away from the wordline driver
requires a larger access time than a cell that is close to the wordline driver. DIVA-DRAM uses
design-induced variation to reduce the access latency to different parts of the chip. One can fur-
ther reduce latency by sacrificing some amount of reliability and performing error correction to
fix the resulting errors [171]. Experimental results show that DIVA-DRAM can reduce DRAM
read latency by 40.0% and write latency by 60.5% [171]. In an eight-core system running a
wide variety of real workloads, DIVA-DRAM improves system performance by an average of
13.8% [171].

More information about the errors caused by reduced latency and reduced voltage operation
in DRAM chips and the tradeoff between reliability and latency and voltage can be found in prior
works from our research group [38, 41, 42, 102, 167, 171, 172, 193].

91

3.5.6 Error Correction in DRAM

In order to protect the data stored within DRAM from various types of errors, some (but not
all) DRAM modules employ ECC [193]. The ECC employed within DRAM is much weaker
than the ECC employed in SSDs (see Section 3.3) for various reasons. First, DRAM has a much
lower access latency, and error correction mechanisms should be designed to ensure that DRAM
access latency does not increase significantly. Second, the error rate of a DRAM chip tends to
be lower than that of a flash memory chip. Third, the granularity of access is much smaller in a
DRAM chip than in a flash memory chip, and hence sophisticated error correction can come at a
high cost. The most common ECC algorithm used in commodity DRAM modules is SECDED
(single error correction, double error detection) [193]. Another ECC algorithm available for
some commodity DRAM modules is Chipkill, which can tolerate the failure of an entire DRAM
chip within a module [74] at the expense of higher storage overhead and higher latency. For
both SECDED and Chipkill, the ECC information is stored on one or more extra chips within the
DRAM module, and, on a read request, this information is sent alongside the data to the memory
controller, which performs the error detection and correction.

As DRAM scales to smaller technology nodes, its error rate continues to increase [134,
156, 206, 211, 232, 233, 236]. Effects like read disturb [156], cell-to-cell interference [137,
138, 139, 140, 187, 261], and variable retention time [137, 187, 261, 272] become more se-
vere [134, 156, 232, 233, 236]. As a result, there is an increasing need for (1) employing ECC
algorithms in all DRAM chips/modules; (2) developing more sophisticated and efficient ECC
algorithms for DRAM chips/modules; and (3) developing error-specific mechanisms for error
correction. To this end, recent work follows various directions. First, in-DRAM ECC, where
correction is performed within the DRAM module itself (as opposed to in the controller), is pro-
posed [134]. One work shows how exposing this in-DRAM ECC information to the memory
controller can provide Chipkill-like error protection at much lower overhead than the traditional
Chipkill mechanism [238]. Second, various works explore and develop stronger ECC algorithms
for DRAM (e.g., [144, 145, 330]), and explore how to make ECC more efficient based on the
current DRAM error rate (e.g., [4, 58, 74, 171, 320]). Third, recent work shows how the cost of
ECC protection can be reduced by (1) exploiting heterogeneous reliability memory [193], where
different portions of DRAM use different strengths of error protection based on the error toler-
ance of different applications and different types of data [190, 193], and (2) using the additional
DRAM capacity that is otherwise used for ECC to improve system performance when reliability
is not as important for the given application and/or data [197].

Many of these works that propose error mitigation mechanisms for DRAM do not distinguish
between the characteristics of different types of errors. We believe that, in addition to provid-
ing sophisticated and efficient ECC mechanisms in DRAM, there is also significant value in and
opportunity for exploring specialized error mitigation mechanisms that are customized for differ-
ent error types, just as it is done for flash memory (as we discussed in Section 3.2). One such
example of a specialized error mitigation mechanism is targeted to fix the RowHammer read
disturb mechanism, and is called Probabilistic Adjacent Row Activation (PARA) [156, 233], as
we discussed earlier. Recall that the key idea of PARA is to refresh the rows that are physically
adjacent to an activated row, with a very low probability. PARA is shown to be very effective in
fixing the RowHammer problem at no storage cost and at very low performance overhead [156].

92

PARA is a specialized yet very effective solution for fixing a specific error mechanism that is
important and prevalent in modern DRAM devices.

3.5.7 Errors in Emerging Nonvolatile Memory Technologies
DRAM operations are several orders of magnitude faster than SSD operations, but DRAM
has two major disadvantages. First, DRAM offers orders of magnitude less storage den-
sity than NAND-flash-memory-based SSDs. Second, DRAM is volatile (i.e., the stored data
is lost on a power outage). Emerging nonvolatile memories, such as phase-change memory
(PCM) [163, 164, 165, 273, 333, 351, 363], spin-transfer torque magnetic RAM (STT-RAM or
STT-MRAM) [161, 237], metal-oxide resistive RAM (RRAM) [334], and memristors [62, 303],
are expected to bridge the gap between DRAM and SSDs, providing DRAM-like access la-
tency and energy, and at the same time SSD-like large capacity and nonvolatility (and hence
SSD-like data persistence). These technologies are also expected to be used as part of hy-
brid memory systems (also called heterogeneous memory systems), where one part of the mem-
ory consists of DRAM modules and another part consists of modules of emerging technolo-
gies [46, 59, 60, 128, 183, 210, 212, 267, 273, 274, 275, 351, 352, 357, 360]. PCM-based
devices are expected to have a limited lifetime, as PCM can only endure a certain number of
writes [163, 273, 333], similar to the P/E cycling errors in NAND-flash-memory-based SSDs
(though PCM’s write endurance is higher than that of SSDs). PCM suffers from (1) resistance
drift [114, 268, 333], where the resistance used to represent the value becomes higher over time
(and eventually can introduce a bit error), similar to how charge leakage in NAND flash memory
and DRAM lead to retention errors over time; and (2) write disturb [127], where the heat gener-
ated during the programming of one PCM cell dissipates into neighboring cells and can change
the value that is stored within the neighboring cells. STT-RAM suffers from (1) retention fail-
ures, where the value stored for a single bit (as the magnetic orientation of the layer that stores
the bit) can flip over time; and (2) read disturb (a conceptually different phenomenon from the
read disturb in DRAM and flash memory), where reading a bit in STT-RAM can inadvertently
induce a write to that same bit [237]. Due to the nascent nature of emerging nonvolatile mem-
ory technologies and the lack of availability of large-capacity devices built with them, extensive
and dependable experimental studies have yet to be conducted on the reliability of real PCM,
STT-RAM, RRAM, and memristor chips. However, we believe that error mechanisms concep-
tually or abstractly similar to those we discussed in this chapter for flash memory and DRAM
are likely to be prevalent in emerging technologies as well (as supported by some recent stud-
ies [7, 127, 141, 237, 298, 299, 361]), albeit with different underlying mechanisms and error
rates.

93

Chapter 4

WARM—Write-hotness Aware Retention
Management

As we have introduced in Section 3.1, retention errors are one of the most dominant error sources
in NAND flash memory. Retention errors are caused by charge leakage from the flash cells after
the data has been programmed into the cells. Our prior work has shown that retention errors not
only degrade data reliability, but also lead to performance degradation due to increased read-
retry attempts [27]. In Section 3.2, we have surveyed many techniques that can mitigate retention
errors proposed by prior work, including refresh, read-retry, voltage optimization, etc. Among
these techniques, refresh is considered to be the most effective in improving flash lifetime and
has recently been implemented in real SSDs [22, 25, 295]. However, we observe that, while
refresh improves flash lifetime significantly by relaxing the retention time constraint, the refresh
operation itself can consume the majority of the improved flash lifetime, wasting opportunity for
further flash lifetime improvements.

In this chapter, we introduce Write-hotness Aware Retention Management (WARM), which
exploits workload write-hotness and device data retention characteristics to improve flash life-
time. The goal of WARM is to eliminate redundant refreshes for write-hot pages with minimal
storage and performance overhead. This work proposes a write hotness-aware flash memory
retention management policy, WARM. The first key idea of WARM is to effectively partition
pages stored in flash memory into two groups based on the write frequency of the pages. The
second key idea of WARM is to apply different management policies to the two different groups
of flash pages/blocks to improve the lifetime of the flash device.

First, we look into flash memory data retention characteristics and SSD workload characteris-
tics to show that redundant flash refresh operations are expensive (Section 4.1). Second, we dis-
cuss a novel, lightweight approach to dynamically identifying and partitioning write-hot versus
write- cold pages (Section 4.2.1). Third, we describe how WARM optimizes flash management
policies, such as garbage collection and wear-leveling, in a partitioned flash memory, and show
how WARM integrates with a refresh mechanism to provide further flash lifetime improvements
(Section 4.2.2). Fourth, we evaluate the flash lifetime improvement delivered by WARM, and the
hardware and performance overhead to implement WARM (Section 4.4). Finally, we conclude
with the contributions of WARM (Section 4.6).

94

4.1 Motivation

As flash memory density has continued to increase, the endurance of flash devices has been
rapidly decreasing. Relaxing the internal retention time of flash devices can significantly im-
prove upon this endurance (Section 4.1.1), but this cannot simply be externally exposed, as the
relaxation would impact the data integrity guarantee. Periodically performing data refresh allows
the flash device to relax the internal retention time while maintaining the data integrity guaran-
tee [21, 22, 25, 188, 189, 222, 250]. Unfortunately, for real-world workloads, these refresh
operations consume a large portion of the extra endurance gained from internal retention time
relaxation, as we describe in Section 4.1.2. In order to buy back the endurance, we aim to elim-
inate redundant refresh operations on write-hot data, as the write-hot flash pages incur the vast
majority of writes (Section 4.1.3). We use the insights from this section to design a write-hotness
aware retention management policy for flash memory, which we describe in Section 4.2.

4.1.1 Retention Time Relaxation

Traditionally, data stored within a block is retained for some amount of time. This retention time
is dependent on a number of factors (e.g., the number of P/E cycles already performed on the
block, process variation). Flash devices guarantee a minimum data integrity time. The endurance
of flash memory is a factor of how many P/E cycles can take place before the internal retention
time falls below this minimum guarantee.

Prior work has shown that P/E cycle endurance of flash memory can be significantly improved
by relaxing the internal retention time [21, 22, 25, 188, 189, 222, 250]. We extrapolate the
endurance numbers under different internal retention times and plot them in Figure 4.1. The
horizontal axis shows the flash endurance, expressed as the number of P/E cycles before the
device experiences retention failures. Each bar shows the number of P/E cycles a flash block
can tolerate for a given internal retention time. With a three-year internal retention time, which
is the typical retention period used in today’s flash drives, each flash cell can endure only 3,000
P/E cycles. However, as we relax the internal retention time to three days, flash endurance
can improve by up to 50× (i.e., 150,000 P/E cycles). Hence, relaxing the amount of time that
flash memory is required to internally retain data can potentially lead to great improvements in
endurance.

150000

20000

8000

3000

0 50K 100K 150K

3-day

3-week

3-month

3-year

Endurance (P/E Cycle)

In
te

rn
al

R

et
en

ti
o

n
 T

im
e

Figure 4.1: P/E cycle endurance from different amounts of internal retention time without re-
fresh. (Data extrapolated from prior work [22, 25].)

95

4.1.2 Refresh Overhead Mitigation
In order to compensate for the reduced internal retention time, refresh operations are introduced
to maintain the data integrity guarantee provided to the user [22, 25]. When the internal retention
time of a flash block expires, the data stored in the block can be simply remapped to another block
(i.e., all valid pages within a block are read, corrected, and then reprogrammed to a different
block) to extend the duration of data integrity. Several variants of refresh have been proposed for
flash memory [22, 25, 188, 189, 222, 250]. Remapping-based flash correct-and-refresh (FCR)
involves the lowest implementation overhead, by triggering refreshes at a fixed refresh frequency
to guarantee the retention time never falls below a predetermined threshold [22, 25].

Although relaxing internal retention time increases flash endurance, each refresh operation
consumes a portion of this extra endurance, leading to significantly reduced lifetime improve-
ments. The curves in Figure 4.2 plot the relation between the fraction of the extra endurance
cycles consumed by refresh operations for a 256 GB flash drive and the write intensity of the
workload (expressed as the average number of writes the workload issues to the drive per day)
for a refresh mechanism with various refresh intervals (ranging from three days to three years).
When the write intensity is as low as 105 writes/day, refresh operations can consume up to 99%
of the total endurance when the data is refreshed every three days (regardless of how recently the
data was written). The data points in Figure 4.2 show the actual fraction of writes that are due
to refresh for each workload that we evaluate in Section 4.4. Fourteen of the sixteen workloads
are disk traces from real applications, and they all have a write frequency less than or equal to
107 writes/day. The remaining two workloads are I/O benchmarks (iozone and postmark) with
higher write frequencies, which do not represent the typical usage of flash devices. Unfortu-
nately, refresh operations consume a significant fraction of the extra endurance for all fourteen
real-world workloads. In this chapter, we aim to reduce the fraction of endurance consumed as
overhead, in order to better utilize the extra endurance gained from retention time relaxation and
thus improve flash lifetime.

105 106 107 108 109 1010 1011

Workload Write Frequency (Writes/Day)

10
20
30
40
50
60
70
80
90

100

%
 o

f P
/E

 C
yc

le
s

Co
ns

um
ed

 b
y

Re
fre

sh 3-day refresh
3-week refresh
3-month refresh
3-year refresh

iozone
postmark
financial
homes
web-vm
hm
prn
proj

prxy
rsrch
src
stg
ts
usr
wdev
web

Figure 4.2: Fraction of P/E cycles consumed by refresh operations.

96

4.1.3 Opportunities to Exploit Write-Hotness
Many of the management policies for flash memory are focused on writes, as write operations re-
duce the lifetime of the device. While these algorithms were designed to evenly distribute device
wear-out across blocks, they crucially ignore the fine-grained behavior of writes across pages
within an application. We observe that write frequency can be quite heterogeneous across differ-
ent pages. While some pages are often written to (write-hot pages), other pages are infrequently
updated (write-cold pages). Figure 4.3 shows the write distribution for all sixteen of our applica-
tions (described in Table 4.2). We observe that for all but one of our workloads (postmark), only
a very small fraction (i.e., less than 1%) of the total application data receives the vast majority
of the write requests. In fact, from Figure 4.3, we observe that for ten of our applications, a very
small fraction of all data pages (i.e., less than 1%) are the destination of nearly 100% of the write
requests. Note that our workloads use a total memory footprint of 217.6GB each, and that 1%
of the total application data represents 2.176GB. We conclude from this figure that only a small
portion of the pages in each application are write-hot, and that the discrepancy between the write
rate to write-hot pages and the write rate to write-cold pages is highly skewed.

0%
20%
40%
60%
80%

100%

CD
F

iozone financial web-vm prn prxy src ts wdev

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

0%
20%
40%
60%
80%

100%

CD
F

postmark

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

homes

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

hm

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

proj

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

rsrch
0.

0%
0.

2%
0.

4%
0.

6%
0.

8%
1.

0%

Data Size

stg

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

usr

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

web

Figure 4.3: Cumulative distribution function of writes to pages for 16 evaluated workload traces.
Total data footprints for our workloads are 217.6GB, i.e., 1.0% on the x-axis represents 2.176GB
of data.

In a typical flash device, page allocation policies are oblivious to the frequency of writes,
resulting in blocks that contain a random distribution of interspersed write-hot and write-cold
pages. We find that such obliviousness to the program write patterns forces several of our “gen-
eral” flash management algorithms to be inefficient. One such example is refresh, where the
increased number of program/erase operations greatly limits the potential endurance gains that
can be achieved. Refreshes are only necessary to maintain the integrity of data that has not yet
been overwritten, as a new write operation naturally refreshes the data by placing the page into
a new block. In other words, if a page is written to often enough (i.e., at a higher frequency than
the refresh rate), any refresh operation to that page will be redundant.

Our goal is to enable such a mechanism that can eliminate refresh operations to write-hot
pages. Unfortunately, remapping-based refresh operations are performed at a block granularity,
which is much coarser than page granularity, as flash devices only provide a block-granularity

97

erase mechanism. Therefore, if at least one page within the block is write-cold, the whole block
must be refreshed, foregoing any potential P/E cycle savings from skipping the refresh operation.
As the conventional page allocation algorithm is oblivious to write-hotness, there is a very low
probability that a block contains only write-hot pages.

Unless we change the page allocation policy, it is impractical to simply modify the refresh
mechanism to skip refreshes for blocks containing only write-hot pages. If flash management
policies were made aware of the write-hotness of a page, we could group write-hot pages to-
gether in a block such that the entire block does not require a refresh operation. This would
allow us to efficiently skip refreshes to a much larger number of flash blocks that are formed
as such. In addition, since write-cold pages would be grouped together into blocks, we could
also reduce wear-out on these blocks through more efficient garbage collection. As write-cold
pages are rarely overwritten, all of the pages within a write-cold block are more likely to remain
valid, requiring much less frequent compaction. Our goal for WARM, our proposed management
policy, is to physically separate write-hot pages from write-cold pages into disjoint sets of flash
blocks, so that we can significantly improve flash lifetime.

4.2 Mechanism

In this section, we introduce WARM, our proposed write-hotness-aware flash memory retention
management policy. The first key idea of WARM is to effectively partition pages stored in flash
into two groups based on the write frequency of the pages. The second key idea of WARM is to
apply different management policies to the two different groups of pages/blocks. We first discuss
a novel, lightweight approach to dynamically identifying and partitioning write-hot versus write-
cold pages (Section 4.2.1). We then describe how WARM optimizes flash management poli-
cies, such as garbage collection and wear-leveling, in a partitioned flash memory, and show how
WARM integrates with a refresh mechanism to provide further flash lifetime improvements (Sec-
tion 4.2.2). We discuss the hardware overhead required to implement WARM (Section 4.2.3).
We show in Section 4.4 that WARM is effective at delivering significant flash lifetime improve-
ments (by an average of 3.24× over a conventional management policy without refresh), and can
do so with a minimal performance overhead (averaging 1.3%).

4.2.1 Partitioning Data Using Write-Hotness

Identifying Write-Hot and Write-Cold Data

Figure 4.4 illustrates the high-level concept of our write-hot data identification mechanism. We
maintain two virtual queues, one for write-hot data and another for write-cold data, which order
all of the hot and cold data, respectively, by the time of the last write. The purpose of the virtual
queues is to partition write-hot and write-cold data in a space-efficient way. The partitioning
mechanism provides methods of promoting data from the cold virtual queue to the hot virtual
queue, and for demoting data from the hot virtual queue to the cold virtual queue. The promotion
and demotion decisions are made such that write-hot pages are quickly identified (after two writes
in quick succession to the page), and write-cold pages are seldom misidentified as write-hot pages

98

Hot Virtual Queue

Hot Window

Hot Data

Cold Virtual Queue

Cooldown Window

Cold Data ……④ ⑤

⑥ ②

①

③

TAIL HEAD TAIL HEAD

Figure 4.4: Write-hot data identification algorithm using two virtual queues and monitoring
windows.

(and are quickly demoted if they are). Note that the cold virtual queue is divided into two parts,
with the part closer to the tail known as the cooldown window. The purpose of the cooldown
window is to identify those pages that are most recently written to. The pages in the cooldown
window are the only ones that can be immediately promoted to the hot virtual queue (as soon as
they receive a write request). We walk through examples for both of these migration decisions.

Initially, all data is stored in the cold virtual queue. Any data stored in the cold virtual queue
is defined to be cold. When data (which we call Page C) is first identified as cold, a corresponding
queue entry is pushed into the tail of the cold virtual queue (1©). This entry progresses forward in
the queue as other cold data is written. If Page C is written to again after it leaves the cooldown
window (2©), then its queue entry will be removed from the cold virtual queue and reinserted at
the queue tail (1©). This allows the queue to maintain ordering based on the time of the most
recent write to each page.

If a cold page starts to become hot (i.e., it starts being written to frequently), a cooldown
window at the tail end of the cold virtual queue provides these pages with a chance to be promoted
into the hot virtual queue. The cooldown window monitors the most recently inserted (i.e., most
recently written) cold data. Let us assume that Page C has just been inserted into the tail of the
cold virtual queue (1©). If Page C is written to again while it is still within the cooldown window,
it will be immediately promoted to the hot virtual queue (3©). If, on the other hand, Page C is
not written to again, then Page C will eventually be pushed out of the cooldown window portion
of the cold virtual queue, at which point Page C is determined to be cold. Requiring a two-step
promotion process from cold to hot (with the use of a cooldown window) allows us to avoid
incorrectly promoting cold pages due to infrequent writes. This is important for two reasons:
(1) hot storage capacity is limited, and (2) promoted pages will not be refreshed, which for cold
pages could result in data loss. With our two-step approach, if Page C is cold and is written to
only once, it will remain in the cold queue, though it will be moved into the cooldown window
(2©) to be monitored for subsequent write activity.

Any data stored in the hot virtual queue is identified as hot. Newly-identified hot data, which
we call Page H, is inserted into the tail of the hot virtual queue (4©). The hot virtual queue
length is maximally bounded by a hot window size to ensure that the most recent writes to all
hot data pages were performed within a given time period. (We discuss how this window is
sized in Section 4.2.1.) The assumption here is that infrequently-written pages in the hot virtual
queue will eventually progress to the head of the queue (5©). If the entry for Page H in the hot
virtual queue reaches the head of the queue and must now be evicted, we demote Page H into the
cooldown window of the cold virtual queue (1©), and move the page out of the hot virtual queue.

99

In contrast, a write to a page in the hot virtual queue simply moves that page to the tail of the hot
virtual queue (6©).

Partitioning the Flash Device

Figure 4.5 shows how we apply the identification mechanism from Section 4.2.1 to perform
physical page partitioning inside flash, with labels that correspond to the actions from Figure 4.4.
We first separate all of the flash blocks into two allocation pools, one for hot data and another
for cold data. The hot pool contains enough blocks to store every page in the hot virtual queue
(whose sizing is described in Section 4.2.1), as well as some extra blocks to tolerate management
overhead (e.g., erasing on garbage collection). The cold pool contains all of the remaining flash
blocks. Note that blocks can be moved between the two pools when the queues are resized.

Hot block pool
(Hot window)

Hit in the cooldown window
③

⑥ Hit in the
hot window

Promote to
cooldown window

⑤ Migrate valid pages

Cooldown
window

②

Cold block pool

Figure 4.5: Write-hotness aware retention management policy overview.

To simplify the hardware required to implement the virtual queues, we exploit the fact that
pages are written sequentially into the hot pool blocks. Consecutive writes to hot pages will be
placed in the same block, which means that a single block in the hot virtual queue will hold all
of the oldest pages. As a result, we can track the hot virtual queue at a block granularity instead
of a page granularity, which allows us to significantly reduce the size of the hot virtual queue.

Tuning the Partition Boundary

Since the division between hot and cold data can be dependent on both application and phase
characteristics, we need to provide a method for dynamically adjusting the size of our hot and
cold pools periodically. Every block is allocated to one of the two pools, so any increase in the
hot pool size will always be paired with a corresponding decrease in the cold pool size, and vice
versa. Our dynamic sizing mechanism must ensure that: (1) the hot pool size is such that every
page in the hot pool will be written to more frequently than the hot pool retention time (which
is relaxed as the hot pool does not employ refresh), and (2) the lifetime of the blocks in the cold
pool is maximized. To this end, we describe an algorithm that tunes the partitioning of blocks
between the hot and cold pools.

The partitioning algorithm starts by setting an upper bound for the hot window, to ensure that
every page in the window will be written to at a greater rate than the fixed hot pool retention time.
Recall that the hot pool retention time is relaxed to provide greater endurance (Section 4.1.1).
We estimate this size by collecting the number of writes to the hot pool, to find the average write
frequency and estimate the time it takes to fill the hot window. We compare the time to fill the

100

window to the hot pool retention time, and if the fill time exceeds the retention time, we shrink
the hot pool size to reduce the required fill time. This hot pool size determines the initial partition
boundary between the hot pool and the cold pool.

We then tune this partition boundary to maximize the lifetime of the cold pool, since we
do not relax retention time for the blocks in the cold pool. Assuming that wear-leveling evenly
distributes the page writes within the cold pool, we can use the endurance capacity metric (i.e.,
the total number of writes the cold pool can service), which is the product of the remaining
endurance of a block1 and the cold pool size, to estimate the lifetime of blocks in the cold pool:

EnduranceCapacity = RemainingEndurance×Cold Pool Size (4.1)

Li f etime =
EnduranceCapacity

ColdWriteFrequency
∝

Cold Pool Size
ColdWriteFrequency

(4.2)

We divide the endurance capacity by the cold write frequency (writes per day) to determine
the number of days remaining before the cold pool is worn out. We use hill climbing to find
the partition boundary at which the cold pool size maximizes the flash lifetime. The cold write
frequency is dependent on cold pool size, because as the cold pool size increases, the hot pool
size correspondingly shrinks, shifting writes of higher frequency into the cold pool.

Finally, once the partition boundary converges to obtain the maximum lifetime, we must
adjust what portion of the cold pool belongs in the cooldown window. We size this window to
minimize the ping-ponging of requests between the hot and cold pools. For this, we want to
maximize the number of hot virtual queue hits (6© in Figure 4.4), while minimizing the number
of requests evicted from the hot window (5© in Figure 4.4). We maintain a counter of each of
these events, and then use hill climbing on the cooldown window size to maximize the utility
function Utility = (6©− 5©).

In our work, we limit the hot pool size to the number of over-provisioned blocks within the
flash device (i.e., the extra blocks beyond the visible capacity of the device). While the hot pages
are expected to represent only a small portion of the total flash capacity (see Section 4.1.3),
there may be rare cases where the size limit prevents the hot pool from holding all of the hot
data (i.e., the hot pool is significantly undersized). In such a case, some less-hot pages are
forced to reside in the cold pool, and lose the benefits of WARM (i.e., endurance improvements
from relaxed retention times). WARM will not, however, incur any further write overhead from
keeping the less-hot pages in the cold pool. For example, the dynamic sizing of the cooldown
window prevents the less-hot pages from going back and forth between the hot and cold pools.

4.2.2 Flash Management Policies
WARM partitions all of the blocks in a flash device into two pools, storing write-hot data in
the blocks belonging to the hot pool, and storing write-cold data in the blocks belonging to the
cold pool. Because of the different degrees of write-hotness of the data in each pool, WARM
also applies different management policies (i.e., refresh, garbage collection, and wear-leveling)
to each pool, to best extend their lifetime. We next describe these management policies for each
pool, both when WARM is applied alone and when WARM is applied along with refresh.

1Due to wear-leveling, the remaining endurance (i.e., the number of P/E operations that can still be performed
on the block) is the same across all of the blocks.

101

WARM-Only Management

WARM relaxes the internal retention time of only the blocks in the hot pool, without requir-
ing a refresh mechanism for the hot pool. Within the cold pool, WARM applies conventional
garbage collection (i.e., finding the block with the fewest valid pages to minimize unnecessary
data movement) and wear-leveling policies. Since the flash blocks in the cold pool contain data
with much lower write frequencies, they (1) consume a smaller number of P/E cycles, and (2) ex-
perience much lower fragmentation (which only occurs when a page is updated), thus reducing
garbage collection activities. As such, the lifetime of blocks in the cold pool increases even when
conventional management policies are applied.

Within the hot pool, WARM applies simple, in-order garbage collection (i.e., finding the
oldest block) and no wear-leveling policies. WARM performs writes to hot pool blocks in block
order (i.e., it starts on the block with the lowest ID number, and then advances to the block with
the next lowest ID number) to maintain a sequential ordering by write time. Writing pages in
block order enables garbage collection in the hot pool to also be performed in block order. Due
to the higher write frequency in the hot pool, all data in the hot pool is valid for a shorter amount
of time. Most of the pages in the oldest block are already invalid when the block is garbage
collected, increasing garbage collection efficiency. Since both writing and garbage collection are
performed in block order, each of the blocks will be naturally wear-leveled, as they will all incur
the same number of P/E cycles. Thus, we do not need to apply any additional wear-leveling
policy.

Combining WARM with Refresh

WARM can also be used in conjunction with a refresh mechanism to reap additional endurance
benefits. WARM, on its own, can significantly extend the lifetime of a flash device by enabling
retention time relaxation on only the write-hot pages. However, these benefits are limited, as the
cold pool blocks will eventually exhaust their endurance at the original internal retention time.
(Recall from Figure 4.1 that endurance decreases significantly as the selected internal retention
time increases.) While WARM cannot enable retention time relaxation on the cold pool blocks
due to infrequent writes to such blocks, a refresh mechanism can enable the relaxation, greatly
extending the endurance of the cold pool blocks. WARM still provides benefits over a refresh
mechanism for the hot pool blocks, since it avoids unnecessary write operations that refresh
operations would incur.

When WARM and refresh are combined, we split the lifetime of the flash device into two
phases. The flash device starts in the pre-refresh phase, during which the same management
policies as WARM-only are applied. Note that during this phase, internal retention time is only
relaxed for the hot pool blocks. Once the endurance at the original retention time is exhausted,
we enter the refresh phase, during which the same management policies as WARM-only are
applied and a refresh policy (such as FCR [22]) is applied to the cold pool to avoid data loss.
During this phase, the retention time is relaxed for all blocks. Note that during both phases, the
internal retention time for hot pool blocks is always relaxed without the need for a refresh policy.

During the refresh phase, WARM also performs global wear-leveling to prevent the hot pool
from being prematurely worn out. The global wear-leveling policy rotates the entire hot pool to a

102

new set of physical flash blocks (which were previously part of the cold pool) every 1K hot block
P/E cycles. Over time, this rotation will use all of the flash blocks in the device for the hot pool
for one 1K P/E cycle interval. Thus, WARM wears out all of the flash blocks equally despite the
heterogeneity in write-frequency between the two pools.

4.2.3 Implementation and Overheads
The logic overhead of the proposed mechanism is minimal. Thanks to the simplicity of the write-
hot data identification algorithm, WARM can be integrated within an existing FTL, allowing it
to be implemented in the flash controller that already exists in modern flash drives.

For our dynamic window tuning mechanism, four 32-bit counters are required. Two counters
track the number of writes to the hot and cold pools. A third counter tracks the number of hot
virtual queue write hits (6© in Figure 4.4). The fourth counter tracks the number of pages moved
from the hot virtual queue into the cooldown window (5© in Figure 4.4).

The memory and storage overheads for the proposed mechanism are small. Recall that the
cooldown window can remain relatively small. We need to store data that tracks which blocks
belong to the cooldown window, and which blocks belong to the hot pool. From our evaluation,
we find that a 128-block maximum cooldown window size is sufficient. This requires us to store
the block ID of 128 blocks, for a storage overhead of 128×8B=1KB. As the blocks belonging to
the hot pool are written to in order of block ID, we require even lower overhead for them. We
allocate a contiguous series of block IDs to the hot pool, reducing the tracking overhead to four
registers totaling 32B: the starting ID of the series, the current size of the pool, a pointer to the
most recently written block (i.e., the block at the tail of the hot virtual queue), and a pointer to
the oldest block yet to be erased (i.e., the block at the head of the hot virtual queue). All this
information can be buffered inside the memory of the flash controller in order to accelerate write
operations.

While WARM saves a significant amount of unnecessary refreshes in the hot data pool, the
proposed mechanism has the potential to indirectly generate extra write operations that consume
some endurance cycles. First, WARM generates extra write operations when demoting a hot
page to the cold data pool (5©). Second, partitioning flash blocks into two allocation pools can
sometimes increase garbage collection activities. This is because one of the pools may have a
smaller number of blocks available in the free list, requiring more frequent invocation of garbage
collection. All of these overheads are accounted for in our evaluation in Section 4.4, and our
results factor in all additional writes. As we show in Section 4.4, WARM is designed to minimize
these overheads such that lifetime improvements are not overshadowed, and the resulting impact
on response time is minimal.

4.3 Methodology
We use DiskSim-4.0 [17] with SSD extensions [2] to evaluate WARM. Table 4.1 lists the param-
eters of our simulated NAND flash-based SSD. The latencies (the first four rows of the table) are
from real NAND flash chip measurements [106]. The sizes (rows 5–8) represent a modern com-
mercial NAND flash specification [1]. Flash endurance and refresh period are measured from

103

real NAND flash devices [22, 25].

Table 4.1: Parameters of the simulated flash-based SSD.

Parameter Value

Page read to register latency 25µs
Page write from register latency 200µs
Block erase latency 1.5ms
Data bus latency 50µs

Page/block size 8KB/1MB
Die/package size 8GB/64GB
Total storage capacity (inclȯver-provisioning) 256GB
Over-provisioning 15%

Endurance for 3-year retention time (P/E cycles) 3,000
Endurance for 3-day retention time (P/E cycles) 150,000

We run each simulation with I/O traces collected from a wide range of real workloads with
different use cases [158, 239, 321]. We also select two popular synthetic file system benchmarks
to stress our mechanism with higher write rate applications [135, 246]. Table 4.2 lists the name,
source, length, and description of each trace. To compute the lifetime of each configuration, we
assume the trace is repeated until the flash drive fails. We fill all the usable space of the flash
drive with data, to mimic worst-case usage conditions and to trigger garbage collection activities
within the trace duration. Similar to the approach employed in prior work [21, 22, 25], the overall
flash lifetime is derived using the average write frequency of one run, which consists of writes
generated by the trace and by garbage collection, as well as by refresh operations during the
refresh phase. We use this methodology since it is impossible to simulate multi-year-long traces
that drain the flash lifetime.

4.4 Evaluations
In this section, we evaluate and compare six configurations:
• Baseline does not include WARM or refresh, and uses conventional garbage collection

and wear-leveling policies, as described in Section 4.1.
• WARM uses the proposed write-hotness aware retention management policy that we de-

scribed in Section 4.2.
• FCR adds a remapping-based refresh mechanism to Baseline. Our refresh mechanism is

similar to the remapping-based FCR described in prior work [22, 25], but refresh is not
performed in the pre-refresh phase (see Section 4.2.2) to reduce unnecessary overhead.
During the refresh phase (see Section 4.2.2), FCR refreshes all valid blocks every three
days, which yields the best endurance improvement.

• WARM+FCR uses write-hotness aware retention management alongside 3-day refresh (Sec-
tion 4.2.2) to achieve maximum lifetime.

104

Table 4.2: Source and description of simulated traces.

Trace Source Length Workload Description

Synthetic Workloads
iozone IOzone [246] 16 min File system benchmark
postmark Postmark [135] 8.3 min File system benchmark

Real-World Workloads
financial UMass [321] 1 day Online transaction processing
homes FIU [158] 21 days Research group activities
web-vm FIU [158] 21 days Web mail proxy server
hm MSR [239] 7 days Hardware monitoring
prn MSR [239] 7 days Print server
proj MSR [239] 7 days Project directories
prxy MSR [239] 7 days Firewall/web proxy
rsrch MSR [239] 7 days Research projects
src MSR [239] 7 days Source control
stg MSR [239] 7 days Web staging
ts MSR [239] 7 days Terminal server
usr MSR [239] 7 days User home directories
wdev MSR [239] 7 days Test web server
web MSR [239] 7 days Web/SQL server

• ARFCR adds the ability to progressively increase refresh frequency on top of the remapping-
based refresh mechanism (similar to adaptive-rate FCR [22, 25]). The refresh frequency
increases as the retention capabilities of the flash memory decrease, in order to minimize
the overhead of write-hotness-oblivious refresh.

• WARM+ARFCR adds WARM alongside the adaptive-rate refresh mechanism.

To provide insights into our results, we first show the hot pool sizes and the cooldown window
sizes as determined by WARM for each of the configurations (Section 4.4.1). We then use four
metrics to show the benefits and costs associated with our mechanism:
• We evaluate all configurations in terms of overall lifetime (Section 4.4.2).
• We evaluate the gain in endurance capacity, the aggregate number of write requests that

the flash device can endure across all pages, for WARM with respect to Baseline (Sec-
tion 4.4.3). We use this metric as an indicator of how many additional writes we can
sustain to the flash device with our mechanism.

• We evaluate and break down the total number of writes consumed by FCR and WARM+FCR

during the refresh phase, to demonstrate how our mechanism reduces the write overhead
of retention time relaxation (Section 4.4.4).

• We evaluate the average response time, the mean latency for the flash device to service
a host request, for both Baseline and WARM to demonstrate the performance overhead of
using WARM (Section 4.4.5).

Finally, we show sensitivity studies on flash memory over-provisioning and the refresh rate

105

(Section 4.4.6).

4.4.1 Hot Pool and Cooldown Window Sizes

Table 4.3 lists the hot pool and the cooldown window sizes learned by WARM for each of our
WARM-based configurations. To allow WARM to quickly adapt to different workload behav-
iors, we set the smallest step size by which the hot pool size can change to 2% of the total
flash drive capacity, and we restrict the cooldown window sizes to power-of-two block counts.
For WARM+ARFCR, as the refresh frequency of the flash cells increases (going to the right in Ta-
ble 4.3), the hot pool size generally reduces. This is because WARM automatically selects a
smaller hot pool size to ensure that the data in the hot pool has a high enough write intensity to
skip refreshes. Naturally, as the internal retention time of a cell decreases, previously write-hot
pages with a write rate slower than the new retention time no longer qualify as hot, thereby re-
ducing the number of pages that need to be maintained in the hot pool. WARM adaptively selects
different hot pool sizes based on the fraction of write-hot data in each particular workload. Simi-
larly, WARM intelligently selects the best cooldown window size for each workload, such that it
minimizes the number of cold pages that are misidentified as hot and considered for promotion to
the hot pool. As such, our analysis indicates that WARM can intelligently and adaptively adjust
the hot pool size and the cooldown window size to achieve maximum lifetime.

Table 4.3: Hot pool and cooldown window sizes as set dynamically by WARM. H%: Hot pool
size as a percentage of total flash drive capacity. CW: Cooldown window size in number of
blocks.

Trace WARM WARM WARM+ARFCR
+FCR 3-month 3-week 3-day

H% CW H% CW H% CW H% CW H% CW

iozone 10 8 10 8 10 8 10 8 10 8
postmark 2 128 4 128 4 128 4 128 4 128
financial 10 4 10 4 10 4 10 4 10 4
homes 10 128 4 32 10 4 10 4 4 32
web-vm 10 128 10 32 10 4 10 4 10 32
hm 10 128 10 128 10 32 10 32 10 128
prn 10 128 10 128 8 4 10 128 10 128
proj 10 4 10 4 10 4 10 4 10 4
prxy 10 4 10 4 10 4 10 4 10 4
rsrch 6 128 6 128 10 4 10 4 6 128
src 10 128 8 128 10 32 10 32 8 128
stg 10 128 8 128 10 4 10 4 8 128
ts 10 128 6 128 10 4 10 4 6 128
usr 6 128 6 128 10 4 10 4 6 128
wdev 6 128 4 128 10 128 10 128 4 128
web 6 128 6 128 10 4 10 4 6 128

106

4.4.2 Lifetime Improvement
Figure 4.6 shows the lifetime in days (using a logarithmic scale) for all six of our evaluated
configurations. Figure 4.7a shows the lifetime improvement of WARM when normalized to the
lifetime of Baseline. The mean lifetime improvement for WARM across all of our workloads
is 3.24× over Baseline. In addition, WARM+FCR improves the mean lifetime over FCR alone
by 1.30× (Figure 4.7b), leading to a mean improvement for combined WARM and FCR over
Baseline of 10.4× (as opposed to 8.0× with FCR alone). WARM+ARFCR improves the mean life-
time over ARFCR by 1.21× (Figure 4.7c), leading to a mean improvement for combined WARM
and ARFCR over Baseline of 12.9× (as opposed to 10.7× with ARFCR alone). Even for our
worst performing workload, postmark, in which the amount of hot data and the fraction of
writes due to refresh are very low (as discussed in Sections 4.4.3 and 4.4.4), the overall lifetime
improves by 8% when WARM is applied without refresh, and remains unaffected with respect to
FCR when WARM+FCR is applied. We conclude that WARM can adjust to workload behavior and
effectively improve overall flash lifetime, either when used on its own or when used together
with a refresh mechanism, without adverse impacts.

100

1K

10K

100K

1M

10M

Li
fe

ti
m

e
(D

ay
s)

Baseline WARM FCR WARM+FCR ARFCR WARM+ARFCR

Figure 4.6: Absolute flash memory lifetime for Baseline, WARM, FCR, WARM+FCR, ARFCR, and
WARM+ARFCR configurations. Note that the y-axis uses a log scale.

4.4.3 Improvement in Endurance Capacity
Figure 4.8 plots the normalized endurance capacity of WARM for each workload split up by the
endurance for both the hot and cold data pools. The endurance capacity is defined as the total
number of write operations the entire flash device can sustain before wear-out. On average, WARM
improves the total endurance capacity by 3.6× over Baseline. Note that the endurance capacity
varies across different workloads, in relation to the number of hot writes that can be identified
by the mechanism. For example, postmark contains only a limited amount of write-hot data
(as is shown in Figure 4.3), which results in only minor endurance capacity improvement (8%).
Unlike the other workloads, the majority of the endurance capacity for postmark remains within
the cold pool, as the workload exhibits very low write locality.

107

0

1

2

3

4

5

io
zo

n
e

p
o

st
m

ar
k

fi
n

an
ci

al
h

o
m

es
w

eb
-v

m
h

m
p

rn
p

ro
j

p
rx

y
rs

rc
h

sr
c

st
g ts

u
sr

w
d

ev
w

eb
G

M
ea

nN
o

rm
al

iz
ed

 L
if

et
im

e
Im

p
ro

ve
m

en
t

(a) WARM over Baseline

0.6

0.8

1.0

1.2

1.4

1.6

io
zo

n
e

p
o

st
m

ar
k

fi
n

an
ci

al
h

o
m

es
w

eb
-v

m
h

m
p

rn
p

ro
j

p
rx

y
rs

rc
h

sr
c

st
g ts

u
sr

w
d

ev
w

eb
G

M
ea

nN
o

rm
al

iz
ed

 L
if

et
im

e
Im

p
ro

ve
m

en
t

(b) WARM+FCR over FCR

0.6

0.8

1.0

1.2

1.4

1.6
io

zo
n

e
p

o
st

m
ar

k
fi

n
an

ci
al

h
o

m
es

w
eb

-v
m

h
m

p
rn

p
ro

j
p

rx
y

rs
rc

h
sr

c
st

g ts
u

sr
w

d
ev

w
eb

G
M

ea
nN

o
rm

al
iz

ed
 L

if
et

im
e

Im
p

ro
ve

m
en

t

(c) WARM+ARFCR over ARFCR

Figure 4.7: Normalized flash memory lifetime improvement when WARM is applied on top of
Baseline, FCR, and ARFCR configurations.

0%

100%

200%

300%

400%

500%

600%
Cold pool Hot pool

En
d

u
ra

n
ce

 C
ap

ac
it

y

Figure 4.8: WARM endurance capacity, normalized to Baseline.

108

In contrast, the endurance capacity for all of our other workloads mainly comes from the
hot pool, despite the size of the hot pool being significantly smaller than that of the cold pool.
WARM in essence “converts” blocks from normal internal retention time (those in the cold pool)
into relaxed internal retention time (hot pool) for the write-hot portion of data. Blocks with a
relaxed retention time can tolerate a much larger number of writes (as shown in Figure 4.1). As
Figure 4.3 shows, the vast majority of overall writes are to a small fraction of pages that are
write-hot. This allows WARM to improve the overall flash endurance capacity by using a small
number of blocks with a relaxed retention time to house the write-hot pages. We conclude that
WARM can effectively improve endurance capacity even when applied on its own.

4.4.4 Reduction of Refresh Operations

Figure 4.9 breaks down the percentage of endurance (P/E cycles) used for the host’s write re-
quests, for management operations, and for refresh requests during the refresh phase. Two bars
are shown side by side for each application. The first bar shows the number of total writes for
FCR, normalized to 100%. The second bar shows a similar breakdown for WARM+FCR, normalized
to the number of writes for FCR. Although the two synthetic workloads (iozone and postmark)
do not show much reduction in total write frequency (because host writes dominate their flash en-
durance usage, as shown in Figure 4.2), the number of writes across all sixteen of our workloads
is reduced by an average of 5.3%.

io
zo

ne

po
st

m
ar

k

fin
an

ci
al

ho
m

es

w
eb

-v
m hm pr
n

pr
oj

pr
xy

rs
rc

h

sr
c

st
g ts us
r

w
de

v

w
eb

0%

20%

40%

60%

80%

100%

W
rit

es
/D

ay

FCR_host
FCR_gc

FCR_ref
WARM_host_hot

WARM_host_cold
WARM_gc

WARM_ref
WARM_hot2cold

Figure 4.9: Flash writes for FCR (left bar) and WARM+FCR (right bar), broken down into host
writes to the hot/cold pool (host_hot/host_cold), garbage collection writes (gc), refresh
writes (ref), and writes generated by WARM for migrations from the hot pool to the cold pool
(hot2cold).

From the breakdown of the write requests, we can see that the reduction in write count mainly
comes from the decreased number of refresh requests after applying WARM. In contrast, the
additional overhead in WARM due to migrating data from the hot pool to the cold pool is minimal
(shown as WARM hot2cold). This suggests that the write locality behavior within many of the

109

hot pool pages lasts throughout the lifetime of the application, and thus these pages do not need
to be evicted from the hot pool.2, as explained in Section 4.2.1. We conclude that WARM+FCR, by
providing refresh-free retention time relaxation for hot data, can reduce a significant fraction of
unnecessary refresh writes, and that WARM+FCR can utilize the flash endurance more effectively
during the refresh phase.

4.4.5 Impact on Performance
As we discussed in Section 4.2.3, WARM has the potential to generate additional write operations.
First, when a page is demoted from the hot pool to the cold pool (which happens when another
page is being promoted into the hot pool), an extra write will be required to move the page into a
block in the cold pool.3 Second, as one of the pools may have fewer blocks available in its free
list (which is dependent on how our partitioning algorithm splits up the flash blocks into the hot
and cold pools), garbage collection may need to be invoked more frequently when a new page is
required. To understand the impact of these additional writes, we evaluate how WARM affects
the average response time of the FTL.

Figure 4.10 shows the average response time for WARM, normalized to the Baseline response
time. Across all of our workloads, the average performance reduces by only 1.3%. Even in the
worst case (homes), WARM only has a performance penalty of 5.8% over Baseline. The relatively
significant overhead for homes is due to the write-hot portion of its data changing frequently over
time within the trace. This is likely because the user operates on different files, which effectively
shifts the write locality to an entirely different set of pages whenever a new file is operated on.
The shifting of the write-hot page set evicts all of the write-hot pages from the hot pool, which
as we stated above incurs several additional writes.

98%

100%

102%

104%

106%

N
o

rm
. a

vg
. r

es
p

. t
im

e

Figure 4.10: WARM average response time, normalized to Baseline.

For most of the workloads, any performance degradation is negligible (<2%), and is a result
of the increased garbage collection that occurs in the hot pool due to its small free list size. For
some other workloads, such as prxy, we find that the performance actually improves slightly with
WARM, because of the reduction in data movement induced by garbage collection. This savings

2Migrations from the cold pool to the hot pool are not broken down separately, as such migrations are performed
during the host write request itself and do not incur additional writes

3In contrast, promoting a page from the cold pool to the hot pool does not incur additional writes, as promotion
only occurs when that page is being written. Since a write was needed regardless, the promotion is free.

110

is thanks to grouping write-cold data together, which greatly lessens the degree of fragmentation
within the majority of the flash blocks (those within the cold pool). Overall, we conclude that
across all of our workloads, the performance penalty of using WARM is minimal.

4.4.6 Sensitivity Studies
Figure 4.11 compares the flash memory lifetime under different capacity over-provisioning as-
sumptions. In high-end server-class flash drives, the amount of capacity over-provisioning is
higher than that in consumer-class flash drives to provide an overall longer lifetime and higher
reliability. In this figure, we evaluate the lifetime improvement of the same six configurations us-
ing 30% of the flash blocks for over-provisioning to represent a server-class flash drive (all other
parameters from Table 4.1 remain the same). We also show the lifetime of the six configurations
on a consumer-class flash drive with 15% over-provisioning (which we assumed in our evalua-
tions until now). We show that the lifetime improvement of WARM become more significant as
over-provisioning increases. The lifetime improvement delivered by WARM over Baseline, for
example, increases to 4.1×, while the improvement of WARM+ARFCR over Baseline increases
to 14.4×. We conclude that WARM delivers higher lifetime improvements as over-provisioning
increases.

0

1

2

4

8

16

15% Capacity Over-provisioning 30% Capacity Over-provisioning

N
o

rm
al

iz
ed

 L
if

et
im

e
Im

p
ro

ve
m

e
n

t

Baseline WARM FCR
WARM+FCR ARFCR WARM+ARFCR

Figure 4.11: Flash memory lifetime improvement for WARM, FCR, WARM+FCR, ARFCR, and
WARM+ARFCR configurations under different amounts of over-provisioning, normalized to the
Baseline lifetime for each over-provisioning amount. Note that the y-axis uses a log scale.

Figure 4.12 compares the flash memory lifetime improvement for WARM+FCR over FCR under
different refresh rate assumptions. Our evaluation has so far assumed a three-day refresh period
for FCR. In this figure, we change this assumption to three-month and three-week refresh periods,
and compare the corresponding lifetime improvement. As we see from this figure, the lifetime
improvement delivered by WARM+FCR drops significantly as the refresh period becomes longer.
This is because a smaller fraction of the endurance is consumed by refresh operations as the rate
of refresh decreases (as shown in Figure 4.2), which is where our major savings come from.

111

0%

5%

10%

15%

20%

25%

30%

35%

3-month 3-week 3-day
Li

fe
ti

m
e

Im
p

ro
ve

m
e

n
t

Figure 4.12: Flash memory lifetime improvements for WARM+FCR over FCR under different refresh
rate assumptions.

Figure 4.13 illustrates how WARM+FCR reduces the fraction of P/E cycles consumed by refresh
operations, over FCR only, as we sweep over longer refresh periods. Note that the x-axis in
the figure uses a log scale. The solid lines in the figure illustrate the fraction of P/E cycles
consumed by refresh for FCR only, as was shown in Figure 4.2. The figure shows that for as
the refresh interval increases, WARM+FCR is effective at reducing the number of writes that are
consumed by refresh, but that these make up a smaller portion of the total P/E cycles, hence the
smaller improvements over FCR alone. As flash memory becomes denser and less reliable, we
expect it to require more frequent refreshes in order to maintain a useful lifetime, at which point
WARM can deliver greater improvements. We conclude that WARM+FCR delivers higher lifetime
improvements as the refresh rate increases.

112

105 106 107 108 109 1010 1011

Workload Write Frequency (Writes/Day)

10
20
30
40
50
60
70
80
90

100
%

 o
f P

/E
 C

yc
le

s
Co

ns
um

ed
 b

y
Re

fre
sh 3-day refresh w/o WARM

iozone
postmark
financial
homes
web-vm
hm
prn
proj

prxy
rsrch
src
stg
ts
usr
wdev
web

(a) 3-day refresh.

105 106 107 108 109 1010 1011

Workload Write Frequency (Writes/Day)

10
20
30
40
50
60
70
80
90

100

%
 o

f P
/E

 C
yc

le
s

Co
ns

um
ed

 b
y

Re
fre

sh 3-week refresh w/o WARM

iozone
postmark
financial
homes
web-vm
hm
prn
proj

prxy
rsrch
src
stg
ts
usr
wdev
web

(b) 3-week refresh.

105 106 107 108 109 1010 1011

Workload Write Frequency (Writes/Day)

10
20
30
40
50
60
70
80
90

100

%
 o

f P
/E

 C
yc

le
s

Co
ns

um
ed

 b
y

Re
fre

sh 3-month refresh w/o WARM

iozone
postmark
financial
homes
web-vm
hm
prn
proj

prxy
rsrch
src
stg
ts
usr
wdev
web

(c) 3-month refresh.

Figure 4.13: Fraction of P/E cycles consumed by refresh operations after applying WARM+FCR

for a (a) 3-day, (b) 3-week, or (c) 3-month refresh period. Solid trend lines show the fraction
consumed by FCR only, from Figure 4.2, for comparison. Note that the x-axis uses a log scale.

4.5 Limitations
WARM relies on the existence of write-hot data in many existing write-intensive workloads. If
the workload is not write-intensive, or if all data in the workload is equally write-hot, WARM
cannot identify any write-hot data and skip any refreshes. In these unlikely cases, WARM does
not provide any benefit or penalty in flash lifetime.

4.6 Conclusion
In this chapter, we introduce WARM, a write-hotness aware retention management policy for
NAND flash memory that is designed to extend its lifetime. We find that pages with different
degrees of write-hotness have widely ranging retention time requirements. WARM allows us
to relax the flash retention time for write-hot data without the need for refresh, by exploiting

113

the high write frequency of this data. On its own, WARM improves the lifetime of flash by an
average of 3.24× over a conventionally-managed flash device, across a range of real I/O work-
load traces. When combined with refresh mechanisms, WARM eliminates redundant refresh
operations to recently written data. In conjunction with an adaptive refresh mechanism, WARM
extends the average flash lifetime by 12.9×, which represents a 1.21× increase over using the
adaptive refresh mechanism alone. We conclude that WARM is an effective policy for improving
overall flash lifetime with or without refresh mechanisms.

114

Chapter 5

Online Flash Channel Modeling and Its
Applications

As we have introduced in Section 2.2, the threshold voltage value of a flash cell is used to
represent the data that is stored within the cell. In Section 3.1, we have shown that the threshold
voltage of the cell changes (i.e., shifts) as a result of many different types of circuit-level noise.
Some cells’ threshold voltages might shift enough to cross over to neighboring voltage windows.
The value of such a cell would be misread on a flash memory channel read, causing an error.
Thus, knowing how the threshold voltage distribution shifts within the flash controller can help
to mitigate these errors.

In this chapter, we introduce a new framework that exploits the unused computing resources
in the flash controller to enable greater device awareness by exploiting an online flash channel
model. Our goal is to build an accurate and easy-to-compute model of the threshold voltage
distribution of modern MLC NAND flash memory. This model must be practical to implement,
as we intend to use it online to design flash controllers that can adapt to the changing NAND
flash memory behavior. Our model can (1) statically determine the threshold voltage distribution
at a given level of wear-out (i.e., a given P/E cycle count), and (2) dynamically predict how this
threshold voltage distribution shifts over time as a result of the P/E cycling effect. The key idea
is to learn this online flash channel model with low overhead and use this model in multiple
components within the flash controller to help improve flash reliability.

Section 5.1 describes the motivation of developing an online flash channel model. To build
our flash channel model, we first use the methodology described in Section 5.2 to characterize
the threshold voltage distribution (i.e., the flash channel) under different P/E cycles using real
1X nm MLC NAND flash chips. Second, in Section 5.3, we construct a static threshold voltage
distribution model that can fit the characterized distribution under any given P/E cycle count.
Third, in Section 5.4, we construct a dynamic P/E cycling model that predicts how each param-
eter of the static distribution model changes after some number of further P/E cycles. Finally,
in Section 5.5, we demonstrate several example use cases in the flash controller that utilize the
complete model to enhance the performance and reliability of the NAND flash memory device.
We conclude the contributions of our online flash channel model in Section 5.8.

115

5.1 Motivation
Having online information on the current threshold voltage distribution across all of the flash cells
within a flash memory chip (i.e., the static distribution), as well as how this distribution changes
over time (i.e., the dynamic distribution), is important to quantify errors and develop techniques
to improve the reliability of the flash device. First, the static distribution can be used to determine
the number of errors that would occur for any read reference voltage that is applied. This data
can be used by the flash controller to select the read reference voltage that minimizes the error
rate. Lowering the error rate increases the lifetime of the flash device, as it delays the time at
which the number of errors becomes too large for the built-in ECC mechanism to successfully
correct. Second, knowing how the dynamic distribution changes over time (i.e., as more writes
are performed) is important, as it can guide flash controller mechanisms that adjust various flash
parameters online (e.g., ECC strength [101, 188, 336], read reference voltages [27], pass-through
voltage [35]) to increase the flash memory lifetime. Prior proposals to adjust these parameters
(e.g., [27, 35]) rely on a trial-and-error approach to select parameters with low error rates, which
can be inaccurate, high-latency, and suboptimal in terms of lifetime improvement. In both cases
(static and dynamic), the threshold voltage distribution must be determined at runtime by the
flash controller. Therefore, it is critical to design a practical and low-complexity mechanism to
determine the distribution and the shifts in the distribution.

In order for the model to be useful to help flash controller algorithms, it should have certain
properties. First, the model needs to be accurate for all threshold voltages and at all P/E cycles.
This is because inaccurate information can lead a flash controller to make suboptimal decisions,
hurting lifetime improvements. Second, the model needs to be easy to compute, because the
flash controller has only limited computational resources. While we base our model off of a
distribution that is easy to compute, we can further reduce online computation with the dynamic
component of our model, by performing only a few online static characterizations of the threshold
voltage distribution, and then using the simpler dynamic model to predict shifts in these initial
characterizations at very low cost over P/E cycles.

5.2 Characterization Methodology
To build our model, we perform an experimental characterization of the threshold voltage distri-
bution on real state-of-the-art 1X-nm (i.e., 15-19nm) MLC NAND flash chips. This characteri-
zation is essential to verify that the model we develop accurately captures the behavior of a real,
modern device.

We collect experimental characterization data on the threshold voltage distribution using an
FPGA-based NAND flash testing platform [20] with state-of-the-art 1X-nm MLC NAND flash
chips. We use the read-retry technique [23, 27] (described in Section 3.2.4) to sweep all possible
read reference voltages and determine the threshold voltage value for each cell. We program
and erase these blocks to 11 different wear levels, up to 20K P/E cycles, using known pseudo-
random data. The manufacturer-specified P/E cycle endurance for the tested flash chips is 3000
P/E cycles. All tests are performed at room temperature with a 5-second dwell time.1

1Dwell time is the time duration between an erase operation and the next program operation to the same flash

116

Figure 5.1 shows the threshold voltage distribution for each of the cell states. The read-retry
capability on the MLC NAND flash memory chip allows us to fine-tune each read reference
voltage (Va, Vb, and Vc) to one of 101 different steps (a total of 303 read reference voltage steps,
labeled as V1 to V303 from left to right). Note that V1 does not extend all the way to the lowest
possible threshold voltage for the ER state, and V303 does not extend to the highest possible
threshold voltage for the P3 state. In this chapter, we normalize the threshold voltage values
such that the distance between most of the adjacent read reference voltage steps is one, as the
exact values are proprietary information. The distances between steps V101 and V102 and between
steps V202 and V203 are much larger than the typical distance between voltage steps,2 as shown
in Figure 5.1. As a result, the voltage step V303 has a normalized voltage value that is greater
than 303. Overall, the threshold voltage range is divided by these read reference voltages into
304 bins, labeled as bin0 to bin303. Each flash cell can be classified into one of these bins based
on the threshold voltage value read from the cell. If the read reference voltage is higher than the
threshold voltage of the cell, the value read out from the flash device is 1, otherwise the value
read out is 0. For a cell whose threshold voltage falls between two neighboring read reference
voltages (Vk and Vk+1), the cell is placed into bink, as illustrated in Figure 5.1.

G
A

P

G
A

P

cell

Threshold voltage (Vth)

P
ro

b
a

b
ili

ty
 d

en
si

ty

ER P1 P2 P3

b
in

0

V101V2 … VkVk+1… V303…

b
in

1

.. . .

b
in

1
0

1

V1

.

b
in

k

.

b
in

3
0

3

… V203

Cell on/off 00 …0 … 0 1 1…0

V102 V202

1 1…
Voltage

steps

Figure 5.1: Methodology for finding the threshold voltage of an MLC NAND flash memory cell.

After classifying every cell using the methodology described above, we count the number
of flash cells with state X ∈ {ER, P1, P2, P3} in bin k as Hk(X). Equation 5.1 shows how we
then normalize the bin counts as the probability density of each bin, Pk(X). Note that in our
characterization, we assign each flash cell to the threshold voltage distribution of the correct
state that it was originally programmed to, as we know the data value that we programmed. The
characterized bin density can be viewed as a discretized version of the measured distribution,
which our model is constructed to fit.

Pk(X) =
Hk(X)

Σ303
i=0Hi(X)

(5.1)

cell.
2Some flash vendors choose to provide fewer read reference voltages near the peak of the distribution of each

state. This is because flash cells near the have threshold voltages far away from the default read reference voltage,
and hence are less likely to have errors.

117

5.3 Static Distribution Model
We construct a static threshold voltage distribution model that can fit the characterized threshold
voltage distribution well under any P/E cycle count, based on data collected using the method-
ology described in Section 5.2. Recall that this model needs to be (1) accurate for all threshold
voltages and at any given P/E cycle, and (2) easy to evaluate within the flash controller. While
a more complex model can satisfy the accuracy requirements, it can be difficult to compute the
model on the fly given the limited computational resources in a flash controller. In this section,
we first describe two state-of-the-art models, each of which meets only one of our two require-
ments. The first previously-proposed model [23], based on a Gaussian distribution, is simple
and easy to compute, but is not accurate enough for raw bit error rate estimation (Section 5.3.1).
The second previously-proposed model [260], based on a normal-Laplace distribution, is accu-
rate, but requires significant computational resources, taking 10.7x the computation time of the
Gaussian-based model (Section 5.3.2). We propose a new model, based on our modified ver-
sion of the Student’s t-distribution [300], which satisfies both of our requirements, maintaining
the accuracy of the normal-Laplace-based model while requiring 4.41x less computation time
(Section 5.3.3). Finally, we validate and compare the three models (Section 5.3.4).

5.3.1 Gaussian-based Model
The Gaussian-based model assumes that the threshold voltage distribution of each state follows
a Gaussian (i.e., normal) distribution [23]. Equation 5.2 shows how the Gaussian-based model
estimates the probability density for state X (i.e., ER, P1, P2, and P3) in each bin k, denoted as
Gk(X):

Gk(X) = GCDF(Vk,µX ,σX)−GCDF(Vk−1,µX ,σX) (5.2)

The density Gk(X) is calculated as the difference between the Gaussian cumulative distri-
bution function (GCDF) of the bin’s two boundaries, Vk and Vk−1. The Gaussian-based model
has two variables for each state: µX is the mean of the distribution, and σX is the standard de-
viation of the distribution. In total, the Gaussian threshold voltage distribution model has eight
parameters.

The intuition behind using a Gaussian distribution is twofold. First, the threshold voltage
distribution is a result of physical noise and manufacturing process variation, which naturally
follow a Gaussian distribution. During a program operation, the flash controller uses ISPP (see
Section 2.2.4), iteratively increasing the threshold voltage until the desired threshold voltage
level is achieved. Each programming step increases the threshold voltage of a cell by a small
random amount. As programming subjects the cell to random physical noise, the threshold
voltage distribution of each state naturally approximates a Gaussian distribution [23].

Second, the Gaussian-based model can be computed quickly, and is easily implementable
in the flash controller hardware if we use a z-table, a lookup table that stores the precomputed
cumulative distribution function of the standard Gaussian distribution. Equation 5.3 shows how
the z-table simplifies the computation of GCDF . First, we calculate the z-scores Z = V−µ

σ
for

Vk and Vk−1. Then, we calculate Φ(Z), the precomputed cumulative distribution function of Z,

118

by looking up the z-score in the z-table. The two z-scores (one each for Vk and Vk−1) are then
combined to get Gk(X), using Equation 5.2.

GCDF(V,µ,σ) = Φ(Z) = z-table(Z) (5.3)

The goal of static modeling is to fit the estimated distribution Gk(X) to the measured distribu-
tion Pk(X). We use Kullback-Leibler divergence [160] to estimate the accuracy of the model (i.e.,
the error between the estimated and measured distributions). The Kullback-Leibler divergence
between the measured and the estimated probability density for each bin (Pk and Gk, respectively)
can be mathematically defined as:

DK−L =
Nbin

∑
k=1

Pk log(
Pk

Gk
) (5.4)

We use the Nelder-Mead simplex method [245] to minimize the error, in order to learn the
model under different P/E cycles. We use a reasonable initial guess of the parameters for the
Nelder-Mead simplex method, allowing us to quickly approach the best fit.

Figure 5.2 shows the distribution measured by our experimental characterization using mark-
ers, and shows how the Gaussian-based model (the curves depicted with solid or dashed lines)
fits to this data at different P/E cycle counts. The x-axis is the normalized threshold voltage, and
the y-axis is the probability density function at each normalized threshold voltage in log scale. In
this figure, from left to right, we show the threshold voltage distribution of the ER state, the P1
state, the P2 state, and the P3 state. We show the modeled distributions of the ER and P2 states
using solid lines, and the modeled distributions of the P1 and P3 states using dashed lines.

We observe that the Gaussian-based model has two limitations, which are demonstrated in
Figure 5.2. First, the threshold voltage distribution of each state as measured from real flash
chips has a fatter tail than that of a Gaussian distribution, and the left and right tails of each
state have different sizes. We observe the fat tail by comparing the measured distribution of each
state to the modeled distribution when the probability density is low (i.e., less than 10−4), and
find that the measured distribution has a much greater density than the modeled distribution at
the tail. This is because the Gaussian distribution has only two parameters for each state, which
capture only the center (µ) and the width (σ) of the distribution. We observe the asymmetric tail
by comparing the densities of the left and right tails of the P2 state distribution. Unfortunately,
the Gaussian distribution has no way to fine tune the ratio between the left and right tails, or the
ratio between the tails and the body of the distribution.

Second, the measured distribution demonstrates large second peaks in the distributions of the
ER and P1 states, which are not captured by the Gaussian-based model. These second peaks are
evidence of a significant number of program errors (see Section 2.2.4). Figure 5.2 shows that
the ER state distribution (the leftmost distribution) has a second peak that shows up under the P3
state distribution, and that the P1 state distribution (the second distribution from the left) has a
second peak under the P2 state distribution. These second peaks occur as a result of the two-step
programming mechanism used in MLC NAND flash memory. As we discuss in Section 2.2.4,
program errors can be introduced for the ER and P1 states as a result of intermediate operations
that take place while a cell is partially programmed, which causes the LSB to be misread.

119

0 50 100 150 200 250 300 350

10
−6

10
−4

10
−2

10
0

Normalized V
th

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

ER

P1 P2

P3

(a) 2.5K P/E cycles

0 50 100 150 200 250 300 350

10
−6

10
−4

10
−2

10
0

Normalized V
th

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

(b) 5K P/E cycles

0 50 100 150 200 250 300 350

10
−6

10
−4

10
−2

10
0

Normalized V
th

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

(c) 10K P/E cycles

0 50 100 150 200 250 300 350

10
−6

10
−4

10
−2

10
0

Normalized V
th

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

(d) 20K P/E cycles

Figure 5.2: Gaussian-based model (solid/dashed lines) vs. data measured from real NAND flash
chips (markers) under different P/E cycle counts.

As we observe in Figure 5.2, both types of inaccuracies occur throughout all P/E cycle counts
(from 2.5K to 20K), and are not, as prior work had shown [260], exclusive to high wear-out
scenarios (e.g., when the P/E cycle count is higher than the vendor-specified lifetime). The
magnitudes of the fatter tails and program error peaks increase as wear-out (i.e., P/E cycle count)
increases. As we can see, even though the Gaussian-based model captures the general trend for
the threshold voltage distribution and is easy to compute, it is limited in its accuracy, especially
at higher P/E cycles.

Section 5.3.4 quantifies the modeling error and computational requirements of the Gaussian-
based model.

5.3.2 Normal-Laplace-based Model

To overcome the limitations of the Gaussian-based model, prior work [260] proposes to modify
the model to increase its accuracy. This modified threshold voltage distribution model assumes
that the distribution of each state follows a normal-Laplace distribution, and accounts for the
peaks that result from misprogramming some cells that should be in the ER and P1 states into

120

the P3 and P2 states, respectively [260].
The normal-Laplace distribution combines the normal (Gaussian) distribution with the

Laplace distribution, which adds an exponential component to both tails of the distribution. As
we observe in Figure 5.2, this is similar to the measured behavior of the threshold voltage distri-
bution. Note that the figure is in log scale, and as a result, the exponential component at the tails
of the model appears as a straight line in the figure. By combining the two probability distribu-
tions, we can maintain the Gaussian distribution at the center of the distribution, and also model
the fat tail more accurately.

However, computing the normal-Laplace distribution becomes much more complex than the
Gaussian distribution, as the normal-Laplace distribution is not a simple superposition of the
Gaussian and Laplace distributions. Equation 5.5 shows how we compute the cumulative distri-
bution function for the normal-Laplace distribution [277]:

NCDF(V,µ,σ ,α,β ,λ)

= Φ(Z)−φ(Z)
βR(ασ −Z)−αR(βσ +Z)

α +β
(5.5)

This distribution adds two new parameters, α and β , which can be adjusted to model the right
and left tail sizes, respectively. In Equation 5.5, Z = V−µ

σ
is the z-score; Φ and φ are the cumula-

tive distribution function and probability density function of the standard Gaussian distribution,
respectively; and R(x) = 1−Φ(x)

φ(x) is Mills’ ratio for the Gaussian distribution. Φ(Z) can be ob-
tained by looking up the z-table, as was done for Equation 5.3. φ(Z) can be approximated as
φ(Z) = Φ(Z+δ)−Φ(Z−δ)

2δ
.

The normal-Laplace-based model adds two further parameters, λER and λP1, to model the
probability of program errors occurring for cells programmed to the ER and P1 states, respec-
tively. This model assumes that the threshold voltage distribution of the cells with program errors
has the same shape (i.e., the same parameters) as the distribution of the state the cells were in-
correctly programmed into (e.g., the cells that should be in the ER state but were programmed
into the P3 state will have a distribution with the same shape as the correct cells in the P3 state).
This is because once the cells are incorrectly programmed to another state, they are treated as
if they belong to that other state, and thus it is natural for them to follow the same distribution
as the correct cells in that state. Equation 5.6 shows how the normal-Laplace model estimates
the probability density for state X being misprogrammed to state Y in bin k, which is denoted as
Nk(X):

Nk(X) = (1−λX)NCDF(Vk,µX ,σX ,αX ,βX)

+λX NCDF(Vk,µY ,σY ,αY ,βY)

− (1−λX)NCDF(Vk−1,µX ,σX ,αX ,βX)

−λX NCDF(Vk−1,µY ,σY ,αY ,βY) (5.6)

This density is calculated as the difference of the NCDF at the bin’s two boundaries, Vk and
Vk−1. The normal-Laplace-based model allows each state to have at most five parameters (20
parameters over all four states). µ and σ are the mean and standard deviation, respectively; α

121

and β are the tail sizes; and λX is the probability that a cell that should actually be in state X is
incorrectly programmed.

Following prior work [260], we eliminate four unnecessary parameters of the model, which
include λP2, λP3, βER, and αP3. λP2 and λP3 are estimated as zero, as program errors for cells
that should be in the P2 or P3 states seldom occur. We also assume that the left and right tails
are the same size for the ER and P3 states (i.e., βER = αER and αP3 = βP3), because the read-
retry mechanism prevents us from measuring the left tail of the ER state and the right tail of
the P3 state. As we did in Section 5.3.1, and following prior work [260], we use Kullback-
Leibler divergence error [160] as the objective function, and we use the Nelder-Mead simplex
method [245] with a reasonable initial guess to learn the best parameters under different P/E
cycles.

Figure 5.3 shows the modeled distribution of each state as curves with solid or dashed lines,
and shows the distribution measured from real chips using markers. As we can see, the normal-
Laplace-based model fits the measured distribution much better than the Gaussian-based model.
The modeled tails for the ER, P2, and P3 states follow the measured distribution very closely,
thanks to the tail size parameters. Also, the distributions of the ER and P1 states take the program
error rate into account, and allow the model to correctly include two peaks for the distributions
of the ER and P1 states.

Unfortunately, although the normal-Laplace model is based on the Gaussian model, the com-
putational requirements of the model are much more complex. This is not only because the
model adds three more parameters for each state, but also because we now cannot eliminate µ

and σ using the z-score. Thus, directly computing the model requires many more floating point
operations than the Gaussian model (as we demonstrate in Section 5.3.4). As such, even though
the normal-Laplace model fits the measured threshold voltage distribution accurately, it is less
practical to implement.

Section 5.3.4 quantifies the modeling error and computational requirements of the normal-
Laplace-based model.

122

0 50 100 150 200 250 300 350

10
−6

10
−4

10
−2

10
0

Normalized V
th

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

ER

P1 P2

P3

(a) 2.5K P/E cycles

0 50 100 150 200 250 300 350

10
−6

10
−4

10
−2

10
0

Normalized V
th

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

(b) 5K P/E cycles

0 50 100 150 200 250 300 350

10
−6

10
−4

10
−2

10
0

Normalized V
th

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

(c) 10K P/E cycles

0 50 100 150 200 250 300 350

10
−6

10
−4

10
−2

10
0

Normalized V
th

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

(d) 20K P/E cycles

Figure 5.3: Normal-Laplace-based model (solid/dashed lines) vs. data measured from real
NAND flash chips (markers) under different P/E cycle counts.

5.3.3 Student’s t-based Model
Recall that we need a threshold voltage model that is both accurate and easy to compute. As
we can see, the Gaussian-based model is simple and fast, but does not meet the accuracy re-
quirement. In contrast, the normal-Laplace-based model fixes the accuracy problem, but uses
significantly more complex calculations. We thus aim to develop a model that meets both of our
requirements at the same time.

We propose to modify the Student’s t-distribution [300] so that it can be used to model the
threshold voltage distribution. The Student’s t-distribution is a well-known distribution used in
statistics that describes samples drawn from a normally-distributed population. The Student’s t-
distribution is typically used to estimate the true mean of a large, normally-distributed population
whose standard deviation is unknown, using only a small sample from the population. Compared
to the standard normal distribution, the Student’s t-distribution uses an extra parameter, ν , to
represent the degrees of freedom (i.e., the ratio of the sample size relative to the population size).
As ν increases (i.e., the sample size becomes larger), the Student’s t-distribution moves closer to
a standard normal distribution. However, instead of using the distribution for its original purpose,
we use this distribution for a completely different role. We find that ν can be used to tune the size

123

of the distribution tail. When ν→+∞, the Student’s t-distribution becomes a standard Gaussian
distribution, which has a smaller tail. When ν → 0, the distribution instead has a fatter tail. We
generalize the standard Student’s t-distribution using the z-score Z = V−µ

σ
, such that the center

and the width of the distribution can be scaled (as was done for the Gaussian distribution). We
also allow the left and right tails of the distribution to have different values of ν , which we denote
as β and α for the left and right tails, respectively. Thus, our modified Student’s t-distribution can
fit our measured threshold voltage distribution better than the original Student’s t-distribution.

We use precomputation to simplify the calculation of the cumulative distribution function for
our modified Student’s t-distribution (TCDF). Similar to the precomputed z-tables available for
the Gaussian-based model, we look up values in the precomputed t-tables commonly available
for the Student’s t-distribution to determine the TCDF values. Each t-table contains TCDF
values over a range of Z values for a single ν .3 Equation 5.7 shows how we calculate TCDF
using the precomputed t-table:

TCDF(V,µ,σ ,α,β) =

{
t-tableβ (Z) V ≤ µ

t-tableα(Z) V > µ
(5.7)

We first compare V with µ to observe whether V is on the left side or the right side of the
distribution. Then, depending on the result of the comparison, we use the corresponding tail
parameter α or β as ν to select the correct t-table. Finally, we compute the z-score Z to look up
TCDF in the selected t-table.

Equation 5.8 shows how our Student’s t-based model estimates the density for cells that
should be in state X but are incorrectly programmed to state Y in bin k, which is denoted as
Tk(X):

Tk(X) = (1−λX)TCDF(Vk,µX ,σX ,αX ,βX)

+λX TCDF(Vk,µY ,σY ,αY ,βY)

− (1−λX)TCDF(Vk−1,µX ,σX ,αX ,βX)

−λX TCDF(Vk−1,µY ,σY ,αY ,βY) (5.8)

Similar to the normal-Laplace-based model (Section 5.3.2), our Student’s t-based model uses
λ to estimate such program errors caused by the two-step programming mechanism (see Sec-
tion 2.2.4). Again, like the normal-Laplace-based model, our Student’s t-based model assumes
that the distribution of these cells has the same parameters as the cells correctly programmed into
state Y .

We set λP2 and λP3 to zero, βER = αER, and αP3 = βP3 for the same reasons as the normal-
Laplace-based model (see Section 5.3.2). Putting everything together, we use Kullback-Leibler
divergence error [160] as our objective function, and use the Nelder-Mead simplex method [245]
with a reasonable initial guess to learn the best parameters for the model under different P/E
cycles, as described in Section 5.3.1.

Figure 5.4 shows our modeled Student’s t-based distribution as curves with solid or dashed
lines, once again showing the distribution measured from real chips with markers. The figure

3The t-table can also be thought of as a two-dimensional array, where each entry corresponds to a unique pair of
(Z, ν) values.

124

shows that our Student’s t-based model fits perfectly when the probability density is greater than
10−4. The differences between our Student’s t-based model and the measured distribution are
within 10−6. The difference becomes non-trivial only for the left tail of the P1 state and the right
tail of P2 state. The accuracy improvements over the Gaussian model are similar to those of
the normal-Laplace-based model. This shows that our Student’s t-based model, like the normal-
Laplace-based model, makes good use of its extra parameters (both models have 16 parameters)
to cater to the program errors and fat tails that the measured distribution has.

0 50 100 150 200 250 300 350

10
−6

10
−4

10
−2

10
0

Normalized V
th

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

ER

P1 P2

P3

(a) 2.5K P/E cycles

0 50 100 150 200 250 300 350

10
−6

10
−4

10
−2

10
0

Normalized V
th

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

(b) 5K P/E cycles

0 50 100 150 200 250 300 350

10
−6

10
−4

10
−2

10
0

Normalized V
th

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

(c) 10K P/E cycles

0 50 100 150 200 250 300 350

10
−6

10
−4

10
−2

10
0

Normalized V
th

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

(d) 20K P/E cycles

Figure 5.4: Our new Student’s t-based model (solid/dashed lines) vs. data measured from real
NAND flash chips (markers) under different P/E cycle counts.

5.3.4 Model Validation and Comparison
Accuracy. To quantitatively compare the accuracy of each model and validate them, we compute
the Kullback-Leibler (K-L) divergence [160] between the modeled and the measured distribu-
tions, as K-L divergence measures the difference between two distributions (see Section 5.3.1).
Table 5.1 and Figure 5.5 show the modeling error of the three models across a range of P/E
cycle counts. We observe two types of behavior shared by all three models. First, as the P/E
cycle count increases, the modeling error increases. Second, the increase in modeling error is

125

more rapid at smaller P/E cycle counts, and slower at higher P/E cycle counts. As we see in
Section 5.4, this is because the threshold voltage distribution is affected by the P/E cycling effect
more significantly at smaller P/E cycle counts.

Table 5.1: Modeling error of the evaluated threshold voltage distribution models, at various P/E
cycle counts.

P/E Cycles 0 2.5K 5K 7.5K 10K 12K 14K 16K 18K 20K AVG

Gaussian .99% 1.8% 1.6% 1.8% 1.9% 2.4% 3.1% 8.7% 2.1% 2.3% 2.6%
Normal-Laplace .34% .46% .55% .61% .63% .67% .68% .70% .67% .67% .61%
Student’s t .37% .51% .61% .68% .70% .76% .76% .78% .76% .78% .68%

0 0.5 1 1.5 2

x 10
4

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

P/E cycles

M
o

d
e

lin
g

 e
rr

o
r

p
e

rc
e

n
ta

g
e

Gaussian

Normal−Laplace
Student’s t

Figure 5.5: Modeling error of the evaluated threshold voltage distribution models, at various P/E
cycle counts.

Comparing the three models in Figure 5.5, we make two observations. First, the average
Kullback-Leibler divergence error for the Gaussian-based model is 2.64%, which is 4.32x and
3.88x greater than the error of the normal-Laplace-based and our Student’s t-based models, re-
spectively. We also see that this error can be as large as 8.7%, leading to high inaccuracy. This is
mainly due to two limitations of the Gaussian-based model. As mentioned in Section 5.3.1, the
Gaussian-based model (1) cannot adjust its tail size to fit with the fat and asymmetric tails of the
observed distributions of the voltage states, and (2) does not account for misprogrammed cells
that form a second peak in the distributions of the ER and P1 states.

Second, the modeling errors of the normal-Laplace-based and our Student’s t-based models
are very close (averaged across all tested P/E cycles, 0.61% for the normal-Laplace-based model,
and 0.68% for our Student’s t-based model). The maximum difference in error between these
two models is 0.11%, at 20K P/E cycles (already well beyond the rated lifetime of the flash chip,
which is 3K P/E cycles).

Complexity. All three of the models require online iterative computation whenever the flash
controller needs to generate a characterization of the threshold voltage distribution at a new P/E
cycle count. For each iterative computation, hundreds to thousands of iterations of the model
computation algorithm must be executed before the model reaches high accuracy (i.e., the model

126

converges, or in other words, reaches convergence). As we alluded to in Section 5.3.2, while the
normal-Laplace-based model is accurate, it requires significant computation during each itera-
tion, and cannot be precomputed and stored in a lookup table, making it less practical for use
within a flash controller. To compare the complexity of the three models, we summarize their
computation overhead in terms of the number of floating-point operations and table lookups
performed for each iteration, as well as their storage overhead in terms of lookup table size.
Table 5.2 compares the three models. As we can see, the normal-Laplace-based model requires
91,200 operations per iteration (which involves computing Nk(X) for four states in each of the
304 threshold voltage bins). Assuming that each floating-point operation takes the same num-
ber of cycles, the normal-Laplace-based model is 10.71x slower than the Gaussian-based model.
In contrast, our Student’s t-based model takes 4.41x less computation time than the normal-
Laplace-based model, with near-identical accuracy. Our Student’s t-based model is only 2.43x
slower than the Gaussian-based model, but has a 74% smaller modeling error.

Table 5.2: Computation and storage complexity comparison for the three evaluated threshold
distribution models.

Model Gaussian Normal-Laplace Student’s t

Operations 8512 91200 20672
Storage 640B 3.84KB 25.6KB

The third row of the table shows the storage overhead for the z-table or t-tables used by each
model (which are populated in the flash controller’s DRAM when the flash device is powered
up). The Gaussian-based model needs only 640B to store the useful range of the z-table. The
normal-Laplace-based model requires a larger lookup range for the z-table, increasing the storage
overhead to 3.84KB. Our Student’s t-based model requires storing multiple t-tables (one table per
value of ν), and uses 25.6KB of storage in total. We find that all three storage overhead values are
negligible, as these tables are easily stored within the flash controller’s DRAM, which is usually
sized to be a fixed fraction of the flash storage capacity (e.g., 1GB memory for a 512GB drive).

Latency. The flash controller builds a threshold voltage distribution model in two steps:
characterization and model computation. First, we identify the threshold voltages of each cell
in a sampled flash wordline by performing 303 read operations, one read for each read reference
voltage level (using the approach described in Section 5.2). This characterization takes 30.3 ms
for the wordline, assuming a typical read latency of 100µs. Second, once characterization is
complete, the controller computes the model, using a combination of the precomputed tables
stored in DRAM and the characterized voltages. To calculate the overhead, we assume that each
of the models takes 1000 iterations to converge, and that computation is performed on a 1GHz
embedded processor that completes one instruction per cycle.

Figure 5.6 shows the overall latency for the three models we evaluate, broken down into
characterization latency (which is the same for all three models) and model computation latency.
The computation overhead of the normal-Laplace-based model dominates its overall latency,
while the computation overhead of our Student’s t-based model is much smaller than the char-
acterization latency. As a result, our Student’s t-based model has a 58.0% lower overall latency
than the normal-Laplace-based model. Since the fixed characterization latency dominates overall

127

latency in both our Student’s t-based model and the Gaussian-based model, our model is only
31.3% slower in overall latency than the Gaussian-based model, while it reduces modeling error
by 74%.

0 20 40 60 80 100 120 140

Student's t

Normal-Laplace

Gaussian

Latency (ms)

Characterization Latency Online Computation Latency

Figure 5.6: Overall latency breakdown of the three evaluated threshold voltage distribution mod-
els for static modeling.

The frequency with which the characterization and modeling procedure is triggered depends
purely on the application making use of the threshold voltage distribution model. Note that
the choice of model should not change the frequency at which the procedure is executed (as
each model provides an equivalent end result). As an example, we can determine the amortized
overhead per 4KB read/write operation for one application of our model, which predicts the
optimal read reference voltage (see Section 5.5.2). The prediction mechanism requires us to
repeat the characterization and modeling procedure only once every 1000 P/E cycles. For a flash
device with 512 pages per block, if we conservatively assume a read-to-write ratio of 1:1, the
average overhead amortized over each read/write operation is 49.8ns using our static Student’s
t-based model [196].

Summary. In summary, the majority of the accuracy improvement over the Gaussian-based
model comes from (1) accounting for the program errors for the erased and P1 states, and (2) ac-
counting for the fat tails of each state. Our Student’s t-based model, as well as the previously-
proposed normal-Laplace-based model, both contain these improvements, and hence achieve
similar accuracy.

Our Student’s t-distribution based model has much lower complexity than the normal-
Laplace-based model due to its ability to exploit precomputation. We show in Section 4.3 that
the CDF of the Student’s t-distribution can be simplified into a simple table lookup using the
z-score, Z, and the degrees of freedom, ν . We are unaware of a similar precomputation-based
approach that can be applied to the normal-Laplace model.

We conclude that our new Student’s t-based model achieves the high accuracy of the normal-
Laplace-based model while requiring significantly less complexity and latency to compute. As
such, we believe that our Student’s t-based model meets the requirements of accuracy and sim-
plicity, and is a practical model for implementation within the flash controller.

128

5.4 Dynamic Modeling
We now construct a dynamic threshold voltage distribution model, building off of our Student’s
t-based static model in Section 5.3.3, to capture how the threshold voltage distribution changes as
the program/erase (P/E) cycle count increases. Again, we must ensure that this dynamic model
is accurate, and that it is easy to compute, as we aim to implement the model within the flash
controller. To construct the model, we first analyze how each of the individual parameters making
up our Student’s t-based model change over the P/E cycle count (Section 5.4.1). By analyzing
the meaning of each parameter and observing how it changes, we gain new insights on how
the threshold voltage shifts with increasing P/E cycle count. We then use these new insights to
construct a model using the power law, which can successfully predict the future changes to each
of these parameters based on the current threshold voltage distribution (Section 5.4.2). Finally,
we validate this model (Section 5.4.3).

5.4.1 Static Model Trends Over P/E Cycles
In order to analyze and observe how the parameters for our Student’s t-based model change as P/E
cycle count increases, we first need to understand what each parameter means. As we discuss in
Section 5.3.3, our Student’s t-based model has 16 parameters. Four of them are the mean values
for each state X’s threshold voltage distribution (µX). Another four parameters are the standard
deviation values of the threshold voltage distribution of each state X (σX). Three of them are the
left tail sizes of the P1, P2, and P3 state distributions (βX), and another three are the right tail
sizes of the ER, P1, and P2 state distributions (αX). (Recall from Section 5.3.2 that the left tail
of the ER state and the right tail of the P3 state cannot be observed experimentally, so we assume
that they equal the right tail of the ER state and the left tail of the P3 state, respectively.) The
remaining two parameters are the probability of program errors, occurring for cells programmed
into the ER and P1 states (λX).

Mean. The mean value of each state represents the center of the distribution. In our Student’s
t-based model, the majority of the mass of the threshold voltage distribution for each state is near
the center. Thus, a change in the mean reflects how the P/E cycle count generally affects the
threshold voltages of all cells in each state.

Figure 5.7 plots the mean values obtained from sample Student’s t-based models constructed
over a range of 20K P/E cycles, shown as circles. The x-axis shows the P/E cycle count, while
the y-axis shows the normalized threshold voltage of the mean. Each graph plots the mean value
for a different state, which is labeled at the top of the graph. We make three observations from
this figure. First, the mean value of each state’s distribution increases monotonically with P/E
cycle count. Second, the mean value increases faster at lower P/E cycle counts, then slows down
to a constant rate of increase after 5K P/E cycles. Third, the mean value shifts more quickly for
lower threshold voltage states (ER, P1).

129

0 0.5 1 1.5 2

x 10
4

−180

−160

−140

−120

−100

P/E cycles

M
e
a

n

ER

0 0.5 1 1.5 2

x 10
4

120

130

140

P/E cycles

M
e
a

n

P1

0 0.5 1 1.5 2

x 10
4

240

260

280

P/E cycles

M
e
a

n

P2

0 0.5 1 1.5 2

x 10
4

410

420

430

P/E cycles
M

e
a

n

P3

Figure 5.7: Change in mean value of each state’s threshold voltage distribution as P/E cycle
count increases, for the static Student’s t-based model (blue circles) and the dynamic model (red
line).

Standard Deviation. The standard deviation of each state represents the width of the distri-
bution. Similar to the Gaussian distribution, the Student’s t-distribution contains the vast major-
ity (∼95%) of its mass within two standard deviations. Thus, the change in standard deviation
reflects how P/E cycle count affects the threshold voltage variation among flash cells.

Figure 5.8 plots the standard deviation values obtained from our Student’s t-based model as
circles. For this figure, the y-axis shows the standard deviation in terms of normalized threshold
voltage. We make three observations from this figure. First, the standard deviation of each state’s
distribution increases monotonically with P/E cycle count. Second, the standard deviations of
the P1 and P2 states increase linearly with P/E cycle count. Third, like the mean, the standard
deviation increases faster at lower P/E cycle counts, then slows down to a constant rate of increase
after 5K P/E cycles.

130

0 0.5 1 1.5 2

x 10
4

60

65

70

P/E cycles

S
td

e
v

ER

0 0.5 1 1.5 2

x 10
4

14

16

18

20

22

P/E cycles

S
td

e
v

P1

0 0.5 1 1.5 2

x 10
4

15

16

17

P/E cycles

S
td

e
v

P2

0 0.5 1 1.5 2

x 10
4

12

14

16

18

20

22

P/E cycles
S

td
e
v

P3

Figure 5.8: Change in standard deviation of each state’s threshold voltage distribution as P/E
cycle count increases, for the static Student’s t-based model (blue circles) and the dynamic model
(red line).

Tail Values. The tail values of each state represent the size and shape of the distribution tail.
Recall from Section 5.3.3 that we use ν , which actually represents the degrees of freedom, to
control how fat the tail of the model is. Thus, the tail value reflects how the P/E cycle count
affects the number of outlier cells (i.e., the number of cells that lie at the tail).

Figure 5.9 plots the tail values obtained from our Student’s t-based model as circles. In this
figure, the y-axis shows the value of ν , where a lower value of ν corresponds to a fatter tail. We
make three observations. First, the range of values for the tail sizes of the ER and P3 states is
much smaller in comparison to the tail sizes of the distributions of the other states. Second, the
sizes of both tails for the P1 state increase with P/E cycle count. Third, the tail sizes of the P2
state decrease as P/E cycle count increases.

131

0 0.5 1 1.5 2

x 10
4

0

1

2
x 10

7

P/E cycles
ν

α
ER

0 0.5 1 1.5 2

x 10
4

8

10

12

P/E cycles

ν

α
P1

0 0.5 1 1.5 2

x 10
4

−100

0

100

P/E cycles

 ν

β
P1

0 0.5 1 1.5 2

x 10
4

5

10

15

P/E cycles

ν

α
P2

0 0.5 1 1.5 2

x 10
4

0

50

100

P/E cycles

ν

β
P2

0 0.5 1 1.5 2

x 10
4

10

20

30

P/E cycles

 ν

β
P3

Figure 5.9: Change in tail values (ν) of each state’s threshold voltage distribution as P/E cycle
count increases, for the static Student’s t-based model (blue circles) and the dynamic model (red
line).

Probability of Program Errors. The program error probability λX represents the percentage
of cells that should be programmed into state X , but are instead misprogrammed to a different
state, as a result of two-step programming (see Section 2.2.4). In our model, we assume that only
certain types of program errors exist (ER→P3 and P1→P2), as program errors flip the value of
only the LSB within a cell and can only increase the threshold voltage.

Figure 5.10 plots the program error probability obtained from our Student’s t-based model
as circles. For this graph, the y-axis shows the log10 value of the program error probability. We
make two observations. First, the program error rate increases with P/E cycle count. Second,
the number of program errors increases more rapidly at lower P/E cycle counts, and then slows
down to a constant rate of increase at higher P/E cycle counts.

132

0 0.5 1 1.5 2

x 10
4

−12

−11

−10

−9

−8

−7

−6

P/E cycles

P
ro

g
ra

m
 e

rr
o

r
p

ro
b

a
b

ili
ty

ER

0 0.5 1 1.5 2

x 10
4

−150

−100

−50

0

P/E cycles

P
ro

g
ra

m
 e

rr
o

r
p

ro
b

a
b

ili
ty

P1

Figure 5.10: Change in log value of the program error probability as P/E cycle count increases,
for the static Student’s t-based model (blue circles) and the dynamic model (red line).

5.4.2 Power Law-based Model
Now that we have characterized how each of the parameters for our Student’s t-based model
changes with respect to the P/E cycle count, we use this characterization to develop a dynamic
model of the threshold voltage distribution. A dynamic model can reduce the total computation
effort for the threshold voltage distribution significantly, by requiring as little as a single static
model characterization for the entire lifetime of the flash device. The dynamic model takes the
static characterization-based model(s) generated in the past, and simply adjusts the model param-
eters at higher P/E cycle counts based on its prediction of how each parameter would change with
P/E cycle count (without requiring any further characterization). Without the dynamic model, a
static model of the characterization must be generated every time a new threshold voltage dis-
tribution is requested by the controller (e.g., after a fixed number of P/E cycles have occurred),
with each characterization requiring a large number of read-retry operations (see Section 5.3.4).
These read-retry operations increase the accuracy of the model, but interfere with and slow down
host commands. Our goal is to build a dynamic model that is accurate and easy to compute (such
that it requires only a small number of characterizations), so that it can be used within the flash
controller.

In Section 5.4.1, we observe that all of the parameters can increase, decrease, or remain
relatively constant. We also observe that the rate at which increases and decreases occur differs
between lower P/E cycle counts and higher P/E cycle counts. Our dynamic model must be able to
represent all of these behaviors. We find that the power law satisfies all of these characteristics.
Equation 5.9 shows the power law function, which models each parameter from our Student’s
t-based model, Y , as a function of the P/E cycle count (x):

Y = a× xb + c (5.9)

The power, b, can be set to a positive value to represent an increasing trend, or can be set to
a negative value to represent a decreasing trend. b can also control the difference in slope at

133

different P/E cycle counts. For example, when b < 1, the modeled parameter Y changes faster at
lower P/E cycle counts, and when b > 1, Y changes faster at higher P/E cycle counts.

To observe how well the power law models changes to the parameters of our Student’s t-based
model, we fit the power law to the values of each of the parameters as measured over several
P/E cycle counts (see Section 5.4.1).4 We use mean squared error (MSE) to estimate the error,
where the divergence between the measured and estimated parameters (Yi and Ŷi, respectively)
can be mathematically defined as: MSE = 1

n ∑
n
i=1(Yi− Ŷi)

2. We use the Nelder-Mead simplex
method [245], with a reasonable initial guess, to fit the trend.

Figures 5.7, 5.8, 5.9, and 5.10 show the power law-based models fit to the trends of each of
our parameters as solid lines. We fit the power law to the static model parameter values generated
over a range of 20K P/E cycles. We observe that the predictions from the power law fit very well
with the actual parameters measured from our Student’s t-based model, which are shown as blue
circles. We next quantify the accuracy of our power law-based dynamic model.

5.4.3 Model Validation
We validate our dynamic model by using it to predict the threshold voltage distribution at 20K
P/E cycles. We perform threshold voltage distribution characterizations at 2.5K, 5K, 7.5K, and
10K P/E cycles, and use these parameters to predict the distribution at 20K P/E cycles. Fig-
ure 5.11 shows the comparison between the actual characterized distribution (markers) and the
distribution predicted by our dynamic model (solid or dashed curves) at 20K P/E cycles. The
modeling error for the dynamic model is only 2.72%, which is close to the modeling error of
directly using a static Gaussian-based model at 20K P/E cycles. The dynamic model avoids the
need to perform the extensive read-retry characterization that all static models, including the
Gaussian-based model, would require.

4We exclude 0 P/E cycle results when modeling, as they show a completely different behavior than results at any
other P/E cycle count.

134

0 50 100 150 200 250 300 350

10
−6

10
−4

10
−2

10
0

Normalized V
th

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

ER

P1 P2

P3

Figure 5.11: Threshold voltage distribution as predicted by our dynamic model for 20K P/E cy-
cles, using characterization data from 2.5K, 5K, 7.5K, and 10K P/E cycles, shown as solid/dashed
lines. Markers represent data measured from real NAND flash chips at 20K P/E cycles.

Figure 5.12 shows how the modeling error of our dynamic model decreases for a prediction
at 20K P/E cycles as the number of characterized data points increases. The number of charac-
terized data points represents the N earliest static models out of a range that consists of static
models for 2.5K, 5K, 7.5K, 10K, 12K, 14K, 16K, 18K, and 19K P/E cycles. Note that we start
with three characterization data points, which allows the dynamic model to observe a trend in the
change of each parameter. This figure shows that the error rate decreases rapidly as we increase
the number of data points used to train the dynamic model.

3 4 5 6 7 8 9
0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

2.2%

2.4%

2.6%

2.8%

Number of characterized data points

M
o

d
e

lin
g

 e
rr

o
r

p
e

rc
e

n
ta

g
e

Figure 5.12: Modeling error of predicted threshold voltage distribution for our dynamic model
at 20K P/E cycles, using characterization data from N different P/E cycles.

We conclude that our dynamic model successfully predicts an accurate threshold voltage
distribution for a P/E cycle count it has not observed, based on only prior characterization data,
and is thus practical for use in the flash controller.

135

5.5 Example Applications
Now that we have developed our threshold voltage distribution model, we demonstrate three
example applications within the flash controller that take advantage of the model to enhance the
reliability of the flash device. The first application, described in Section 5.5.1, uses our model
to accurately estimate the raw bit error rate. The second application, described in Section 5.5.2,
uses our model to accurately predict the optimal read reference voltage. The third application,
described in Section 5.5.3, uses our model to estimate the expected lifetime of the flash memory
device, to safely achieve higher P/E cycle endurance than manufacturer specification.

5.5.1 Raw Bit Error Rate Estimation
The raw bit error rate (i.e., the probability of reading an incorrect state for a flash cell), or RBER,
is important not only because it is a measure of the reliability of a flash device, but because it
also can be used to determine the lifetime and performance of the flash drive [27]. The raw
bit error rate can be used to enable several optimizations in the flash controller. For example,
accurately estimating the current raw bit error rate allows us to safely utilize the currently unused
ECC correction capability to accelerate program operations [122], relax the retention time [27,
188], and reduce the effects of read disturbance [35]. Accurate estimation of the raw bit error
rate enables other optimizations, such as predicting the optimal read reference voltage [24] or
performing error rate based wear-leveling.

To estimate the raw bit error rate based on the static threshold voltage distribution model, we
use the static model to calculate the cumulative distribution function (CDF) for each state at each
of our read reference voltages (Va, Vb, and Vc), and use this data to determine how many cells
are misread. For example, if there are cells in the distribution of the ER state whose threshold
voltages are greater than Va, they will be misread. By calculating the ER state CDF up to Va, we
know what percentage of cells will be correctly read. We subtract this value from 1 to obtain the
percentage of cells that will be misread (and will thus contribute to the raw bit error rate).

Figure 5.13 shows the actual measured raw bit error rate and the modeled raw bit error rates
using the three static models from Section 5.3, for different P/E cycle counts. The x-axis shows
P/E cycle count, and the y-axis shows the measured or model-predicted raw bit error rate. The
three graphs show the average error rate for only the LSB pages, only the MSB pages, and for all
of the pages. We make two observations from this data. First, the normal-Laplace-based and our
Student’s t-based models give a much better estimate of the raw bit error rate than the Gaussian-
based model. Averaged across all P/E cycle counts, our Student’s t-based model estimates the
RBER for all pages within 13.0% of the actual measured RBER, while the normal-Laplace-
based model is within 14.9% and the Gaussian-based model is only within 44.7%. This is due
to the limitations of the Gaussian-based model, as it cannot adjust the tail size or take program
errors into account. Second, the normal-Laplace-based and our Student’s t-based models tend to
overestimate the error rate, which is usually safe for the purposes of many optimizations, because
overestimation results in more than adequate ECC correction capability to remain available for
these errors. In contrast, the Gaussian-based model always underestimates the raw bit error rate,
which, if used for an optimization that relies on an RBER estimation, can cause the number of
errors to exceed the correction capability of ECC, resulting in uncorrectable errors during reads.

136

We conclude that our Student’s t-based model is effective at providing an accurate estimate of
the raw bit error rate for use by the flash controller.

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

P/E cycles

P
re

d
ic

te
d

 R
B

E
R

 a
t

d
e

fa
u

lt
 V

re
f

LSB pages

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

P/E cycles

MSB pages

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

P/E cycles

ALL pages

Actual
Gaussian

Normal−Laplace
Student’s t

Figure 5.13: Actual and modeled raw bit error rate using the three evaluated threshold voltage
distribution models when reading with fixed default read reference voltages (Vre f), across differ-
ent P/E cycle counts.

5.5.2 Optimal Read Reference Voltage Prediction

As we discussed in Section 3.1, when the threshold voltage distribution shifts, it is important
to move the read reference voltage to the point where the number of read errors is minimized.
After the shift occurs, the threshold voltage distributions of each state may overlap with each
other, causing many of the cells within the overlapping regions to be misread. The number of
errors due to misread cells can be minimized by setting the read reference voltage to be at the
point where the distributions of two neighboring states intersect, which we call the optimal read
reference voltage (Vopt) [24]. Once the optimal read reference voltage is applied, the raw bit error
rate is minimized, improving the reliability of the device. Furthermore, since fewer errors are
corrected, and fewer read-retries are needed, read latency is also significantly reduced [27].

Prior work proposes to learn and record the optimal read reference voltage periodically [27,
252, 309] by sampling the threshold voltages of some of the cells in each flash block, but this
sampling requires time and storage overhead. With our new distribution model, we can determine
the optimal read reference voltage from the model and predict how it changes, without having
to exhaustively learn it for each block. From our threshold voltage distribution model, we can
predict the optimal read reference voltage by finding the point at which the probability density
functions of the distributions of two neighboring states are the same (i.e., the intersection of the
two distributions).

Figure 5.14 plots the actual measured and modeled optimal read reference voltage using the

137

three static models from Section 5.3, at different P/E cycle counts.5 Each graph shows the voltage
chosen for one of the three read reference voltages (Va, Vb, and Vc) used to distinguish between
the distributions of two neighboring states. The x-axis shows the P/E cycle count, while the y-
axis shows the normalized optimal read reference voltage. We make three observations from this
result. First, the normal-Laplace-based and our Student’s t-based models slightly overestimate
all three optimal read reference voltages. Second, the Gaussian-based model underestimates
the optimal read reference voltages in most cases, and has glitches of underestimation as large
as 17 voltage steps. We suspect that this is because the Gaussian-based model cannot capture
the asymmetric tail sizes of the distribution. Third, at 0 P/E cycles, the read reference voltages
predicted using the normal-Laplace-based model deviate significantly from the actual optimal
read reference voltages. We find that the normal-Laplace-based model has difficulty converging
to a good value at 0 P/E cycles, while our Student’s t-based model does not experience any such
difficulty.

0 0.5 1 1.5 2

x 10
4

40

45

50

55

60

65

70

75

80

P/E cycles

V
o

p
t

V
a

0 0.5 1 1.5 2

x 10
4

185

190

195

200

205

210

215

P/E cycles

V
b

0 0.5 1 1.5 2

x 10
4

325

330

335

340

345

350

355

P/E cycles

V
c

Actual
Gaussian

Normal−Laplace
Student’s t

Figure 5.14: Actual and modeled optimal read reference voltages (Vopt) using the three evaluated
threshold voltage distribution models at different P/E cycle counts.

Figure 5.15 shows the RBER when we use the actual optimal read reference voltage to read
data, as well as the RBER when we use the optimal read reference voltages predicted by each of
the three static models from Section 5.3, at different P/E cycle counts. As we did for Figure 5.13,
we show the average error rate for only the LSB pages, only the MSB pages, and for all of the
pages. We observe that the prediction generated from the Gaussian-based model results in
a significantly higher MSB error rate than the actual optimal voltage. The normal-Laplace-
based and our Student’s t-based models generate read reference voltage predictions that result in
near-optimal RBER (within 1.5% and 1.1%, respectively, of the optimal RBER), despite some
difference between the actual optimal read reference voltage and the model-predicted voltages.

5Note that the default read reference voltages are (Va,Vb,Vc) = (50,190,330). We observe that the actual optimal
read reference voltage can be higher than the default read reference voltage by as much as 27 voltage steps.

138

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5
x 10

−3

P/E cycles

A
c
tu

a
l
R

B
E

R
 a

t
V

o
p

t o
f
e
a
c
h
 m

o
d
e
l

LSB pages

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5
x 10

−3

P/E cycles

MSB pages

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5
x 10

−3

P/E cycles

ALL pages

Actual
Gaussian

Normal−Laplace
Student’s t

Figure 5.15: RBER achieved by actual and modeled optimal read reference voltages (Vopt) using
the three evaluated threshold voltage distribution models at different P/E cycle counts.

We evaluate how using the optimal voltages predicted by each model can improve flash life-
time compared to using the default read reference voltages. We assume that we have a state-of-
the-art LDPC decoder, which can tolerate a raw bit error rate as high as 5× 10−3 [100] while
still keeping the required uncorrectable error rate below 10−15 [121] during the flash device’s
lifetime.6 We also assume that our flash device refreshes its data every three weeks, limiting
the number of retention and read disturb errors that occur [22]. Using the actual (i.e., ideal)
optimal read reference voltage, flash lifetime improves by 50.6%. Both our Student’s t-based
model and the normal-Laplace-based model come very close to the ideal improvement, provid-
ing a 48.9% lifetime improvement with our Student’s t-based model. Due to its lower accuracy,
the Gaussian-based model achieves only a 38.5% improvement.

5.5.3 Expected Lifetime Estimation
Due to the increasing raw bit error rate at higher P/E cycle counts, flash memory can endure only
a limited number of writes. To make sure that all data stored in the flash drive is reliable over the
course of a predefined device lifetime (typically several years), enterprise users limit the number
of writes to each flash drive. Due to process variation, different flash chips can have different raw
bit error rates and thus different P/E cycle endurance. However, flash vendors conservatively set
the flash drive’s P/E cycle endurance to the worst case (i.e., to the lowest endurance value out of
all of the chips that they produce), as they do not know how fast each individual flash chip wears
out over time. In fact, prior work has tested six commercial flash drives, and found that they all
surpassed their official endurance specifications by an average of 81% [86].

If the flash controller can monitor how fast each flash chip wears out due to flash writes, the

6To tolerate variation in the raw bit error rate, we assume that 10% of the total ECC correction capability is
reserved, lowering the maximum tolerable raw bit error rate.

139

users can determine the actual endurance limit of the flash drive, and write more data to it without
worrying about prematurely wearing out the drive and losing data. The model proposed in this
chapter enables raw bit error rate prediction for future P/E cycle counts. Thus, the controller can
predict the endurance limit of each flash chip by iterating through our dynamic model to predict
the point at which the raw bit error rate exceeds the ECC correction capability (i.e., when the
lifetime actually ends). The flash controller then communicates this prediction to the file system
to allow higher write intensity to the flash drive.

We estimate the lifetime improvements using this technique, with the same assumptions we
made in Section 5.5.2 and the data shown in Section 5.5.1. With our dynamic model, we safely
achieve 69.9% higher P/E cycle endurance than manufacturer specification. This translates to
69.9% more tolerable writes per day, if we assume that the flash device will be used for the same
number of years (i.e., lifetime) as before.

5.5.4 Soft Information Estimation for LDPC Codes

To tolerate flash errors more efficiently, today’s flash controllers use LDPC codes to detect and
correct multiple raw bit errors in the data read from the flash memory channel [78, 326, 362].
An LDPC code can use soft information about each bit to increase the probability of correcting
the raw bit errors. This soft information is provided by the flash controller, which estimates the
probability of each bit being a 1 or a 0 using the threshold voltage of a cell. A modern flash con-
troller typically obtains this probability from a Gaussian-based model for the threshold voltage
distribution, since the soft information can be computed as a quadratic function of the threshold
voltage. However, as we have shown in Section 5.3, the Gaussian-based model underestimates
the probability density at the tail of the distribution, and does not model program errors. Thus,
the model can provide inaccurate information to the LDPC decoder. This compromises the error
correction capability of the LDPC codes, thus reducing the reliability and performance of the
flash drive.

With the models proposed in this chapter, we now have an accurate threshold voltage distri-
bution model that adapts to the P/E cycle of each block, and can be implemented within the flash
controller. Using our Student’s t-based model, we can accurately and efficiently compute the
probability density for any threshold voltage range to provide accurate soft information to the
flash controller. By increasing the accuracy of this soft information, we effectively increase the
error correction capability of the LDPC code, which can lead to longer flash lifetime and better
read performance [78, 326, 362]. We leave the precise implementation of such a mechanism for
future work.

5.5.5 Improving Flash Performance

While the applications of our threshold voltage distribution model that we have discussed in Sec-
tions 5.5 and 5.5.4 aim to improve reliability, they can also improve flash performance. For exam-
ple, by predicting and applying the optimal read reference voltage (Section 5.5.2), we can greatly
lower the probability that read-retries need to be performed for a read operation, which also re-
duces the number of ECC decoding iterations, both of which lead to a lower read latency [27].

140

Other applications can also take advantage of our model to improve flash performance. For ex-
ample, we can minimize the ECC decoding latency by adaptively applying a weaker ECC code
when the raw bit error rate indicated by our model is low [100, 101, 336, 358]. We expect and
hope future work to evaluate the performance benefits of these applications, and to propose other
new applications of our online model that can improve flash performance.

5.6 Related Work
To our knowledge, our work in this chapter is the first to (1) propose a threshold voltage distri-
bution model that is both highly accurate and computationally efficient, (2) propose a dynamic
threshold voltage distribution model that predicts how the parameters of this model change with
increasing program/erase cycle count, and (3) demonstrate several new practical uses of this
threshold voltage distribution model within a flash controller to improve flash memory reliabil-
ity.

We have already comprehensively compared our Student’s t-based static model to the two
most relevant models based on real characterization results, the Gaussian-based model [23, 227]
and the normal-Laplace-based model [260], in Sections 5.3.1, 5.3.2, and 5.5. We show that our
Student’s t-based model has an error rate within 0.11% of the error rate of the highly-accurate
normal-Laplace model, while requiring 4.41x less computation time. Several prior works fit
the threshold voltage distribution to other models that are either less accurate or more complex,
such as the beta distribution [23], gamma distribution [23], log-normal distribution [23], Weibull
distribution [23], and beta-binomial probability distribution [315]. Other prior works model
the threshold voltage distribution based on idealized circuit-level models [78, 227, 251]. These
models capture some of the desired threshold voltage distribution behavior, but are less accurate
than those derived from real characterization.

A few works also propose dynamic models of the threshold voltage distribution shifts based
on the power law [23, 24, 260]. While these models are sufficient for offline analysis, they are
unsuitable for deployment in today’s flash controllers, as they fail to achieve high accuracy and
low computational complexity at the same time. Our dynamic model also uses the power law, but
is based on our new, accurate, and low-complexity Student’s t-based static model. We show that
our model has an error rate of only 2.72% when estimating the distribution at 20K P/E cycles,
even though it uses characterization data collected at only four different P/E cycle counts from
the past (up to 10K P/E cycles). While other dynamic models based on idealized circuit models
exist [78, 251], they are not validated with real characterization data, and cannot achieve the
same accuracy as our model.

Prior works propose and evaluate techniques for raw bit error rate estimation [260, 270], op-
timal read reference voltage estimation [27, 252, 253, 309], and LDPC soft decoding [78, 326,
362]. These works utilize a threshold voltage distribution model only offline, or do not utilize a
threshold voltage distribution model at all. We show that, by utilizing our model, we can effec-
tively and practically guide such flash reliability mechanisms online in the flash controller. We
also provide a new mechanism to exploit process variation for higher flash endurance, by predict-
ing and safely utilizing the remaining lifetime of a flash device online. Prior works propose to
only tolerate error rate variation and process variation to improve flash lifetime [180, 228, 229].

141

We note that several prior works have already extensively studied the impact of retention
behavior on the threshold voltage distribution using real hardware [21, 22, 25, 27]. They show
that commonly-employed refresh mechanisms in flash devices can successfully mitigate most of
the impact of retention on the threshold voltage distribution [22, 25, 194]. As a result, we expect
that even without capturing the effects of retention, our proposed threshold voltage distribution
model will work well in practice.

5.7 Limitations
Our online model captures only P/E cycling and two-step programming effects, which are two
of the most dominant error sources in 1X nm MLC planar NAND flash memory. Currently, our
online model does not model and mitigate retention and read disturb errors because they are suc-
cessfully mitigated by commonly-employed flash refresh mechanisms [22, 222, 250], which can
be combined with our online model to provide greater reduction in raw bit errors. Furthermore,
our online model can be extended to model the threshold voltage shift due to retention or read
disturb. Online modeling effectively reduces retention errors when refresh becomes less effective
in 3D NAND, as we show in Chapter 6 and 7.

5.8 Conclusion
In this chapter, we introduce a new threshold voltage distribution model for modern NAND flash
memory devices. Our model is based on a new experimental characterization of the threshold
voltage distribution and how it shifts over time using state-of-the-art 1X-nm MLC NAND flash
chips. Our characterization shows that the threshold voltage distribution can be approximated
using our modified version of the Student’s t-distribution, and that the amount by which the
distribution shifts as the P/E cycle count increases is governed by the power law. Our new
model, which combines these two observations in its static and dynamic components, is capable
of accurately capturing the current and predicting the future threshold voltage distribution of
flash memory cells. We show that our model achieves low modeling error, and is computationally
simple enough to implement online in a flash controller. We demonstrate various applications
of our model in a flash controller. We show that these applications improve flash lifetime by
48.9% and/or enable the flash device to safely utilize 69.9% more P/E cycles than manufacturer
specification. We conclude that our proposed threshold voltage distribution model for modern
MLC NAND flash memory devices is practical and effective. We hope that this dissertation
inspires future work to improve upon our online flash channel model, and to develop and evaluate
new techniques that take advantage of such a model to increase flash memory reliability and
performance.

142

Chapter 6

3D NAND Flash Memory Error
Characterization and Mitigation

In order for planar NAND flash memory to continually increase the SSD capacity and decrease
the cost-per-bit of the SSD, flash vendors have to aggressively scale NAND flash memory to
smaller manufacturing process technologies. This, however, comes at the cost of the decreasing
flash reliability [21, 33, 219], as we have shown in Section 3.1. Due to a combination of man-
ufacturing process limitations and decreasing reliability, it has become increasingly difficult for
manufacturers to continue to scale the density of planar NAND flash memory [257].

To overcome this scaling challenge, 3D NAND flash memory has recently been intro-
duced [115, 131, 257] (see Section 3.4 for a comparison between planar NAND and 3D NAND
technology). Previous publicly-available experimental studies on NAND flash memory errors
using real flash memory chips (e.g., [21, 22, 23, 24, 26, 27, 34, 35, 195, 219, 260]) have all been
on planar NAND devices. As 3D NAND flash memory is already being deployed at a large scale
in new computer systems, there is a lack of available knowledge on the error characteristics of
real 3D NAND flash chips, which makes it harder to estimate the reliability characteristics of
systems that employ such chips.

In this chapter, our goal is to (1) identify and understand the new error characteristics of
3D NAND flash memory (i.e., those that did not exist previously in planar NAND flash mem-
ory), and (2) propose new mechanisms to mitigate prevailing 3D NAND flash errors. We aim to
achieve these goals via rigorous experimental characterization of real, state-of-the-art 3D NAND
flash memory chips from a major flash vendor. Based on our comprehensive characterization and
analysis, we identify three new error characteristics that were not previously observed in planar
NAND flash memory, but are fundamental to the new architecture of 3D NAND flash memory.
(1) 3D NAND flash exhibits layer-to-layer process variation, a new phenomenon specific to the
3D nature of the device, where the average error rate of each 3D-stacked layer in a chip is signifi-
cantly different (Section 6.2.1). We are the first to provide detailed experimental characterization
results of layer-to-layer process variation in real flash devices in open literature. (2) 3D NAND
flash memory experiences early retention loss, a new phenomenon where the number of errors
due to charge leakage increases quickly within several hours after programming, but then in-
creases at a much slower rate (Section 6.2.2). We are the first to perform an extended duration
observation of early retention loss. While prior studies examine the impact of early retention

143

loss over only the first 5 minutes after data is written, we examine the impact of early retention
loss over 24 days. (3) 3D NAND flash memory experiences retention interference, a new phe-
nomenon where the rate at which charge leaks from a flash cell is dependent on the amount of
charge stored in neighboring flash cells (Section 6.2.3).

Our experimental observations indicate that we must revisit the error models and the error
mitigation mechanisms devised for planar NAND flash, as they are no longer accurate for 3D
NAND flash behavior. To this end, we develop new analytical models of (1) the layer-to-layer
process variation in 3D NAND flash memory (Section 6.4.1), and (2) retention loss in 3D NAND
flash memory (Section 6.4.2). Both models are useful for developing techniques to mitigate raw
bit errors in 3D NAND flash memory. Our models estimate the raw bit error rate (RBER),
threshold voltage distribution, and the optimal read reference voltage (i.e., the voltage at which
the raw bit errors are minimized when applied during a read operation) for each flash page.

We propose four new techniques to mitigate the unique layer-to-layer process variation and
early retention loss errors observed in 3D NAND flash memory. Our first technique, LaVAR,
reduces process variation by fine-tuning the read reference voltage independently for each layer
(Section 6.5.1). Our second technique, LI-RAID, is a new RAID scheme that eliminates the
page with the worst-case reliability within each block by changing how we pair up pages from
different flash blocks (Section 6.5.2). Our third technique, ReMAR, reduces retention errors in
3D NAND flash memory by tracking the retention age of the data using our retention model and
adapting the read reference voltage to the data age (Section 6.5.3). Our fourth technique, ReNAC,
predicts and adapts the read reference voltage to the amount of retention interference during each
read operation (Section 6.5.4). These four techniques are complementary, and can be combined
together to significantly improve NAND flash reliability. Compared to a state-of-the-art baseline,
our techniques provide a combined 3D NAND flash memory lifetime improvement of 85.0%.
Alternatively, in the case where a NAND flash manufacturer wants to keep the lifetime of the
3D NAND flash memory device constant, our techniques reduce the storage overhead required
to hold error correction information by 78.9%.

6.1 3D NAND Error Characterization Overview
Our goal is to identify and understand new error characteristics in 3D NAND flash memory,
through rigorous experimental characterization of real, state-of-the-art 3D NAND flash memory
chips. We use the observations and analysis of this characterization to (1) compare how the
reliability of a 3D NAND flash memory chip differs from that of a planar NAND flash memory
chip, (2) develop a model of how each new error source affects the error rate of 3D NAND
flash memory, (3) understand if and how these reliability characteristics will change with future
generations of 3D NAND flash memory, and (4) develop mechanisms that can mitigate new error
sources in 3D NAND flash memory.

For our characterization, we use the methodology discussed in Section 6.1.1. First, we per-
form a detailed characterization and analysis of three error characteristics that are drastically dif-
ferent in 3D NAND flash memory than in planar NAND flash: process variation (Section 6.2.1),
retention errors (Section 6.2.2), and retention interference (Section 6.2.3). In addition to iden-
tifying new error sources in 3D NAND flash memory, we use our methodology to corroborate

144

and quantify 3D NAND error characteristics that are a result of error sources that were previ-
ously identified in planar NAND flash memory, including data retention [22, 27, 55, 257], P/E
cycling [23, 195, 257, 260], program interference [24, 26, 257], read disturb [35, 260], and pro-
cess variation [21, 269]. We summarize our findings for these error types in Section 6.2.4, and
provide detailed results on our characterization of these previously-identified error sources in
Section 6.3.

6.1.1 Methodology

We experimentally characterize several real, state-of-the-art 3D MLC NAND flash memory chips
from a single vendor.1 We use a NAND flash characterization platform similar to prior work [20],
which allows us to issue read-retry commands directly to the flash chip. The read-retry command
allows us to fine-tune the read reference voltage used for each read operation. The smallest
amount by which we can change the read reference voltage is called a voltage step. We conduct
all experiments at room temperature (20 ◦C).

We use two metrics to evaluate 3D NAND reliability. First we show the raw bit error rate
(RBER), which is the rate at which errors occur in the data before error correction. We show
the RBER when we read data using the optimal read reference voltage (Vopt), which is the read
reference voltage that generates the fewest errors in the data.2

Second, we show how the various error sources change the threshold voltage distribution.
These change (i.e., shifting and widening) in threshold voltage distribution directly leads to raw
bit errors in the flash memory. To obtain the distribution, we first use the read-retry command
to sweep over all possible voltage values, in order to identify the threshold voltage of each cell.3

Then we use this data to calculate the probability density of each state at every possible threshold
voltage value. As part of our analysis, we fit the threshold voltage distribution of each state to a
Gaussian distribution. We use the mean of the Gaussian model to represent how the distribution
shifts as a result of errors, and we use the standard deviation of the model to represent how the
distribution widens. Throughout this chapter, we present normalized voltage values instead of
the actual voltage values, as the latter are proprietary to NAND flash memory manufacturers. A
normalized voltage of 1 represents a single voltage step.

We show two examples in Figure 6.1 to visualize how well this simple Gaussian model cap-
tures the change in the measured threshold voltage distribution. Figure 6.1 shows the measured
and modeled distributions under two conditions: (1) 0 P/E cycles, 0-day retention, and 0 read dis-
turbs (i.e., the data contains few errors); and (2) 10K P/E cycles, 3-day retention, and 900K read
disturbs (i.e., the data contains a high number of errors). We plot the distribution read from 3D
NAND chips using dots. We use a solid line to show a fitted Gaussian distribution for each state.
The average root mean square error of the fitted distributions is 1.6× 10−3. We observe, from

1The trends we observe from the characterization are expected to be similar for 3D charge trap flash manufactured
by different vendors, as their 3D flash architectures are similar in design.

2We show RBER at the optimal read reference voltage to accurately represent the reliability of NAND flash
memory, as SSD controllers tune the read reference voltage to a near-optimal point to extend the NAND flash
lifetime [27, 195, 252].

3We refer to Section 5.2 for more detail on the methodology to obtain the threshold voltage distribution [195,
260].

145

this figure, that after the chip is worn out, the threshold voltage distribution is shifted by all types
of noise, reducing the error margins between neighboring states, which leads to more raw bit
errors in the data. Thus, showing how these distributions are affected by various noises helps us
understand how raw bit errors occur and mitigate these errors more effectively.

0 50 100 150 200 250 300
Normalized Vth

0.00

0.01

0.02

0.03

0.04

0.05

P
ro
b
a
b
ili
ty
 d
e
n
si
ty

ER

P1 P2 P3

0 P/E cycles, 0-day retention, 0 reads
10K P/E cycles, 3-day retention, 900K reads

Figure 6.1: 3D NAND threshold voltage distribution before (black) and after (red) the data is
subject to a high number of errors.

In the following sections, we directly show the mean and the standard deviation of the fitted
threshold voltage distributions instead of the distribution itself, for the simplicity of the results.

6.2 Key Characterization Results

6.2.1 Layer-to-Layer Process Variation

Process variation refers to the variation in the attributes of flash cells when they are fabricated
(see Section 3.1). Due to process variation, some flash cells can have a higher RBER than
others, making these cells the limiting factor of overall flash memory reliability. In 3D NAND
flash memory, process variation can occur along all three axes of the memory (see Figure 3.27).
Among the three axes, we expect the variation along the z-axis (i.e., layer-to-layer variation) to
be the most significant, due to the new challenge of stacking multiple flash cells across layers.
Prior work has shown that current circuit etching technologies are unable to produce identical
3D NAND cells when punching through multiple stacked layers, leading to significant variation
in the error characteristics of flash cells that reside in different layers [112, 328].

To characterize layer-to-layer process variation errors within a flash block, we first wear out
the block by programming random data to each page in the block until the block reaches 10K
P/E cycles. Then, we compare the collective characteristics of the flash cells in one layer with
those in another layer. We repeat this experiment for flash blocks on multiple chips to verify all
of our findings.

Observations. Figure 6.2 shows the RBER variation along the z-axis (i.e., across layers)

146

for a flash block with 10K P/E cycles.4 The top graph breaks down the errors into MSB and
LSB page errors; the bottom graph breaks down the errors according to the original and current
state of each cell. In the top graph, the solid curve and the dotted curve show the results for two
blocks that were randomly selected from two different flash chips. We make five observations
from Figure 6.2. First, both of the MSB and LSB error rates vary significantly across layers.
For example, MSB page on normalized layer 55 in the middle has an RBER 6× higher than
normalized layer 0. Second, ER↔ P1 and P1↔ P2 errors vary significantly across layers, while
P2 ↔ P3 errors remain similar across layers. Recall from Figure 2.7 that ER ↔ P1 errors are
MSB errors and P1 ↔ P2 errors are LSB errors. Third, the top half of the layers have lower
error rates than the bottom half. Fourth, the middle layers have much a higher RBER than other
layers. Fifth, the RBER variation we observe is consistent across two randomly selected blocks
from two different chips.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

R
B

E
R

1e−4

msb (another chip)
lsb (another chip)
msb
lsb

0 20 40 60 80 100
Norm. layers

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

R
B

E
R

1e−4

ER<->P1
P1<->P2

P2<->P3

Figure 6.2: Layer-to-layer variation of RBER.

Figure 6.3 shows how the optimal read reference voltages vary across layers. Three subfig-
ures show the optimal read reference voltages for Va, Vb, and Vc. We make two observations
from this figure. First, the optimal voltages for Va and Vb vary significantly across layers, but the
optimal Vc does not change by much. Second, the optimal values of Va and Vb increase in the top
half of the layers, but decrease in the bottom half.

4We normalize the number of layers from 0 (the top-most layer) to 100 (the bottom-most layer). The chips we
use for characterization have 30 to 40 layers.

147

0 20 40 60 80100
Norm. layers

75

76

77

78

79

80

81

82

83

N
o
rm

.
V
th

Va

0 20 40 60 80100
Norm. layers

144

145

146

147

148

149

150

151

152
Vb

0 20 40 60 80100
Norm. layers

215

216

217

218

219

220

221

222

223
Vc

Figure 6.3: Optimal read reference voltage variation across layers.

Insights. We show that the layer-to-layer process variation is significant, which is unique to
3D NAND flash memory. In the future, as 3D NAND flash devices scale along the z-axis, more
layers will be stacked vertically along each bitline. This will further exacerbate the effect of
layer-to-layer process variation, making it even more important to study and mitigate this effect
further.

6.2.2 Early Retention Loss

Retention errors are flash errors that accumulate after data has been programmed to the flash
cells [22, 27] (see Section 3.1). Because 3D NAND flash memory typically uses a different
cell design (i.e., the charge trap cell described in Section 3.4) than planar NAND flash memory
(which uses floating-gate cells), it has drastically different retention error characteristics. The
charge trap flash cells used in 3D NAND flash memory suffer from early retention loss, i.e., fast
charge loss within a few seconds. This phenomenon has been observed by prior works using
circuit-level characterization [47, 55]. However, due to limitations of the methodology used by
these prior works, openly-available characterizations of early retention loss in 3D charge trap
NAND flash devices document retention loss behavior for up to only 5 minutes after the data
is written (i.e., for a maximum retention age of 5 minutes). This limited window is insufficient
for understanding early retention loss under real workloads, which typically have much longer
retention ages [194].

Our goal is to experimentally characterize early retention loss in 3D NAND flash memory for
a large range of retention ages (e.g., from several minutes to several weeks). First, we randomly
select 11 flash blocks within each chip and write pseudo-random data to each page within the
block to wear the blocks out. We wear each block to a different number of P/E cycles, so that
we have error data for every 1K P/E cycles between 0 and 10K P/E cycles.5 Then we program
pseudo-random data to each flash block, and wait for up to 24 days under room temperature.
To characterize retention loss, we measure the RBER and the threshold voltage distribution at

5For all experiments throughout the chapter, we consistently assume a 0.5-second dwell time, which is the length
of time between consecutive program/erase operations.

148

nine different retention ages, ranging from 7 minutes to 24 days. To minimize the impact of
other errors, and to allow us to include very low retention ages, we characterize only the first
72 flash pages within each block. We believe that the observations we make on these flash cells
are representative of the entire chip, and we can generalize the observations to all 3D NAND
cells. Our threshold voltage distribution analysis is provided in Section 6.3.2.

Observations. Figure 6.4 shows the comparison between the retention error rate of 3D
NAND and planar NAND flash memory at 10,000 P/E cycles. To do this comparison, we perform
the same experiment as above for planar NAND flash memory chips, and extend the retention
error rate trend to the same time scale using a linear fit. We observe that the retention error rate
changes much more slowly for planar NAND than for 3D NAND flash memory. Although the
3D NAND flash chip has lower RBER than the planar NAND flash chip shortly after program-
ming, the RBER becomes higher on the 3D NAND flash chip after ∼2 hours of retention time.
This demonstrates the early retention error in 3D NAND flash memory, where the RBER quickly
increases by an order of magnitude in∼3 hours, and by another order of magnitude in∼11 days.
In contrast, RBER increases slowly over retention time for planar NAND flash.

103 104 105 106 107

Retention time (seconds)
10−5

10−3

10−1

RB
ER

3D NAND
planar NAND

Figure 6.4: Retention error rate comparison between 3D NAND and planar NAND flash memory.

Figure 6.5 plots how the optimal read reference voltage changes with retention age. The
three subfigures show the optimal voltages for Va, Vb, and Vc. We make three observations
from this figure. First, the relation between the optimal read reference voltages for Vb or Vc and
the retention age can be modeled as: V = A · log(t) +B. Second, the optimal read reference
voltages for Vb and Vc decrease significantly as retention time increases, whereas Va remains
relatively constant. Third, the optimal read reference voltages of Vb and Vc change rapidly when
the retention age is low, but they change slowly when the retention age is high.

149

102103104105106107

Retention age (s)

64

66

68

70

72

74

76

78

N
o
rm

.
V
th

Va

102103104105106107

Retention age (s)

136

138

140

142

144

146

148

150

152
Vb

102103104105106107

Retention age (s)

206

208

210

212

214

216

218

220

Vc

Figure 6.5: Optimal read reference voltages, for varying retention ages.

Insights. We compare the errors caused by retention loss in 3D NAND to that in planar
NAND, using our results in Figure 6.4 as well as the results reported in prior work [22, 27, 219].
We find two major differences in 3D NAND. More results and insights are in Section 6.3.2.

First, 3D NAND error increases much faster when the retention age is low than when the
retention age is high. As we have shown in Figure 6.4, both the logarithm of the RBER and the
shift in the threshold voltage approximately fit a linear function of the logarithm of the retention
age. This means that the retention loss is steep when retention age is low, but the retention loss
flattens out when the retention age is high. This is a result of the early retention phenomenon
in 3D NAND flash memory. There are two possible reasons for early retention loss. First, the
tunnel oxide layer is thinner in 3D NAND [282, 359]. This is because a 3D charge trap cell
uses an insulator to store charge, which makes the cell immune to the short circuiting caused by
stress-induced leakage current (SILC). Thus, the tunnel oxide layer in a 3D charge trap cell is
designed to be thinner to improve program speed. Second, the charge can now migrate out of
the charge trap in three dimensions [55]. In planar NAND flash memory, charge leakage due to
retention occurs across the tunnel oxide. In 3D NAND flash memory, the charge can leak across
both the tunnel oxide and the insulator being used for the charge trap, which we discuss further
in Section 6.2.3. However, as we show in Figure 6.4 for planar NAND flash memory, we do not
observe a large difference in retention loss between low and high retention ages [27, 219].

Second, the optimal read reference voltage for Vb in 3D NAND flash memory shifts with
retention age. However, in planar NAND flash memory, the optimal voltage of Vb does not
change by much [27]. This makes adjusting the optimal read reference voltages even more
important for 3D NAND flash memory than for planar NAND flash memory.

6.2.3 Retention Interference

Retention interference is the phenomenon that the speed of retention loss for a cell depends on
the threshold voltage of a neighboring cell. Retention interference is unique to 3D NAND flash

150

memory, as cells along the same bitline in 3D NAND flash memory share the same charge trap
layer. If two neighboring cells are at different threshold voltages, charge can leak away from the
cell with a higher threshold voltage to the cell with a lower threshold voltage over time [55].

We use the same data used for retention loss in Section 6.2.2 to observe the effect of reten-
tion interference. To eliminate any noise due to program interference, we use neighboring cells
on the previous wordline to establish the interference correlation, as these cells are not greatly
affected by program interference. We also ignore victim cells that are in the ER state, as they
are significantly affected by program interference on both sides along the bitline. By eliminating
program interference issues, the cells should experience a similar threshold voltage shift except
for the effects of retention interference. To find the retention interference, we first group all the
cells based on their current state, and the state stored in the previous wordline. Then, we compare
the amount by which the threshold voltages shift over a 24-day retention age, for each group, to
observe how the cells are impacted by neighboring cells.

Observations. Figure 6.6 shows the average threshold voltage shift over 24-day retention
age, broken down by the state of the victim cell (V) and the state of the neighboring cell (N).
Each bar represents a different (V, N) pair. Different shades represent the different states of the
neighboring cell, as labeled in the legend. Every 4 bars are grouped by the state of the victim cell,
as labeled on the right side. From Figure 6.6, we observe that the threshold voltage shift over
retention age is lower when the neighboring cell is in a higher-voltage state (e.g., the P3 state).

-20 -15 -10 -5 0

V=P1

V=P2

V=P3

N=P3
N=P2
N=P1
N=ER

Figure 6.6: Retention interference at 10K P/E cycles.

Insights. We are the first to discover and characterize retention interference in 3D NAND
flash memory. Our observation from Figure 6.6 shows that the amount of retention loss for
a flash cell is correlated with its neighboring cell’s state. We expect retention interference to
become stronger as we shrink the manufacturing process technology in future 3D NAND flash
memory devices. This is because the distance between neighboring cells will decrease, and
fewer electrons will be stored within each flash cell, increasing the susceptibility of the cells to
interference from neighboring cells.

6.2.4 Summary
In addition to the three new error sources we find in 3D NAND flash memory, we also char-
acterize the behavior of other known error sources in 3D NAND flash memory and compare
them to their behavior in planar NAND flash memory. We present a high-level summary of our
findings for these errors here, and provide detailed results and analyses on these error sources in
Section 6.3:

151

• Unlike in planar NAND, we do not observe any programming errors in 3D NAND [34, 195,
260] (Section 6.1.1).

• The P/E cycling effect in 3D NAND flash memory follows a linear trend, which is similar to
that in planar NAND flash memory using an older manufacturing process technology (e.g.,
20 nm to 24 nm) [23]. However, in sub-20 nm planar NAND flash memory, the P/E cycling
effect exhibits a power-law trend [195, 260] (Section 6.3.1).

• 3D NAND flash memory experiences 40% less program interference than 20 nm to 24 nm
planar NAND flash memory [24, 26] (Section 6.3.1).

• 3D NAND flash memory experiences 96.7% weaker read disturb than 20 nm to 24 nm planar
NAND flash memory [35]. The impact of read disturb is low enough in 3D NAND flash
memory that it does not require significant error mitigation (Section 6.3.3).

Note that these differences are mainly due to the larger manufacturing process technology cur-
rently used in 3D NAND flash memory, and thus are not the focus of this chapter. In comparison,
the new error characteristics that we focus on (layer-to-layer process variation, early retention
loss, retention interference) are caused by fundamental changes introduced in 3D NAND flash
memory.

We summarize the key differences between 3D NAND and planar NAND flash memory, in
terms of error characteristics and the expected trends for future 3D NAND devices, in Table 6.1.
The first column of this table lists the attributes we study. The second column shows the key
differences in the observations that we make in 3D NAND flash memory. The third column
shows the fundamental cause of each difference. The last column shows the expected trend of
each difference in future 3D NAND flash devices. We provide the necessary characterizations
and models that help us quantitatively understand these differences in Section 6.3.

152

A
tt

ri
bu

te
O

bs
er

va
tio

n
in

3D
N

A
N

D
C

au
se

of
D

iff
er

en
ce

Fu
tu

re
Tr

en
d

Pr
oc

es
s

V
ar

ia
tio

n
(S

ec
tio

n
6.

2.
1,

Se
ct

io
n

6.
3.

4,
6.

3.
5)

L
ay

er
-t

o-
la

ye
rp

ro
ce

ss
va

ri
at

io
n

is
si

gn
ifi

ca
nt

V
er

tic
al

st
ac

ki
ng

of
fla

sh
ce

lls
Pr

oc
es

s
va

ri
at

io
n

w
ill

in
cr

ea
se

as
w

e
st

ac
k

m
or

e
ce

lls
ve

rt
ic

al
ly

R
et

en
tio

n
L

os
s

(S
ec

tio
n

6.
2.

2,
6.

2.
3,

Se
ct

io
n

6.
3.

2)

E
ar

ly
re

te
nt

io
n

lo
ss

C
ha

rg
e-

tr
ap

ce
ll

E
ar

ly
re

te
nt

io
n

lo
ss

w
ill

co
nt

in
ue

if
ch

ar
ge

-t
ra

p
ce

ll
is

us
ed

R
et

en
tio

n
in

te
rf

er
en

ce
V

er
tic

al
st

ac
ki

ng
of

fla
sh

ce
lls

R
et

en
tio

n
in

te
rf

er
en

ce
w

ill
in

cr
ea

se
w

he
n

sm
al

le
rp

ro
ce

ss
te

ch
no

lo
gy

is
us

ed

P/
E

C
yc

lin
g

(S
ec

tio
n

6.
3.

1)

D
is

tr
ib

ut
io

n
pa

ra
m

et
er

s
ch

an
ge

ov
er

P/
E

cy
cl

e
fo

llo
w

in
g

lin
ea

rt
re

nd
in

st
ea

d
of

po
w

er
-l

aw
tr

en
d

L
ar

ge
rm

an
uf

ac
tu

ri
ng

pr
oc

es
s

te
ch

no
lo

gy

P/
E

cy
cl

e
tr

en
d

w
ill

go
ba

ck
to

po
w

er
-l

aw
tr

en
d

w
he

n
sm

al
le

r
pr

oc
es

s
te

ch
no

lo
gy

is
us

ed

Pr
og

ra
m

In
te

rf
er

en
ce

(S
ec

tio
n

6.
3.

1)

W
or

dl
in

e-
to

-w
or

dl
in

e
in

te
rf

er
en

ce
al

on
g

z-
ax

is
V

er
tic

al
st

ac
ki

ng
of

fla
sh

ce
lls

W
ill

st
ay

tr
ue

in
3D

N
A

N
D

40
%

lo
w

er
pr

og
ra

m
in

te
rf

er
en

ce
co

rr
el

at
io

n
L

ar
ge

rm
an

uf
ac

tu
ri

ng
pr

oc
es

s
te

ch
no

lo
gy

Pr
og

ra
m

in
te

rf
er

en
ce

co
rr

el
at

io
n

w
ill

in
cr

ea
se

w
he

n
sm

al
le

rp
ro

ce
ss

te
ch

no
lo

gy
is

us
ed

V t
h

D
is

tr
ib

ut
io

n
(S

ec
tio

n
6.

1.
1)

E
R

an
d

P1
st

at
es

ha
ve

no
pr

og
ra

m
m

in
g

er
ro

rs

U
se

of
on

e-
sh

ot
pr

og
ra

m
m

in
g

in
st

ea
d

of
tw

o-
st

ep
pr

og
ra

m
m

in
g

Pr
og

ra
m

m
in

g
er

ro
rs

m
ay

co
m

e
ba

ck
if

tw
o-

st
ep

pr
og

ra
m

m
in

g
is

us
ed

R
ea

d
D

is
tu

rb
(S

ec
tio

n
6.

3.
3)

96
.7

%
sm

al
le

rr
ea

d
di

st
ur

b
ef

fe
ct

L
ar

ge
rm

an
uf

ac
tu

ri
ng

pr
oc

es
s

te
ch

no
lo

gy

R
ea

d
di

st
ur

b
ef

fe
ct

w
ill

in
cr

ea
se

w
he

n
sm

al
le

rp
ro

ce
ss

te
ch

no
lo

gy
is

us
ed

Ta
bl

e
6.

1:
Su

m
m

ar
y

of
fla

sh
er

ro
rc

ha
ra

ct
er

is
tic

s
of

3D
N

A
N

D
an

d
pl

an
ar

N
A

N
D

fla
sh

m
em

or
y.

153

6.3 Comprehensive Characterization Results

6.3.1 Write-Induced Errors
We now analyze how each type of write-induced error affects the RBER and the threshold voltage
distribution of 3D NAND flash memory.

Program/Erase Variation Errors

A program/erase variation error, or P/E cycling error, occurs when the SSD cannot properly erase
or program a cell because some electrons are trapped within the cell [23, 219] (see Section 3.1).
To study the impact of program/erase variation errors, we randomly select a flash block within
each 3D NAND chip, and wear out the block by programming random data to each page in the
block until the block reaches 16K P/E cycles.6 Using the methodology described in Section 6.1.1,
we obtain the overall RBER and the threshold voltage of each cell at various P/E cycle counts.7

Observations. Figure 6.7 shows how the RBER increases as the P/E cycle count increases.
The top graph breaks down the errors into which page (i.e., LSB or MSB) they occur in. The
bottom graph breaks down the errors based on how the error changed the cell state due to a
shift in the cell threshold voltage. If the error resulted in either the LSB or MSB (but not both)
being incorrect, we refer to that as a single-bit error (e.g., an error that shifts a cell originally
programmed in the ER state to the P1 state, or vice versa; labeled ER ↔ P1 in the graph). If
both the LSB and MSB are incorrect as a result of the shift, we refer to that as a multi-bit error.
We make four observations from Figure 6.7. First, both LSB and MSB errors increase as the
P/E cycle count increases, following an exponential trend. Second, ER↔ P1 errors increase at
a much faster rate as the P/E cycle count increases, with respect to the other types of cell state
changes, and ER↔ P1 errors become the dominant MSB error type when the P/E cycle count
reaches 6K P/E cycles. Third, multi-bit errors are rare, and they occur as early as 1K P/E cycles.
Fourth, MSB pages have a 2.1× higher error rate than LSB pages.

6For all experiments throughout this chapter, we consistently assume a 0.5-second dwell time, which is the length
of time between consecutive program/erase operations.

7Due to limitations with our experiment platform, each data point at a particular P/E cycle count has an average
retention age of 50 minutes.

154

10-6

10-5

10-4

10-3

10-2

R
B
E
R

msb
lsb

msb fit
lsb fit

0 2000 4000 6000 8000 10000120001400016000
P/E cycles

10-7
10-6
10-5
10-4
10-3
10-2

R
B
E
R

ER<->P1
P1<->P2

P2<->P3
multi-bit

Figure 6.7: Program/erase variation errors vs. P/E cycles.

Figures 6.8 and 6.9 show how the Gaussian model mean and standard deviation, respectively,
change with P/E cycle count for the threshold voltage distribution. Each figure is broken down
into four subfigures, with each subfigure showing the model parameter change for a different
state. We make four observations from Figures 6.8 and 6.9. First, the mean and standard de-
viation of all states follow a linear trend.8 Second, the threshold voltage distributions for the
ER state and the P1 state shift to higher voltages, while the distributions for the P2 state and
the P3 state shift to lower voltages. Third, the threshold voltage distributions for all four states
become wider as the P/E cycle count increases (i.e., the standard deviation increases). Fourth,
the magnitude of the shift and widening is much larger for the ER state than it is for the other
three states (i.e., P1, P2, P3). The shift and the widening of the distribution explains what we
observe on RBER in Figure 6.7. The RBER between two neighboring states is equivalent to the
overlapped area of the two states’ distributions. Since the overlapping tail of each distribution is
an exponential function [195, 260]—as the distributions shift towards each other and widens at
a linear speed—the overlapping area should increase exponentially, as we observe in Figure 6.7.

8For the ER state, a linear fit has a 5.9% higher error rate than a power-law fit. However, we choose the linear fit
due to its simplicity.

155

−5
0
5

10
15
20
25
30
35

N
o
rm

.
V
th

ER mean

100

110

120

130

P1 mean

0 5000 10000 15000
P/E cycles

170

180

190

200

N
o
rm

.
V
th

P2 mean

0 5000 10000 15000
P/E cycles

240

250

260

270

P3 mean

Figure 6.8: Mean of distribution for program/erase variation error model, as the P/E cycle count
increases.

17.0
17.5
18.0
18.5
19.0
19.5
20.0
20.5
21.0

N
o
rm

.
V
th

ER stdev

9.0
9.5

10.0
10.5
11.0
11.5
12.0
12.5
13.0

P1 stdev

0 5000 1000015000
P/E cycles

9.0
9.5

10.0
10.5
11.0
11.5
12.0
12.5
13.0

N
o
rm

.
V
th

P2 stdev

0 5000 1000015000
P/E cycles

9.0
9.5

10.0
10.5
11.0
11.5
12.0
12.5
13.0

P3 stdev

Figure 6.9: Standard deviation of distribution for program/erase variation error model, as the P/E
cycle count increases.

Figure 6.10 shows how the optimal read reference voltages change as the P/E cycle count
increases. This figure contains three subfigures, each of which shows the optimal voltage for Va,
Vb, and Vc (see Figure 2.7). We make two observations from this figure. First, the optimal voltage
for Va increases rapidly as the P/E cycle count increases: after 16K P/E cycles, the voltage goes
up by more than 20 voltage steps. Second, the optimal voltage for Vb and Vc remain almost
constant as the P/E cycle count increases: neither voltage changes by more than 4 voltage steps
after 16K P/E cycles.

156

0.0 0.5 1.0 1.5
P/E cycles 1e4

65

70

75

80

85

N
o
rm

.
V
th

Va

0.0 0.5 1.0 1.5
P/E cycles 1e4

140

145

150

155

160

Vb

0.0 0.5 1.0 1.5
P/E cycles 1e4

210

215

220

225

230
Vc

Figure 6.10: Optimal read reference voltages vs. P/E cycles.

Insights. To compare the error characteristics of 3D NAND to that of planar NAND flash
memory, we refer to equivalent observations on planar NAND reported by prior works [23, 195,
260], and compare them to our findings for 3D NAND. We find two key differences. First, for
3D NAND, the threshold voltage distributions for the P2 state and the P3 state shift to lower
voltages as the P/E cycle count increases. In contrast, for planar NAND flash memory, the
distributions of both states shift to higher voltages [23, 195, 260]. This could be due to the
retention noise that occurs during characterization, which lowers the threshold voltage of cells
in higher voltage states (i.e., P2 and P3) [55]. Second, for 3D NAND, the change in the mean
of each state distribution exhibits a linear trend. However, in sub-20 nm planar NAND flash
memory, the change in the mean exhibits a power-law trend [195, 260]. In sub-20 nm planar
NAND flash memory, the mean of each state distribution increases more rapidly at lower P/E
cycle counts than in higher P/E cycle counts, resulting in power-law behavior. However, we note
that planar NAND flash memory using an older manufacturing process technology (e.g., 20 nm
to 24 nm) exhibits a linear trend for the distribution mean [23], just as we see for 3D NAND.
Thus, we believe that when the manufacturing process technology scales below a certain size,
the change in the distribution mean transitions from linear behavior to power-law behavior. As
a result, when future 3D NAND scales down to a sub-20 nm manufacturing process technology,
we expect that it too will exhibit power-law behavior.

Program Interference

When a cell (which we call the aggressor cell) is being programmed, cell-to-cell program in-
terference can cause the threshold voltage of nearby flash cells (which we call victim cells) to
increase unintentionally [24, 26] (see Section 3.1). In 3D NAND, there are two types of program
interference that can occur. The first, wordline-to-wordline program interference, affects victim
cells along the z-axis from the cell being programmed (see Figure 3.27). These victim cells are
physically next to the cell being programmed, and belong to the same bitline (and thus the same
flash block). The second, bitline-to-bitline program interference, affects victim cells along the
x-axis or y-axis from the cell being programmed. Bitline-to-bitline program interference can
affect victim cells in the same wordline (i.e., cells on the y-axis), or it can affect victim cells that
belong to other flash blocks (i.e., cells on the x-axis).

157

To quantitatively analyze the effect of program interference, we use the same experimental
data that we have for program/erase variation errors (see Section 6.3.1). The amount of pro-
gram interference on a victim cell correlates with the threshold voltage change of the aggressor
cell [24]. This interference correlation makes the threshold voltage of a victim cell dependent
on the value of the aggressor cell. The strength of this correlation can be quantified as ∆Vvictim

∆Vaggressor
,

which is a property of the NAND device and is largely dependent on the distance between the
cells [174]. We estimate ∆Vaggressor by calculating the threshold voltage difference between the
aggressor cell’s final state and the ER state. We estimate ∆Vvictim by calculating the difference
between the victim cell’s threshold voltage with and without program interference.

Observations. Figure 6.11 shows the interference correlation for a victim cell, as a result of
programming on aggressor cells of varying distances and directions. We make two observations
from this figure. First, for a victim cell (i.e., the cell in BL M, WL N in Figure 6.11), program in-
terference is dominated by wordline-to-wordline interference from the next wordline (i.e., BL M,
WL N+1). Second, all of the other types of interference have a much smaller interference corre-
lation.

Block K+1

Block K

Victim

2.7%

.057%

.080%

-.040%

.014%

-.040%

.014%

BL MBL M-1 BL M+1

WL N

WL N-1

WL N+1

WL N+2

y

z
x

Next bitline

Next wordline+bitline

Previous wordline

Next wordline

Figure 6.11: Interference correlation for a victim cell, as a result of programming on aggressor
cells of varying distance.

Figure 6.12 shows the how much the threshold voltage of a victim cell shifts when a neigh-
boring aggressor cell is programmed to the P3 state, which generates the largest possible program
interference. We separate the threshold voltage shifts by both the interference type and the state
of the victim cell. We ignore any case where the shift is less than 1 voltage step. This figure
also shows how the threshold voltage shifts due to program interference changes with the P/E
cycle count. We make three observations from Figure 6.12. First, the effect of program interfer-
ence decreases as the P/E cycle count increases. Second, the program interference induced by
an aggressor cell in the next wordline decreases when the victim cell is in a higher-voltage state.
Third, the program interference induced by an aggressor cell in the previous wordline (i.e., WL
N-1 in Figure 6.11) affects the threshold voltage distribution of the ER state for a victim cell, but
it has little effect on the distributions of the other three states (i.e., P1, P2, P3).

158

0 2000 4000 6000 8000 10000120001400016000
P/E cycles

7

8

9

10

11

12

13

N
o
rm

.
V
th
 s

h
if
t

V=ER, A=P3 next WL
V=P1, A=P3 next WL
V=P2, A=P3 next WL
V=P3, A=P3 next WL
V=ER, A=P3 prev WL

Figure 6.12: Interference vs. P/E cycle.

Insights. We compare the program interference in 3D NAND to the program interference ob-
served in planar NAND, as reported in prior work [24, 26]. We find one major difference between
them. The interference correlation of program interference from a directly-adjacent cell in 3D
NAND is 40% lower than the interference correlation in planar NAND flash memory, which is
around 4.5% in 20 nm to 24 nm planar NAND flash memory [24]. A similar conclusion is drawn
by prior work [257] which shows that 3D NAND has 84% lower program interference than
15 nm to 19 nm planar NAND flash memory. However, this reduction in interference correlation
is due to result the larger manufacturing process technology used in the current generation of 3D
NAND. We are unable to find literature that reports program interference correlation in 30 nm to
50 nm planar NAND, which could provide a direct comparison for how we expect interference
to change in 3D NAND. However, prior work has shown that the strength of interference corre-
lation between neighboring cells is correlated with the distance between the cells [174]. Thus, as
3D NAND scales to a smaller manufacturing process technology, the cells move closer to each
other, and the program interference effect increases, as it did in planar NAND flash memory.

Note that we are the first to compare how the threshold voltage shift caused by program inter-
ference changes with the P/E cycle count. As we discuss in our first observation for Figure 6.12,
the program interference effect surprisingly decreases as the P/E cycle count increases. This ob-
servation is a result of the ER state distribution shift due to wearout (see Section 6.3.1). As the
threshold voltage distribution of the ER state shifts higher as the P/E cycle count increases, the
difference in voltage between the ER state and the P3 state reduces. This mitigates ∆Vaggressor
and thus also reduces ∆Vvictim, which thus reduces the interference correlation.

6.3.2 Early Retention Loss
In this section, we present the results and analysis of retention loss in 3D NAND in addition to
the key findings from Section 6.2.2. We use the same methodology as described in Section 6.2.2.

Observations. Figure 6.13 shows the how RBER increases with retention age for a block
at 10K P/E cycles. The top graph breaks down the errors into MSB and LSB page errors; the
bottom figure breaks down the errors according to the change in cell state as a result of the errors.
We make four observations from Figure 6.13. First, the logarithm of RBER is linearly correlated

159

with the logarithm of retention age. Second, the MSB error rate increases faster than the LSB
error rate as the retention age increases. Third, retention errors are dominated by P2 ↔ P3
and P1 ↔ P2 errors. Fourth, the error rate between any two neighboring states increases with
retention age. We see that ER↔ P1 and P2↔ P3 errors increase faster than P1↔ P2 errors.

10-5

10-4

10-3

R
B
E
R

msb
lsb

msb fit
lsb fit

102 103 104 105 106 107

Retention age (seconds)

10-6

10-5

10-4

10-3

R
B
E
R

ER<->P1
P1<->P2

P2<->P3

Figure 6.13: RBER variation across retention age, broken down by (1) MSB or LSB page, and
by (2) the state transition of each flash cell.

Figures 6.14 and 6.15 show how the mean and the standard deviation, respectively, of the
Gaussian model for retention errors changes with retention age. Each subfigure shows the pa-
rameter for a different state, as labeled on the top. We make five observations from these two
figures. First, the correlation between any distribution parameter (P) and the retention age (t) can
be modeled as: P = A · log(t)+B. Second, the threshold voltage distribution shifts much faster
when the retention age is low. Third, the distributions of the P1, P2, and P3 states shift lower
with retention age, but the distribution of the ER state shifts higher. Fourth, the distributions of
the ER and P3 states shift faster than the distributions of the P1 and P2 states as the retention age
increases. Fifth, retention has little effect on the distribution width.

Insights. We compare the errors due to retention loss in 3D NAND to that in planar NAND
flash memory, as reported in prior work [22, 27, 219]. We find another major differences in 3D
NAND in terms of threshold voltage distribution in addition to those discussed in Section 6.2.2.
We find that retention loss in 3D NAND shifts the threshold voltage distributions of the P1, P2
and P3 programmed states lower, and has little effect on the width of the distribution of each
state. In contrast, the retention loss of planar NAND flash memory does not shift the P1 and P2
state distributions by much, and the retention loss increases the width of each state’s distribution
significantly [27]. This indicates that a mechanism that adjusts the optimal read reference voltage
to the threshold voltage shift caused by retention can be more effective on 3D NAND than on
planar NAND.

160

−5
0
5

10
15

N
o
rm

.
V
th

ER mean

100
105
110
115
120

P1 mean

102 103 104 105 106 107

Retention age (seconds)

170
175
180
185
190

N
o
rm

.
V
th

P2 mean

102 103 104 105 106 107

Retention age (seconds)

240
245
250
255
260

P3 mean

Figure 6.14: Mean of distribution for retention loss error model, as retention age increases.

17.40
17.45
17.50
17.55
17.60
17.65
17.70
17.75
17.80

N
o
rm

.
V
th

ER stdev

10.80
10.85
10.90
10.95
11.00
11.05
11.10
11.15

P1 stdev

102 103 104 105 106 107

Retention age (seconds)

11.10
11.15
11.20
11.25
11.30
11.35
11.40
11.45
11.50

N
o
rm

.
V
th

P2 stdev

102 103 104 105 106 107

Retention age (seconds)

11.50
11.55
11.60
11.65
11.70
11.75
11.80
11.85
11.90

P3 stdev

Figure 6.15: Standard deviation of distribution for retention loss error model, as retention age
increases.

161

6.3.3 Read-Induced Errors
We now analyze how each type of read-induced error affects the RBER and the threshold voltage
distribution of 3D NAND flash memory.

Read Variation Errors

Read variation errors are random raw flash errors that happen due to random fluctuation of the
sense amplifier (see Section 3.1). Read variation errors are not well-studied by prior work. How-
ever, since they add uncertainty to the outcome of each read operation, read variation errors are
important because they can affect threshold voltage characterization result if not handled prop-
erly.

To quantify the read variation errors, we simply use the data in Section 6.2.2. Since we
sweep the read reference voltage to obtain Vth of each cell, we can simulate reads by comparing
Vre f to Vth directly. Since the Vth characterization involves multiple reads, the simulated reads
are inherently resistant to read variation errors. Thus, we can identify read variation errors by
comparing the value actually read out from the flash chip with the value from the simulated read.

Observations. Figure 6.16 shows the correlation between the read variation error rate and
the total RBER for LSB and MSB page errors. We make two observations from this figure. First,
the read variation error rate for both LSB and MSB pages is linearly correlated with the overall
RBER. Second, the MSB page has a higher read variation error rate than the LSB page.

10-6 10-5 10-4 10-3 10-2

RBER

10-7

10-6

10-5

10-4

10-3

R
e
a
d
 v
a
ri
a
ti
o
n
 e
rr
o
r
ra
te

msb
lsb

msb trend
lsb trend

Figure 6.16: Read variation error, varying over the RBER.

Figure 6.17 shows the correlation between the read variation error rate and the read offset,
which is Vre f −Vth. We observe that as the read offset increases, the read variation error rate
decreases exponentially. This corroborates the first observation from Figure 6.16 because, when
the RBER is high, the threshold voltage distributions of neighboring states overlap with each
other by a greater amount. This causes a larger number of cells to be close to the read reference
voltage value, increasing the probability that a read variation error occurs.

162

−10 −5 0 5 10
Read offset

10-3

10-2

10-1

100

R
e
a
d
 v

a
ri

a
ti

o
n
 e

rr
o
r

ra
te

Figure 6.17: Read variation error vs. read offset.

Insights. We are the first to discover and quantify the extent of read variation errors, and
to show the correlation of these errors with the RBER and with the read reference voltage. For
cells with a threshold voltage close to the read reference voltage, it is more difficult for the sense
amplifier to detect whether the cell is on or off (due to the small delta), which causes the random
fluctuations. We find that read variation errors are one of the dominant sources of errors in 3D
NAND flash memory.

Read Disturb Errors

Read disturb errors accumulate in a cell when any other cell on the same bitline is read [35, 252]
(see Section 3.1). Read disturb errors are caused by the high pass-through voltage applied on the
unread cells.

To characterize read disturb errors, we first randomly select 11 flash blocks and use random
data to wear out each block to 0 to 10K P/E cycles. Then, we program random data to each flash
block. To minimize the impact of other errors, especially retention errors due to early retention
loss, we wait until the data has 2-day retention age before inducing read disturb. This ensures
that, according to our results in Section 6.2.2, retention loss can only shift the distribution of each
state by at most 1 voltage step during the characterization process. To induce read disturb in the
flash block, we repeatedly read from a wordline within the block for up to 900K times (i.e., up
to 900K read disturbs). During this process, to characterize read disturb effect, we obtain the
RBER and threshold voltage distribution at ten different read disturb counts from 0 to 900K.

Observations. Figure 6.18 plots how RBER increases over read disturb under 10K P/E
cycle. The top figure breaks down raw bit errors into LSB and MSB page errors; the bottom
figure breaks down the errors according to Vth state transition. We make three observations from
Figure 6.18. First, LSB and MSB errors can be modeled as a linear function of the read disturb
count. Second, LSB errors increase faster than MSB errors. Third, the increase in LSB error is
caused by the significant increase of ER↔P1 errors, while P2↔P3 errors slightly decrease over
read disturb.

163

0
1
2
3
4
5
6

R
B

E
R

1e−4

msb
lsb

msb fit
lsb fit

0.0 0.2 0.4 0.6 0.8 1.0
read disturbs 1e6

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

R
B

E
R

1e−4

ER<->P1
P1<->P2

P2<->P3

Figure 6.18: RBER vs. read disturb counts.

Figures 6.19 and 6.20 show how the distribution parameters change over read disturb. Each
subfigure shows the parameter for a different state, labeled on the top. We make four observations
from these two figures. First, the change in distribution parameters can be modeled as a linear
function of read disturb counts. Second, the ER state distribution shifts significantly higher over
read disturb, whereas the programmed states does not shift much over read disturb. The increase
in the distribution mean is lower for a higher Vth state. In fact, P3 state distribution even shifts
slightly lower. Third, the distribution width of each state (i.e., standard deviation) decreases
slightly over read disturb counts. Fourth, the distribution width of a higher Vth state decreases
faster than that of a lower Vth state.

12
14
16
18
20
22
24

N
o
rm

.
V
th

ER mean

104
106
108
110
112
114
116

P1 mean

0.0 0.2 0.4 0.6 0.8 1.0
read disturbs 1e6

170
172
174
176
178
180

N
o
rm

.
V
th

P2 mean

0.0 0.2 0.4 0.6 0.8 1.0
read disturbs 1e6

236
238
240
242
244
246

P3 mean

Figure 6.19: Distribution mean vs. read disturb counts.

164

18.52
18.54
18.56
18.58
18.60
18.62
18.64
18.66
18.68

N
o
rm

.
V
th

ER stdev

11.24
11.26
11.28
11.30
11.32
11.34
11.36
11.38

P1 stdev

0.0 0.2 0.4 0.6 0.8 1.0
read disturbs 1e6

10.94
10.96
10.98
11.00
11.02
11.04
11.06
11.08
11.10

N
o
rm

.
V
th

P2 stdev

0.0 0.2 0.4 0.6 0.8 1.0
read disturbs 1e6

11.22
11.24
11.26
11.28
11.30
11.32
11.34
11.36

P3 stdev

Figure 6.20: Distribution standard deviation vs. read disturb counts.

Figure 6.21 shows how the optimal read reference voltages change due to read disturb. Three
subfigures show the optimal voltages for Va, Vb, and Vc. We make two observations from this
figure. First, the optimal voltage for Va increases linearly over read disturb. Second, the optimal
voltages of Vb and Vc change by less than 3 voltage steps over 900K read disturbs.

0.0 0.2 0.4 0.6 0.8 1.0
read disturbs 1e6

70

71

72

73

74

75

76

77

78

N
o
rm

.
V
th

Va

0.0 0.2 0.4 0.6 0.8 1.0
read disturbs 1e6

137

138

139

140

141

142

143

144

145
Vb

0.0 0.2 0.4 0.6 0.8 1.0
read disturbs 1e6

203

204

205

206

207

208

209

210

211
Vc

Figure 6.21: Optimal read reference voltages vs. read disturb counts.

Figure 6.22 plots the slopes of RBER vs. read disturb (e.g., the slopes of the fitted curves in
Figure 6.18) at different P/E cycles. We show the slope separately for LSB and MSB RBER.
The steepness of the slope shows the sensitivity of RBER to read disturb effect. We make two
observations from this figure. First, the rate of LSB errors increase much faster than the rate of
MSB errors as the number of read disturbs increases. Second, for both LSB and MSB errors, the
slope increases super-linearly as the P/E cycle count increases.

165

0 2000 4000 6000 8000 10000
P/E cycles

−0.5
0.0
0.5
1.0
1.5
2.0
2.5 1e−10

msb lsb

Figure 6.22: Read disturb error increase rate vs. P/E cycle.

Figure 6.23 plots the slopes of distribution mean vs. read disturb (e.g., the slopes of the fitted
curves in Figure 6.19) at different P/E cycles. Each subfigure shows the slope for a different
state, labeled on the top, reflecting how fast the distribution shifts by read disturb. We make two
observations from this figure. First, the slope for each state increases linearly over P/E cycles.
Second, the slope for ER state increases significantly over P/E cycles, whereas the slopes for the
programmed states increase by little.

0.0
0.2
0.4
0.6
0.8
1.0 1e−5 ER slope

0.0
0.2
0.4
0.6
0.8
1.0 1e−5 P1 slope

0.0 0.2 0.4 0.6 0.8 1.0
P/E cycles 1e4

0.0
0.2
0.4
0.6
0.8
1.0 1e−5 P2 slope

0.0 0.2 0.4 0.6 0.8 1.0
P/E cycles 1e4

0.0
0.2
0.4
0.6
0.8
1.0 1e−5 P3 slope

Figure 6.23: Distribution mean increase rate vs. P/E cycle.

Insights. We compare the read disturb effect in 3D NAND to that in planar NAND reported
in prior work [35]. We make the observation that, although RBER increase linearly over read
disturb in both 3D NAND and planar NAND, the slope of increase (i.e., the sensitivity to read
disturb) at 10K P/E cycles is 96.7% lower in 3D NAND than in planar NAND [35]. We believe
that this difference in sensitivity to read disturb is due to the use of a larger process technology
in 3D NAND, 30 nm to 40 nm. In contrast, the results from prior work are for a 20 nm to 24 nm
planar NAND. Thus, we expect the sensitivity to read disturb in 3D NAND to increase in the
future as we shrink the process technology.

166

6.3.4 Layer-To-Layer Process Variation
In this section, we present the results and analysis of process variation in 3D NAND in addition to
the key findings from Section 6.2.1. We use the same methodology as described in Section 6.2.1.

Figures 6.24 and 6.25 show the change in threshold voltage distribution mean and standard
deviation of each state, respectively, for a model of layer-to-layer process variation, for a flash
block with 10K P/E cycles. Each subfigure shows the parameter for a different state, as labeled
on the top. We make three observations from these two figures. First, the ER state distribution
is shifted by as much as 25 voltage steps across layers, while the distributions of the other three
states do not shift by much. Second, the mean of the ER state keeps increasing in the top half of
the layers, but remains constant in the bottom half. Third, the distribution width of the P1 state
increases in the top half of the layers, and decreases in the bottom half. However, the distribution
widths of the P2 and P3 states vary by a smaller amount.

5
10
15
20
25
30

N
o
rm

.
V
th

ER mean

100
105
110
115
120
125

P1 mean

0 20 40 60 80 100
Norm. layers

170
175
180
185
190
195

N
o
rm

.
V
th

P2 mean

0 20 40 60 80 100
Norm. layers

245
250
255
260
265

P3 mean

Figure 6.24: Layer-to-layer variation of distribution mean.

16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0

N
o
rm

.
V
th

ER stdev

9.0
9.5

10.0
10.5
11.0
11.5
12.0
12.5
13.0

P1 stdev

0 20 40 60 80 100
Norm. layers

9.0
9.5

10.0
10.5
11.0
11.5
12.0
12.5
13.0

N
o
rm

.
V
th

P2 stdev

0 20 40 60 80 100
Norm. layers

10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0

P3 stdev

Figure 6.25: Layer-to-layer variation of distribution width.

167

6.3.5 Bitline-to-Bitline Process Variation
We perform a similar analysis on the variation of RBER and threshold voltage distribution along
the y-axis (i.e., across groups of bitlines) for a flash block with 10K P/E cycles. Figure 6.26 shows
the RBER variation along the y-axis for a flash block with 10K P/E cycles. To reduce the impact
of random process variation noise, we normalized the bitlines from 0 to 88 by averaging the
RBER of every∼3000 neighboring bitlines. The top graph breaks down the errors into MSB and
LSB page errors; the bottom graph breaks down the errors according to the original and current
state of each cell. Figure 6.27 shows change in threshold voltage distribution mean of each state
along the y-axis. Each subfigure shows the parameter for a different state, as labeled on the
top. We make two observations from this analysis. First, the variation along the y-axis is much
smaller compared to the variation across the z-axis. Second, for every∼64K consecutive bitlines
within a flash block, we observe similar process variation, indicating some form of repetition.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5 1e−4

lsb msb

0 10 20 30 40 50 60 70 80 90
Norm. bitlines

0.0
0.5
1.0
1.5
2.0
2.5

1e−4

ER<->P1
P1<->P2

P2<->P3
multi-bit

Figure 6.26: RBER variation across bitline.

168

22.0
22.5
23.0
23.5
24.0
24.5
25.0
25.5
26.0

N
o
rm

.
V
th

ER mean

113.0
113.5
114.0
114.5
115.0
115.5
116.0
116.5
117.0

P1 mean

0102030405060708090
Norm. bitlines

182.0
182.5
183.0
183.5
184.0
184.5
185.0
185.5
186.0

N
o
rm

.
V
th

P2 mean

0102030405060708090
Norm. bitlines

253.0
253.5
254.0
254.5
255.0
255.5
256.0
256.5
257.0

P3 mean

Figure 6.27: Distribution mean variation across bitlines.

6.4 3D NAND Error Models
In previous sections, we have established a basic understanding of the similarities and differ-
ences between 3D NAND and planar NAND flash memory in terms of reliability. In this section,
we quantify these differences by developing analytical models of the process variation (Sec-
tion 6.4.1) and retention loss (Section 6.4.2) in 3D NAND flash memory. The insights from
these models motivate us to develop new error mitigation mechanisms for 3D NAND flash mem-
ory. The retention model and the model parameters are also useful for comparing the reliability
of newer or older generations of NAND flash memory with our tested 3D NAND flash chips.

6.4.1 Process Variation Model
We first construct a model of the optimal read reference voltage (Vopt) variation across different
layers, based on the results in Section 6.2.1. Since there are only a limited number of layers,
we use a non-parametric model that estimates the offset between the Vopt on each layer and
the overall Vopt for the entire flash block using the results across 10 different P/E cycles. The
result of the model is shown in Figure 6.3. Since the overall per-block Vopt does not take layer-to-
layer process variation, we call it variation-agnostic Vopt . The per-layer Vopt can be calculated by
adding the modeled offset to the variation-agnostic Vopt , which accounts for the process variation.
Thus we call it variation-aware Vopt . Many prior works already provide models and mechanisms
to obtain variation-agnostic Vopt at a low cost [27, 195, 252].

Since the layer-to-layer variation in 3D NAND causes variation in RBER within a flash block,
the overall RBER is no longer sufficient to represent the reliability of all pages within that block.
Instead, we model the variation in per-page RBER within a flash block as a gamma distribu-
tion (i.e., gamma(x,θ ,k) = xk−1e−

x
s

Γ(k)θ a). Figure 6.28 shows the probability density for per-page
RBER within a block with 10K P/E cycles. The bars show the measured per-page RBERs cat-
egorized into 50 bins, and the curves are the fitted gamma distributions whose parameters are
shown on the legend. The blue and red colors represent the RBER distributions when reading

169

with the variation-agnostic Vopt and with the variation-aware Vopt , respectively. We make two
observations from this figure. First, the average RBER is reduced from 1.6 · 10−4 to 1.4 · 10−4

by applying variation-aware Vopt . Second, a few flash pages have a much higher RBER than the
average RBER (e.g., > 4 ·10−4). These pages are LSB pages that reside in the middle layers, as
is shown in Figure 6.2.

0 1 2 3 4 5 6
RBER 1e 4

0.00

0.02

0.04

0.06

0.08

0.10
Pr

ob
ab

ilit
y

de
ns

ity variation-agnostic Vopt

variation-aware Vopt

fit = gamma(2.19,7.45e-05)
fit = gamma(1.86,7.62e-05)

Figure 6.28: RBER distribution within a flash block.

6.4.2 Retention Loss Model
To quantify the retention loss in 3D NAND, we construct a model of retention loss in 3D NAND
as a function of retention time (t) and P/E cycle lifetime (PEC). We use multivariate linear re-
gression to fit the model and use root mean square error as the loss function. Following the
observations in Section 6.2.2, we perform natural logarithm transformation on RBER and reten-
tion time. Also following the observations, we break down our model into two steps. The first
step models the retention loss at a certain P/E cycle as a logarithmic function of retention time.
The second step models how P/E cycle change the parameters of retention loss.

Table 6.2 shows all of the parameters we use to model the RBER and the threshold voltage as
a function of the P/E cycle count (PEC) and the retention time (t). In this table, the first column
shows the modeled variable for each row. The second column shows how we model retention
loss, as we have shown in Figures 6.13, 6.14 and 6.15. The third and fourth columns show how
each parameter in the retention model changes over P/E cycles. The last column shows the root
mean square error of our model.

170

Va
ri

ab
le

R
et

en
tio

n
m

od
el

M
od

el
pa

ra
m

et
er

s
M

od
el

er
ro

r

M
SB

R
B

E
R

lo
g(

R
B

E
R
)
=

A
·lo

g(
t)
+

B
A
=

7.
1
·1

0−
6
·P

E
C
+

0.
34

B
=

4.
1
·1

0−
5
·P

E
C
−

13
.8

3
2.

9
·1

0−
5

L
SB

R
B

E
R

lo
g(

R
B

E
R
)
=

A
·lo

g(
t)
+

B
A
=

6.
6
·1

0−
6
·P

E
C
+

0.
16

B
=

1.
2
·1

0−
4
·P

E
C
−

13
.0

5
8.

2
·1

0−
6

E
R

m
ea

n
m

ea
n
=

A
·lo

g(
t)
+

B
A
=

1.
0
·1

0−
4
·P

E
C
+

0.
75

B
=

1.
5
·1

0−
3
·P

E
C
−

27
.2

8
1.

60
P1

m
ea

n
m

ea
n
=

A
·lo

g(
t)
+

B
A
=
−

1.
9
·1

0−
5
·P

E
C
−

0.
40

B
=

3.
5
·1

0−
4
·P

E
C
+

11
4.

47
0.

27
P2

m
ea

n
m

ea
n
=

A
·lo

g(
t)
+

B
A
=
−

4.
7
·1

0−
5
·P

E
C
−

0.
71

B
=

3.
2
·1

0−
4
·P

E
C
+

18
9.

58
0.

30
P3

m
ea

n
m

ea
n
=

A
·lo

g(
t)
+

B
A
=
−

7.
4
·1

0−
5
·P

E
C
−

1.
21

B
=

5.
8
·1

0−
4
·P

E
C
+

26
4.

86
0.

53
E

R
st

de
v

st
de

v
=

A
·lo

g(
t)
+

B
A
=

1.
2
·1

0−
5
·P

E
C
−

0.
11

B
=

1.
6
·1

0−
6
·P

E
C
+

17
.0

2
0.

39
P1

st
de

v
st

de
v
=

A
·lo

g(
t)
+

B
A
=
−

1.
3
·1

0−
6
·P

E
C
+

9.
8
·1

0−
3

B
=

7.
6
·1

0−
5
·P

E
C
+

10
.2

1
0.

05
P2

st
de

v
st

de
v
=

A
·lo

g(
t)
+

B
A
=
−

2.
1
·1

0−
6
·P

E
C
+

9.
9
·1

0−
3

B
=

6.
7
·1

0−
5
·P

E
C
+

10
.6

6
0.

04
7

P3
st

de
v

st
de

v
=

A
·lo

g(
t)
+

B
A
=

2.
9
·1

0−
6
·P

E
C
+

0.
01

4
B
=

3.
3
·1

0−
5
·P

E
C
+

10
.8

3
0.

05
9

V a
V a

=
A
·P

E
C
+

B
A
=

1.
2
·1

0−
3

B
=

60
.5

2
2.

36
V b

V b
=

A
·lo

g(
t)
+

B
A
=

1.
51
·1

0−
6
·P

E
C
−

0.
75

B
=

15
2.

67
0.

55
V c

V c
=

A
·lo

g(
t)
+

B
A
=

2.
43
·1

0−
5
·P

E
C
−

1.
27

B
=

22
9.

65
0.

64

Ta
bl

e
6.

2:
M

od
el

pa
ra

m
et

er
s

fo
r3

D
N

A
N

D
re

te
nt

io
n

lo
ss

.t
is

re
te

nt
io

n
tim

e,
P

E
C

is
P/

E
cy

cl
e

lif
et

im
e.

171

6.5 3D NAND Error Mitigation Techniques
Motivated by our new findings in Section 6.1, we aim to design new techniques that mitigate the
three unique error effects in 3D NAND flash memory. We propose four error mitigation mech-
anisms. To mitigate layer-to-layer process variation, we propose LaVAR and LI-RAID. LaVAR
learns the process variation model we developed in Section 6.4.1 online in the SSD controller,
and uses this model to predict and apply a optimal read reference voltage that is fine-tuned for
each layer (Section 6.5.1). LI-RAID is a new RAID scheme that reduces the RBER variation in-
duced by layer-to-layer process variation in 3D NAND flash memory (Section 6.5.2). To mitigate
retention loss in 3D NAND flash memory, we propose ReMAR, a new technique that tracks the
retention age information within the SSD controller and uses the retention model we developed in
Section 6.4.2 to predict and apply the optimal read reference voltage fine-tuned for the retention
age of the data (Section 6.5.3). To mitigate retention interference, we propose ReNAC, which is
adapted from an existing technique originally designed to reduce program interference in planar
NAND to also account for retention interference in 3D NAND flash memory (Section 6.5.4).

6.5.1 LaVAR: Layer Variation Aware Reading
Motivation: In planar NAND, existing techniques assume that Vopt is the same across all pages
within a flash block [27, 252]. However, as our results in Section 6.2.1 show, this assumption no
longer works in 3D NAND because of layer-to-layer process variation. To mitigate this problem
in 3D NAND, we devise a new mechanism, LaVAR, that uses the process variation model we
developed in Section 6.4.1 to fine-tune read reference voltage in the flash controller.
Mechanism: The key idea of LaVAR is to identify which layer the flash controller is reading
and apply the variation-aware Vopt predicted by the model in Section 6.4.1. Since the process
variation is similar across blocks and is consistent across P/E cycles, the Vopt model can be
learned offline for each chip through an extensive characterization of a single flash block. To
do this, the SSD controller randomly picks a flash block and records the difference between
variation-agnostic Vopt and per-block variation-aware Vopt . The controller then computes and
stores the average Vopt difference for each layer in a lookup table. Note that Vc variation does
not need to be modeled, since Vc is unaffected by layer-to-layer process variation. After this
lookup table is constructed, the SSD controller simply looks up the Vopt difference according to
the layer of each read operation and add the offset to the per-block Vopt predicted by existing
techniques [27, 195, 252]. By applying variation-aware Vopt , LaVAR applies a more accurate
Vopt for 3D NAND than existing techniques, and reduces the RBER.
Overhead: Assuming that the 3D NAND has N layers and Vopt difference is 1 Byte, the memory
overhead of caching the lookup table in the SSD controller is 2N Bytes. The latency overhead
of each read operation is negligible as LaVAR only requires a table lookup and an addition to
obtain variation-aware Vopt , which take less than 100ns. Since the lookup table is shared across
all blocks, it only needs to be learned once, and can be finished gradually in the background.
Thus the performance overhead is negligible.
Evaluation: Figure 6.29 compares the RBER achieved by LaVAR (process variation

aware) to that by an existing read reference voltage tuning technique (process variation

agnostic) designed for planar NAND [27, 195, 252] that applies a per-block Vopt . We evaluate

172

the average RBER achieved by each mechanism by simulating reads using our characterization
data in Section 6.2.1. On average, LaVAR reduces RBER by 43.3%. The benefit comes from
tuning the read reference voltage towards the per-page optimal read reference voltage by an
offset learned by our model. The percentage of RBER reduction becomes smaller as P/E cy-
cle increases because the overall RBER increases exponentially as the flash memory wears out,
decreasing the fraction of process variation errors.

Figure 6.29: RBER reduction using process-variation-aware optimal read reference voltage.

6.5.2 LI-RAID: Layer-Interleaved RAID
Motivation: As we show in Section 6.4.1, even after applying the variation-aware Vopt , the
worst-case per-page RBER is more than 2× higher than the average per-block RBER due
to layer-to-layer process variation. In addition, neighboring MSB pages and LSB pages also
have very different RBERs and different tolerance to different types of errors, as shown in Sec-
tions 6.2.1 and 6.2.2. In enterprise SSDs, RAID [9, 262] is applied in addition to ECC across
multiple flash chips to tolerate process variation across chips. However, state-of-the-art RAID
schemes do not consider layer-to-layer variation and MSB–LSB variation. These schemes group
MSB or LSB pages in the same layer together in a RAID group. As a result, the reliability of
the SSD is limited by the RBER of the weakest (i.e., the least reliable) RAID group that contains
the MSB or LSB pages from the least reliable layer across all chips. We aim to develop a new
RAID scheme that eliminates these low-reliability RAID groups by equalizing the RBER among
different RAID groups.
Mechanism: We propose LI-RAID, a new RAID scheme that can tolerate the process variation
across layers in addition to the variation across chips. Instead of grouping pages in the same layer
together, we select pages from different chips and different layers and group them together, such
that the pages from the least reliable layer are interleaved across multiple RAID groups. Thus,
the new groups formed by LI-RAID have a more evenly-distributed reliability than the groups
formed using traditional RAID schemes. We assume, without loss of generality, that there are

173

m chips in the SSD, and each RAID group contains m pages, one from each chip. We also
assume that each block contains n wordlines, and that the layer numbers of each wordline are in
ascending order (e.g., the wordline in layer i has a lower wordline number than its neighboring
wordline in layer i+1). Thus, LI-RAID groups together the MSB page of wordline 0, the LSB
page of wordline n

m , the MSB page of wordline 2 · n
m , . . . , the MSB page of wordline (m−1) · n

m .
Figure 6.30 shows an example LI-RAID layout on an SSD with 4 chips and with 4 wordlines
within each flash block. Flash pages in the same RAID group are highlighted in the same color.
In this way, LI-RAID redistributes the less reliable pages within each chip across different RAID
groups, eliminating the worst-case RAID groups that bottlenecks SSD reliability.

Page/Wordline Chip 0 Chip 1 Chip 2 Chip 3

MSB/Wordline 0 Group 0 Blank Group 4 Group 3

LSB/Wordline 0 Group 1 Blank Group 5 Group 2

MSB/Wordline 1 Group 2 Group 1 Blank Group 5

LSB/Wordline 1 Group 3 Group 0 Blank Group 4

MSB/Wordline 2 Group 4 Group 3 Group 0 Blank

LSB/Wordline 2 Group 5 Group 2 Group 1 Blank

MSB/Wordline 3 Blank Group 5 Group 2 Group 1

LSB/Wordline 3 Blank Group 4 Group 3 Group 0

Figure 6.30: LI-RAID layout example for an SSD with 4 chips and with 4 wordlines in each
flash block.

Note that for some chips, the LI-RAID layout may potentially violate the program sequence
recommended by flash vendors, where wordlines within each flash block must be programmed
in order to minimize harmful program interference [24, 26, 33, 255]. For example, in Chip 2 in
Figure 6.30, Wordline 0 is programmed after Wordline 2. If we were to write to Wordline 2 after
Wordline 1 is programmed, Wordline 2 would experience approximately double the program in-
terference (i.e., from programming both Wordline 3 and Wordline 1). To avoid introducing any
additional program interference, we deliberately leave the flash pages in the last RAID group
empty, which are shown as “Blank” pages shaded in gray in Figure 6.30. As a result, LI-RAID
provides the same reliability guarantee as the recommended program sequence, by guaranteeing
that any data stored in a flash page experiences program interference from at most one neighbor-
ing wordline.
Overhead: The wordlines left blank in LI-RAID incur a small additional storage overhead com-
pared to a conventional RAID scheme. Only one wordline within a flash block is left blank. In
modern NAND flash memory, each flash block typically contains more than 250 flash pages.
Thus, the additional storage overhead is less than 0.4%. LI-RAID does not incur additional com-
putational overhead because it computes parity in the same way as a conventional RAID, and
only reorganizes the RAID groups differently. Because we do not change the data layout across
flash blocks, the flash transation layer (FTL) and the garbage collection (GC) algorithm remain
the same as in a conventional RAID scheme.

174

Evaluation: Figure 6.31 plots the 99th-percentile RBER when applying different error mitiga-
tion techniques at 10,000 P/E cycles. As we show in Figure 6.28, due to layer-to-layer variation,
per-page RBER is distributed over a wide range according to a gamma distribution. Thus, several
worst-case flash pages within a block may become unusable (i.e., their RBER exceeds the ECC
correction capability) before the overall RBER of the flash chip exceeds the ECC correction ca-
pability. We use the 99th-percentile RBER to represent the reliability of these worse-case flash
pages. In this figure, the baseline applies the per-block variation-agnostic optimal read reference
voltage (i.e., variation-agnostic Vopt), achieving a 99th-percentile RBER of 4.8 ·10−4. When we
apply the variation-aware Vopt proposed in Section 6.5.1, the 99th-percentile RBER is reduced
by 9.6% over the baseline, to 4.3 ·10−4. LI-RAID reduces the 99th-percentile RBER by 66.9%
over the baseline, to only 1.6 · 10−4. Thus, by grouping flash pages on less reliable layers with
pages on more reliable layers, and by grouping MSB pages with LSB pages, LI-RAID reduces
the probability of unusable pages within a block, reducing the number of retired flash blocks
due to ECC failures. This greatly reduces the probability of data loss and increases the available
storage space near the end of the SSD lifetime.

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

Variation-aware RAID
Variation-aware Vopt

Variation-agnostic Vopt

99% RBER

Figure 6.31: Worst-case RBER at 10,000 P/E cycles when applying different error mitigation
techniques.

6.5.3 ReMAR: Retention Model Aware Reading
Motivation: As we show in Section 6.2.2, due to early retention loss, retention errors increase
much faster in 3D NAND than in planar NAND. Thus, mitigating retention errors has become
more important in 3D NAND than in planar NAND, as it has greater impact on SSD reliability.
However, as we show in our model in Section 6.4.2, early retention loss is proportional to the
logarithm of time. This means that the majority of the retention errors and threshold voltage
shifts happen shortly after programming. As a result, traditional retention mitigation techniques
developed for planar NAND may become less effective on 3D NAND. For example, FCR [22,
250], a mechanism that remaps all data periodically, allows planar NAND to tolerate 50× more
P/E cycles with 3-day refresh period. But this number reduces to only 2.7× for 3D NAND
due to early retention loss. Figure 6.32 shows how increasing refresh period exponentially only
improves 3D NAND endurance at a linear speed. This motivates us to explore new ways to
mitigate retention errors in 3D NAND.

175

100 101 102 103

Refresh period (days)

0

5000

10000

15000

20000

25000

P
/E
 c
y
cl
e
s

Figure 6.32: Achievable 3D NAND endurance when refreshing periodically at different intervals.

Mechanism: The key idea of ReMAR is to accurately track the retention age of the data and
apply the optimal read reference voltage predicted by our model in Section 6.4.2. First, ReMAR
constructs the same linear models proposed in Section 6.4.2 online to accurately predict the
optimal Va, Vb, and Vc. Similar to the distribution parameter model used in Section 6.4.2, we
model the optimal Vb and Vc as: V = (a ·PEC+b) · log(t)+ c ·PEC+d. We model the optimal
Va as: Va = a ·PEC+b, since Va is not affected by retention age. To construct this model online,
the controller randomly selects a block during each idle period and records the optimal read
reference voltage of the block, learned by sweeping the read reference voltages as is done in
prior work [27], and its corresponding P/E cycle (PEC) and retention age (t). Over time, these
data samples should be able to cover a range of P/E cycles and retention ages.9 Note that as the
P/E cycle count of the SSD increases, the accuracy of the model increases, because more data
samples are collected. Once this online model is constructed, it is used in the controller to predict
the optimal read reference voltage on each read operation. To do this, the SSD controller stores
the P/E cycle and the program time of each block as metadata. During each read operation, the
controller computes the retention age for each read by subtracting the program time from the
read time. Using the recorded P/E cycle and the computed retention age of the data, ReMAR
applies the online model to predict Va, Vb, and Vc. By accurately predicting and applying the
optimal read reference voltages, ReMAR hopes to increase the accuracy of read operations and
thereby decreasing the raw bit error rate.
Overhead: The memory and storage overhead is 800KB for a 1TB SSD assuming a 5MB block
size and 4B time size. The performance overhead of each read operation is small as we only
need a few CPU cycles (on the order of 100ns) in the flash controller to compute Vopt , which is
negligible compared to flash read latency (on the order of 10µs). The performance overhead of
learning the model can be hidden by only learning during idle time.

The controller uses universal time for program and read times, such that the recorded time is
valid after reboot. To do this, the controller needs a real-time clock to keep track of the current
time. Without a power source on the SSD, the controller needs a special command to synchronize
the current time with the host when it boots up. The program time of each block is cached in
the memory of the controller, along with other metadata that already exists such as the logical

9The SSD controller can also perform explicit characterization if certain data range is missing.

176

address map and the P/E cycle of each block.
Evaluation: Figure 6.33 compares the RBER achieved by ReMAR (retention aware) to the
state-of-the-art read reference voltage tuning technique for planar NAND that only adapts Va to
P/E cycle (retention agnostic). The RBER results are obtained by simulating reads on the
characterization data used in Section 6.2.2. We assume that the average retention time of the data
is 24 days. On average, ReMAR reduces RBER by 51.9%. As P/E cycle increases, the benefit
of ReMAR becomes larger because the threshold voltage shifts faster over retention age. By
accurately tracking retention age, and by using our online model, ReMAR can adapt to this shift
and reduce RBER.

Figure 6.33: RBER reduction using retention-aware optimal read reference voltage.

6.5.4 ReNAC: Mitigating Retention Interference
Motivation: As we observe in Section 6.2.3, due to retention interference, the amount of thresh-
old voltage shift of a victim cell during a certain amount of retention time is affected by the
value stored in the neighboring cell. This presents a similar data dependency as that induced
by program interference, where the amount of threshold voltage shift of a victim cell during
programming operation also depends on the value stored in the neighboring cell [24, 26]. To
account for this data dependency, prior work proposes neighbor-cell assisted correction (NAC),
which compensates this threshold voltage shift by adjusting the read reference voltage based on
the neighboring cell’s value [26]. However, this mechanism does not account for retention in-
terference, which is new in 3D NAND flash memory. Thus, we adapt NAC for 3D NAND flash
memory to account for the new retention interference.
Mechanism: The key idea of ReNAC is to use the data stored in the neighbor cell to predict
and adapt to the amount of retention interference on a victim cell. Using similar techniques
from Section 6.4.2, ReNAC first develops an online model of retention interference as a function
of the retention age and the neighbor cell’s state. The SSD controller obtains the retention age
of each block using a similar mechanism to ReMAR, and computes and applies the neighbor

177

cell dependent read offset at that retention age from the model. We expect that, as retention
interference increases in future 3D NAND devices, the benefit of ReNAC will increase. We
leave a quantitative evaluation of ReNAC for future work.

6.5.5 Implications on Systems Reliability
The mechanisms we propose in this section can be combined together to achieve significant
reduction in average and worst-case RBER. We demonstrate the benefits that these reliability
improvements can provide for computer systems, such as flash memory lifetime, sustainable
workload write intensity, and error correction.

In Figure 6.34, we compare and contrast the reliability of three example SSDs: (1) Base-
line, an SSD that uses a fixed, default read reference voltage and deploys a conventional RAID
scheme; (2) State-of-the-art, an SSD that uses the optimal read reference voltage predicted by
existing mechanisms designed for planar NAND [27, 195, 252, 260] and deploys a conventional
RAID scheme; (3) This Work, an SSD that uses the optimal read reference voltage predicted by
LaVAR and ReMAR, and deploys the LI-RAID scheme. In this figure, we plot the worst-case
RBER instead of the average RBER, because the worst-case RBER limits flash memory life-
time. Because RBER increases over the P/E cycle count, if the worst-case RAID group has a
high enough RBER, NAND flash memory can no longer guarantee reliable operation.

1.0E-5

1.0E-4

1.0E-3

1.0E-2

0 5000 10000 15000 20000 25000

W
o

rs
t-

C
as

e
R

B
ER

P/E Cycles

Baseline State-of-the-art This Work

ECC Limit

Figure 6.34: RBER reduction using retention-aware optimal read reference voltage.

Assuming that the ECC deployed on the SSD can correct up to 3 · 10−3 RBER [27, 33]
(i.e., the ECC limit, the purple dotted line in Figure 6.34), we can calculate the lifetime of each
example SSD. The flash memory lifetime ends when the worst-case RBER goes above the ECC
limit. We find that State-of-the-art improves flash lifetime by 23.8%, and This Work improves
flash lifetime by 85.0% over the Baseline. When the SSD is deployed in a server, which has a
fixed device lifetime, the server has to throttle the write frequency to a certain drive writes per
day (DWPD) to ensure the SSD can operate reliable during the fixed lifetime. In this case, the
flash lifetime improvements translates into an increased threshold of 85.0% higher DWPD for
SSDs in a server.

In modern SSDs, the storage overhead for error correction, i.e., ECC redundancy, increases
in each generation to better tolerate the degraded flash reliability due to aggressive scaling. For
example, to tolerate an RBER of up to 3 ·10−3 for the Baseline SSD at the end of its lifetime, a

178

modern BCH code [107] requires 12.8% storage overhead for the redundant ECC bits [72]. By
deploying various error mitigation techniques like the ones we propose in this section, we can
significantly reduce this error correction overhead without sacrificing flash reliability. Assuming
all three example SSDs achieve the same lifetime, and the same reliability (i.e., uncorrectable
error rate) at the end of their lifetime, State-of-the-art reduces ECC redundancy to 7.4%, and
This Work reduces ECC redundancy to 2.7%, which is 78.9% lower than Baseline. We leave
the evaluation of the performance improvement due to a weaker ECC requirement for future
work [48, 177].

6.6 Limitations
The observations and analysis results only apply to 3D NAND based on a charge trap cell design.
The error characteristics of future 3D NAND chips may also change when the manufacturing pro-
cess technology starts shrinking again if adding more stacked layers become less economically
viable. In a smaller process technology node, two-step programming errors, read disturb errors,
and retention interference errors may become dominant; thus our model needs to be extended
to consider all of them. Our techniques focus on mitigating layer-to-layer process variation and
retention errors that are unique to 3D NAND flash memories. Our techniques do not reduce other
errors caused by read disturb or program interference because prior works already provide tech-
niques to mitigate them [24, 35]. Our retention model and ReMAR do not consider self-recovery
and temperature effects, which could affect flash reliability significantly. In Chapter 7, we ex-
tend our retention model to consider these effects, and provide mechanisms to track the amount
of self-recovery and temperature effects.

6.7 Conclusion
We develop an understanding of three new error characteristics in 3D NAND flash memory
through rigorous experimental characterization of real, state-of-the-art 3D NAND flash mem-
ory chips: layer-to-layer process variation, early retention loss, and retention interference. We
analyze and show that these new error characteristics are fundamentally caused by changes intro-
duced in the 3D NAND flash memory architecture, and predict that these errors will increase in
future 3D NAND flash memories. To handle these three new error characteristics in 3D NAND,
we develop new analytical models for layer-to-layer process variation and early retention loss in
3D NAND flash memory, and propose four new techniques that utilize our models to improve the
reliability of 3D NAND flash memory. Our evaluations show that our newly-proposed techniques
successfully mitigate the new error patterns that we discover in 3D NAND flash memory. We
hope that the error characterization and analysis performed in this work motivates future studies
on the reliability of 3D NAND, and that it inspires new error mitigation mechanisms that cater
to 3D NAND flash memory.

179

Chapter 7

HeatWatch: Self-Recovery and
Temperature Aware Retention Error
Mitigation

As we have shown in Chapter 6, retention errors dominate 3D NAND flash memory errors. Thus,
mitigating retention errors in 3D NAND can yield significant flash reliability improvements. We
find promising opportunity to mitigate flash retention by exploiting self-recovery, which we have
introduced in Section 3.1.6. This opportunity has largely been ignored in recent literature, as the
self-recovery effect is not well understood, especially in 3D NAND flash memory.

In this chapter, we exploit the 3D NAND flash memory’s device-level self-recovery behavior
to improve flash reliability. The goal of this chapter is to (1) perform a detailed experimental
characterization of the self-recovery effect using real, state-of-the-art 3D NAND flash memory
devices, and (2) exploit our findings by developing HeatWatch, a new mechanism to help self-
recovery in 3D NAND flash memory. The key idea of HeatWatch is to adapt the read reference
voltage to the dwell time (i.e., the idle time between consecutive program cycles) and retention
time of the workload as well as the SSD’s operating temperature.

First, we extensively characterize how self-recovery and temperature affects 3D NAND flash
reliability using real, state-of-the-art MLC 3D NAND flash memory chips (Section 7.1). Second,
based on the findings of our characterization, we propose URT, a new unified model of self-
recovery, temperature, retention loss, and wearout for 3D NAND flash memory (Section 7.2).
Third, using URT, we propose and evaluate HeatWatch, a mechanism to improve flash relia-
bility and lifetime by optimizing read operations in 3D NAND flash memory for the amount
of self-recovery allowed by the workload and the operating temperature of the flash memory
(Section 7.3).

7.1 Characterizing the Self-Recovery Effect
To understand the behavior of the self-recovery effect in 3D NAND flash memory, we perform
an extensive characterization of the effect using real, state-of-the-art 3D NAND flash memory
chips. Our goal in this characterization is to answer the following research questions:

180

• How does the dwell time affect retention and program variation errors?
• What is the correlation between dwell time and the magnitude of the self-recovery effect?
• How does the operating temperature affect the number of retention and program variation

errors?
• How do the benefits of self-recovery change based on the number of performed recovery cy-

cles?
We make all of our characterization data, including results not shown in this chapter for brevity,
available in an extended report [192] and online [281].

We use the observations and analysis from our characterization to drive the design of a new
model of 3D NAND flash memory reliability, as described in Section 7.2.

7.1.1 Characterization Methodology
To answer the above research questions, we design new experiments to test how flash reliability
changes with different dwell times and temperatures. In these experiments, we use state-of-the-
art 30- to 40-layer 3D charge trap NAND flash chips from a major vendor.1 We use a NAND
flash memory characterization platform that fits in the SSD form factor, and contains a special
version of the firmware in the SSD controller. We use a server machine to issue remote procedure
calls (RPC) [13] to the firmware over a Serial ATA (SATA) [290] connection. These RPCs trigger
commands to be sent directly to the flash chips, and can transfer the raw data (i.e., data with raw
bit errors) directly from the flash chips to the server without applying error correction (ECC).
This allows us to observe the effect of dwell time and operating temperature on the raw bit error
rate of each flash chip.

We use two metrics to evaluate flash reliability. First, we measure the raw bit error rate
(RBER), which is the rate at which errors occur in the data before error correction. To calculate
RBER, we read data from a NAND flash memory chip using the default read reference voltage,
and compare the data using a pristine server-side copy of the data that was originally written to
the chip. Second, we show the statistical mean of the threshold voltage distribution of each high-
voltage state (i.e., P1, P2, P3). As we mention in Section 3.1, retention loss and program variation
cause the threshold voltages of cells to shift, which leads to the raw bit errors.2 To obtain the
threshold voltage distribution of a flash page, we perform multiple read operations to sweep the
range of all positive read reference voltages, using the read-retry command on the NAND flash
memory chip [23, 27, 82].3 Read-retry allows us to fine-tune the read reference voltage used for
each read operation. The smallest amount by which we can change the read reference voltage is
called a voltage step. We normalize each threshold voltage value to the number of voltage steps
needed to reach that particular voltage value.1

Limitations. In our experiments, we characterize 3D NAND flash memory chips of the same
1We do not disclose the exact number of stacked layers in the chips, to protect the anonymity of the flash vendor,

and we cannot disclose the exact voltage values, as this is proprietary information.
2We are unable to show the full threshold voltage distribution for the ER state, because the ER state threshold

voltages are negative, and our platform cannot measure negative voltage values. This is similar to prior works [23,
27, 33, 35].

3Due to space limitations, we refer the reader to prior works [195, 260] for a detailed methodology on how to
obtain the threshold voltage distribution.

181

model from one major vendor. Our approach ensures that any variation that we observe in our
characterization is the result of only manufacturing process variation, and not a result of differ-
ences in flash chip architecture or different manufacturing techniques used by different vendors.
While we do not take vendor-related variation into account, we believe that our general qualita-
tive findings on the effects of self-recovery and temperature can be generalized to 3D charge trap
NAND flash memory manufactured by other vendors. This is because the underlying structure
of 3D charge trap cells (see Section 3.4) is similar across different vendors [55, 221, 257]. Thus,
while the exact numbers reported in this chapter may differ from vendor to vendor, our qualita-
tive findings, which are a result of charge detrapping from the tunnel oxide (see Section 3.1.6),
should be similar across vendors.

We are unable to perform repeated runs of our test procedures on the same block, as each
run of a test procedure induces further wearout on a block. The amount of wearout affects the
error rate of NAND flash memory [23, 32, 33, 195, 219, 260]. To ensure an accurate comparison
between multiple test procedure runs, we use eight target wordlines in the same stack layer from
eight randomly-selected flash blocks that are set to the same level of wearout for the same test
procedure. By selecting wordlines in the same layer, we eliminate the potential impact of cross-
layer process variation. Note that we do not characterize chip-to-chip process variation, as an
accurate study of such variation requires a large-scale study of a large number (e.g., hundreds)
of 3D NAND flash memory chips, which we do not have access to. Hence, we leave such a
large-scale study for future work.

7.1.2 Characterizing the Dwell Time Effect
To measure the effect of dwell time on flash reliability (see Section 3.1.6), we characterize the
RBER and the threshold voltage distribution. We wear out each of our target blocks by repeatedly
writing pseudorandom data until the block reaches 3,000 P/E cycles. For the last 300 P/E cycles,
we use a different dwell time for each block, spanning a range of 64 s to 8192 s. Prior work
shows that the magnitude of the self-recovery effect is correlated with the dwell time for only the
last 10% of P/E cycles performed on a block [220]. We show in Section 7.1.4 that the dwell time
used during only the last 20 P/E cycles affects self-recovery.

We measure how the dwell time affects retention loss speed and program variation, by per-
forming a retention test on each target wordline immediately after the block containing the word-
line reaches 3,000 P/E cycles. In this test, we program pseudorandom data to the target wordline,
and repeatedly measure the threshold voltage distribution using the methodology described in
Section 7.1.1 for up to 71 min (i.e., 4260 s) after the data was written. We conduct this ex-
periment at an environmental temperature of 70 ◦C, which accelerates both self-recovery and
retention loss to reduce the experiment duration to a reasonable length [220].4 We later repeat
a small portion of the test under room temperature (20 ◦C), and verify that all of our observed
trends remain the same.

Effect on RBER. First, we study how self-recovery affects the raw bit error rate. Figure 7.1
shows the RBER as retention time (ts) increases, for different dwell times (td) used for the last

4Based on Arrhenius’ Law [6], the same experiment would take more than 11 years to finish had we performed
it at room temperature (20 ◦C).

182

300 P/E cycles. We use a color gradient for the curves, where the reddest (topmost) curve has
the shortest dwell time, and the blackest (bottommost) curve has the longest dwell time. Note
that the x-axis and y-axis are both in log scale.

�� � ��� ��� ��� ��� ���

�	�	�������	���	�����

�� �

�� �

�� �

�� �

��
��

���
������������
�	������������	

�	�	����	������������	

td!����
td!�����
td!�����
td!�����

td!������
td!������
td!������
td!������

Figure 7.1: Change in RBER over retention time for flash pages that were programmed using
different dwell times.

We make two observations from Figure 7.1. First, when the retention time is short (i.e.,
tr < 10 s), the RBER is similar across different dwell times. During this time, the RBER is
dominated by program variation errors [21, 195, 219]. Recall that a longer dwell time increases
the amount of detrapped charge during self-recovery. However, since the RBER is similar across
different curves regardless of the dwell time, this means that self-recovery does not mitigate
program variation errors. Therefore, unlike previous works [50, 224, 337], we conclude that
self-recovery does not repair all of the errors that occur due to wearout in 3D NAND flash
memory. Second, when the retention time is large (i.e., tr > 10 s), there is a strong correlation
between a longer dwell time and a lower RBER. During this time, the RBER is dominated by
retention errors (hence the growth in RBER as the retention time increases). We conclude that
a longer dwell time after an erase operation mitigates retention errors, but not program variation
errors, in 3D NAND flash memory.

Effect on Threshold Voltage. Next, we study the threshold voltage distribution of the flash
pages under test, to understand how self-recovery affects the threshold voltage shift (and thus the
RBER) due to retention loss. Figure 7.2 shows the threshold voltage distribution before (black
dots, tr = 1 min) and after (red dots, tr = 71 min) a large retention time elapses, for a flash page
programmed using a 64 s dwell time (top plot), and for a flash page programmed using a 8192 s
dwell time (bottom plot). We observe from the figure that when the dwell time is higher, the
threshold voltage distribution shift due to retention loss is significantly smaller.

To quantify the threshold voltage shift as a function of the dwell time, we plot the statistical
means of the threshold voltage distributions of cells programmed to the P1, P2, and P3 states in
Figure 7.3. We use the same color gradient that we used in Figure 7.1 to represent the different
dwell times. Note that for these experiments, the smallest retention time that we show on the
x-axis (tr = 64 s) is much larger than the smallest retention time shown in Figure 7.1 (tr = 0.5 s),
because it takes significantly longer for us to sweep the threshold voltage of the cells in a wordline

183

��'#

��'"

��'!

��'

��'�

��
�	

�	
���
��
��
��

��
��

�� �� � �!

����������������td��(�$"���
����

tr=71min
tr=1min

� #� ��� �#� �� #� !��
�����������������������������Vth�

��'#

��'"

��'!

��'

��'�

��
�	

�	
���
��
��
��

��
��

�� �� � �!

�	��������������td��(�%�& ���
����

tr=71min
tr=1min

Figure 7.2: Threshold voltage distribution before and after a long retention time, for different
dwell times.

(as in Figure 7.3), compared to simply measuring the RBER of the wordline (as in Figure 7.1).
We make two observations from the figure. First, for all three states, the mean threshold voltage
changes by a smaller amount when the dwell time is higher, corroborating the threshold voltage
distribution shifts shown in Figure 7.2. Second, for a fixed dwell time, the change in voltage
is linearly related with the log of retention time.5 We use this relationship to develop a simple
model that can quantify how retention loss speed changes with dwell time (see below).

We also calculate how the width of the distribution changes due to retention loss for different
dwell times (not plotted). We observe that the change in the distribution width is relatively small,
and thus choose to ignore it to simplify the analysis.

Effect on Retention Loss Speed and Program Variation. To quantify how self-recovery
changes (1) retention loss speed and (2) program variation, we construct a simple model of how
the threshold voltage and RBER change due to these two factors. As we observe in Figure 7.3,
the threshold voltage distribution mean is linearly correlated with the logarithm of the retention
time (tr). Thus, we fit our measurements to the following linear model, for a given dwell time:

Y (tr) = α · ln(tr)+β (7.1)

In this model, Y can represent either (1) the mean of the threshold voltage distribution of each
high-voltage state (i.e., P1/P2/P3); or (2) the logarithm of the RBER, i.e., log(RBER);6 based on

5A similar linear relationship between the change in threshold voltage and the log of the retention time is ob-
served for planar NAND flash memory in past works [124, 220].

6We model the logarithm of the RBER, because when retention loss linearly shifts the threshold voltage dis-
tribution, which roughly follows a Gaussian distribution [195], the linear distribution shift results in a logarithmic
change in RBER, which is quantified as the overlapping area between two neighboring distributions.

184

���

���

���

���

�
��

��
��

	

�V
th

��������
�� td" �!���
td"��!���
td"��� ��
td"������
td"�����
td"�����
td"�� ��
td"����

��� ���

�
�
��������
���
���	��

���

���

� �

� �

�
��

��
��

	

�V
th

��������
��

��� ���

�
�
��������
���
���	��

���

���

���

���

�
��

��
��

	

�V
th

��������
��

Figure 7.3: Threshold voltage distribution mean vs. retention time for different dwell times.

the values chosen for α and β . α represents the retention loss speed. β represents the program
offset, which is the initial value of Y immediately after programming.

We use the absolute value of the program offset (i.e., |β |) to quantify the impact of program
variation. For the threshold voltage distribution mean of each high-voltage state, Y and β are
positive, and a more positive program offset results in a higher initial mean. As we observe under
Effect on Threshold Voltage in Section 7.1.3, when the mean voltages of neighboring distributions
increase, the overlap between the distributions decreases, which in turn reduces the number of
program variation errors. For log(RBER), Y and β are negative, because the RBER is always
less than 1. A more negative program offset (i.e., a greater |β |) corresponds to a more negative
initial value of log(RBER) (i.e., fewer errors).

For each dwell time, we fit Equation 7.1 to our experimental characterization data in order
to calculate the values of α and |β | when Y represents (1) the mean voltage of each higher-
voltage state, or (2) log(RBER). Figure 7.4 (left) illustrates the relation between dwell time and
retention loss speed (α), normalized to the greatest observed retention loss speed. Figure 7.4
(right) illustrates the relation between dwell time and program offset (|β |), normalized to the
greatest observed program offset. Note that the x-axis (i.e., the dwell time) is in log scale. In
both figures, the markers represent our measured data points from real NAND flash memory
chips, and the dashed lines show a linear trend line for the data.

We make two key observations from Figure 7.4. First, the self-recovery effect reduces the
retention loss speed linearly with the logarithm of dwell time. We observe, however, that the
change in retention loss speed is different for each state. As Figure 7.4 (left) shows, our data
points follow the linear trend line closely (with an R2 value larger than 90% for each state and
for the RBER). Second, as we concluded from Figure 7.1, self-recovery has little effect on pro-
gram variation within the tested dwell time range. As Figure 7.4 (right) shows, the maximum

185

$#% $#& $#'

�������������������

#�'

#�(

#�)

#�*

#�+

#�,

$�#

�
��

�
��

��
��

	�
��

��
��

��
��

��
�

��
��

��α

��

����	��	
�&�����
�%�����
�$�����

$#% $#& $#'

�������������������

#�,#

#�,(

$�##

�
��

�
��

��
��

��
��

��
�

��
��

��
���

|β
| �

����	��	
�&�����
�%�����
�$�����

Figure 7.4: Retention loss speed (left) and program offset (right), for different dwell times.

difference in program offset for any of our threshold voltage states is less than 2.1%. Note that
our second finding is new, and it shows that, unlike previous findings for planar NAND flash
memory [50, 224, 337, 338], self-recovery does not reduce the number of program variation
errors, and hence the amount of wear, in 3D NAND flash memory.

7.1.3 Characterizing the Temperature Effect

Next, we measure the effect of temperature on self-recovery and flash reliability (see Sec-
tion 3.1.6). Similar to the experiment in Section 7.1.2, we use eight target wordlines in the
same stack layer from randomly-selected flash blocks. First, for each block, we wear out the
block in 1,000 P/E cycle intervals up to a total of 10,000 P/E cycles, writing pseudorandom data
and using a fixed dwell time of 0.5 s. We then put the test chip in a temperature-controlled box,
and set a target temperature. After the temperature of the test chip settles to the target temper-
ature, we perform 20 more P/E cycles to each target wordline at the target temperature, using a
0.5 s dwell time. Though these P/E cycles are performed at different temperatures for each test,
the dwell time we use is small, and thus we assume that the difference between the equivalent
dwell times at room temperature are small across our tests. Then, we perform the retention test
described in Section 7.1.2 for all target wordlines up to a retention time of 71 min. We repeat the
retention test under a range of target temperatures in each round: 0, 10, 20, 28, 35, 50, 60, and
70 ◦C. During the retention test, data is both programmed and read under the target temperature.

Effect on RBER. First, we study how the RBER changes with retention time under different
temperatures, as shown in Figure 7.5 for a wordline with 10,000 P/E cycles. Each curve repre-
sents the RBER under a different programming temperature. We use a color gradient to indicate
the temperature: the reddest color represents the highest temperature (70 ◦C) and the blackest
represents the lowest temperature (0 ◦C).

We make two key observations from the figure. First, when the retention time is small (i.e.,
tr < 2 ·102), the RBER is lower for higher temperatures (i.e., the red curves). Recall that when the
retention time is small, the RBER is dominated by program variation errors [21, 195, 219]. Thus,
we expect that the RBER decreases with higher temperatures because higher programming tem-

186

��&� ��� ��� ��� �� ��!

������������������
�����

��&"

��&!

��&

��&�

��&�

��
��

������������������	�����
�����������������
	�����

$��°�
#��°�
"��°�

 "�°�
�%�°�
���°�

���°�
��°�

Figure 7.5: RBER over retention time at 10,000 P/E cycles under different programming tem-
peratures.

peratures decrease the number of program variation errors (we discuss this in more detail under
Effect on Threshold Voltage below). Second, when the retention time is larger (i.e., tr > 2 ·102),
the RBER becomes higher for higher programming temperatures. This is because as the tem-
perature increases, the retention errors increase at a faster rate. Due to this faster growth, the
RBER for a higher temperature overtakes the RBER for a lower temperature at a retention time
between e2 s to e3 s. This indicates that the threshold voltage shift due to high-temperature re-
tention is faster than that for low-temperature retention, which is in line with Arrhenius’ Law [6]
(see Section 3.1.6).

Effect on Threshold Voltage. Next, we study how the programming temperature affects the
threshold voltage of a flash cell. We begin by studying how the initial threshold voltage (i.e., the
threshold voltage immediately after programming) changes with temperature. We measure the
threshold voltage distribution under different programming temperatures, and then fit our data
to Equation 7.1 to compensate for any retention loss that occurs during the measurements. Fig-
ure 7.6 shows the resulting threshold voltage distribution for each state, at 0 ◦C (the black dotted
curves) and at 70 ◦C (the red curves). Note that the ER state distribution at 70 ◦C completely falls
below the lowest voltage that we can measure, and hence is not shown.

� � ��� � � ��� � � ���
����	��������������������	���Vth�

��"

��"�

��"�

��"�

��"�

��
�

	

���
��
��
��

��
��

�� �� �� ��

!��°�
��°�

Figure 7.6: Threshold voltage distribution right after programming at different programming
temperatures, predicted by our retention loss model (Equation 7.1).

We make two observations from Figure 7.6. First, the higher programming temperature shifts

187

the P1, P2, and P3 states to higher threshold voltages, and the ER state to lower threshold volt-
ages. The threshold voltage shifts are likely due to the increased electron mobility under high
temperature, which improves the speed of the program operation (and likely the erase operation
as well [220, 332]). As a result, each programming pulse adds a greater amount of charge. Sec-
ond, due to the threshold voltage distribution shifts, the amount of overlap between the P1 and
P2 distributions, and between the P2 and P3 distributions, decreases at a higher programming
temperature. This is because while the distribution means shift to higher voltages at a higher
programming temperature, the distribution widths do not change. Because of the smaller amount
of overlap between two neighboring distributions, there are fewer program variation errors at
higher temperatures, as we have shown in Figure 7.5.

Next, we study how threshold voltage shifts due to retention loss change with the program-
ming temperature. For brevity, we do not plot these results. We observe that when the retention
time is large (tr > 2 · 102), the retention loss speed increases due to high temperature, which is
similar in nature to the effect of programming temperature on RBER.

Effect on Retention Loss Speed and Program Variation. We use our model from Equa-
tion 7.1 to calculate the retention loss speed and program offset for each programming tempera-
ture, based on our characterization data. Figure 7.7 illustrates how the programming temperature
affects retention loss speed (left) and program offset (right). We fit a quadratic trend line for
retention loss speed, and a linear trend line for program offset (shown as dashed lines).

" $& &" ("
���������������������

"�&

"�'

"�(

"�)

"�*

#�"

�
��
�
��
��
��

	�
��
��
��
��
��
��
�

��

��
��α

�

���

����	��	�
�#�����
�$�����
�%�����

" $& &" ("
���������������������

"�&

"�'

"�(

"�)

"�*

#�"

�
��
�
��
��
��

��
��
��
�
��
��
��
���

|β
|�

��

�#�����
�$�����
�%�����
����	��	�

Figure 7.7: Retention loss speed (left) and program offset (right) across different programming
temperatures.

We make two observations from Figure 7.7. First, a higher temperature accelerates reten-
tion loss at a superlinear rate. We show in Section 7.2 that this trend complies with Arrhenius’
Law [6]. Second, we find that the programming temperature affects program variation. This
effect has not been accounted for in prior work, which usually assumes that program operations
are performed at room temperature [124]. In Figure 7.7 (right), we find that the program offset
is higher at higher programming temperatures. As already shown in Figure 7.6, the higher initial
threshold voltage at higher programming temperatures reduces the amount of overlap between
neighboring threshold voltage distributions, which in turn reduces the number of program varia-
tion errors. We conclude that higher temperature increases retention errors but reduces program

188

variation errors.

7.1.4 Characterizing the Recovery Cycle Effect

We measure the effect of recovery cycles, i.e., P/E cycles performed with a long dwell time,
on self-recovery and flash reliability. We measure how the number of recovery cycles affects
retention loss speed. We focus on retention loss speed in this experiment because, as we saw
in Section 7.1.2, the dwell time does not affect program variation. We first wear out each block
by repeatedly writing pseudorandom data with a dwell time of 0.5 s, until the block reaches
3,000 P/E cycles. Then, we start self-recovery, performing recovery cycles using a 6-hour dwell
time. During the idle time of each recovery cycle, we perform our 71-minute retention test at an
operating temperature of 70 ◦C to measure the current retention loss speed. We keep performing
recovery cycles until the change in retention loss speed is less than 1%, which indicates that an
additional recovery cycle does not significantly increase the effect of self-recovery.

Effect on Retention Loss Speed. Based on our characterization data, we calculate the re-
tention loss speed (α) after each recovery cycle. We use Equation 7.1 to calculate α , as we did
in Figures 7.4 and 7.7. Figure 7.8 shows how the retention loss speed changes as a function of
the number of recovery cycles performed. We fit power law trend lines to the data, shown as a
dashed line in the figure.

 $! !$ "
������������

 �$
 �%
 �&
 �'
 �(
!�

�
��
�

�
��
�

�
�
��
��
��
��
��
�	
�

�
��α

�

���������
�!��
�
�"��
�
�#��
�

Figure 7.8: Retention loss speed vs. recovery cycles.

We make two key observations from Figure 7.8. First, to our surprise, the reduction in re-
tention loss speed due to self-recovery becomes insignificant very quickly. We find that, for
wordlines that have endured 3,000 P/E cycles, most of the benefits of self-recovery occur within
22 recovery cycles for 3D NAND flash memory. This is much smaller than the number of cycles
required according to prior work [220], which finds that most of the benefits of self-recovery
occur only when the number of recovery cycles is 10% of the total P/E cycle count. In other
words, according to prior work, it should have taken at least 300 recovery cycles to achieve most
of the benefits of self-recovery. Importantly, this implies that we can reap the benefits of self-
recovery with a much lower overhead (i.e., significantly fewer recovery cycles) than previously-
proposed mechanisms [67, 125, 220]. Thus, we can improve the overall performance of NAND

189

flash memory devices that perform self-recovery. Second, the RBER does not change signif-
icantly until after the first three recovery cycles. To reduce the latency of self-recovery, prior
works [50, 224, 337, 338] distribute recovery cycles throughout the flash lifetime, and period-
ically perform only a single recovery cycle. Based on our observation, performing only one
recovery cycle may not change the RBER significantly, and these mechanisms may not signifi-
cantly improve the flash lifetime as currently designed.

7.1.5 Summary of Key Observations
We conclude that (1) the self-recovery effect reduces retention loss speed linearly with the loga-
rithm of dwell time, and has little effect on program variation; (2) the temperature effect increases
retention loss speed at a superlinear rate, and increases program variation; and (3) the reduction
in retention loss speed due to self-recovery becomes insignificant after 20 recovery cycles.

7.2 Self-Recovery Effect Modeling
We use our observations from Section 7.1 to construct Unified Recovery and Temperature (URT),
a comprehensive analytical model of the impact of retention, wearout, self-recovery, and temper-
ature on two output parameters: (1) the threshold voltage of a flash cell, and (2) the raw bit error
rate (RBER) of a flash page. URT calculates each output parameter Y as:

Y = Y0 +∆Y (tr ·AF, td ·AF,PEC) (7.2)

In the equation, Y0 is the initial value of the output parameter immediately after a cell is pro-
grammed, and ∆Y is the change in the output parameter due to retention loss. ∆Y is a function of
the (1) retention time (tr) and (2) the dwell time (td), both of which are scaled by an acceleration
factor AF (see below), and (3) the P/E cycle count (PEC).

URT consists of three components. The program variation component (PVM; Section 7.2.1)
predicts Y0 based on the amount of program variation that took place. The effective reten-
tion/dwell time component (RDTM; Section 7.2.2) computes AF , which scales the retention or
dwell time at the current temperature of the NAND flash memory to the effective time at room
temperature that has the same impact on Y . The self-recovery and retention component (SRRM;
Section 7.2.3), predicts ∆Y based on the effective retention/dwell time and the P/E cycle count.
We show how URT can be used to improve flash reliability in Section 7.3.

7.2.1 Program Variation Component
First, we build a program variation model (PVM) to predict the initial values (Y0 in Equation 7.2)
of the threshold voltage and RBER immediately after a cell is programmed. The initial values
are determined by (1) the target programming voltage, which is fixed for each state, and (2) the
program offset (Section 7.1). Recall that program offset is affected by the programming temper-
ature (Section 7.1.3). Prior work shows that the P/E cycle count significantly affects program
offset as well [23, 24, 195, 219].

190

To account for both variables (i.e., programming temperature and P/E cycle count), we use a
multivariate linear regression model to model program variation:

Y0 = A ·Tp ·PEC+B ·Tp +C ·PEC+D (7.3)

In PVM, Y0 is a function of the P/E cycle count of the flash cell (PEC) and the programming
temperature (Tp), which are input parameters. A, B, C, and D are model constants that change
based on which value we model (e.g., initial threshold voltage, initial log of RBER). We fit PVM
to our characterization data using the ordinary least squares implemented in Statsmodels [286],
and conclude that the model fits well, with an R2 value of 91.7%. We provide the values of all
the fitted model parameters online [192].

7.2.2 Effective Retention/Dwell Time Component
Next, we build an effective retention/dwell time model (RDTM) to calculate the acceleration
factor (AF in Equation 7.2), which scales the retention time or dwell time under any temperature
(treal) to the effective time under room temperature (troom). Arrhenius’ Law [6] (see Section 3.1.6)
is commonly used by prior works to scale the retention time and dwell time of flash memory
across different temperatures (e.g., [22, 25, 27, 126, 220]). RDTM uses the same general equation
as Arrhenius’ Law (Equation 3.3):

AF =
treal

troom
=exp

(
Ea

kB
·
(

1
Treal
− 1

Troom

))
(7.4)

In RDTM, AF is a function of the room temperature (Troom), the current temperature of the
NAND flash memory (Treal), and the activation energy (Ea). kB is the Boltzmann constant. To
accurately model the amplification factor, we (1) experimentally calculate a new value of Ea that
we can use for 3D NAND flash memory; and (2) verify the accuracy of Arrhenius’ Law through
experimental characterization, which no previous work has done for 3D NAND flash memory.

While Ea is commonly accepted to be 1.1 eV for planar NAND flash memory [27, 126],
we cannot use the same value of Ea for 3D NAND flash memory, due to changes in materials
and manufacturing process. Fortunately, we have extensive real device characterization data
on retention loss at different temperatures (Section 7.1.3), which enables us to determine the
correct Ea for 3D NAND flash memory. We define t1 as the time required for a 3D NAND flash
memory device to experience a fixed amount of retention loss, ∆Y , at temperature T1. We define
t2 as the time required for the same amount of retention loss to occur at temperature T2. Using
Equation 3.3, the activation energy (Ea) can be calculated as:

Ea =
kB · ln

(
t1
t2

)
·T1T2

T2−T1
(7.5)

We define t1 as the time required for 3D NAND flash memory to experience a fixed amount of
retention loss, ∆Y , at temperature T1. We define t2 as the time required for the same amount of
retention loss to occur at temperature T2.

We choose T2 = 343.15 K (70 ◦C) as the reference temperature, and t2 = 3600 s as the ref-
erence retention time, as our model is more resilient to noise at a larger retention time. Using

191

our characterization data from Section 7.1.3, we find the equivalent t1 for different temperature
values of T1, spanning 20 ◦C to 70 ◦C, and for different P/E cycle counts, spanning 1,000–10,000
P/E cycles. We use ordinary least squares estimates to fit Equation 7.5 to these data points. From
the fit, we determine that for the best fit, Ea = 1.04 eV for the 3D NAND flash memory chips
that we test. The 95% confidence interval for Ea is 1.01 eV to 1.08 eV. The value of Ea is based
on the materials used for the cell, and should be similar for 3D charge trap cells manufactured
by other vendors [55, 123, 221].

Next, we verify that Arrhenius’ Law holds for 3D NAND flash memory, by calculating the
coefficient of determination (R2) of the fit to the equation for Arrhenius’ Law. We find that
R2 = 0.76. This means that Arrhenius’ Law explains 76% of the variations due to temperature.
This is a good fit given that we use a single value for Ea (best fit) across all of our data points,
because it is known that activation energy changes across different temperatures and P/E cycle
counts [10, 208]. We use a single value of Ea regardless of temperature and P/E cycle count to
simplify RDTM. We leave more accurate activation energy modeling for future work.

7.2.3 Self-Recovery and Retention Component
We build a self-recovery and retention model (SRRM) to accurately predict the threshold voltage
shift and change in RBER (∆Y in Equation 7.2) due to retention loss. SRRM predicts the effect of
(1) effective retention time, (2) effective dwell time, and (3) P/E cycle count, which all directly
affect retention loss speed (see Section 7.1.2).

To construct SRRM, we repeat our dwell time experiments from Section 7.1.2 at room tem-
perature. We cover a slightly larger dwell time range than our previous experiments, testing
from 32 s to 4.6 h. To include the effect of the P/E cycle count, we perform the retention test
described in Section 7.1.2 for up to a 24-day retention time under room temperature, using eight
randomly-selected flash blocks, and spanning a range between 1,000 and 10,000 P/E cycles at
1,000-P/E-cycle intervals. We observe similar trends in terms of retention time, dwell time, and
temperature sensitivity as the findings we observe at a higher temperature in Section 7.1. For
brevity, we do not plot these results, but we provide them online [192].

From an analysis of the results of these experiments, we find that the threshold voltage shift
in 3D NAND flash memory is much less sensitive to the P/E cycle count than planar NAND flash
memory. Thus, we develop a new model that predicts the impact of retention and self-recovery
on 3D NAND flash memory, instead of relying on prior models for planar NAND flash memory.
Our SRRM model is as follows:

∆Y (ter, ted,PEC) = b · (PEC+ c) · ln
(

1+
ter

t0 +a · ted

)
(7.6)

In SRRM, ∆Y is a function of three input parameters: (1) the effective retention time of the data
stored in the cell (ter), (2) the effective dwell time (ted), and (3) the P/E cycle count for a flash
cell (PEC). The model has four constants, whose values change depending on which output
parameter (∆Y) we are evaluating: b and c control the impact of P/E cycle count on retention
loss speed, and t0 and a control the impact of dwell time on retention loss speed. To determine
the values for these constants, we use the non-linear least squares algorithm implemented in
SciPy [130, 179] to fit SRRM to the characterization data we collected.

192

Figure 7.9 illustrates how predictions from SRRM compare with our measured characteri-
zation data. Figure 7.9a compares the SRRM predictions and measured values of the threshold
voltage shift for cells in state P1, P2, or P3. Figure 7.9b compares the SRRM predictions and
measured values of the change in the log of RBER. Each cross (‘x’) in the figure represents a
data point, where the x-coordinate of each data point is the value predicted by SRRM, and the
y-coordinate of each data point is the value measured during our characterization. The dashed
line shows the perfect fit (i.e., where the predicted and measured values are equal). We observe
that for both the threshold voltage shift and the change in RBER, all of the data points are very
close to the perfect fit line. Thus, SRRM accurately predicts both output parameters. Overall,
the percentage root mean square error (%RMSE) for SRRM is 4.9%. As a comparison, if we
were to predict these two output parameters using UDM [220], a previously-proposed model
for retention loss in planar NAND flash memory, the average %RMSE of the predictions would
be 17.8%, which is much less accurate than the predictions from our model. We conclude that
SRRM is highly accurate for predicting the change in RBER and the threshold voltage shift at
room temperature in 3D NAND flash memory.

� � �� �� �� �� ��
��	�
�	��|ΔV|��������

�
�

��
��
��
��
��

�
	�

��
�	
��
|Δ
V|

���

� � � � � � �
��	�
�	��|ΔlogΔRBER)|��������

�
�
�
�
�
�
�

�
	�

��
�	
��
|Δ

lo
gΔ
RB

ER
)|

���

Figure 7.9: SRRM prediction accuracy.

7.3 Improving 3D NAND Reliability
Our goal in this section is to improve flash reliability and lifetime by developing a new mech-
anism that makes use of our findings (Section 7.1) and our new model (Section 7.2). Our new
mechanism is called HeatWatch.

7.3.1 Observations
We make three key observations from the following three experiments that lead to the design of
HeatWatch. First, we observe that SSD write intensity and the SSD environmental temperature
significantly impact flash lifetime. The write intensity of an SSD is measured as the number of
full drive writes per day. Given a fixed SSD size, the write intensity is inversely proportional
to the average dwell time, thus affecting flash lifetime (Section 7.1.2). This is because modern
SSDs use wear-leveling techniques to keep all flash blocks in the SSD at a similar P/E cycle

193

count [32, 33, 43, 83]. The environmental temperature affects the flash lifetime (Section 7.1.3),
because it changes the temperature of the underlying NAND flash memory.

Figure 7.10 shows the flash lifetime under different write intensities and environmental tem-
peratures, assuming that the vendor guarantees a three-month retention time for the data, which
is typical for enterprise SSDs [22, 27, 32, 33, 250]. The SSD write intensity is shown on the
x-axis in log scale. We plot the results by using separate curves for each temperature that we
evaluate, which ranges from 0 ◦C to 70 ◦C.

��%� ��� ��� ��� �� ��! ��"

�����������������������	�

�

"���

�����

�"���

�����

�"���

 ����

��
��
��
��
��

������������	�����
�����

��
�
��

��
�
��

�	
��
��

�
��
��

��°�
���°�

���°�
 ��°�

!��°�
"��°�

#��°�
$��°�

Figure 7.10: Change in flash lifetime due to write intensity and environmental temperature (tr =
3 months).

From the figure, we see that the flash lifetime initially decreases as SSD write intensity
increases, but stops decreasing at around 5,000 P/E cycles. When the write intensity is low
(< 104 drive writes/day, which covers the range of write intensities of most contemporary work-
loads [22]), a higher temperature is desirable, as it improves both the effective dwell time and
program variation and thus leads to a longer lifetime. In contrast, when the write intensity is high,
a lower temperature is better due to an improved effective retention time. Note that these curves
drastically shift (not shown) (1) with different assumptions about retention time, or (2) when the
temperature is not constant. Thus, we find that no single temperature or temperature range is
ideal.

Second, we observe that the choice of the read reference voltage (Vre f) significantly affects
RBER and flash lifetime. The voltage at which the lowest RBER can be achieved is called the
optimal read reference voltage (Vopt). Vopt changes based on conditions such as retention time
and P/E cycle count. Adapting the optimal read reference voltage to these changing conditions
significantly increases flash lifetime [23, 24, 27, 32, 33, 195, 260]. Based on our experiments
under room temperature, Figure 7.11 shows how the RBER increases as the applied read refer-
ence voltage becomes further away from the optimal read reference voltage (which we refer to
as the |Vre f −Vopt | distance). We find that the RBER increases exponentially as the |Vre f −Vopt |
distance increases. We conclude, as prior works have [24, 27, 32, 33, 195], that it is important to
accurately predict the optimal read reference voltage, as even a small |Vre f −Vopt | distance can
greatly increase the error rate (and thus hurt the flash lifetime).

Third, we observe that the optimal read reference voltage in 3D NAND flash memory changes
over time, and can be accurately predicted as the value that falls in the middle of two neighboring

194

� � �� �� �� ��
��	����������������
�|Vref−Vopt|

����
����
����
����
����

��
��

Figure 7.11: RBER vs. |Vre f −Vopt | distance.

threshold voltage distributions. Figure 7.12 shows the measured Vopt from our characterization
(blue dots in the figure), and the value of Vopt calculated by using our URT model to predict the
threshold voltage distributions of each state (orange curve), for read reference voltages Vb and Vc
(see Section 3.4). The x-axis shows the retention time of the data in log scale. We see that after
4000 s of retention time, the measured optimal read reference voltages for Vb and Vc change by
8 and 11 voltage steps, respectively.7 Comparing the blue dots with the orange curves, we find
that our URT-based Vopt prediction is always within 1 voltage step of the empirical optimal read
reference voltage. We conclude that URT accurately predicts the optimal read reference voltage.

��� ���

������������������	��
��

��
��"
��$
���
���
��
��"

�
��
�
�
��
�

�V
th

�����������Vb

�������
�Vopt
���
�	��
�Vopt

��� ���

������������������	��
��

��!
��#
���
���
���
��!
��#
���

�
��
�
�
��
�

�V
th

�����������Vc

�������
�Vopt
���
�	��
�Vopt

Figure 7.12: Measured and URT-predicted Vopt .

7.3.2 HeatWatch Mechanism
Motivated by our observations in Section 7.3.1, we propose HeatWatch, a mechanism that im-
proves flash reliability and lifetime by predicting and applying the optimal read reference volt-
age using our URT model from Section 7.2. HeatWatch consists of (1) three tracking compo-
nents, which monitor and efficiently record the SSD temperature, dwell time, retention time,
and P/E cycle count; and (2) two prediction components, which compute the URT model using
this tracked information to accurately predict the optimal read reference voltage for each read
operation.

7Our characterization shows that Va does not change significantly based on retention time, so we do not plot it.
We find that URT accurately predicts the lack of change in Va.

195

Tracking Component 1: SSD Temperature. Modern SSDs already contain multiple tem-
perature sensors to prevent overheating [178, 213]. HeatWatch efficiently logs the readings from
these sensors, which the RDTM component of URT (see Section 7.2.2) uses to scale the dwell
time and retention time. HeatWatch records the temperature every second, and precomputes the
acceleration factors (AFi) for every logarithmic time interval i. HeatWatch uses logarithmic in-
tervals because the effects of dwell time and retention time are logarithmic with respect to their
duration (see Section 7.1.2). HeatWatch uses RDTM to calculate AF0. For all other intervals,
AFi is calculated as a piecewise integral, by summing up the two most recent values of AFi−1,
since interval i covers double the amount of time as interval i− 1. Therefore, for each interval,
HeatWatch stores the current and previous values of AFi, in an acceleration factor log.

Tracking Component 2: Dwell Time. The self-recovery effect is dependent on the average
dwell time across multiple P/E cycles (Section 7.3.1). The average dwell time is determined
by the workload write intensity. Thus, we use the SSD controller to (1) monitor the workload
write intensity online, and (2) calculate the average dwell time for each flash block. HeatWatch
does not need to track the variation in dwell time across different flash pages within the same
block, as we find from our experimental characterization that the effect of page-to-page dwell
time variation is negligible (Section 7.3.1).

HeatWatch approximates the effective dwell time by taking the average unscaled dwell time
across the last 20 P/E cycles, and scaling it using RDTM. The SSD controller keeps a counter
that tracks the amount of data written to the SSD, and logs the timestamps of the last 20 full drive
writes. When a flash block is programmed during drive write n, the SSD controller calculates
the average unscaled dwell time as the difference between the current time and the timestamp of
drive write n−20. Then, the SSD controller computes and stores the effective room temperature
dwell time by scaling it using the aforementioned acceleration factor log.

Tracking Component 3: P/E Cycles and Retention Time. The SSD controller already
records the P/E cycle count of each block to use in wear-leveling algorithms [32, 33, 43, 83].
To track the retention time of each flash block, HeatWatch simply logs the timestamp when the
block is selected for programming. Then, HeatWatch calculates the effective retention time for
each read operation as the difference between the program time and read time, scaled by RDTM.

Prediction Component 1: Optimizing the Read Reference Voltage. The optimal read
reference voltage between two states can be predicted accurately by averaging the means of the
threshold voltage distributions for each state (Section 7.3.1). As HeatWatch knows the P/E cycle
count, programming temperature, effective dwell time, and effective retention time, it can use the
URT model from Section 7.2 to predict the means of the threshold voltage distributions for each
state, and thus the optimal read reference voltage. For each read operation, the SSD controller
simply gathers all the metadata for the flash block that is to be read, and then predicts and applies
the optimal read reference voltage. The information gathering and prediction happen after the
FTL translates the logical address of the read to a physical address (see [32, 33] for detail), since
the information for the flash block is indexed using the physical address.

Prediction Component 2: Fine-Tuning URT Model Parameters Online. To accommo-
date for chip-to-chip variation, URT learns its model parameters online. We initialize the URT

196

model parameters using a set of parameters that have been learned offline, which the vendor can
provide at manufacture time. Over time, URT fine-tunes its model parameters by (1) sampling a
number of flash wordlines in the chip (10 in our evaluations), which are selected at random from
blocks that span a range of different P/E cycles, effective dwell/retention time, and programming
temperatures; (2) learning the optimal read reference voltages for the sampled flash wordlines
online, using a technique similar to Retention Optimized Reading (ROR) [27]; and (3) using the
sampled data to fit the fine-tuned URT model parameters for each chip, which can be done rel-
atively easily in the firmware with little overhead [195]. The overall latency for online training
is dominated by the latency to predict the optimal read reference voltage for each wordline. In
the worst case, ROR performs 300 read operations per wordline, using a different voltage step
for each read. For the 10 wordlines sampled by URT model tuning, assuming a read latency of
100 µs, the total worst-case latency of URT model tuning is 0.3 s. Note that this tuning procedure
needs to be performed only infrequently (e.g., every 1,000 P/E cycles), and can be performed in
the background (i.e., when the chip is idle), thus incurring negligible performance overhead.

Storage Overhead. HeatWatch needs to store three sets of information. (1) HeatWatch
stores the acceleration factor for only logarithmic time intervals from 0.5 s to 1 year (26 inter-
vals in total). HeatWatch stores the current and previous value of each acceleration factor, as
described in Tracking SSD Temperature above. Assuming that each acceleration factor is stored
as a 4 B floating-point number, the total log requires 208 B of storage. (2) HeatWatch stores the
programming temperature, dwell time, and program time for each flash block. Assuming that
each piece of information uses 4 B, for a 1 TB SSD with an 8 MB flash block size, HeatWatch
uses 1.5 MB of storage in total to store this information. (3) HeatWatch needs a 32-bit counter,
and must store the timestamps for the last 20 full disk writes (Section 7.1.4), which requires
84 B of storage. In total, the three sets of information require less than 1.6 MB of storage. To
minimize the performance overhead of accessing this data, HeatWatch buffers the data in the
on-board DRAM in the SSD controller [32, 33]. The storage overhead is very small, as a 1 TB
SSD typically contains 1 GB of DRAM for caching [32, 33].

Latency Overhead. HeatWatch performs two operations that contribute to its latency.
(1) Every second, HeatWatch updates the acceleration factor log with the latest temperature
reading. This update can be done in the background, and, thus, its performance overhead is
negligible. (2) HeatWatch computes the URT model during each read operation, which involves
performing only 16 arithmetic computations in the SSD controller (Section 7.2). The model
computation latency is negligible compared to the flash read latency (>25 µs [89]).

7.3.3 Evaluation

To evaluate HeatWatch, we examine the raw bit error rate (RBER) and lifetime of four different
configurations:
• Fixed Vre f , which always uses the default read reference voltage to read the data.
• Retention-Only, which predicts the optimal read reference voltage based on a model that con-

siders only P/E cycle count and retention time [23, 24, 27, 195, 252, 260]. Note that this model
always assumes a fixed retention loss speed, regardless of the dwell time and temperature.

197

• HeatWatch, our proposed mechanism to accurately predict the optimal read reference voltage
by tracking dwell time and temperature and using our URT model.

• Oracle, which always ideally uses the measured optimal read reference voltage, and does not
incur any performance overhead. Note that this is not implementable.

We evaluate these four configurations using 28 commonly-used real storage traces [239],
which have varying write intensities. Each trace represents seven days of workload data, and
contains timestamps we can use to calculate the dwell time and retention time of each access.
We simulate temperature variation over the course of a day as the superposition of a sinusoidal
function and some Gaussian noise. The sinusoidal model has a mean of 35 ◦C, an amplitude of
15 ◦C, and a 1-day period, representing how the temperature changes during a daily cycle. The
Gaussian noise model that we use has a standard deviation of 3 ◦C.

Figure 7.13 shows how the RBER increases with P/E cycle count for our four evaluated
configurations, using a workload that appends all 28 disk traces together to mimic an SSD that
runs multiple workloads back-to-back. The dotted line shows an error correction capability (see
Section 3.1) of 2 ·10−3 errors per bit [32, 33]. We determine the lifetime for each configuration
using the point at which the RBER intersects the error correction capability. We use Fixed
Vre f , which has the highest RBER, as our baseline. From the figure, we see that Retention-
Only reduces the RBER by 83.1%, on average across all P/E cycles, compared to the baseline,
HeatWatch reduces the RBER by 93.5% compared to the baseline. This is very close to the
average RBER improvement under Oracle (93.9%). HeatWatch significantly improves lifetime
due to its RBER improvement. The lifetime with HeatWatch is 21,065 P/E cycles, which is
3.19× and 1.29× the lifetime with Fixed Vre f and Retention-Only, respectively. HeatWatch
comes within only 200 P/E cycles of the Oracle lifetime.

� !��� ����� �!��� ����� �!���
����������

��"

��"�

��"�

��"�

	�
�	

���������

�����Vref
	�������������
����
����
������

Figure 7.13: RBER vs. P/E cycle count.

We repeat the same experiment for each workload individually, and determine the lifetime
for each workload under the four configurations, as shown in Figure 7.14. On average across
all of our workloads, The lifetime under Retention-Only is 3.11× the lifetime of the Fixed Vre f
baseline. HeatWatch improves the lifetime further, with a lifetime that is 3.85× the baseline
lifetime. Again, this is very close to the lifetime improvement of Oracle (3.89×).

We conclude that by incorporating dwell time and temperature information to predict the
optimal read reference voltage, HeatWatch improves the lifetime of 3D NAND flash memory de-

198

K
5K

10K
15K
20K
25K
30K

Li
fe

ti
m

e
(P

/E
 c

yc
le

s)

Fixed Vref Retention-Only HeatWatch Oracle
3.85x

Figure 7.14: P/E cycle lifetime for each workload.

vices over a state-of-the-art mechanism [252], and approaches the lifetime of an ideal mechanism
that has perfect knowledge of the optimal read reference voltage.

7.4 Related Work
To our knowledge, this dissertation is the first to (1) experimentally characterize and accurately
model the self-recovery and temperature effects in 3D NAND flash memory; and (2) devise
a mechanism that improves 3D NAND flash memory lifetime by comprehensively taking into
account retention time, wearout, self-recovery, and temperature. We discuss the closely-related
works.

Data Retention in NAND Flash Memory. Many prior works focus on flash memory reten-
tion loss and retention errors, and show that retention loss is the most dominant source of errors
in modern NAND flash memory [22, 27, 32, 33, 57, 219, 250, 252]. These works do not consider
the effects of self-recovery and temperature on retention loss. Our work investigates these effects
through an extensive characterization of state-of-the-art 3D NAND flash memory chips.

3D NAND Flash Memory Characterization. Recent works study the error characteristics of
3D NAND flash memory, and identify differences between 3D and planar NAND flash memory
due to memory cell design and architectural changes [32, 33, 55, 221, 257]. None of these works
provide a detailed characterization of the impact of self-recovery, retention, P/E cycle count, and
temperature on real 3D NAND flash memory.

Retention Loss Models. Our URT model is inspired by and improves upon the Unified
Detrapping Metric (UDM) model [220]. There are three reasons why prior models developed
for planar NAND flash memory, such as UDM, are insufficient for 3D NAND flash memory.
First, 3D charge trap cells are more resilient to P/E cycling than the floating-gate cells used by
planar NAND flash memory [55, 221, 257]. Thus, the PEC component in our model (Equa-
tion 7.6) is different from the equivalent component in UDM. Second, 3D NAND flash memory
has a different activation energy than planar NAND flash memory, as we experimentally show in
Section 7.2.2. Third, 3D NAND flash memory reliability is affected by the programming tem-
perature, as we show in Section 7.2.1. Because UDM does not accurately capture these changes,
its error rate for 3D NAND flash memory is 3.6× greater than the error rate for the SRRM

199

component of our new URT model, as we show in Section 7.2.3.

Improving Flash Reliability. Many prior works propose mechanisms to improve flash life-
time and reduce raw bit errors (see [32, 33] for a detailed survey). For example, flash refresh tech-
niques limit the number of retention errors to achieve higher P/E cycle lifetime [22, 25, 194, 250].
Prior work also adjusts the read reference voltage according to P/E cycle count and retention time
to reduce the RBER [23, 24, 27, 195, 252, 260]. Different from prior work, we develop a new
mechanism that tracks workload write intensity and SSD temperature online and adjusts read
reference voltage accordingly to improve flash lifetime. We compare our mechanism to prior
mechanisms that are agnostic to these factors and show that it can significantly reduce RBER
and improve flash lifetime.

7.5 Limitations

Neither our URT model nor the HeatWatch mechanism consider other error sources in 3D NAND
flash memory such as retention interference, process variation, and read disturb, but they can
be augmented in the future to consider all possible error types to further improve 3D NAND
reliability. The activation energy may change under different temperatures and P/E cycles. To
simplify our URT model, we use a single static value for activation energy, which is good enough
for our use case. When the temperature variation is larger, we may need a dynamic model to
estimate the activation energy to more accurately predict the temperature effect. We do not
consider temperature variation across layers, which can happen if the NAND flash chip heats up
from inside during program/erase operations. We expect future work to improve our model and
technique to consider temperature variation. It is possible that certain FTL algorithms, such as
WARM, may write to certain flash blocks more frequently, which makes the average dwell time
of these blocks significantly shorter than the average. This limits the accuracy of the HeatWatch
dwell time tracking component. For these FTL algorithms, we may need to track dwell time
differently for these frequently-written blocks.

7.6 Conclusion

We perform the first detailed experimental characterization of the impact of self-recovery and
temperature on the reliability of 3D NAND flash memory. We find that due to significant changes
in the memory design and manufacturing process, prior findings and models for planar NAND
flash memory are not accurate for 3D NAND flash memory. We use key findings from our char-
acterization to develop URT, a unified and accurate cell threshold voltage and raw bit error rate
model that takes into account the combined effects of self-recovery, temperature, retention loss,
and wearout. We develop a new mechanism, HeatWatch, that uses URT to dynamically adapt
the read reference voltage to the data retention time, dwell time, SSD temperature, and wearout.
We show that HeatWatch greatly reduces the raw bit error rate and improves flash lifetime. We
conclude that the effects of self-recovery and temperature in 3D NAND flash memory can be
accurately modeled and successfully used to improve flash reliability. We hope that our data,

200

model, and new mechanism inspire others to develop other new mechanisms that take advantage
of the self-recovery and temperature effects in 3D NAND flash memory.

201

Chapter 8

System-Level Implications and Lessons
Learned

This dissertation proposes several mechanisms that improve flash reliability by mitigating raw
bit errors that occur on flash devices. In this chapter, we discuss the system-level implications of
these mechanisms and a summary of lessons learned.

8.1 System-Level Implications
Throughout this dissertation, we have focused on evaluating the traditional metrics of flash reli-
ability, P/E cycle lifetime. This P/E cycle metric assumes that the same workload runs on a each
individual SSD (i.e., the workload cannot be redistributed across multiple SSDs). This metric
also assumes the NAND flash memory always deploys a fixed amount of ECC that has a fixed
RBER limit (as illustrated in Figure 6.34 and 7.13 as the ECC limit). However, these assumptions
may change in a real system. For example, in a distributed storage system, certain SSDs may
contain more write-hot data than the others due to uneven workload distribution across server
machines [110], and the flash controller may use a simpler ECC with lower storage overhead. In
this section, we discuss the system-level implications or the reliability impact of our mechanisms
under different assumptions.

8.1.1 Impact on Tolerable Write Frequency

As we have mentioned in Section 5.5.3 and 6.5.5, server machines in enterprises and data cen-
ters, along with the flash memory devices used in those machines, are replaced after a predefined
period, typically several years. Since a flash memory device can tolerate a limited total number
of writes before having to be replaced, it can only tolerate a certain number of writes per day
on average (i.e., tolerable write frequency). To ensure that each flash memory device does not
exceed its P/E cycle lifetime prematurely before being replaced, the system software throttles the
write frequency of each flash memory device to only a few Drive Writes Per Day (DWPD) [176].
Instead of increasing the flash device lifetime, we can use our mechanisms to improve the tol-
erable write frequency. When the P/E cycle lifetime improves after deploying the mechanisms

202

proposed in this dissertation, the tolerable write frequency by each flash memory device increases
proportionally, assuming the ECC limit remains the same. Thus, the increase in tolerable write
frequency is the same as the increase in lifetime: WARM improves tolerable write frequency (or
DRPD) by 3.24×; Two applications of our online flash channel model improve DWPD by 48.9%
and 69.9%; Combining LaVAR, LI-RAID and ReMAR improves 3D NAND DWPD by 85.0%
(Section 6.5.5); HeatWatch improves DWPD by 3.85×.

8.1.2 Impact on ECC Cost
As we have shown in Figure 1.1b and in Section 6.5.5, sustaining a high ECC limit incurs a high
storage overhead of the ECC bits (i.e., ECC redundancy). Using BCH code [14] as an example,
assuming that the codeword length is fixed (i.e., 8 kB), the ECC limit is linearly correlated with
ECC redundancy [72]. Instead of increasing the lifetime, we can use our mechanisms to reduce
ECC redundancy, since we need to tolerate fewer raw bit errors by the end of the flash lifetime.

To calculate the reduction in the required ECC cost, we use the same method and assumptions
as we use in Section 6.5.5. First, we obtain the P/E cycle lifetime of the baseline SSD using
state-of-the-art error correction mechanisms that can tolerate up to 3 · 10−3 raw bit error rate.
This requires to a 12.8% ECC redundancy using a BCH code [72]. Second, we obtain the worst
raw bit error rate of our mechanism at the end of the same P/E cycle lifetime of the baseline
SSD. Third, we calculate the ECC redundancy required by our mechanism to achieve the same
data reliability in terms of the error correction failure rate (PECFR in Equation 2.1). The required
ECC redundancy is obtained by varying the number of bits within a codeword correctable by
the ECC (t in Equation 2.1) until PECFR reaches 10−15 required by the JEDEC standard [121].
Our online flash channel model reduces ECC redundancy by 37.5%; Combining LaVAR, LI-
RAID and ReMAR reduce ECC redundancy by 78.9% (Section 6.5.5); HeatWatch reduces ECC
redundancy by 78.2%. ECC redundancy savings when using LDPC code should be similar, but
are much more difficult to evaluate because LDPC codes do not have a fixed ECC limit [32, 33].

8.1.3 Impact on Performance and Flash Management Policies
We have already shown that the performance overhead of each proposed mechanism is small.
The amortized cost for training and predicting using an online model is negligible (i.e., <1%)
compared to flash read latency. In the meantime, our mechanisms reduce raw bit error rate at any
P/E cycles, which leads to reductions in ECC decoding latency and in read-retry counts, and thus
reduces the overall flash read latency, comparing to a baseline SSD with the same amount of P/E
cycles. The exact reduction in flash read latency depends on several design choices of the ECC
code: (1) a shorter codeword length or fewer ECC bits simplify decoder logic thus reducing the
ECC decoding latency. However, this reduces the error correction strength of the ECC, leading to
more read-retries as the weaker ECC is more likely to fail, (2) a stronger ECC code may increase
ECC decoding latency, but reduces read-retry counts. A similar tradeoff exists when designing a
soft-decoding LDPC code to balance the ECC latency and soft-decoding sensing levels. WARM
affects existing flash management policies by dividing flash blocks into write-hot and write-cold
block pools, which increases the average response time by 1.3% across all workloads; All of
our online model-based techniques, including online flash channel modeling, LaVAR, ReMAR

203

and HeatWatch do not change the data layout or mapping, thus does not increase FTL or GC
overhead; LI-RAID only changes the data layout within a flash block, and only reduces the
storage capacity by less than 0.4%, thus has negligible overhead to the FTL and GC.

8.2 Lessons Learned
This dissertation provides several new analyses and techniques to improve flash reliability ef-
ficiently. When doing these analyses and developing these new techniques, we learned two
important lessons that applies for future research in this direction. In this section, we summarize
these two lessons.

8.2.1 Combining Large-Scale and Small-Scale Characterization Studies
This dissertation focuses on small-scale studies that perform extensive characterization of only
a few NAND flash memory devices. While our observations should apply to any device that
uses similar manufacturing technologies (Section 5.2, 6.1, and 7.1.5), and our online modeling
techniques can adapt to any variation across chips (Section 5.3 and 7.3), we have not been able
to verify this behavior across a large number of devices. Ideally, we would like to combine an
in-depth small-scale study with a lightweight large-scale study that does not require character-
izing the full threshold voltage distribution, which complement each other to provide a stronger
result. Our small-scale study provides a deeper understanding of the characteristics of different
error types. A large-scale study can show the effectiveness of our proposed mechanisms in real
deployment. We are unable to do this now due to limitations in the number of chips available.

8.2.2 Improve Systems Reliability Rather Than Device Reliability Alone
This dissertation focuses on reducing raw bit errors within the flash chips. These errors are
usually invisible to application and system designers because a vast majority of them are already
contained within the SSD using strong but expensive ECCs. While containing all raw bit errors
within the SSD provides a strong device reliability and reduces the complexity of system design,
it leads to a suboptimal design that uses less cost-efficient techniques to improve reliability. For
example, the ECC currently designed for the least-reliable flash chip may consume more storage
overhead than needed on an average flash chip; and a very low uncorrectable error rate may
not be necessary in a distributed storage system because the data is already replicated in other
servers to tolerate more catastrophic server failures. An ideal design should combine device-
level techniques that mitigates raw bit errors cost-effectively and provides reasonable device
reliability, and system-level techniques that utilize many devices to tolerate device failures. This
design could lead to significant cost savings while achieving higher overall system reliability.

204

Chapter 9

Conclusions

In this dissertation, we present a multitude of low-cost architectural techniques to improve
NAND flash memory reliability. Following our thesis statement, all of our proposed techniques
(1) take advantage of device-level error characteristics or workload characteristics, (2) can be
implemented with low overhead in the flash controller as a part of the firmware, and (3) improve
NAND flash reliability at low cost.

First, we propose a new technique that exploits workload write-hotness and device data re-
tention characteristics to improve flash lifetime. We observe that pages with different degrees
of write-hotness have widely-ranging retention time requirements. WARM aims to eliminate
redundant refreshes for write-hot pages with minimal storage and performance overhead. The
first key idea of WARM is to effectively partition pages stored in flash into two groups based on
the write frequency of the pages. The second key idea of WARM is to apply the most suitable
flash management policies to the two different groups of flash pages/blocks. Our evaluations
show that WARM eliminates a significant amount of unnecessary refreshes and improves flash
lifetime significantly, and that WARM can also be combined with refresh techniques to provide
larger benefits in flash lifetime.

Second, we propose a new framework for online flash channel modeling, which learns and
exploits an online threshold voltage distribution model in the flash controller to improve flash
reliability. We observe from our characterization of real, state-of-the-art planar NAND flash
memory chips that (1) the threshold voltage distribution can be approximated using a modified
version of the Student’s t-distribution, and that (2) the amount by which the distribution shifts as
the P/E cycle count increases is governed by the power law. Using our characterization results,
we build an accurate and easy-to-compute model of the threshold voltage distribution of mod-
ern MLC NAND flash memory. We demonstrate various applications of our model in a flash
controller. Our evaluations show that these applications improve flash lifetime significantly.

Third, this dissertation provides the first comprehensive experimental characterization and
modeling of 3D NAND device characteristics using real, state-of-the-art MLC 3D NAND flash
memory chips, and proposes four mechanisms to exploit these device characteristics in the flash
controller for improving flash reliability. We find several differences in the device characteristics
between 3D and planar NAND devices. Three of the key differences we find are inherent to the
internal architecture of 3D NAND flash memory: layer-to-layer process variation, early retention
loss, and retention interference. We develop models and techniques to exploit these 3D NAND

205

flash device characteristics. Our evaluations show that, when combined together, our techniques
improve flash lifetime significantly over state-of-the-art error mitigation techniques developed
for planar NAND flash memory.

Fourth, this dissertation is the first to experimentally characterize and model the self-recovery
and temperature effect in 3D NAND flash memory using real 3D NAND devices, and to pro-
pose a new technique called HeatWatch, which exploits the awareness of the workload’s write-
intensity and the SSD temperature in the flash controller to improve flash reliability. Through
the characterization, we observe that (1) a longer dwell time slows down flash retention loss
speed, and (2) high temperature accelerates flash retention loss but improves program accuracy.
We develop URT, a unified model for the combined effects of self-recovery, temperature, reten-
tion loss, and wearout. Our evaluations show that URT accurately predicts 3D NAND device
characteristics. HeatWatch efficiently tracks the dwell time of the workload and the tempera-
ture of the SSD, and uses URT to dynamically adjust the read reference voltage to the workload
write-intensity and SSD temperature. Our evaluations on 28 real workload traces show that, by
accurately predicting and applying the optimal read reference voltage, HeatWatch improves flash
lifetime by 3.85×, over a baseline that uses a fixed read reference voltage.

Finally, this dissertation provides an analysis of the system-level implications of our proposed
techniques. We show that, aside from improving flash lifetime, our techniques can also improve
tolerable write frequency and reduce ECC cost when a longer flash lifetime is not needed. In
addition, we show that our techniques may reduce read latency and add very little overhead to
the existing flash management policies.

206

Chapter 10

Future Research Directions

This dissertation has shown several example approaches that significantly improve NAND flash
reliability at a low cost by making the flash controller device- and workload-aware. We believe
that it is promising to continue exploring along this direction, because (1) NAND flash memory
continues to grow in population as it becomes a cheaper and more accessible technology and
(2) flash reliability issue will grow as flash vendors more aggressively increase the density of
NAND flash memory to satisfy the demand. In this chapter, we describe potential research
directions to further improve the reliability and efficiency of NAND flash memory in a system.

10.1 Temperature Effects on Read Operations

In Chapter 7, we have shown that SSD temperature significantly affects retention loss speed
and program variation of NAND flash memory. Recent work shows that temperature could also
affect read operations significantly (i.e., read temperature variation) [184], and proposes circuit-
level techniques to compensate for this type of temperature variation [54, 314]. In reality, read
temperatures can change significantly in a very short time, especially on mobile devices [27],
leading to a significant increase in raw bit error rate under extreme temperatures.

To the best of our knowledge, there is no characterization data or model available for read
temperature effect in open literature. So we believe that it is valuable to study this phenomenon
and propose flash controller techniques to tolerate the read temperature variation. We believe
that the flash controller can learn an accurate online model, like the ones we use in Chapter 5,
6, and 7, to compensate for the read temperature variation better than existing circuit-level tech-
niques. The key challenge in understanding the read temperature effect is to design a rigorous
testing procedure that eliminates the potential noise caused by the unknown amount of retention
errors introduced when the read temperature slowly converges to the target level. It is difficult
to accurately quantify the number of retention errors during this time because the temperature,
and hence the retention loss speed, change at a variable speed. Hence, one potential way to
rigorously characterize read temperature effect is to perform the characterization under low tem-
perature such that the number of newly introduced retention errors is minimal. Another potential
way is to constantly monitor the temperature and use integration to compute the retention loss
scaled by the varying temperature, like HeatWatch does when precomputing the temperature

207

amplification factor (Section 7.3), and account for the retention errors in the characterization.
To conclude, we believe it is interesting to (1) design a rigorous testing procedure to charac-

terize read temperature variation, (2) understand the cause of read temperature variation, e.g., it
might be caused by the temperature sensitivity of the sense amplifier, (3) develop new models
for read temperature variation, and (4) design new flash controller techniques to mitigate and
compensate for read temperature variation.

10.2 SSD Errors At Scale

Today’s data center servers already use SSDs as a high-performance alternative to hard disk
drives to store frequently-accessed persistent data. As the storage density of NAND-flash-based
SSDs continues to increase, and the price of SSDs continues to decrease, data center servers are
increasingly likely to deploy SSDs instead of hard disk drives as the primary storage medium.
This creates both opportunities and challenges for improving SSD reliability. In this section, we
discuss these opportunities and challenges, and discuss several potential research directions for
improving SSD reliability at scale.

10.2.1 3D NAND Errors In the Field

As we have discussed in Section 3.1.7, recent works have analyzed the reliability of hundreds
of thousands of SSDs in production data centers [211, 240, 241, 285]. However, none of these
works include any analysis of SSDs using 3D NAND because 3D NAND technology has only
been recently introduced and has not accumulated enough device hours in the field to perform
long-term studies. As we have discussed in Section 3.4, 3D NAND devices have a different flash
cell design, a different flash chip organization, and use a larger manufacturing process technol-
ogy than planar NAND devices. Thereby, as we have shown in Section 6.2 using a controlled
error study, 3D NAND devices have different error characteristics from planar NAND. Hence,
we expect that 3D NAND devices in the field will also demonstrate different reliability charac-
teristics.

In addition, the density of future 3D NAND devices is increased using different methods than
for planar NAND. For planar NAND, manufacturers increased its density in each product gen-
eration using aggressive process technology shrinking. This, unfortunately, decreases the flash
cell size as well as the distance between cells, thus significantly decreasing flash reliability. For
3D NAND, in the foreseeable future, manufacturers can increase storage density by increasing
the number of stacked layers instead of using aggressive process technology scaling. Hence,
future generation 3D NAND devices are more likely have larger layer-to-layer process variation.
Thus, using a large-scale field study could allow us to observe new challenges for scaling the 3D
NAND devices as data centers will deploy multiple generations of 3D NAND chips over time.

To conclude, we believe it is interesting to (1) investigate 3D NAND error characteristics in
the field, and compare the characteristics to those of planar NAND, (2) compare 3D NAND er-
ror characteristics across multiple generations to identify new challenges in scaling flash density,
such as layer-to-layer process variation, (3) investigate SSD failure due to other components than

208

flash chips, such as the controller and the command or data bus, (4) investigate 3D NAND chip-
to-chip process variation by comparing error characteristics across many devices, and (5) inves-
tigate and compare the effectiveness of various state-of-the-art error mitigation or error recovery
techniques in the field, such as WARM (Chapter 4), online flash channel modeling (Chapter 5),
HeatWatch (Chapter 7), RFR [27], and RDR [35]. We believe that the insights derived from
these investigations can enable and inspire new techniques, especially new system-level tech-
niques [110], to tolerate SSD errors more efficiently.

10.2.2 Predicting and Preventing SSD Failures
SSD failures caused by uncorrectable errors on a single SSD are designed to be very infrequent
(e.g., typically less than 10−15), due to the use of strong ECC within the controller. In a large-
scale data center, however, the occurrence of these infrequent uncorrectable errors is amplified
due to the use of hundreds of thousands of SSDs at the same time. As a result, uncorrectable
errors become a relatively frequent event in a data center, which can result in frequent machine
failures and data loss.

SSD failures caused by component failures are also infrequent on a single SSD, because each
SSD contains only a few components in total [32, 33, 89, 219]. In a data center, however, SSD
component failures are frequent because the data center consists of thousands of SSD controllers,
millions of flash chips, and millions of data buses [213, 241, 285]. Such component failures can
be catastrophic, because they can lead to many uncorrectable errors at the same time, and to
immediate loss of large chunks of data.

Fortunately, these SSD failures are typically preceded by early warning signs, such as cor-
rectable errors, and have strong spatial locality [213, 241, 285]. Thus, we believe it is possible to
prevent a majority of these failures by predicting them in advance. We believe that by investigat-
ing SSD failures in the field (Section 10.2.1), we can identify predictable patterns of these SSD
failures. Based on these patterns, we can (1) develop models of SSD failures, including models
of uncorrectable errors and models of SSD component failures, (2) predict SSD failures before
they happen, and (3) design mechanisms to prevent a majority of SSD failures from affecting
system and data reliability, e.g., taking SSDs offline before failure happens, or duplicating data
to more reliable SSDs in advance.

10.2.3 Tolerating Reliability Variation Across SSDs
Improving and managing SSD reliability at a larger scale introduces new challenges, as reliabil-
ity can vary significantly across different SSDs within a data center. There are four major reasons
for the variation in SSD reliability. First, the SSDs within a data center might have been deployed
at different times. Thus, different batches of SSDs may use different generations of flash tech-
nology, which have very different reliabilities. They may also have different deployment dates,
leading to different amounts of wearout on the SSD. Second, even for SSDs within the same
batch, SSD reliability can vary due to the process variation across different flash chips. For ex-
ample, some SSDs may consist of more reliable flash chips which have longer endurance and can
store data for a longer retention time. Third, even in an ideal world without any process variation,
each SSD within a data center may run a different workload throughout its lifetime. For example,

209

write intensity can vary by as much as 5,500× across different workloads [22, 110], leading to
drastically different P/E cycle lifetimes for different SSDs. The reliability variation can cause
failures to happen sooner on some SSDs than the designed lifetime of the SSD, requiring more
frequent SSD replacement in a data center.

We believe that by tolerating reliability variation across SSDs in a data center, the overall
storage reliability can be improved, and the cost for managing SSD reliability can be reduced.
There can be many ways to tolerate this variation. For example, (1) we can apply RAID across
different SSDs and tolerate SSD failures using erasure codes [297]. To minimize the RAID fail-
ure rate, less reliable SSDs should be evenly distributed across different RAID groups instead
of being arbitrarily grouped together. As another example, (2) we can either apply global wear-
leveling across all SSDs within a data center to mitigate such variation [110], or move the data
(e.g., write-hot vs. write-cold data) to its most suitable SSD (e.g., move write-hot data to less re-
liable SSDs) [194, 199]. We believe it is interesting to compare the benefit of these two solutions
for different use cases.

10.3 Enabling Cold Storage in SSDs
SSDs are already popular for storing frequently-accessed data in data centers. The key chal-
lenges for the larger-scale deployment of SSDs are (1) higher cost compared to hard disk drives,
and (2) limited retention time guarantee. The advent of 3D NAND technology increases the
density potential of NAND flash memory, but increases manufacturing costs compared to pla-
nar NAND due to the more complex manufacturing process required. Furthermore, as we have
shown in Chapter 6, due to early retention loss, 3D NAND also has greater retention errors than
planar NAND. Thus, we believe it is important to reduce SSD cost by increasing both storage
density and SSD retention time. In this section, we discuss the problems and potential directions
associated with each potential solution.

10.3.1 Identifying Suitable Data for SSD Cold Storage
Similar to our approach for WARM (Chapter 4), we would like to identify suitable data for
cold storage in SSDs and manage them in a more efficient way. For flash-based SSDs, write
operations not only consume P/E cycle lifetime but also reduce the dwell time of the SSD, which
accelerates retention loss (Section 7.1). Thus, write-cold data is more suitable for SSD cold
storage. However, infrequently-accessed data (i.e., read-cold and write-cold data) should be
stored in the cheapest possible storage such as tape. Thus, we believe write-cold, read-hot data
can benefit the most from the fast random access performance of SSD cold storage.

We believe it is interesting to investigate the best technique to identify write-cold, read-
hot data, such as: (1) identifying data used by read-only applications, which requires frequent
accesses to large amounts of static data that do not change, (2) identifying write-cold data
within each SSD using multiple queues like WARM, Bloom filters [186], log-structured merge
trees [249], or any other write-cold data identification techniques, or (3) using programmer anno-
tations [133]. After we identify such data, the SSD controller or the storage manager can decide
to aggregate the write-cold, write-hot data and manage it in a more efficient way.

210

10.3.2 Increasing SSD Retention Time

To use SSDs for cold storage, the SSDs must provide a long enough retention time. Otherwise, as
we have shown in WARM, frequent refreshes will eat away the majority of the P/E cycle lifetime
and potentially reduce SSD performance. SSD cold storage has several properties that could
benefit SSD reliability and extend the retention time. First, write-cold data is seldom updated,
and thus consumes fewer P/E cycles. As a result, SSDs used for cold data have a longer lifetime.
Second, as we have shown in Section 7.1, thanks to flash memory self-recovery, a longer dwell
time slows down flash retention loss. Thus, if an SSD contains only write-cold data, the dwell
time of all flash blocks within the SSD will be long, increasing the retention time of the SSD.

We believe it is interesting to investigate techniques to further improve the retention time for
SSD cold storage to make it more appealing than cold data storage using hard disk drives. First,
we can investigate techniques that partition the data identified for SSD cold storage (e.g., write-
cold, read-hot data) to a separate pool of SSDs or flash chips. This will reduce the dwell time
for cold data, and increase the dwell time for other data. This can lead to more efficient flash
policies for all data, as it reduces the retention loss speed for cold data (Chapter 7), and reduces
the required retention time guarantee for the other data (Chapter 4). Second, we can investigate
suitable flash management policies for write-cold data. Note that, according to our findings in
Section 6.3, read disturb errors are minimal in 3D NAND. Also note that, for write-cold data,
the vast majority of writes are for refresh operations, and thus its dwell time is approximately
equal to its retention time. This could allow for much higher lifetimes for SSDs used for cold
storage. Third, once write-cold data is stored on separate SSDs, we can even manage SSD
cooling by using the best storage temperature that maximizes SSD retention time. Since writes
are infrequent in cold storage, we can schedule them when the temperature is high, which reduces
SSD programming errors. Fourth, we can apply retention error recovery techniques to further
relax retention time constraints for SSD cold storage. Since the data in cold storage will remain
static for a long time, the SSD errors in cold storage are dominated by retention errors. Thus,
retention error recovery can be very effective at correcting errors in SSD cold storage even when
the raw bit error rate exceeds the ECC correction capability.

10.3.3 Increasing SSD Capacity

Scaling NAND flash density is hard because it often trades off flash reliability. In SSD cold
storage, however, we can give up certain unused SSD reliability and performance to increase
SSD capacity. This lowers the cost-per-bit of SSD cold storage, which makes it more appealing
to use. We believe there are two reasons we can trade off some aspects of SSD reliability and
performance for cold storage. First, since SSD cold storage does not require a high P/E cycle
lifetime, we can limit SSD lifetime to only a few hundred P/E cycles. This allows for much more
aggressive scaling to increase the density of SSD cold storage, leading to a higher cost-efficiency.
Second, since the write performance is less important for cold storage, we can use SSD write
modes with long delay. By trading off P/E cycle lifetime and write performance, we believe we
can significantly improve SSD capacity, and hence reduce the cost for SSD cold storage through
many ways. For example, we can configure the flash chips to TLC or QLC mode for SSD cold
storage, which increases the number of bits stored on each flash cell, in turn reducing the error

211

margin and increasing SSD write latency. To compensate for the potentially increased raw bit
error rate in TLC or QLC NAND flash memory, we can develop more aggressive error mitigation
techniques tailored for SSD cold storage to tolerate these errors. For example, we can configure
SSD cold storage to use a smaller program step size to trade off write performance. This could
allow us to use weaker ECC on SSD cold storage, which frees up SSD capacity that originally
used for ECC redundancy.

212

Other Works of This Author

During the course of my Ph.D., I have had the opportunity to collaborate with many of my
fellow graduate students. These projects not only help me to learn about NAND flash memory,
DRAM, and cost-reliability trade-offs, which is useful for this dissertation, but also help me gain
insights, ideas, and skills to conduct good research, which is useful when writing this dissertation.
In this chapter, I would like to acknowledge these projects and my other works related to this
dissertation.

In collaboration with Justin Meza, I have worked on single-level storage systems. We
rethought the interface for efficiently managing a heterogeneous memory and storage system
which consists of DRAM, NVM, NAND flash memory, and hard disk drive. We explored the
design of a Persistent Memory Manager that coordinates the management of memory and stor-
age under a single hardware unit in a single address space [210]. Efficient management of NVM
and flash reliability is one of the concerns for designing the persistent memory manager.

In collaboration with Vivek Seshadri, I have worked on processing using DRAM. We propose
RowClone, a new and simple mechanism to perform bulk copy and initialization completely
within DRAM using the internal row buffers [291]. This gave me the opportunity to learn DRAM
architecture, which has a lot in common with NAND flash memory.

During my PhD, I have also worked on improving the cost-reliability trade-offs of DRAMs
in data centers. First, we propose the idea of heterogeneous-reliability memory, which is a hard-
ware/software cooperative system design that chooses the best memory reliability provisioning
for each chunk of data to lower data center cost while achieving high reliability [193]. Second,
we propose Capacity- and Reliability-Adaptive Memory (CREAM), a hardware mechanism that
adapts error-correcting DRAM modules to offer multiple levels of error protection, and provides
the capacity saved from using weaker protection to applications [197].

In collaboration with Yu Cai, I have worked on many ideas to improve flash reliability aside
from my dissertation work. Over the years, we propose several online or offline techniques to
mitigate data retention errors [27], read disturb errors [35], and program errors [34]. We have
also worked on a survey and tutorial of the best practices for error characterization, mitigation,
and recovery in flash-based SSDs [33]. In collaboration with Aya Fukami, I have worked on
improving the reliability of chip-off forensic analysis of NAND flash memory devices [82]. In
collaboration with Arash, we have worked on improving the performance and fairness of the
I/O request scheduler in the SSD controller [317]. All of these works are closely related to this
dissertation. During these collaborations, we all gained valuable expertise on improving flash
reliability by learning from each other.

213

Bibliography

[1] Michael Abraham. NAND Flash Architecture and Specification Trends. In Flash Memory
Summit, 2012. 4.3

[2] N. Agrawal, V. Prabhakaran, and T. Wobber. Design Tradeoffs for SSD Performance. In
USENIX ATC, 2008. 2.1.1, 2.1.2, 2.1.3, 4.3

[3] Saba Ahmadian, Farhad Taheri, Mehrshad Lotfi, Maryam Karimi, and Hossein Asadi.
Investigating Power Outage Effects on Reliability of Solid-State Drives. In DATE, 2018.
2.1.3

[4] A. R. Alameldeen, I. Wagner, Z. Chisthi, W. Wu, C. Wilkerson, and S.-L. Lu. Energy-
Efficient Cache Design Using Variable-Strength Error-Correcting Codes. In ISCA, 2011.
3.5.6

[5] A. Anastasopoulos. A Comparison Between the Sum-Product and the Min-Sum Iterative
Detection Algorithms Based on Density Evolution. In GLOBECOM, 2001. 3.3.1

[6] Svante Arrhenius. Über die dissociationswärme und den einfluss der temperatur auf den
dissociationsgrad der elektrolyte. Zeitschrift für physikalische Chemie, 1889. 3.1.6, 3.2.3,
4, 7.1.3, 7.1.3, 7.2.2

[7] A. Athmanathan, M. Stanisavljevic, N. Papandreou, H. Pozidis, and E. Eleftheriou.
Multilevel-Cell Phase-Change Memory: A Viable Technology. J. Emerg. Sel. Topics Cir-
cuits Syst., Mar. 2016. 3.5.7

[8] S. Baek, S. Cho, and R. Melhem. Refresh Now and Then. IEEE Trans. Computers, Aug.
2014. 3.5.2, 3.5.2

[9] Mahesh Balakrishnan, Asim Kadav, Vijayan Prabhakaran, and Dahlia Malkhi. Differential
raid: Rethinking raid for ssd reliability. ACM TOS, 2010. 6.5.2

[10] Hanmant P Belgal, Nick Righos, Ivan Kalastirsky, Jeff J Peterson, Robert Shiner, and Neal
Mielke. A New Reliability Model for Post-Cycling Charge Retention of Flash Memories.
In IRPS, 2002. 7.2.2

[11] E. R. Berlekamp. Nonbinary BCH Decoding. In ISIT, 1967. 3.3.1

[12] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduction to Flash Memory.
Proc. IEEE, Apr. 2003. 2.2, 2.2.4, 2.2.4, 2.2.4

[13] Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Procedure Calls. TOCS,
Feb. 1984. 7.1.1

[14] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On A Class of Error Correcting

214

Binary Group Codes. Information and control, 1960. 2.1.3, 3.3, 3.3.1, 3.3.1, 8.1.2

[15] E. Bosman, K. Razavi, H. Bos, and C. Guiffrida. Dedup Est Machina: Memory Dedupli-
cation as an Advanced Exploitation Vector. In SP, 2016. 3.5.3

[16] J. E. Brewer and M. Gill. Nonvolatile Memory Technologies With Emphasis on Flash: A
Comprehensive Guide to Understanding and Using NVM Devices. Wiley, Hoboken, NJ,
USA, 2008. 2.2, 2.2.4, 2.2.4

[17] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger. The DiskSim Simulation En-
vironment Version 4.0 Reference Manual. Technical Report CMU-PDL-08-101, Carnegie
Mellon Univ. Parallel Data Lab, 2008. 4.3

[18] W. Burleson, O. Mutlu, and M. Tiwari. Who is the Major Threat to Tomorrow’s Security?
You, the Hardware Designer. In DAC, 2016. 3.5.3

[19] Y. Cai. NAND Flash Memory: Characterization, Analysis, Modelling, and Mechanisms.
PhD thesis, Carnegie Mellon Univ., 2012. 3.1.1, 3.1.3, 3.1.4, 3.2.3, 3.2.3, 3.2.5

[20] Y. Cai, E. F. Haratsch, M. P. McCartney, and K. Mai. FPGA-Based Solid-State Drive
Prototyping Platform. In FCCM, 2011. 5.2, 6.1.1

[21] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. Error Patterns in MLC NAND Flash Mem-
ory: Measurement, Characterization, and Analysis. In DATE, 2012. 1.1.1, 1.2.1, 1.2.2,
2.1.3, 3.1.1, 3.1.4, 3.1.5, 3.1, 3.2.3, 3.2.3, 4.1, 4.1.1, 4.3, 5.6, 6, 6.1, 7.1.2, 7.1.3

[22] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai. Flash
Correct and Refresh: Retention Aware Management for Increased Lifetime. In ICCD,
2012. 1.1.1, 1.1.2, 1.2.1, 1.2.2, 1.2.3, 1.1., 1.2., 2.1.3, 2.1.4, 3.1.4, 3.1, 3.2.3, 3.2.3, 4, 4.1,
4.1.1, 4.1, 4.1.2, 4.2.2, 4.3, 4.3, 4.4, 5.5.2, 5.6, 5.7, 6, 6.1, 6.2.2, 6.2.2, 6.3.2, 6.5.3, 7.2.2,
7.3.1, 7.3.1, 7.4, 10.2.3

[23] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. Threshold Voltage Distribution in NAND
Flash Memory: Characterization, Analysis, and Modeling. In DATE, 2013. 1.1.1, 1.1.1,
1.2.1, 1.2.2, 2.2.4, 3.1.1, 3.1, 3.2.4, 3.2.5, 3.3.1, 3.3.1, 5.2, 5.3, 5.3.1, 5.3.1, 5.6, 6, 6.1,
6.2.4, 6.3.1, 6.3.1, 7.1.1, 2, 7.2.1, 7.3.1, 7.3.3, 7.4

[24] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai. Program Interference in MLC NAND Flash
Memory: Characterization, Modeling, and Mitigation. In ICCD, 2013. 1.1.1, 1.2.1, 1.2.2,
1.2.3, 2.1.3, 2.2.4, 3.1.3, 3.1.3, 3.1, 3.2.1, 3.2.3, 3.2.5, 3.4.2, 5.5.1, 5.5.2, 5.6, 6, 6.1, 6.2.4,
6.3.1, 6.3.1, 6.5.2, 6.5.4, 6.6, 7.2.1, 7.3.1, 7.3.3, 7.4

[25] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai. Error Anal-
ysis and Retention-Aware Error Management for NAND Flash Memory. Intel Technology
Journal (ITJ), 2013. 1.1.2, 1.2.2, 1.1., 1.2., 2.1.3, 3.1.4, 3.1, 3.2.3, 3.2.3, 4, 4.1, 4.1.1, 4.1,
4.1.2, 4.3, 4.3, 4.4, 5.6, 7.2.2, 7.4

[26] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and K. Mai. Neighbor
Cell Assisted Error Correction in MLC NAND Flash Memories. In SIGMETRICS, 2014.
1.1.1, 1.2.1, 1.2.2, 1.2.3, 3.7., 2.1.3, 3.1.3, 3.1.3, 3.1, 3.2.2, 3.2.2, 3.2.3, 3.2.5, 3.4.2, 6,
6.1, 6.2.4, 6.3.1, 6.3.1, 6.5.2, 6.5.4

[27] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu. Data Retention in MLC NAND

215

Flash Memory: Characterization, Optimization, and Recovery. In HPCA, 2015. 1.1.1,
1.2.1, 1.2.2, 2.1.3, 3.1.4, 3.1.6, 3.1, 3.2.3, 3.2.4, 3.2.5, 3.2.5, 3.2.5, 3.3.4, 3.3.4, 4, 5.1, 5.2,
5.5.1, 5.5.2, 5.5.5, 5.6, 6, 6.1, 2, 6.2.2, 6.2.2, 6.3.2, 6.4.1, 6.5.1, 6.5.3, 6.5.5, 6.5.5, 7.1.1,
2, 7.2.2, 7.2.2, 7.3.1, 7.3.1, 7.3.2, 7.3.3, 7.4, 10.1, 10.2.1, 10.3.3

[28] Y. Cai, Y. Wu, and E. F. Haratsch. Hot-Read Data Aggregation and Code Selection. U.S.
Patent Appl. 14/192,110, 2015. 3.2.6, 3.2.7

[29] Y. Cai, Y. Wu, and E. F. Haratsch. System to Control a Width of a Programming Threshold
Voltage Distribution Width When Writing Hot-Read Data. U.S. Patent 9,218,885, 2015.
3.2.6, 3.2.7, 3.2.7

[30] Y. Cai, Y. Wu, N. Chen, E. F. Haratsch, and Z. Chen. Systems and Methods for Latency
Based Data Recycling in a Solid State Memory System. U.S. Patent 9,424,179, 2016.
3.2.3

[31] Y. Cai, Y. Wu, and E. F. Haratsch. Error Correction Code (ECC) Selection Using Probabil-
ity Density Functions of Error Correction Capability in Storage Controllers With Multiple
Error Correction Codes. U.S. Patent 9,419,655, 2016. 3.1, 3.2.7, 3.2.7

[32] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu. Errors in Flash-Memory-Based
Solid-State Drives: Analysis, Mitigation, and Recovery. arXiv:1711.11427 [cs.AR], 2017.
1.2.2, 1.2.3, 1.4, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 3.1, 3.2, 3.3, 3.4, 3.1.6,
3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.22, 3.23, 3.24, 3.25, 7.1.1, 7.3.1,
7.3.1, 7.3.2, 7.3.3, 7.4, 8.1.2, 10.2.2

[33] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu. Error Characterization, Mitigation,
and Recovery in Flash-Memory-Based Solid-State Drives. Proc. IEEE, Sep. 2017. 1.1.1,
1.2.1, 1.2.2, 1.2.3, 1.4, 3.1.6, 6, 6.5.2, 6.5.5, 2, 7.1.1, 7.3.1, 7.3.1, 7.3.2, 7.3.3, 7.4, 8.1.2,
10.2.2, 10.3.3

[34] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch. Vulnerabilities in MLC
NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Techniques. In HPCA, 2017. 1.1.1, 1.2.1, 1.2.2, 2.2.4, 3.1.2, 3.1.2, 3.1.3, 3.1, 3.2.1, 3.5.3,
6, 6.2.4, 10.3.3

[35] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu. Read Disturb Errors in MLC NAND
Flash Memory: Characterization, Mitigation, and Recovery. In DSN, 2015. 1.1.1, 1.2.1,
1.2.2, 1.2.3, 2.1.3, 2.2.3, 3.1.5, 3.1, 3.2.3, 3.2.5, 3.2.5, 3.3.4, 3.3.4, 3.4.2, 5.1, 5.5.1, 6, 6.1,
6.2.4, 6.3.3, 6.3.3, 6.6, 2, 10.2.1, 10.3.3

[36] J. Cha and S. Kang. Data Randomization Scheme for Endurance Enhancement and In-
terference Mitigation of Multilevel Flash Memory Devices. ETRI Journal, Feb. 2013.
2.1.3

[37] Karthik Chandrasekar, Sven Goossens, Christian Weis, Martijn Koedam, Benny Akesson,
Norbert Wehn, and Kees Goossens. Exploiting Expendable Process-Margins in DRAMs
for Run-Time Performance Optimization. In DATE, 2014. 3.5.5

[38] K. K. Chang. Understanding and Improving the Latency of DRAM-Based Memory Sys-
tems. PhD thesis, Carnegie Mellon Univ., 2017. 3.5.1, 3.5.2, 3.5.2, 3.5.5, 3.5.5

216

[39] K. K. Chang, Donghyuk Lee, Z. Chishti, A.R. Alameldeen, C. Wilkerson, Yoongu Kim,
and O. Mutlu. Improving DRAM Performance by Parallelizing Refreshes With Accesses.
In HPCA, 2014. 3.2.3, 3.5.2, 3.5.2

[40] K. K. Chang, P. J. Nair, S. Ghose, D. Lee, M. K. Qureshi, and O. Mutlu. Low-Cost Inter-
Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in DRAM. In
HPCA, 2016. 2.1.1

[41] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin Hsieh,
Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira Khan, and Onur Mutlu. Un-
derstanding Latency Variation in Modern DRAM Chips: Experimental Characterization,
Analysis, and Optimization. In SIGMETRICS, 2016. 3.5.2, 3.5.5, 5, 3.35, 3.5.5

[42] Kevin K. Chang, Abdullah Giray Yaglikci, Aditya Agrawal, Niladrish Chatterjee, Saugata
Ghose, Abhijith Kashyap, Hasan Hassan, Donghyuk Lee, Mike O’Connor, and Onur
Mutlu. Understanding Reduced-Voltage Operation in Modern DRAM Devices: Exper-
imental Characterization, Analysis, and Mechanisms. In SIGMETRICS, 2017. 3.5.5,
3.5.5

[43] L.-P. Chang. On Efficient Wear Leveling for Large-Scale Flash-Memory Storage Systems.
In SAC, 2007. 2.1.3, 7.3.1, 7.3.2

[44] L.-P. Chang, T.-W. Kuo, and S.-W. Lo. Real-Time Garbage Collection for Flash-Memory
Storage Systems of Real-Time Embedded Systems. ACM Trans. Embedded Comput. Syst.,
Nov. 2004. 2.1.3, 2.1.3, 2.1.4

[45] Yu-Ming Chang, Yuan-Hao Chang, Jian-Jia Chen, Tei-Wei Kuo, Hsiang-Pang Li, and
Hang-Ting Lue. On Trading Wear-Leveling With Heal-Leveling. In DAC, 2014. 3.1.6

[46] Niladrish Chatterjee, Manjunath Shevgoor, Rajeev Balasubramonian, Al Davis, Zhen
Fang, Ramesh Illikkal, and Ravi Iyer. Leveraging Heterogeneity in DRAM Main Memo-
ries to Accelerate Critical Word Access. In MICRO, 2012. 3.5.7

[47] Chih-Ping Chen, Hang-Ting Lue, Chih-Chang Hsieh, Kuo-Pin Chang, Kuang-Yeu Hsieh,
and Chih-Yuan Lu. Study of fast initial charge loss and it’s impact on the programmed
states Vt distribution of charge-trapping NAND Flash. In IEDM, 2010. 6.2.2

[48] Chin-Long Chen. High-Speed Decoding of BCH Codes (Corresp.). IEEE Trans. Inf.
Theory, Mar. 1981. 3.3.1, 3.3.1, 6.5.5

[49] J. Chen and M. P. C. Fossorier. Near Optimum Universal Belief Propagation Based De-
coding of Low-Density Parity Check Codes. IEEE Trans. Comm., Aug. 2002. 3.3.1

[50] Renhai Chen, Yi Wang, and Zili Shao. DHeating: Dispersed Heating Repair for Self-
Healing NAND Flash Memory. In CODES+ISSS, 2013. 3.1.6, 7.1.2, 7.1.2, 7.1.4

[51] T.-H. Chen, Y.-Y. Hsiao, Y.-T. Hsing, and C.-W. Wu. An Adaptive-Rate Error Correction
Scheme for NAND Flash Memory. In VTS, 2009. 3.1, 3.2.7, 3.2.7

[52] Z. Chen, E. F. Haratsch, S. Sankaranarayanan, and Y. Wu. Estimating Read Reference
Voltage Based on Disparity and Derivative Metrics. U.S. Patent 9,417,797, 2016. 3.2.5

[53] R. T. Chien. Cyclic Decoding Procedures for the Bose–Chaudhuri–Hocquenghem Codes.
IEEE Trans. Inf. Theory, Oct. 1964. 3.3.1

217

[54] Tae-hee Cho and Yeong-Taek Lee. Multi-level flash memory with temperature compen-
sation, 2005. US Patent 6,870,766. 10.1

[55] Bongsik Choi, Sang Hyun Jang, Jinsu Yoon, Juhee Lee, Minsu Jeon, Yongwoo Lee, Jung-
min Han, Jieun Lee, Dong Myong Kim, Dae Hwan Kim, Chan Lim, Sungkye Park, and
Sung-Jin Choi. Comprehensive Evaluation of Early Retention (Fast Charge Loss Within a
Few Seconds) Characteristics in Tube-Type 3-D NAND Flash Memory. In VLSIT, 2016.
3.1.6, 3.4.2, 3.4.3, 6.1, 6.2.2, 6.2.2, 6.2.3, 6.3.1, 7.1.1, 7.2.2, 7.4

[56] H. Choi, W. Liu, and W. Sung. VLSI Implementation of BCH Error Correction for Mul-
tilevel Cell NAND Flash Memory. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Jul.
2009. 3.3.1

[57] Wonil Choi, Mohammad Arjomand, Myoungsoo Jung, and Mahmut Kandemir. Exploiting
Data Longevity for Enhancing the Lifetime of Flash-based Storage Class Memory. In
SIGMETRICS, 2017. 7.4

[58] C. Chou, P. Nair, and M. K. Qureshi. Reducing Refresh Power in Mobile Devices With
Morphable ECC. In DSN, 2015. 3.5.6

[59] C.-C. Chou, A. Jaleel, and M. K. Qureshi. CAMEO: A Two-Level Memory Organization
with Capacity of Main Memory and Flexibility of Hardware-Managed Cache. In MICRO,
2014. 3.5.7

[60] C.-C. Chou, A. Jaleel, and M. K. Qureshi. BEAR: Techniques for Mitigating Bandwidth
Bloat in Gigascale DRAM Caches. In ISCA, 2015. 3.5.7

[61] Siddharth Choudhuri and Tony Givargis. Deterministic Service Guarantees for NAND
Flash Using Partial Block Cleaning. In CODES+ISSS, 2008. 2.1.3

[62] L. Chua. Memristor—The Missing Circuit Element. IEEE Trans. Circuit Theory, Sep.
1971. 3.5.7

[63] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee S.-W. Lee, and H.-J. Song. A Survey of Flash
Translation Layer. J. Syst. Archit., May/Jun. 2009. 2.1.3

[64] R. Codandaramane. Securing the SSDs — NVMe Controller Encryption. In Flash Mem-
ory Summit, 2016. 2.1.3

[65] E. T. Cohen. Zero-One Balance Management in a Solid-State Disk Controller. U.S. Patent
8,839,073, 2014. 3.2.5

[66] E. T. Cohen, Y. Cai, E. F. Haratsch, and Y. Wu. Method to Dynamically Update LLRs in
an SSD Drive and/or Controller. U.S. Patent 9,329,935, 2015. 3.3.1

[67] Christian Monzio Compagnoni, Carmine Miccoli, Riccardo Mottadelli, Silvia Beltrami,
Michele Ghidotti, Andrea L Lacaita, Alessandro S Spinelli, and Angelo Visconti. In-
vestigation of The Threshold Voltage Instability After Distributed Cycling in Nanoscale
NAND Flash Memory Arrays. In IRPS, 2010. 7.1.4

[68] Jim Cooke. The Inconvenient Truths of NAND Flash Memory. Flash Memory Summit,
2007. 3.1.3, 3.1.5

[69] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, Berlin, Germany;

218

Heidelberg, Germany; New York, NY, USA, 2002. 2.1.3

[70] Anup Das, Hasan Hassan, and Onur Mutlu. VRL-DRAM: Improving DRAM Perfor-
mance via Variable Refresh Latency. In DAC, 2018. 3.5.2

[71] Niv Dayan, Philippe Bonnet, and Stratos Idreos. GeckoFTL: Scalable Flash Translation
Techniques For Very Large Flash Devices. In SIGMOD, 2016. 1.2.3

[72] Eric Deal. Trends in NAND Flash Memory Error Correction. Cyclic Design, 2009. 6.5.5,
8.1.2

[73] R. Degraeve, F. Schuler, B. Kaczer, M. Lorenzini, D. Wellekens, P. Hendrickx, M. van
Duuren, G. J. M. Dormans, J. Van Houdt, L. Haspeslagh, G. Groeseneken, and G. Tempel.
Analytical Percolation Model for Predicting Anomalous Charge Loss in Flash Memories.
IEEE Trans. Electron Devices, Sep. 2004. 2.2.4, 3.1.4

[74] T. J. Dell. A White Paper on the Benefits of Chipkill-Correct ECC for PC Server Main
Memory. Technical report, IBM Microelectron. Division, 1997. 3.5.6

[75] P. Desnoyers. Analytic Modeling of SSD Write Performance. In SYSTOR, 2012. 2.1.4

[76] C. Dirik and B. Jacob. The Performance of PC Solid-State Disks (SSDs) as a Function of
Bandwidth, Concurrency, Device Architecture, and System Organization. In ISCA, 2009.
2.1.3

[77] Lara Dolecek. Making Error Correcting Codes Work for Flash Memory. In Flash Memory
Summit, 2014. 3.3.1, 3.3.1, 3.3.1, 3.3.2

[78] Guiqiang Dong, Ningde Xie, and Tong Zhang. Enabling NAND Flash Memory Use Soft-
Decision Error Correction Codes at Minimal Read Latency Overhead. IEEE Trans. on
Circuits and Systems, 2013. 5.5.4, 5.6

[79] Jim Elliott and Jaeheon Jeong. Advancements in SSDs and 3D NAND Reshaping Storage
Market. Keynote presentation at Flash Memory Summit, 2017. 3.4.1

[80] M. P. C. Fossorier, M. Mihaljević, and H. Imai. Reduced Complexity Iterative Decoding
of Low-Density Parity Check Codes Based on Belief Propagation. IEEE Trans. Comm.,
May 1999. 3.3.1

[81] R. H. Fowler and L. Nordheim. Electron Emission in Intense Electric Fields. In Proceed-
ings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
1928. 2.2.4, 3.4.1

[82] A. Fukami, S. Ghose, Y. Luo, Y. Cai, and O. Mutlu. Improving the Reliability of Chip-Off
Forensic Analysis of NAND Flash Memory Devices. Digital Investigation, Mar 2017.
3.1, 3.2.4, 7.1.1, 10.3.3

[83] E. Gal and S. Toledo. Algorithms and Data Structures for Flash Memories. ACM Comput.
Surv., Jun. 2005. 2.1.3, 7.3.1, 7.3.2

[84] R. G. Gallager. Low-Density Parity-Check Codes. IRE Trans. Inf. Theory, Jan. 1962.
2.1.3, 3.3, 3.3.1, 3.3.1, 3.3.1, 3.3.2

[85] Robert G Gallager. Low-Density Parity-Check Codes. Information Theory, IRE Transac-
tions on, 1962. 2.1.3, 3.3, 3.3.1, 3.3.1, 3.3.1, 3.3.2

219

[86] Geoff Gasior. The SSD Endurance Experiment: They’re All Dead. http://techreport.
com/review/27909/the-ssd-endurance-experiment-theyre-all-dead, 2015.
5.5.3

[87] S. Ghose, H. Lee, and J. F. Martı́nez. Improving Memory Scheduling via Processor-Side
Load Criticality Information. In ISCA, 2013. 2.1.2

[88] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel, and J. K.
Wolf. Characterizing Flash Memory: Anomalies, Observations, and Applications. In
MICRO, 2009. 3.1.3, 3.1.5, 3.1

[89] Laura M Grupp, John D Davis, and Steven Swanson. The Bleak Future of NAND Flash
Memory. In FAST, 2012. 7.3.2, 10.2.2

[90] D. Gruss, C. Maurice, and S. Mangard. Rowhammer.js: A Remote Software-Induced
Fault Attack in JavaScript. In DIMVA, 2016. 3.5.3

[91] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W. Schoechl, and
Y. Yarom. Another Flip in the Wall of Rowhammer Defenses. arXiv:1710.00551 [cs.CR],
2017. 3.5.3

[92] K. Gunnam. LDPC Decoding: VLSI Architectures and Implementations. In Flash Mem-
ory Summit, 2014. 3.3.1

[93] K. K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman. VLSI Architectures for
Layered Decoding for Irregular LDPC Codes of WiMax. In ICC, 2007. 3.3.1

[94] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: A Flash Translation Layer
Employing Demand-based Selective Caching of Page-level Address Mappings. In ASP-
LOS, 2009. 1.2.3, 2.1.3, 2.1.3

[95] K. Ha, J. Jeong, and J. Kim. A Read-Disturb Management Technique for High-Density
NAND Flash Memory. In APSys, 2013. 3.1, 3.2.3, 3.2.6, 3.2.7

[96] K. Ha, J. Jeong, and J. Kim. An Integrated Approach for Managing Read Disturbs in High-
Density NAND Flash Memory. IEEE Trans. Computer-Aided Design Integr. Circuits
Syst., Jul. 2016. 3.1, 3.2.3, 3.2.5, 3.2.6, 3.2.7

[97] T. Hamamoto, S. Sugiura, and S. Sawada. On the Retention Time Distribution of Dynamic
Random Access Memory (DRAM). IEEE Trans. Electron Devices, Jun. 1998. 3.5.2

[98] Longzhe Han, Yeonseung Ryu, and Keunsoo Yim. CATA: A Garbage Collection Scheme
for Flash Memory File Systems. In UIC, 2006. 2.1.3

[99] E. F. Haratsch. Media Management for High Density NAND Flash Memories. In Flash
Memory Summit, 2016. 3.1, 3.2.7, 3.2.7, 3.3.2, 3.3.3

[100] Erich F. Haratsch. LDPC Code Concepts and Performance on High-Density Flash Mem-
ory. In Flash Memory Summit, 2014. 5.5.2, 5.5.5

[101] Erich F. Haratsch. Controller Concepts for 1y/1z nm and 3D NAND Flash. In Flash
Memory Summit, 2015. 3.3.3, 3.3.3, 5.1, 5.5.5

[102] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee, O. Er-
gin, and O. Mutlu. SoftMC: A Flexible and Practical Open-Source Infrastructure for

220

http://techreport.com/review/27909/the-ssd-endurance-experiment-theyre-all-dead
http://techreport.com/review/27909/the-ssd-endurance-experiment-theyre-all-dead

Enabling Experimental DRAM Studies. In HPCA, 2017. 2.1.2, 3.5.2, 3.5.2, 3.5.3, 3.5.5,
3.5.5

[103] Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek Seshadri, Donghyuk
Lee, Oguz Ergin, and Onur Mutlu. ChargeCache: Reducing DRAM Latency by Exploiting
Row Access Locality. In HPCA, 2016. 2.1.2

[104] J. Haswell. SSD Architectures to Ensure Security and Performance. In Flash Memory
Summit, 2016. 2.1.3

[105] Jun He, Sudarsun Kannan, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. The
Unwritten Contract of Solid State Drives. In EuroSys, 2017. 2.1.3

[106] Jason Heidecker. Flash Memory Reliability: Read, Program, and Erase Latency Versus
Endurance Cycling. Technical Report 10-19, Jet Propulsion Lab, 2010. 4.3

[107] A. Hocquenghem. Codes Correcteurs d’Erreurs. Chiffres, Sep. 1959. 2.1.3, 3.3, 3.3.1,
3.3.1, 6.5.5

[108] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka. Write Amplification Analysis
in Flash-Based Solid State Drives. In SYSTOR, 2009. 2.1.4

[109] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang. Performance Impact and In-
terplay of SSD Parallelism Through Advanced Commands, Allocation Strategy and Data
Granularity. In ICS, 2011. 3.1.2

[110] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta Sengupta, Bikash
Sharma, and Moinuddin K Qureshi. Flashblox: Achieving both performance isolation
and uniform lifetime for virtualized ssds. In FAST, pages 375–390, 2017. 8.1, 10.2.1,
10.2.3

[111] P. Huang, P. Subedi, X. He, S. He, and K. Zhou. FlexECC: Partially Relaxing ECC of
MLC SSD for Better Cache Performance. In USENIX ATC, 2014. 3.2.7

[112] Chun-Hsiung Hung, Meng-Fan Chang, Yih-Shan Yang, Yao-Jen Kuo, Tzu-Neng Lai,
Shin-Jang Shen, Jo-Yu Hsu, Shuo-Nan Hung, Hang-Ting Lue, Yen-Hao Shih, et al. Layer-
Aware Program-and-Read Schemes for 3D Stackable Vertical-Gate BE-SONOS NAND
Flash Against Cross-Layer Process Variations. JSSC, 50(6):1491–1501, 2015. 6.2.1

[113] A. Hwang, I. Stefanovici, and B. Schroeder. Cosmic Rays Dont Strike Twice: Understand-
ing the Nature of DRAM Errors and the Implications for System Design. In ASPLOS,
2012. 3.5.4

[114] D. Ielmini, A. L. Lacaita, and D. Mantegazza. Recovery and Drift Dynamics of Resistance
and Threshold Voltages in Phase-Change Memories. IEEE Trans. Electron Devices, Apr.
2007. 3.5.7

[115] Jae-Woo Im, Woopyo Jeong, Doo-Hyun Kim, Sangwan Nam, Dong-Kyo Shim, Myung-
Hoon Choi, Hyun-Jun Yoon, Dae-Han Kim, Youse Kim, Hyun Wook Park, Dong-Hun
Kwak, Sang-Won Park, Seok-Min Yoon, Wook-Ghee Hahn, Jinho Ryu, Sang-Won Shim,
Kyung-Tae Kang, Sung-Ho Choi, Jeong-Don Ihm, Young-Sun Min, In-Mo Kim, Doosub
Lee, Ji-Ho Cho, Ohsuk Kwon, Ji-Sang Lee, Moosung Kim, Sang-Hyun Joo, Jae-hoon
Jang, Sang-Won Hwang, Dae-Seok Byeon, Hyang-Ja Yang, Ki-Tae Park, Kyehyun Kyung,

221

and Jeong-Hyuk Choi. A 128Gb 3b/Cell V-NAND Flash Memory with 1Gb/s I/O Rate.
In ISSCC, 2015. 3.4, 6

[116] Intel Corp. Serial ATA Advanced Host Controller Interface (AHCI) 1.3.1, 2012. 2.1.3

[117] Engin Ipek, Onur Mutlu, José F. Martı́nez, and Rich Caruana. Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach. In ISCA, 2008. 2.1.2

[118] C. Isen and L. John. ESKIMO — Energy Savings Using Semantic Knowledge of Incon-
sequential Memory Occupancy for DRAM Subsystem. In MICRO, 2009. 3.5.2, 3.5.2

[119] J. Jang, H.-S. Kim, W. Cho, H. Cho, J. Kim, S. I. Shim, Y. Jang, J.-H. Jeong, B.-K. Son,
D. W. Kim, K. Kim, J.-J. Shim, J. S. Lim, K.-H. Kim, S. Y. Yi, J.-Y. Lim, D. Chung, H.-C.
Moon, S. Hwang, J.-W. Lee, Y.-H. Son, U.-I. Chung, and W.-S. Lee. Vertical Cell Array
Using TCAT (Terabit Cell Array Transistor) Technology for Ultra High Density NAND
Flash Memory. In VLSIT, 2009. 3.4.1

[120] JEDEC Solid State Technology Assn. DDR4 SDRAM Standard, 2013. 3.2.3, 3.5.2, 3.5.2,
3.5.2

[121] JEDEC Solid State Technology Assn. Failure Mechanisms and Models for Semiconductor
Devices. JEDEC Publication JEP122H, 2016. 2.1.3, 3.3.1, 5.5.2, 8.1.2

[122] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee, and Jihong Kim. Lifetime Improve-
ment of NAND Flash-Based Storage Systems Using Dynamic Program and Erase Scaling.
In FAST, 2014. 3.1, 3.2.5, 3.2.7, 5.5.1

[123] Woopyo Jeong, Jae-woo Im, Doo-Hyun Kim, Sang-Wan Nam, Dong-Kyo Shim, Myung-
Hoon Choi, Hyun-Jun Yoon, Dae-Han Kim, You-Se Kim, Hyun-Wook Park, et al. A 128
Gb 3b/Cell V-NAND Flash Memory with 1 Gb/s I/O Rate. JSSC, Jan. 2016. 7.2.2

[124] JEDEC Standard JESD218. Solid-State Drive (SSD) Requirements and Endurance Test
Method. Arlington, VA, JEDEC Solid State Technology Association, 2010. 1.1.1, 2.1.3,
3.1.6, 3.3.3, 3.3.3, 5, 7.1.3

[125] JEDEC Standard JESD22-A117C. Electrically Erasable Programmable ROM (EEPROM)
Program/Erase Endurance and Data Retention Stress Test. Arlington, VA, JEDEC Solid
State Technology Association, 2011. 7.1.4

[126] JEDEC Standard JESD91A. Method for Developing Acceleration Models for Electronic
Component Failure Mechanisms. Arlington, VA, JEDEC Solid State Technology Associa-
tion, 2003. 3.1.6, 7.2.2, 7.2.2

[127] L. Jiang, Y. Zhang, and J. Yang. Mitigating Write Disturbance in Super-Dense Phase
Change Memories. In DSN, 2014. 3.5.7

[128] Xiaowei Jiang, N. Madan, Li Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell, D. Solihin,
and R. Balasubramonian. CHOP: Adaptive Filter-Based DRAM Caching for CMP Server
Platforms. In HPCA, 2010. 3.5.7

[129] S. J. Johnson. Introducing Low-Density Parity-Check Codes. http://sigpromu.org/

sarah/SJohnsonLDPCintro.pdf. 3.3.1

[130] Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: Open Source Scientific Tools for

222

http://sigpromu.org/sarah/SJohnsonLDPCintro.pdf
http://sigpromu.org/sarah/SJohnsonLDPCintro.pdf

Python. http://www.scipy.org/. 7.2.3

[131] Dongku Kang, Woopyo Jeong, Chulbum Kim, Doo-Hyun Kim, Yong-Sung Cho, Kyung-
Tae Kang, Jinho Ryu, Kyung-Min Kang, Sungyeon Lee, Wandong Kim, Hanjun Lee,
Jaedoeg Yu, Nayoung Choi, Dong-Su Jang, Jeong-Don Ihm, Doo-Gon Kim, Young-Sun
Min, Moosung Kim, Ansoo Park, Jae-Ick Son, In-Mo Kim, Pansuk Kwak, Bong-Kil
Jung, Doosub Lee, Hyunggon Kim, Hyang-Ja Yang, Dae-Seok Byeon, Ki-Tae Park, Kye-
hyun Kyung, and Jeong-Hyuk Choi. 7.1 256Gb 3b/cell V-NAND Flash Memory With 48
Stacked WL Layers. In ISSCC, 2016. 3.4, 3.4.1, 6

[132] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. A Superblock-Based Flash Translation Layer for
NAND Flash Memory. In EMSOFT, 2006. 2.1.3

[133] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. The Multi-Streamed
Solid-State Drive. In HotStorage, 2014. 10.3.1

[134] Uksong Kang, Hak-Soo Yu, Churoo Park, Hongzhong Zheng, John Halbert, Kuljit Bains,
SeongJin Jang, and Joosun Choi. Co-Architecting Controllers and DRAM to Enhance
DRAM Process Scaling. In Memory Forum, 2014. 3.5.2, 3.5.2, 3.5.6

[135] J. Katcher. Postmark: A New File System Benchmark. Technical Report TR3022, Net-
work Appliance, 1997. 4.3, 4.2

[136] R. Katsumata, M. Kito, Y. Fukuzumi, M. Kido, H. Tanaka, Y. Komori, M. Ishiduki, J. Mat-
sunami, T. Fujiwara, Y. Nagata, L. Zhang, Y. Iwata, R. Kirisawa, H. Aochi, and A. Ni-
tayama. Pipe-Shaped BiCS Flash Memory with 16 Stacked Layers and Multi-Level-Cell
Operation for Ultra High Density Storage Devices. In VLSIT, 2009. 3.4.1, 3.4.1

[137] S. Khan, D. Lee, Y. Kim, A. Alameldeen, C. Wilkerson, and O. Mutlu. The Efficacy of
Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental
Study. In SIGMETRICS, 2014. 3.5.1, 3.5.2, 3.5.2, 3.5.2, 3.5.2, 3.5.6

[138] S. Khan, D. Lee, and O. Mutlu. PARBOR: An Efficient System-Level Technique to Detect
Data-Dependent Failures in DRAM. In DSN, 2016. 3.5.1, 3.5.2, 3.5.2, 3.5.2, 3.5.6

[139] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu. A Case for Memory
Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM. IEEE
Comput. Archit. Lett., 2016. 3.5.1, 3.5.2, 3.5.2, 3.5.2, 3.5.6

[140] S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu. Detecting and
Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content. In
MICRO, 2017. 3.5.1, 3.5.2, 3.5.2, 3.5.2, 3.5.6

[141] W.-S. Khwa, M.-F. Chang, J.-Y. Wu, M.-H. Lee, T.-H. Su, K.-H. Yang, T.-F. Chen, T.-
Y. Wang, H.-P. Li, M. Brightsky, S. Kim, H.-L. Lung, and C. Lam. A Resistance-Drift
Compensation Scheme to Reduce MLC PCM Raw BER by Over 100x for Storage-Class
Memory Applications. In ISSCC, 2016. 3.5.7

[142] C. Kim et al. A 21 nm High Performance 64 Gb MLC NAND Flash Memory with 400
MB/s Asynchronous Toggle DDR Interface. JSSC, 2012. 2.1.3

[143] Chulbum Kim, Ji-Ho Cho, Woopyo Jeong, Il-han Park, Hyun-Wook Park, Doo-Hyun Kim,
Daewoon Kang, Sunghoon Lee, Ji-Sang Lee, Wontae Kim, et al. A 512Gb 3b/Cell 64-

223

http://www.scipy.org/

Stacked WL 3D V-NAND Flash Memory. In ISSCC, 2017. 3.4.1

[144] J. Kim, M. Sullivan, and M. Erez. Bamboo ECC: Strong, Safe, and Flexible Codes for
Reliable Computer Memory. In HPCA, 2015. 3.5.6

[145] J. Kim, M. Sullivan, S.-L. Gong, and M. Erez. Frugal ECC: Efficient and Versatile Mem-
ory Error Protection Through Fine-Grained Compression. In SC, 2015. 3.5.6

[146] J. Kim, M. Patel, H. Hassan, and O. Mutlu. The DRAM Latency PUF: Quickly Evaluating
Physical Unclonable Functions by Exploiting the Latency–Reliability Tradeoff in Modern
DRAM Devices. In HPCA, 2018. 3.5.5

[147] K. Kim and J. Lee. A New Investigation of Data Retention Time in Truly Nanoscaled
DRAMs. IEEE Electron Device Lett., Aug. 2009. 3.5.2

[148] N. Kim and J.-H. Jang. Nonvolatile Memory Device, Method of Operating Nonvolatile
Memory Device and Memory System Including Nonvolatile Memory Device. U.S. Patent
8,203,881, 2012. 3.2.3

[149] Y. Kim. Architectural Techniques to Enhance DRAM Scaling. PhD thesis, Carnegie Mel-
lon Univ., 2015. 3.5.3

[150] Y. Kim and O. Mutlu. Memory Systems. In Computing Handbook. CRC Press, Boca
Raton, FL, USA, 3 edition, 2014. 2.1.1, 2.1.2

[151] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A Scalable and High-
Performance Scheduling Algorithm for Multiple Memory Controllers. In HPCA, 2010.
2.1.2

[152] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu. A Case for Exploiting Subarray-Level
Parallelism (SALP) in DRAM. In ISCA, 2012. 2.1.1

[153] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A Fast and Extensible DRAM Simulator.
IEEE Comput. Archit. Lett., Jan.–Jun. 2016. 2.1.2

[154] Y. S. Kim, D. J. Lee, C. K. Lee, H. K. Choi, S. S. Kim, J. H. Song, D. H. Song, J.-H. Choi,
K.-D. Suh, and C. Chung. New Scaling Limitation of the Floating Gate Cell in NAND
Flash Memory. In IRPS, 2010. 3.4.2

[155] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. Thread Cluster
Memory Scheduling: Exploiting Differences in Memory Access Behavior. In MICRO,
2010. 2.1.2

[156] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu. Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors. In ISCA, 2014. 3.5.3, 3.31,
3.5.3, 3.32, 3.5.3, 3.5.6

[157] Y. Koh. NAND Flash Scaling Beyond 20nm. In IMW, 2009. 3.1

[158] R. Koller and R. Rangaswami. I/O Deduplication: Utilizing Content Similarity to Improve
I/O Performance. TOS, 2010. 4.3, 4.2

[159] Y. Komori, M. Kido, M. Kito, R. Katsumata, Y. Fukuzumi, H. Tanaka, Y. Nagata,
M. Ishiduki, H. Aochi, and A. Nitayama. Disturbless Flash Memory Due to High Boost

224

Efficiency on BiCS Structure and Optimal Memory Film Stack for Ultra High Density
Storage Device. In IEDM, 2008. 3.4.1

[160] Solomon Kullback and Richard A Leibler. On Information and Sufficiency. The Annals
of Mathematical Statistics, 1951. 5.3.1, 5.3.2, 5.3.3, 5.3.4

[161] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Evaluating STT-RAM
as an Energy-Efficient Main Memory Alternative. In ISPASS, 2013. 3.5.7

[162] Mark LaPedus. How to Make 3D NAND. Semiconductor Engineering, 2016. 3.4.2

[163] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change Memory as a
Scalable DRAM Alternative. In ISCA, 2009. 3.5.7

[164] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Phase Change Memory Architecture and the
Quest for Scalability. Commun. ACM, Jul. 2010. 3.5.7

[165] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger. Phase-
Change Technology and the Future of Main Memory. IEEE Micro, Feb. 2010. 3.5.7

[166] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt. Improving Memory Bank-Level Paral-
lelism in the Presence of Prefetching. In MICRO, 2009. 2.1.1

[167] D. Lee. Reducing DRAM Energy at Low Cost by Exploiting Heterogeneity. PhD thesis,
Carnegie Mellon Univ., 2016. 3.5.5, 3.5.5

[168] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu. Tiered-Latency
DRAM: A Low Latency and Low Cost DRAM Architecture. In HPCA, 2013. 2.1.1

[169] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu. Decoupled Direct
Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM.
In PACT, 2015. 2.1.1

[170] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu. Simultaneous Multi-Layer
Access: Improving 3D-Stacked Memory Bandwidth at Low Cost. ACM TACO, Jan. 2016.
2.1.1

[171] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko, V. Se-
shadri, and O. Mutlu. Design-Induced Latency Variation in Modern DRAM Chips: Char-
acterization, Analysis, and Latency Reduction Mechanisms. In SIGMETRICS, 2017.
3.5.5, 3.5.5, 3.5.6

[172] Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, Vivek Seshadri, Kevin
Chang, and Onur Mutlu. Adaptive-Latency DRAM: Optimizing DRAM Timing for the
Common-Case. In HPCA, 2015. 3.5.2, 3.5.2, 3.5.5, 3.5.5

[173] J.-D. Lee, J.-H. Choi, D. Park, and K. Kim. Degradation of Tunnel Oxide by FN Current
Stress and Its Effects on Data Retention Characteristics of 90 nm NAND Flash Memory
Cells. In IRPS, 2003. 3.1.4

[174] Jae-Duk Lee, Sung-Hoi Hur, and Jung-Dal Choi. Effects of Floating-Gate Interference on
NAND Flash Memory Cell Operation. IEEE Electron Device Letters, 2002. 3.1.3, 3.1,
6.3.1, 6.3.1

[175] Sang-Yun Lee. Limitations of 3D NAND Scaling. EE Times, 2017. 3.4.2

225

[176] Sungjin Lee, Taejin Kim, Kyungho Kim, and Jihong Kim. Lifetime Management of Flash-
Based SSDs Using Recovery-Aware Dynamic Throttling. In FAST, 2012. 3.1.6, 3.1.6,
8.1.1

[177] Y. Lee, H. Yoo, I. Yoo, and I.-C. Park. 6.4 Gb/s Multi-Threaded BCH Encoder and De-
coder for Multi-Channel SSD Controllers. In ISSCC, 2012. 2.1.3, 3.3, 3.3.1, 3.3.1, 6.5.5

[178] Tom Lenny. The Maturity of NVM ExpressT M. In Flash Memory Summit, 2014. 7.3.2

[179] Kenneth Levenberg. A Method for the Solution of Certain Non-Linear Problems in Least
Squares. Quarterly of Applied Mathematics, 1944. 7.2.3

[180] Jiangpeng Li, Kai Zhao, Jun Ma, and Tong Zhang. Realizing Unequal Error Correction
for NAND Flash Memory at Minimal Read Latency Overhead. Circuits and Systems II:
Express Briefs, IEEE Transactions on, 2014. 5.6

[181] Jiangpeng Li, Kai Zhao, Xuebin Zhang, Jun Ma, Ming Zhao, and Tong Zhang. How
Much Can Data Compressibility Help to Improve NAND Flash Memory Lifetime? In
FAST, 2015. 2.1.3

[182] Y. Li, C. Hsu, and K. Oowada. Non-Volatile Memory and Method With Improved First
Pass Programming. U.S. Patent 8,811,091, 2014. 2.2.4

[183] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu. Utility-Based Hybrid Memory
Management. In CLUSTER, 2017. 3.5.7

[184] Yan Li. 3 Bit Per Cell NAND Flash Memory on 19nm Technology. Flash Memory
Summit, 2012. 10.1

[185] Chun-Yi Liu, Yu-Ming Chang, and Yuan-Hao Chang. Read Leveling for Flash Storage
Systems. In SYSTOR, 2015. 1.2.3

[186] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu. RAIDR: Retention-Aware Intelligent DRAM
Refresh. In ISCA, 2012. 3.2.3, 3.5.2, 3.29, 3.5.2, 3.5.2, 10.3.1

[187] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu. An Experimental Study of Data
Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling
Mechanisms. In ISCA, 2013. 3.2.3, 3.5.1, 3.5.2, 3.28, 3.5.2, 3.5.2, 3.30, 3.5.2, 3.5.6

[188] R.-S. Liu, C.-L. Yang, and W. Wu. Optimizing NAND Flash-Based SSDs via Retention
Relaxation. In FAST, 2012. 4.1, 4.1.1, 4.1.2, 5.1, 5.5.1

[189] R.-S. Liu, C.-L. Yang, C.-H. Li, and G.-Y. Chen. Duracache: A Durable SSD Cache Using
MLC NAND Flash. In DAC, 2013. 4.1, 4.1.1, 4.1.2

[190] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn. Flikker: Saving DRAM Refresh-
Power Through Critical Data Partitioning. In ASPLOS, 2011. 3.5.6

[191] W. Liu, J. Rho, and W. Sung. Low-Power High-Throughput BCH Error Correction VLSI
Design for Multi-Level Cell NAND Flash Memories. In SIPS, 2006. 3.3.1

[192] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu. Exploiting Self-Recovery and
Temperature Awareness to Improve 3D NAND Flash Memory Reliability. Technical Re-
port 2018-001, Carnegie Mellon Univ., SAFARI Research Group, 2018. 7.1, 7.2.1, 7.2.3

[193] Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Apoorv

226

Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu. Characterizing
Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-
Reliability Memory. In DSN, 2014. 2.1.3, 3.5.5, 3.5.6, 10.3.3

[194] Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and Onur Mutlu. WARM: Improving
NAND Flash Memory Lifetime with Write-Hotness Aware Retention Management. In
MSST, 2015. 1.3.1, 1.4, 2.1.3, 3.1, 3.2.6, 3.2.7, 5.6, 6.2.2, 7.4, 10.2.3

[195] Yixin Luo, Saugata Ghose, Yu Cai, Erich F Haratsch, and Onur Mutlu. Enabling Accurate
and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory.
IEEE JSAC, 34(9):2294–2311, 2016. 1.1.1, 1.1.1, 1.2.1, 1.3.2, 1.4, 2.1.3, 3.1.1, 3.1.2,
3.1.2, 3.1, 3.2.5, 3.3.1, 3.4.1, 6, 6.1, 2, 3, 6.2.4, 6.3.1, 6.3.1, 6.4.1, 6.5.1, 6.5.5, 3, 7.1.1,
7.1.2, 6, 7.1.3, 7.2.1, 7.3.1, 7.3.2, 7.3.3, 7.4

[196] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. An Accurate and
Practical Threshold Voltage Distribution Model for Modern MLC NAND Flash Mem-
ory. Technical Report 2016-006, Carnegie Mellon Univ., SAFARI Research Group, 2016.
5.3.4

[197] Yixin Luo, Saugata Ghose, Tianshi Li, Sriram Govindan, Bikash Sharma, Bryan Kelly,
Amirali Boroumand, and Onur Mutlu. Using ECC DRAM to Adaptively Increase Memory
Capacity. arXiv:1706.08870 [cs.AR], 2017. 3.5.6, 10.3.3

[198] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. Improving 3D
NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation.
In under submission to SIGMETRICS, 2018. 1.3.3, 1.4

[199] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. HeatWatch:
Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and
Temperature-Awareness. In HPCA, 2018. 1.3, 1.3.4, 1.4, 10.2.3

[200] S. Luryi, A. Kastalsky, A. C. Gossard, and R. H. Hendel. Charge Injection Transistor
Based on Real-Space Hot-Electron Transfer. IEEE Trans. Electron Devices, Jun. 1984. 4

[201] Dongzhe Ma, Jianhua Feng, and Guoliang Li. LazyFTL: A Page-Level Flash Translation
Layer Optimized for NAND Flash Memory. In SIGMOD, 2011. 1.2.3

[202] Dongzhe Ma, Jianhua Feng, and Guoliang Li. A survey of address translation technologies
for flash memories. CSUR, 2014. 1.2.3

[203] D. J. C. MacKay and R. M. Neal. Near Shannon Limit Performance of Low Density Parity
Check Codes. IET Electron. Lett., Mar. 1997. 1.1.2, 2.1.3, 3.3, 3.3.1, 3.3.1, 3.3.2

[204] David JC MacKay and Radford M Neal. Near Shannon Limit Performance of Low Density
Parity Check Codes. Electronics letters, 1996. 1.1.2, 2.1.3, 3.3, 3.3.1, 3.3.1, 3.3.2

[205] A. Maislos. A New Era in Embedded Flash Memory. In Flash Memory Summit, 2011.
3.1, 3.2

[206] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y. Li,
and C. J. Radens. Challenges and Future Directions for the Scaling of Dynamic Random-
Access Memory (DRAM). IBM J. Research Develop., Mar. 2002. 3.5.2, 3.5.6

[207] A. Marelli and R. Micheloni. BCH and LDPC Error Correction Codes for NAND Flash

227

Memories. In 3D Flash Memories. Springer, Dordrecht, Netherlands, 2016. 3.3.1

[208] Todd Marquart. Practical Approach to Determining SSD Reliability. In Flash Memory
Summit, 2015. 7.2.2

[209] J. L. Massey. Shift-Register Synthesis and BCH Decoding. IEEE Trans. Inf. Theory, Jan.
1969. 3.3.1

[210] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu. A Case for Efficient Hardware-
Software Cooperative Management of Storage and Memory. In WEED, 2013. 3.5.7,
10.3.3

[211] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. Revisiting Memory Errors in Large-Scale
Production Data Centers: Analysis and Modeling of New Trends from the Field. In DSN,
2015. 3.5.4, 3.33, 3.5.4, 3.34, 3.5.6, 10.2.1

[212] Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and Parthasarathy Ranganathan.
Enabling Efficient and Scalable Hybrid Memories Using Fine-Granularity DRAM Cache
Management. IEEE Comput. Archit. Lett., Feb. 2012. 3.5.7

[213] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. A Large-Scale Study of Flash
Memory Failures in The Field. In SIGMETRICS, 2015. 2.1.3, 2.1.3, 3.1.7, 1, 3.5, 3.1.7,
3.6, 3.7, 3.1.7, 3.8, 3.1.7, 3.2.3, 7.3.2, 10.2.2

[214] R. Micheloni, editor. 3D Flash Memories. Springer Netherlands, Dordrecht, Netherlands,
2016. 3.4

[215] R Micheloni, R Ravasio, A Marelli, E Alice, V Altieri, A Bovino, L Crippa, E Di Martino,
L D’Onofrio, A Gambardella, et al. A 4Gb 2b/Cell NAND Flash Memory with Embedded
5b BCH ECC for 36MB/s System Read Throughput. In ISSCC, 2006. 3.3.1

[216] R. Micheloni, S. Aritome, and L. Crippa. Array Architectures for 3-D NAND Flash Mem-
ories. Proc. IEEE, Sep. 2017. 3.4

[217] Micron Technology, Inc. Memory Management in NAND Flash Arrays, 2005. 2.1.3

[218] Micron Technology, Inc. Bad Block Management in NAND Flash Memory, 2011. 2.1.3

[219] N. Mielke, T. Marquart, N.Wu, J.Kessenich, H. Belgal, E. Schares, and F. Triverdi. Bit
Error Rate in NAND Flash Memories. In IRPS, 2008. 1.1.1, 1.2.1, 1.2.2, 2.2, 2.2.4, 3.1.4,
3.1.5, 3.1, 3.2.4, 6, 6.2.2, 6.3.1, 6.3.2, 7.1.1, 7.1.2, 7.1.3, 7.2.1, 7.4, 10.2.2

[220] Neal Mielke, Hanmant P Belgal, Albert Fazio, Qingru Meng, and Nick Righos. Recovery
Effects in The Distributed Cycling of Flash Memories. In IRPS, 2006. 3.1.6, 7.1.2, 5,
7.1.3, 7.1.4, 7.2.2, 7.2.3, 7.4

[221] Kyoji Mizoguchi, Tomonori Takahashi, Seiichi Aritome, and Ken Takeuchi. Data-
Retention Characteristics Comparison of 2D and 3D TLC NAND Flash Memories. In
IMW, 2017. 3.1.6, 3.4.2, 7.1.1, 7.2.2, 7.4

[222] V. Mohan, S. Sankar, and S. Gurumurthi. reFresh SSDs: Enabling High Endurance, Low
Cost Flash in Datacenters. Technical Report CS-2012-05, Univ. of Virginia, 2012. 3.1,
3.2.3, 3.2.3, 4.1, 4.1.1, 4.1.2, 5.7

[223] Vidyabhushan Mohan. Modeling The Physical Characteristics of NAND Flash Memory.

228

PhD thesis, University of Virginia, 2010. 2.2.2, 2.2.4

[224] Vidyabhushan Mohan, Taniya Siddiqua, Sudhanva Gurumurthi, and Mircea R Stan. How
I Learned to Stop Worrying and Love Flash Endurance. In HotStorage, 2010. 1.3.4, 3.1.6,
3.1.6, 7.1.2, 7.1.2, 7.1.4

[225] T. Moscibroda and O. Mutlu. Memory Performance Attacks: Denial of Memory Service
in Multi-Core Systems. In USENIX Security, 2007. 2.1.1

[226] T. Moscibroda and O. Mutlu. Distributed Order Scheduling and Its Application to Multi-
Core DRAM Controllers. In PODC, 2008. 2.1.2

[227] Ravi Motwani. Estimation of Flash Memory Level Distributions Using Interpolation Tech-
niques for Optimizing the Read Reference. In GLOBECOM, 2015. 5.6

[228] Ravi Motwani and Chong Ong. Design of LDPC Coding Schemes for Exploitation of Bit
Error Rate Diversity Across Dies in NAND Flash Memory. In ICNC, 2013. 5.6

[229] Ravi Motwani and Chong Ong. Soft Decision Decoding of RAID Stripe for Higher En-
durance of Flash Memory Based Solid State Drives. In ICNC, 2015. 5.6

[230] J. Mukundan, H. Hunter, K.-H. Kim, J. Stuecheli, and J. F. Martı́nez. Understanding and
Mitigating Refresh Overheads in High-Density DDR4 DRAM Systems. In ISCA, 2013.
3.5.2

[231] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda. Reduc-
ing Memory Interference in Multicore Systems via Application-Aware Memory Channel
Partitioning. In MICRO, 2011. 2.1.2

[232] O. Mutlu. Memory Scaling: A Systems Architecture Perspective. In IMW, 2013. 3.5.6

[233] O. Mutlu. The RowHammer Problem and Other Issues We May Face as Memory Becomes
Denser. In DATE, 2017. 3.5.2, 3.5.3, 3.5.3, 3.5.3, 3.5.6

[234] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for Chip Mul-
tiprocessors. In MICRO, 2007. 2.1.1, 2.1.2

[235] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing Both Per-
formance and Fairness of Shared DRAM Systems. In ISCA, 2008. 2.1.1, 2.1.2

[236] O. Mutlu and L. Subramanian. Research Problems and Opportunities in Memory Systems.
SUPERFRI, 2015. 3.5.6

[237] H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, and J. Tschanz. STT-RAM Scaling
and Retention Failure. Intel Technol. J., May 2013. 3.5.7

[238] P. J. Nair, V. Sridharan, and M. K. Qureshi. XED: Exposing On-Die Error Detection
Information for Strong Memory Reliability. In ISCA, 2016. 3.5.6

[239] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-Loading: Practical Power Man-
agement for Enterprise Storage. TOS, 2008. 4.3, 4.2, 7.3.3

[240] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash Sharma, Laura Caulfield, Anand
Sivasubramaniam, Ben Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid. SSD
Failures in Datacenters: What, When and Why? In SIGMETRICS, 2016. 10.2.1

[241] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash Sharma, Laura Caulfield, Anand

229

Sivasubramaniam, Ben Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid. Ssd
failures in datacenters: What? when? and why? In SYSTOR, 2016. 3.1.7, 3.1.7, 3.1.7,
10.2.1, 10.2.2

[242] K. Naruke, S. Taguchi, and M. Wada. Stress Induced Leakage Current Limiting to Scale
Down EEPROM Tunnel Oxide Thickness. In IEDM, 1988. 2.2.4

[243] National Inst. of Standards and Technology. Specification for the Advanced Encryption
Standard (AES), 2001. 2.1.3

[244] Hagop Nazarian and Sylvain Dubois. The drive for SSDs: Whats holding back NAND
flash? https://www.edn.com/Home/PrintView?contentItemId=4424905, 2013.
Online; accessed October 2017. 1.1

[245] John A Nelder and Roger Mead. A Simplex Method for Function Minimization. The
Computer Journal, 1965. 5.3.1, 5.3.2, 5.3.3, 5.4.2

[246] William D Norcott and Don Capps. IOzone Filesystem Benchmark. http://www.

iozone.org, 2003. 4.3, 4.2

[247] NVM Express, Inc. NVM Express Specification, Revision 1.3, 2017. 2.1.3

[248] Openmoko. NAND Bad Blocks. http://wiki.openmoko.org/wiki/NAND_bad_

blocks, 2012. 2.1.3

[249] Patrick ONeil, Edward Cheng, Dieter Gawlick, and Elizabeth ONeil. The log-structured
merge-tree (lsm-tree). Acta Informatica, 33(4):351–385, 1996. 10.3.1

[250] Y. Pan, G. Dong, Q. Wu, and T. Zhang. Quasi-Nonvolatile SSD: Trading Flash Memory
Nonvolatility to Improve Storage System Performance for Enterprise Applications. In
HPCA, 2012. 3.1, 3.2.3, 4.1, 4.1.1, 4.1.2, 5.7, 6.5.3, 7.3.1, 7.4

[251] Yangyang Pan, Guiqiang Dong, and Tong Zhang. Exploiting Memory Device Wear-Out
Dynamics to Improve NAND Flash Memory System Performance. In FAST, 2011. 5.6

[252] Nikolaos Papandreou, Thomas Parnell, Haralampos Pozidis, Thomas Mittelholzer, Evan-
gelos Eleftheriou, Charles Camp, Thomas Griffin, Gary Tressler, and Andrew Walls. Us-
ing Adaptive Read Voltage Thresholds to Enhance The Reliability of MLC NAND Flash
Memory Systems. In GLSVLSI, 2014. 1.1.1, 1.2.1, 1.2.2, 3.1.5, 3.2.5, 3.2.5, 3.2.5, 5.5.2,
5.6, 2, 6.3.3, 6.4.1, 6.5.1, 6.5.5, 7.3.3, 7.3.3, 7.4

[253] Nikolaos Papandreou, Thomas Parnell, Haralampos Pozidis, Thomas Mittelholzer, Evan-
gelos Eleftheriou, Charles Camp, Thomas Griffin, Gary Tressler, and Andrew Walls. En-
hancing the Reliability of MLC NAND Flash Memory Systems by Read Channel Opti-
mization. TODAES, 2015. 5.6

[254] Dongchul Park, Biplob Debnath, and David Du. CFTL: A Convertible Flash Translation
Layer Adaptive to Data Access Patterns. In SIGMETRICS, 2010. 1.2.3

[255] Jisung Park, Jaeyong Jeong, Sungjin Lee, Youngsun Song, and Jihong Kim. Improving
Performance and Lifetime of NAND Storage Systems Using Relaxed Program Sequence.
In DAC, 2016. 1.2.3, 2.2.4, 3.2.1, 6.5.2

[256] Ki-Tae Park, Myounggon Kang, Doogon Kim, Soon-Wook Hwang, Byung Yong Choi,

230

https://www.edn.com/Home/PrintView?contentItemId=4424905
http://www.iozone.org
http://www.iozone.org
http://wiki.openmoko.org/wiki/NAND_bad_blocks
http://wiki.openmoko.org/wiki/NAND_bad_blocks

Yeong-Taek Lee, Changhyun Kim, and Kinam Kim. A Zeroing Cell-To-Cell Interference
Page Architecture With Temporary LSB Storing and Parallel MSB Program Scheme for
MLC NAND Flash Memories. JSSC, 2008. 2.2.4, 3.4.2

[257] Ki-Tae Park, Sangwan Nam, Dae-Han Kim, Pansuk Kwak, Doosub Lee, Yoon-Hee Choi,
Myung-Hoon Choi, Dong-Hun Kwak, Doo-Hyun Kim, Minsu Kim, Hyun Wook Park,
Sang-Won Shim, Kyung-Min Kang, Sang-Won Park, Kangbin Lee, Hyun-Jun Yoon, Kui-
han Ko, Dong-Kyo Shim, Yang-Lo Ahn, Jinho Ryu, Donghyun Kim, Kyunghwa Yun,
Joonsoo Kwon, Seunghoon Shin, Dae-Seok Byeon, Kihwan Choi, Jin-Man Han, Kyehyun
Kyung, Jeong-Hyuk Choi, and Kinam Kim. Three-Dimensional 128 Gb MLC Vertical
NAND Flash Memory With 24-WL Stacked Layers and 50 MB/s High-Speed Program-
ming. J. Solid-State Circuits, Jan. 2015. 3.4, 3.4.1, 3.4.1, 3.4.2, 6, 6.1, 6.3.1, 7.1.1, 7.4

[258] T. Parnell. NAND Flash Basics & Error Characteristics: Why Do We Need Smart Con-
trollers? In Flash Memory Summit, 2016. 3.4.2, 3.4.3

[259] T. Parnell and R. Pletka. NAND Flash Basics & Error Characteristics – Why Do We Need
Smart Controllers? In Flash Memory Summit, 2017. 3.4.2, 3.4.3

[260] Thomas Parnell, Nikolaos Papandreou, Thomas Mittelholzer, and Haralampos Pozidis.
Modelling of the Threshold Voltage Distributions of Sub-20nm NAND Flash Memory. In
GLOBECOM, 2014. 1.1.1, 1.1.1, 1.2.1, 3.1, 3.1.2, 3.2, 3.1, 3.4.1, 5.3, 5.3.1, 5.3.2, 5.3.2,
5.6, 6, 6.1, 3, 6.2.4, 6.3.1, 6.3.1, 6.5.5, 3, 7.1.1, 7.3.1, 7.3.3, 7.4

[261] M. Patel, J. Kim, and O. Mutlu. The Reach Profiler (REAPER): Enabling the Mitigation
of DRAM Retention Failures via Profiling at Aggressive Conditions. In ISCA, 2017. 3.5.1,
3.5.2, 3.5.2, 3.5.2, 3.5.2, 3.5.6

[262] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant Arrays of Inexpensive
Disks (RAID). In SIGMOD, 1988. 2.1.3, 2.1.3, 2.1.3, 6.5.2

[263] P. Pavan, R. Bez, P. Olivo, and E. Zanoni. Flash Memory Cells—An Overview. Proc.
IEEE, Aug 1997. 2.2.4

[264] PCI-SIG. PCI Express Base Specification Revision 3.1a, 2015. 2.1.3

[265] J. Pearl. Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach. In
AAAI, 1982. 3.3.1, 3.3.1

[266] W. W. Peterson and D. T. Brown. Cyclic Codes for Error Detection. Proc. IRE, Jan. 1961.
2.1.3

[267] Sujay Phadke and S. Narayanasamy. MLP Aware Heterogeneous Memory System. In
DATE, 2011. 3.5.7

[268] A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R. Bez. Low-
Field Amorphous State Resistance and Threshold Voltage Drift in Chalcogenide Materi-
als. IEEE Trans. Electron Devices, Jun. 2004. 3.5.7

[269] Pravin Prabhu, Ameen Akel, Laura M Grupp, S Yu Wing-Kei, G Edward Suh, Edwin Kan,
and Steven Swanson. Extracting Device Fingerprints from Flash Memory by Exploiting
Physical Variations. In TRUST, 2011. 1.1.1, 1.2.1, 6.1

[270] Antonios Prodromakis, Stelios Korkotsides, and Theodore Antonakopoulos. MLC NAND

231

Flash Memory: Aging Effect and Chip/Channel Emulation. Microprocessors and Mi-
crosystems, 2015. 5.6

[271] Zhiwei Qin, Yi Wang, Duo Liu, Zili Shao, and Yong Guan. MNFTL: An Efficient Flash
Translation Layer for MLC NAND Flash Memory Storage Systems. In DAC, 2011. 2.1.3

[272] M. Qureshi, D. H. Kim, S. Khan, P. Nair, and O. Mutlu. AVATAR: A Variable-Retention-
Time (VRT) Aware Refresh for DRAM Systems. In DSN, 2015. 3.5.1, 3.5.2, 3.5.2, 3.5.2,
3.5.2, 3.5.6

[273] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable High Performance Main Memory
System Using Phase-Change Memory Technology. In ISCA, 2009. 3.5.7

[274] Moinuddin K. Qureshi and Gabe H. Loh. Fundamental Latency Trade-Off in Architect-
ing DRAM Caches: Outperforming Impractical SRAM-Tags with a Simple and Practical
Design. In MICRO, 2012. 3.5.7

[275] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page Placement in Hybrid
Memory Systems. In ICS, 2011. 3.5.7

[276] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Guiffrida, and H. Bos. Flip Feng Shui:
Hammering a Needle in the Software Stack. In USENIX Security, 2016. 3.5.3

[277] William J Reed. The Normal-Laplace Distribution and Its Relatives. In Advances in
Distribution Theory, Order Statistics, and Inference. Springer, 2006. 5.3.2

[278] P. J. Restle, J. W. Park, and B. F. Lloyd. DRAM Variable Retention Time. In IEDM, 1992.
3.5.2

[279] D. Rollins. A Comparison of Client and Enterprise SSD Data Path Protection. Micron
Technology, Inc., 2011. 2.1.3, 2.1.3, 2.1.3, 2.1.3

[280] William Ryan and Shu Lin. Channel Codes: Classical and Modern. Cambridge Univ.
Press, Cambridge, UK, 2009. 3.3.1, 3.3.1

[281] SAFARI Research Group. 3D NAND Flash Memory Characterization Data. https:

//github.com/CMU-SAFARI/HeatWatch. 7.1

[282] Samsung Electronics Co., Ltd. Samsung V-NAND Technology, 2014. http://www.

samsung.com/us/business/oem-solutions/pdfs/V-NAND_technology_WP.pdf.
3.4.1, 6.2.2

[283] Samsung Electronics Co., Ltd. Samsung SSD 960 PRO M.2 Data Sheet Rev. 1.1, 2017.
2.1.3

[284] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM Errors in the Wild: A Large-Scale
Field Study. In SIGMETRICS, 2009. 3.5.4

[285] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. Flash Reliability in Production:
The Expected and The Unexpected. In FAST, 2016. 3.1.7, 3.1.7, 10.2.1, 10.2.2

[286] Skipper Seabold and Josef Perktold. Statsmodels: Econometric and Statistical Modeling
with Python. In SciPy, 2010. 7.2.1

[287] M. Seaborn and T. Dullien. Exploiting the DRAM Rowhammer Bug to Gain Kernel
Privileges. In BlackHat, 2015. 3.5.3

232

https://github.com/CMU-SAFARI/HeatWatch
https://github.com/CMU-SAFARI/HeatWatch
http://www.samsung.com/us/business/oem-solutions/pdfs/V-NAND_technology_WP.pdf
http://www.samsung.com/us/business/oem-solutions/pdfs/V-NAND_technology_WP.pdf

[288] M. Seaborn and T. Dullien. Exploiting the DRAM Rowhammer Bug to Gain Kernel
Privileges. Google Project Zero Blog, 2015. 3.5.3

[289] Seagate Technology LLC. Enterprise Performance 15K HDD Data Sheet, 2016. 2.1.3

[290] Serial ATA International Organization. Serial ATA Revision 3.3 Specification, 2016. 2.1.3,
7.1.1

[291] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun,
Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B Gibbons, Michael A Kozuch,
et al. Rowclone: Fast and energy-efficient in-dram bulk data copy and initialization. In
MICRO, pages 185–197. IEEE, 2013. 10.3.3

[292] C. E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech. J., Jul. 1948.
3.3.1

[293] C. E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech. J., Oct. 1948.
3.3.1

[294] Claude E. Shannon and Warren Weaver. A Mathematical Theory of Communication. Uni-
versity of Illinois Press, Champaign, IL, USA, 1949. ISBN 0252725484. 1.1.2

[295] Shawn Knight. Samsung to fix slow 840 EVO SSDs with
“periodic refresh” feature. https://www.techspot.com/news/

60362-samsung-fix-slow-840-evo-ssds-periodic-refresh.html, 2015.
TechSpot. 4

[296] H. Shim, S.-S. Lee, B. Kim, N. Lee, D. Kim, H. Kim, B. Ahn, Y. Hwang, H. Lee, J. Kim,
Y. Lee, H. Lee, J. Lee, S. Chang, J. Yang, S. Park, S. Aritome, S. Lee, K.-O. Ahn, G. Bae,
and Y. Yang. Highly Reliable 26nm 64Gb MLC E2NAND (Embedded-ECC & Enhanced-
Efficiency) Flash Memory With MSP (Memory Signal Processing) Controller. In VLSIT,
2011. 3.2.4

[297] L. Shu and D. J. Costello. Error Control Coding. Prentice-Hall, Englewood Cliffs, NJ,
USA, 2 edition, 2004. 2.1.3, 3.3, 3.3.1, 3.3.1, 3.3.1, 3.3.1, 3.3.2, 10.2.3

[298] S. Sills, S. Yasuda, J. Strand, A. Calderoni, K. Aratani, A. Johnson, and N. Ramaswamy.
A Copper ReRAM Cell for Storage Class Memory Applications. In VLSIT, 2014. 3.5.7

[299] S. Sills, S. Yasuda, A. Calderoni, C. Cardon, J. Strand, K. Aratani, and N. Ramaswamy.
Challenges for High-Density 16Gb ReRAM with 27nm Technology. In VLSIC, 2015.
3.5.7

[300] MR Speigel. Theory and Problems of Probability and Statistics. McGraw-Hill, 1992. 5.3,
5.3.3

[301] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gurumurthi. Feng Shui
of Supercomputer Memory: Positional Effects in DRAM and SRAM Faults. In SC, 2013.
3.5.4

[302] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira, Jon Stearley,
John Shalf, and Sudhanva Gurumurthi. Memory Errors in Modern Systems: The Good,
The Bad, and the Ugly. In ASPLOS, 2015. 3.5.4

233

https://www.techspot.com/news/60362-samsung-fix-slow-840-evo-ssds-periodic-refresh.html
https://www.techspot.com/news/60362-samsung-fix-slow-840-evo-ssds-periodic-refresh.html

[303] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. The Missing Memristor
Found. Nature, May 2008. 3.5.7

[304] J. Stuecheli, D. Kaseridis, H. C. Hunter, and L. K. John. Elastic Refresh: Techniques to
Mitigate Refresh Penalties in High Density Memory. In MICRO, 2010. 3.5.2

[305] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu. The Blacklisting Memory
Scheduler: Achieving High Performance and Fairness at Low Cost. In ICCD, 2014. 2.1.2

[306] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu. BLISS: Balancing Per-
formance, Fairness and Complexity in Memory Access Scheduling. IEEE Trans. Parallel
Distrib. Syst., Oct. 2016. 2.1.2

[307] Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and Onur Mutlu. MISE:
Providing Performance Predictability and Improving Fairness in Shared Main Memory
Systems. In HPCA, 2013. 2.1.2

[308] Kang-Deog Suh, Byung-Hoom Suh, Young-Ho Lim, Jin-Ki Kim, Young-Joon Choi,
Yong-Nam Koh, Sung-Soo Lee, Suk-Chon Suk-Chon, Byung-Soon Choi, Jin-Sun Yum,
et al. A 3.3 V 32 Mb NAND Flash Memory With Incremental Step Pulse Programming
Scheme. Solid-State Circuits, IEEE Journal of, 1995. 2.2.4

[309] Haleh Tabrizi, Borja Peleato, Rajiv Agarwal, and Jeffrey Ferreira. Improving NAND Flash
Read Performance Through Learning. In ICC, 2015. 5.5.2, 5.6

[310] K. Takeuchi, S. Satoh, T. Tanaka, K. Imamiya, and K. Sakui. A Negative Vth Cell Ar-
chitecture for Highly Scalable, Excellently Noise-Immune, and Highly Reliable NAND
Flash Memories. IEEE Journal of Solid-State Circuits, 1999. 3.1.5

[311] H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, M. Kito, Y. Fukuzumi,
M. Sato, Y. Nagata, Y. Matsuoka, Y. Iwata, H. Aochi, and A. Nitayama. Bit Cost Scal-
able Technology with Punch and Plug Process for Ultra High Density Flash Memory. In
VLSIT, 2007. 3.4.1

[312] S. Tanakamaru, C. Hung, A. Esumi, M. Ito, K. Li, and K. Takeuchi. 95%-Lower-BER
43%-Lower-Power Intelligent Solid-State Drive (SSD) With Asymmetric Coding and
Stripe Pattern Elimination Algorithm. In ISSCC, 2011. 3.1.4, 3.2.3

[313] R. Tanner. A Recursive Approach to Low Complexity Codes. IEEE Trans. Inf. Theory,
Sep. 1981. 3.3.1

[314] Toru Tanzawa. Method and Apparatus for Generating Temperature-Compensated Read
and Verify Operations in Flash Memories, 2007. US Patent 7,277,355. 10.1

[315] Veeresh Taranalli, Hironori Uchikawa, and Paul H Siegel. Channel Models For Multi-
Level Cell Flash Memories Based on Empirical Error Analysis. arXiv:1602.07743
[cs.AR], 2016. 5.6

[316] Arash Tavakkol, Juan Gómez Luna, Mohammad Sadrosadati, Saugata Ghose, and Onur
Mutlu. MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue
SSD Devices. In FAST, 2018. 2.1.3

[317] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim, Yixin Luo, Yao-
hua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan G. Luna, and Onur Mutlu. FLIN:

234

Enabling Fairness and Enhancing Performance in Modern NVMe Solid State Drives. In
ISCA, 2018. 2.1.3, 10.3.3

[318] Techman Electronics Co. Techman XC100 NVMe SSD. White Paper v1.0, 2016. 2.1.3

[319] Toshiba Corp. 3D Flash Memory: Scalable, High Density Storage for Large Capacity Ap-
plications. http://www.toshiba.com/taec/adinfo/technologymoves/3d-flash.

jsp, 2017. 3.4.1

[320] A. N. Udipi, N. Muralimanohar, R. Balasubramonian, A. Davis, and N. P. Jouppi. LOT-
ECC: Localized and Tiered Reliability Mechanisms for Commodity Memory Systems. In
ISCA, 2012. 3.5.6

[321] Univ. of Massachusetts. Storage: UMass Trace Repository. http://tinyurl.com/

k6golon, 2002. 4.3, 4.2

[322] V. van der Veen, Y. Fratanonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna, H. Bos,
K. Razavi, and C. Guiffrida. Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms. In CCS, 2016. 3.5.3

[323] Ned Varnica. LDPC Decoding: VLSI Architectures and Implementations — Module 1:
LDPC Decoding. In Flash Memory Summit, 2013. 3.3.1

[324] R. K. Venkatesan, S. Herr, and E. Rotenberg. Retention-Aware Placement in DRAM
(RAPID): Software Methods for Quasi-Non-Volatile DRAM. In HPCA, 2006. 3.5.2,
3.5.2

[325] C. Wang and W.-F. Wong. Extending the Lifetime of NAND Flash Memory by Salvaging
Bad Blocks. In DATE, 2012. 3.2.6

[326] Jiadong Wang, Kasra Vakilinia, Tsung-Yi Chen, Thomas Courtade, Guiqiang Dong, Tong
Zhang, Hari Shankar, and Richard Wesel. Enhanced Precision Through Multiple Reads for
LDPC Decoding in Flash Memories. Selected Areas in Communications, IEEE Journal
on, 2014. 3.2.5, 3.3.1, 3.3.1, 3.3.1, 3.3.2, 5.5.4, 5.6

[327] W. Wang, T. Xie, and D. Zhou. Understanding the Impact of Threshold Voltage on MLC
Flash Memory Performance and Reliability. In ICS, 2014. 2.2.4

[328] Yi Wang, Lisha Dong, and Rui Mao. P-Alloc: Process-Variation Tolerant Reliability
Management for 3D Charge-Trapping Flash Memory. TECS, 16(5s):142, 2017. 6.2.1

[329] J. Werner. A Look Under the Hood at Some Unique SSD Features. In Flash Memory
Summit, 2010. 3.2.3

[330] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, and S.-L. Lu. Re-
ducing Cache Power With Low-Cost, Multi-Bit Error-Correcting Codes. In ISCA, 2010.
3.5.6

[331] M. Willett. Encrypted SSDs: Self-Encryption Versus Software Solutions. In Flash Mem-
ory Summit, 2015. 2.1.3

[332] E. H. Wilson, M. Jung, and M. T. Kandemir. Zombie NAND: Resurrecting Dead NAND
Flash for Improved SSD Longevity. In MASCOTS, 2014. 3.1, 3.2.7, 7.1.3

[333] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi,

235

http://www.toshiba.com/taec/adinfo/technologymoves/3d-flash.jsp
http://www.toshiba.com/taec/adinfo/technologymoves/3d-flash.jsp
http://tinyurl.com/k6golon
http://tinyurl.com/k6golon

and K. E. Goodson. Phase Change Memory. Proc. IEEE, Dec. 2010. 3.5.7

[334] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and
M.-J. Tsai. Metal-Oxide RRAM. Proc. IEEE, Jun. 2012. 3.5.7

[335] Guanying Wu and Xubin He. Reducing SSD Read Latency via NAND Flash Program and
Erase Suspension. In FAST, 2012. 2.1.3

[336] Guanying Wu, Xubin He, Ningde Xie, and Tong Zhang. DiffECC: Improving SSD Read
Performance Using Differentiated Error Correction Coding Schemes. In MASCOTS, 2010.
3.1, 3.2.7, 5.1, 5.5.5

[337] Qi Wu, Guiqiang Dong, and Tong Zhang. Exploiting Heat-Accelerated Flash Memory
Wear-Out Recovery to Enable Self-Healing SSDs. In HotStorage, 2011. 1.3.4, 3.1.6,
3.1.6, 7.1.2, 7.1.2, 7.1.4

[338] Qi Wu, Guiqiang Dong, and Tong Zhang. A First Study on Self-Healing Solid-State
Drives. In IMW, 2011. 3.1.6, 7.1.2, 7.1.4

[339] Y. Wu and E. T. Cohen. Optimization of Read Thresholds for Non-Volatile Memory. U.S.
Patent 9,595,320, 2015. 3.2.5

[340] Y. Wu, Z. Chen, Y. Cai, and E. F. Haratsch. Method of Erase State Handling in Flash
Channel Tracking. U.S. Patent 9,213,599, 2015. 3.3.1

[341] Y. Wu, Y. Cai, and E. F. Haratsch. Systems and Methods for Soft Data Utilization in a
Solid State Memory System. U.S. Patent 9,201,729, 2017. 3.3.1

[342] Y. Wu, Y. Cai, and E. F. Haratsch. Fixed Point Conversion of LLR Values Based on
Correlation. U.S. Patent 9,582,361, 2017. 3.3.1

[343] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu. One Bit Flips, One Cloud Flops: Cross-
VM Row Hammer Attacks and Privilege Escalation. In USENIX Security, 2016. 3.5.3

[344] M. Xu, M. Li, and C. Tan. Extended Arrhenius Law of Time-to-Breakdown of Ultrathin
Gate Oxides. Appl. Phys. Lett., 2003. 3.2.3

[345] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Manu Awasthi, Tameesh Suri, Zvika
Guz, Anahita Shayesteh, and Vijay Balakrishnan. Performance Characterization of Hy-
perscale Applications on NVMe SSDs. In SIGMETRICS, 2015. 2.1.3

[346] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu Awasthi, Zvika
Guz, Anahita Shayesteh, and Vijay Balakrishnan. Performance Analysis of NVMe SSDs
and Their Implication on Real World Databases. In SYSTOR, 2015. 2.1.3

[347] R.-I. Yamada, Y. Mori, Y. Okuyama, J. Yugami, T. Nishimoto, and H. Kume. Analysis of
Detrap Current Due to Oxide Traps to Improve Flash Memory Retention. In IRPS, 2000.
3.1.4

[348] D. S. Yaney, C. Y. Lu, R. A. Kohler, M. J. Kelly, and J. T. Nelson. A Meta-Stable Leakage
Phenomenon in DRAM Charge Storage — Variable Hold Time. In IEDM, 1987. 3.5.2

[349] J. Yang. High-Efficiency SSD for Reliable Data Storage Systems. In Flash Memory
Summit, 2011. 3.1, 3.2.4

[350] Ming-Chang Yang, Yu-Ming Chang, Che-Wei Tsao, Po-Chun Huang, Yuan-Hao Chang,

236

and Tei-Wei Kuo. Garbage collection and wear leveling for flash memory: past and future.
In SMARTCOMP, 2014. 2.1.3, 2.1.3, 2.1.4

[351] H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O. Mutlu. Efficient Data Mapping
and Buffering Techniques for Multi-Level Cell Phase-Change Memories. ACM TACO,
Dec. 2014. 3.5.7

[352] HanBin Yoon, J. Meza, R. Ausavarungnirun, R.A. Harding, and O. Mutlu. Row Buffer
Locality Aware Caching Policies for Hybrid Memories. In ICCD, 2012. 3.5.7

[353] J. H. Yoon. 3D NAND Technology: Implications to Enterprise Storage Applications. In
Flash Memory Summit, 2015. 3.1.6, 3.4, 3.4.1, 3.4.2

[354] J. H. Yoon and G. A. Tressler. Advanced Flash Technology Status, Scaling Trends &
Implications to Enterprise SSD Technology Enablement. In Flash Memory Summit, 2012.
3.2

[355] J. H. Yoon and G. A. Tressler. Advanced Flash Technology Status, Scaling Trends &
Implications to Enterprise SSD Technology Enablement. In Flash Memory Summit, 2012.
3.1, 3.1.4

[356] J. H. Yoon, R. Godse, G. Tressler, and H. Hunter. 3D-NAND Scaling and 3D-SCM —
Implications to Enterprise Storage. In Flash Memory Summit, 2017. 3.4.2, 3.4.3

[357] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas. Banshee: Bandwidth-Efficient
DRAM Caching via Software/Hardware Cooperation. In MICRO, 2017. 3.5.7

[358] Liu Yuan, Huaida Liu, Pingui Jia, and Yiping Yang. An Adaptive ECC Scheme for Dy-
namic Protection of NAND Flash Memories. In ICASSP, 2015. 5.5.5

[359] Enze Zhang, Weiyi Wang, Cheng Zhang, Yibo Jin, Guodong Zhu, Qingqing Sun,
David Wei Zhang, Peng Zhou, and Faxian Xiu. Tunable charge-trap memory based on
few-layer mos2. ACS NANO, 2014. 6.2.2

[360] Wangyuan Zhang and Tao Li. Exploring Phase Change Memory and 3D Die-Stacking for
Power/Thermal Friendly, Fast and Durable Memory Architectures. In PACT, 2009. 3.5.7

[361] Z. Zhang, W. Xiao, N. Park, and D. J. Lilja. Memory Module-Level Testing and Error
Behaviors for Phase Change Memory. In ICCD, 2012. 3.5.7

[362] Kai Zhao, Wenzhe Zhao, Hongbin Sun, Tong Zhang, Xiaodong Zhang, and Nanning
Zheng. LDPC-in-SSD: Making Advanced Error Correction Codes Work Effectively in
Solid State Drives. In FAST, 2013. 2.1.3, 3.3.1, 3.3.1, 3.3.1, 3.3.1, 3.3.2, 5.5.4, 5.6

[363] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A Durable and Energy Efficient Main Memory
Using Phase Change Memory Technology. In ISCA, 2009. 3.5.7

[364] A. Zuck, S. Toledo, D. Sotnikov, and D. Harnik. Compression and SSDs: Where and
How? In INFLOW, 2014. 2.1.3

[365] Aviad Zuck, Yue Li, Jehoshua Bruck, Donald E Porter, and Dan Tsafrir. Stash in a Flash.
2018. 3.1.1

237

	Abstract
	Acknowledgments
	1 Introduction
	1.1 The Problem: The Cost of Flash Reliability
	1.1.1 Flash Reliability Problems
	1.1.2 The Cost of Improving Flash Reliability

	1.2 Related Work
	1.2.1 NAND Flash Memory Error Characterization
	1.2.2 Improving Flash Reliability with Device Awareness
	1.2.3 Improving Flash Reliability with Workload Awareness
	1.2.4 Summary

	1.3 Thesis Statement and Overview
	1.3.1 WARM—Write-hotness Aware Retention Management
	1.3.2 Online Flash Channel Modeling and Its Applications
	1.3.3 3D NAND Flash Memory Error Characterization and Mitigation
	1.3.4 HeatWatch: Self-Recovery and Temperature Aware Retention Error Mitigation

	1.4 Thesis Outline
	1.5 Contributions

	2 Basics of Modern SSDs and NAND Flash Memory
	2.1 State-of-the-Art SSD Architecture
	2.1.1 Flash Memory Organization
	2.1.2 Memory Channel
	2.1.3 SSD Controller
	2.1.4 Design Tradeoffs for Reliability

	2.2 NAND Flash Memory Basics
	2.2.1 Storing Data in a Flash Cell
	2.2.2 Flash Block Design
	2.2.3 Read Operation
	2.2.4 Program and Erase Operations

	3 Flash Memory Reliability: Background and Related Work
	3.1 NAND Flash Memory Error Characteristics
	3.1.1 P/E Cycling Errors
	3.1.2 Program Errors
	3.1.3 Cell-to-Cell Program Interference Errors
	3.1.4 Data Retention Errors
	3.1.5 Read Disturb Errors
	3.1.6 Self-Recovery Effect
	3.1.7 Large-Scale Studies on SSD Errors

	3.2 Error Mitigation
	3.2.1 Shadow Program Sequencing
	3.2.2 Neighbor-Cell Assisted Error Correction
	3.2.3 Refresh Mechanisms
	3.2.4 Read-Retry
	3.2.5 Voltage Optimization
	3.2.6 Hot Data Management
	3.2.7 Adaptive Error Mitigation Mechanisms

	3.3 Error Correction and Data Recovery Techniques
	3.3.1 Error-Correcting Codes Used in SSDs
	3.3.2 Error Correction Flow
	3.3.3 BCH and LDPC Error Correction Strength
	3.3.4 SSD Data Recovery

	3.4 Emerging Reliability Issues for 3D NAND Flash Memory
	3.4.1 3D NAND Flash Design and Operation
	3.4.2 Errors in 3D NAND Flash Memory
	3.4.3 Changes in Error Mitigation for 3D NAND Flash Memory

	3.5 Similar Errors in Other Memory Technologies
	3.5.1 Cell-to-Cell Interference Errors in DRAM
	3.5.2 Data Retention Errors in DRAM
	3.5.3 Read Disturb Errors in DRAM
	3.5.4 Large-Scale DRAM Error Studies
	3.5.5 Latency-Related Errors in DRAM
	3.5.6 Error Correction in DRAM
	3.5.7 Errors in Emerging Nonvolatile Memory Technologies

	4 WARM—Write-hotness Aware Retention Management
	4.1 Motivation
	4.1.1 Retention Time Relaxation
	4.1.2 Refresh Overhead Mitigation
	4.1.3 Opportunities to Exploit Write-Hotness

	4.2 Mechanism
	4.2.1 Partitioning Data Using Write-Hotness
	4.2.2 Flash Management Policies
	4.2.3 Implementation and Overheads

	4.3 Methodology
	4.4 Evaluations
	4.4.1 Hot Pool and Cooldown Window Sizes
	4.4.2 Lifetime Improvement
	4.4.3 Improvement in Endurance Capacity
	4.4.4 Reduction of Refresh Operations
	4.4.5 Impact on Performance
	4.4.6 Sensitivity Studies

	4.5 Limitations
	4.6 Conclusion

	5 Online Flash Channel Modeling and Its Applications
	5.1 Motivation
	5.2 Characterization Methodology
	5.3 Static Distribution Model
	5.3.1 Gaussian-based Model
	5.3.2 Normal-Laplace-based Model
	5.3.3 Student's t-based Model
	5.3.4 Model Validation and Comparison

	5.4 Dynamic Modeling
	5.4.1 Static Model Trends Over P/E Cycles
	5.4.2 Power Law-based Model
	5.4.3 Model Validation

	5.5 Example Applications
	5.5.1 Raw Bit Error Rate Estimation
	5.5.2 Optimal Read Reference Voltage Prediction
	5.5.3 Expected Lifetime Estimation
	5.5.4 Soft Information Estimation for LDPC Codes
	5.5.5 Improving Flash Performance

	5.6 Related Work
	5.7 Limitations
	5.8 Conclusion

	6 3D NAND Flash Memory Error Characterization and Mitigation
	6.1 3D NAND Error Characterization Overview
	6.1.1 Methodology

	6.2 Key Characterization Results
	6.2.1 Layer-to-Layer Process Variation
	6.2.2 Early Retention Loss
	6.2.3 Retention Interference
	6.2.4 Summary

	6.3 Comprehensive Characterization Results
	6.3.1 Write-Induced Errors
	6.3.2 Early Retention Loss
	6.3.3 Read-Induced Errors
	6.3.4 Layer-To-Layer Process Variation
	6.3.5 Bitline-to-Bitline Process Variation

	6.4 3D NAND Error Models
	6.4.1 Process Variation Model
	6.4.2 Retention Loss Model

	6.5 3D NAND Error Mitigation Techniques
	6.5.1 LaVAR: Layer Variation Aware Reading
	6.5.2 LI-RAID: Layer-Interleaved RAID
	6.5.3 ReMAR: Retention Model Aware Reading
	6.5.4 ReNAC: Mitigating Retention Interference
	6.5.5 Implications on Systems Reliability

	6.6 Limitations
	6.7 Conclusion

	7 HeatWatch: Self-Recovery and Temperature Aware Retention Error Mitigation
	7.1 Characterizing the Self-Recovery Effect
	7.1.1 Characterization Methodology
	7.1.2 Characterizing the Dwell Time Effect
	7.1.3 Characterizing the Temperature Effect
	7.1.4 Characterizing the Recovery Cycle Effect
	7.1.5 Summary of Key Observations

	7.2 Self-Recovery Effect Modeling
	7.2.1 Program Variation Component
	7.2.2 Effective Retention/Dwell Time Component
	7.2.3 Self-Recovery and Retention Component

	7.3 Improving 3D NAND Reliability
	7.3.1 Observations
	7.3.2 HeatWatch Mechanism
	7.3.3 Evaluation

	7.4 Related Work
	7.5 Limitations
	7.6 Conclusion

	8 System-Level Implications and Lessons Learned
	8.1 System-Level Implications
	8.1.1 Impact on Tolerable Write Frequency
	8.1.2 Impact on ECC Cost
	8.1.3 Impact on Performance and Flash Management Policies

	8.2 Lessons Learned
	8.2.1 Combining Large-Scale and Small-Scale Characterization Studies
	8.2.2 Improve Systems Reliability Rather Than Device Reliability Alone

	9 Conclusions
	10 Future Research Directions
	10.1 Temperature Effects on Read Operations
	10.2 SSD Errors At Scale
	10.2.1 3D NAND Errors In the Field
	10.2.2 Predicting and Preventing SSD Failures
	10.2.3 Tolerating Reliability Variation Across SSDs

	10.3 Enabling Cold Storage in SSDs
	10.3.1 Identifying Suitable Data for SSD Cold Storage
	10.3.2 Increasing SSD Retention Time
	10.3.3 Increasing SSD Capacity

	Other Works of This Author
	Bibliography

