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Abstract

An electrical flow on a graph is a special type of flow which corresponds to the physical in-
terpretation of an electrical current induced on a network of conductors when an electrical
circuit is set up. Electrical flow has interesting algebraic properties and is a useful algo-
rithmic primitive in modern algorithm design and is used in recent breakthroughs in long-
standing problems such as solving the approximate maximum flow problem [CKM+11].

The “minimum energy, demand satisfying, electrical flow” problem is to find an electrical
flow of minimum energy that satisfies the demand on the vertices. This problem can
be solved using Laplacian Solvers in nearly linear time and many vertex potential based
solvers such as [KMP11, CKM+14] have been developed. In [KOSZ13], a “cycle tog-
gling” electrical solver was introduced. The cycle flow solver operates in the dual space
of the vertex potential solvers and it is considered a simpler algorithm. Despite hav-
ing a competitive asymptotic running time, the cycle toggling solver was shown to have
poorer performance experimentally when compared to traditional optimization methods
[DGM+16].

The goal of this thesis is to give a better analysis of cycle toggling solver and to demystify
its performance. First, techniques from vertex potential solvers will be used to improve the
performance of cycle toggling solvers. Second, empirical results from the implementations
of the solver of [KOSZ13] would be discussed. Finally, the solvers would be reanalyze using
the framework of ”Stochastic Dual Ascent” framework of [GR15] thereby establishing the
connection of Laplacian Solvers with stochastic optimization.

Keywords: Spectral Graph Theory, Electrical Flow, Stochastic Gradient Descent, Primal
Dual Methods
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Chapter 1

Introduction

An electrical flow on a graph is a special type of flow which corresponds to the physical in-
terpretation of an electrical current induced on a network of conductors when an electrical
circuit is set up. Electrical flow has interesting algebraic properties and is a useful algo-
rithmic primitive in modern algorithm design and is used in recent breakthroughs in long-
standing problems such as solving the approximate maximum flow problem [CKM+11].
A better understanding of electrical flow will lead to better algorithm designs.

1.1 Minimum Energy, Demand Satisfying Electrical

Flow

Given an undirected weighted graph, the edges of the graph could be thought of as the
resistors in a network and the edge weight, re would be the associated resistance. Like any
electrical circuit, if a potential di↵erence is applied to a subset of vertices, an electrical
flow would be induced onto the graph. Let the flow induced on each edge to be fe. The
electrical energy of an edge is then ⇠(fe) := ref 2

e and the energy of the graph is the sum
of the electrical energy across the edges.

The “minimum energy and demand satisfying electrical flow”, or in short “Min-energy

electrical flow”, problem is to find an electrical flow of minimum energy that satisfies
the given potential di↵erence on the vertices. A more through treatment of the problem
can be found in [Bol98, DS84] and the key insight is that the ”Min-energy electrical
flow” problem can be reformulated as problem of solving the underlying Graph Laplacian
system. This connection allows for the power of linear solvers to bring to bear on the
optimization problem.
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1.2 Fast Laplacian Graph Solvers

Fast and robust linear system solvers are the work horse of many communities through
out scientific disciplines, engineering fields and the industry. Linear systems appear in
the inner operations of common routines such as solving linear programs, eigenvector cal-
culations, convex optimization, and physical simulations. Thus, improvements in linear
system solvers technology will have a huge impact.

Unfortunately, sub-quadratic time solver for general linear systems remains an open prob-
lem [Str69, CW90, Wil12]. However, there is substantial progress in the special cases
of restricting to linear systems in the form, Ax = b where A is Symmetric Diagonally
Dominant (SDD) matrix. A SDD matrix is a square matrix where each diagonal entry
is greater than or equal to the sum of the absolute values of its o↵ diagonals. A graph
Laplacian matrix (or Laplacian) is a SDD matrix with the additional constraint that the
o↵ diagonal elements are non-positive, and the row sums are 0.

The graph Laplacian represents a weighted, undirected graph that has n vertex and m
edges. Formally, it is a n⇥ n matrix with entries given by

Li,j =

8
><

>:

P
j 6=i w ij if i = j,

�w ij if i 6= j and i is incident to j,

0 otherwise.

(1.1)

There is a simple O(m) procedure to convert any SDD system into a Laplacian sys-
tem thus the focus would be on Laplacian systems. In addition, graph Laplacians ap-
pear frequently and naturally in scientific computing, graph theory, and machine learning
problem[CMMP13].

1.3 Prior Works

In a seminal paper by Spielman and Teng [ST14], they exhibited a Laplacian solver
that ran in O(m logc n) time to constant precision. Their result sparked a renaissance in
faster algorithms for wide classes of problems that have not seen improvements in many
years[KM09, CKM+11, Mad13], all of which involved the use of a fast linear solver. Since
then, there has been substantial improvements in the time to solve Laplacian systems and
the present best upper bound is now about O(m

p
log n) time [KMP14, KMP11, KOSZ13,

LS13, CKM+14, PS14, KLP+15].

In [KOSZ13], a “cycle toggling” electrical solver was introduced. It was the first flow based
Laplacian solver and this is di↵erent from the existing Laplacian solvers such as [CKM+14]
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which is vertex potential based. Though the cycle toggling solver has comparable asymp-
totic performance to potential solver, [BDG16b] have found that despite implementation
optimizations, the cycle toggling solvers practical performance is not competitive to linear
system solvers.

1.4 Overview

This gap between theoretical and practical performance motivates the investigation in
this thesis. The goals of thesis are:

1. A better analysis of the cycle toggling solver and to demystify its practical perfor-
mance.

2. A better understanding of the primal-dual nature of electrical flows.

3. To establish the connection between the Laplacian solvers and stochastic optimiza-
tion.

4. To Incorporate methods from potential solvers into flow solvers.
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Chapter 2

Preliminaries

We will define some notations and concepts that will be used in the paper. Boldface
would used to denote matrices while normal font would be used to denote vectors. All
the matrices and vectors would be associated with the graph in context and subscripts
would be used in ambiguous situation.

2.1 Matrices Definitions

2.1.1 Graphs and Trees

Definition 2.1.1 (Graph)

Let G = (V,E,W ) be a weighted, undirected graph with |V | = n vertices, |E| = m
edges, and 8w 2 W,w > 0 weights. For simplicity, the graph is assumed to be connected
throughout the thesis.

Definition 2.1.2 (Conductance, Resistance)

The weights of graph, W , would be termed as conductance. The conductance matrix is
a |E|⇥ |E| diagonal matrix, C 2 Rm⇥m where each diagonal entry is the conductance of
the edge.
The inverse of the conductance matrix is called the resistance matrix, R 2 Rm⇥m and
R = C�1. The conductance matrix can be expressed as R�1

Definition 2.1.3 (Spanning Tree and Non-Tree edges)

Let the spanning tree of a connected graph G, T (G) = T , be a connected subgraph that
contains the all the vertices with minimal edges. Clearly, T has n� 1 edge.
Given a spanning tree, the edge set is partitioned into 2 sets: tree edges, denoted as Et,
and non-tree edges, denoted as En. There are m� n+ 1 non-tree edges and for notation
convenience, denote this as m0 = m� n+ 1

7



Figure 2.1: Low Stretch Spanning Tree on 2D grid

Definition 2.1.4 (Stretch and Low Stretch Spanning Tree)

The stretch of an edge e = (a, b) 2 E with respect to a tree T is

st(e) =

P
i2Pe

ri
re

where Pe is the unique path of the vertex a to b on the tree T .
The induced stretch of a tree on a graph is the sum of the stretch of all the edges,

st(T ) =
X

e2E

st(e)

A Low Stretch Spanning Tree (LSST) is a tree with low total stretch.

2.1.2 Associated Basis Matrices of the Graph

Definition 2.1.5 (Incidence Matrix)

Given an orientation of the edges of G, each edge (a, b) 2 E can be expressed as an
ordered pair. It is convenient to orient the edges based on the tree traversal order of a
given spanning tree. Let the incidence matrix B be the |V |⇥ |E| matrix whose rows are
indexed by vertices and columns are indexed by edges where

Bv,e =

8
><

>:

1 if e = (u, v), for some u 2 V ,

�1 if e = (v, u), for some u 2 V ,

0 otherwise.

(2.1)

Order B such that the first n� 1 columns are the edges of the spanning tree. B can be
represented as 2 block matrices, B t, a n ⇥ (n � 1) matrix for the tree edges, and Bn, a
n⇥ (m� n+ 1) matrix for the non-tree edges such that

B = [B t|Bn]
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2.1.3 Laplacian and its Decomposition

Definition 2.1.6 (Laplacian)

The graph Laplacian is a |V |⇥ |V | matrix defined as

Li,j =

8
><

>:

P
j 6=i w ij if i = j,

�w ij if i 6= j and i is incident to j,

0 otherwise.

(2.2)

Often, the Laplacian is defined as L = D �A where D is the degree matrix and A is the
weighted adjacency matrix. An alternative characterization is by the incidence matrix.
It can be verified that

L = BCBT

When C has non-negative edge weights, the Laplacian is a positive semi-definite (PSD)
matrix. This version of the graph Laplacian is also known as the combinatorial Laplacian
or Kirchho↵ matrix.

Definition 2.1.7 (Cycle Matrix)

Given a spanning tree of a graph, since there is a unique tree path for every pair of
vertices, every non-tree edge forms a unique cycle with the tree. Given a non-tree e, call
this unique cycle, Ce, the fundamental cycle of e. It is crucial to note that the edges on
the cycle is oriented and the orientation is given by B
Let the cycle matrix K be the |E| ⇥ |En| matrix whose rows are indexed by edges and
columns are indexed by non-tree edges where

K a,b =

8
><

>:

1 if a 2 Cb and a, b have the same orientation in Cb,

�1 if a 2 Cb and a, b do not have the same orientation in Cb,

0 if a 62 Cb.

(2.3)

It is easy to check that BK = 0 as the cycle matrix is in the nullspace of the incidence
matrix.
Similar to the incidence matrix, by ordering the first n� 1 rows of K to be the edges of
the tree, we can represent K as 2 block matrices, K t, a (n� 1)⇥ (m� n+ 1) matrix for
the tree edges, and K n, a (m� n+ 1)⇥ (m� n+ 1) matrix for the non-tree edges

K =


K t

K n

�

Note that K n = I since each fundamental cycle would contain only 1 non-tree edge.

We can express K in terms of B
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BK = 0

[B t|Bn]


K t

K n

�
= 0

B tK t +BnI = 0

K t = �B+
t Bn

where B+
t is the pseudo inverse of B t

[Bol98] has a deeper discussion in chapter II.3: Electrical Networks on the connections
between the incidence and cycle matrices.

2.2 Potentials and Flows

Definition 2.2.1 (Potential or Potential Flow)

Let the vertex potential (potential), v, be a R|V | vector. Similar to a electrical circuit, a
potential flow is an induced flow on the edges where the flow amount is proportional to
the conductance and the di↵erence between the potentials of the start and end vertices
of the edge.

fpotential = R�1BTv

Definition 2.2.2 (Generator or Circulation Flow)

Let a potential di↵erence generator (generator),u, be a R|En| vector. This is setting of
flows on the non-tree edges. A circulation flow is where the in flow and out flow on every
vertex is 0.

fcirculation = Ku

Definition 2.2.3 (Flow decomposition)

Recall that BK = 0, implying that potential flows are orthogonal to the circulation flows.
Thus all flows can be decompose as

f = fpotential + fcirculation = R�1BTv +Ku

Definition 2.2.4 (Vertex Demand, Demand Satisfying Flow)

Let the vertex demand (demand), d, be a R|V | vector which is the required di↵erence
between the in flow and out flow of each vertex. Given a demand d a demand satisfying
flow, f , is one where each vertex meets the demand. This can be expressed as Bf = d

10



2.3 Summary

This is a quick and visual representation of the required matrices and flow concepts that
will be used in the subsequent chapters.

Special Matrices

B : Incidence Matrix

B t: Incidence Matrix of the Spanning Tree

K : Cycle Matrix

L: Laplacian Matrix

Incidence Matrix

BT : potential! flow, B : flow! residual

Graph Laplacian

L = BCBT

v CBTv BCBTv

Incidence and Cycle Matrices

B = [B t|Bn], K =


K t

K n

�
, BK = 0! K t = �B+

t Bn

Potential Flow, Pure Circulations

fpotential = R�1BTv, fcirculation = Ku

Flow Decomposition

f = R�1BTv +Ku = R�1(BTv +RKu)

Flow = Pure Circulation + Potential Flow
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Chapter 3

A Cycle Toggling Solver

3.1 KOSZ13 Cycle Toggling Solver

In [KOSZ13], the aim was to develop a minimum-energy and demand satisfying flow
(Min-energy electrical flow) solver matches the demand on each vertex exactly but might
have ✏ error in getting the energy of the flow. In contrast, the existing vertex potential
solvers, such as [KMP11], would have ✏ error in both the energy as well as the meeting
the demand.
The key idea for the KOSZ13 solver can be broken down into the following step.

1. If the graph was a tree, then there exists a unique flow satisfying the demand exactly.
Call this flow as“tree flow”. The tree flow be computed in linear time by a simple
tree traversal.

2. Since all connected graph contains a tree, there is tree flow satisfying the demand
exactly i.e. Bftree = d.

3. Observe that the tree flow is a potential flow since it has no cycles. Also, adding
cycles does not change the residual on each vertex i.e. B(ftree + Ku) = d. This
step is called “Cycle toggling” in KOSZ13.

4. However, adding cycles changes the energy of the flow.

5. The min-energy flow problem can be casted as finding the set of cycles to add to a
tree flow which will result in the minimum energy.

The KOSZ13 solver uses cycle toggling as the main operation. A contribution of [KOSZ13]
is to make cycle toggling e�cient by using two key algorithmic tools.

1. A good Low Stretch Spanning Tree with stretch of O(⌧) = O(m log n log log n) can
be found using using [AN12]. The Low Stretch Spanning Tree ensures that the
average length of the cycles is short.

12



2. Cycle toggle updates with respect to the tree can be done e�ciently in O(log n)
using a link-cut tree data structure.

The main theorem of [KOSZ13] is

Theorem 3.1.1 [KOSZ13] A flow based SDD system solver that gives a 1 + ✏ approxi-
mation in O(m log2 n log log n log(✏�1)) time.

To achieve the stated runtime, [KOSZ13] develop 3 solvers, SimpleSolver, ExampleSolver,
and FullSolver that builds upon the previous solver. The core routine of the KOSZ13
solver is the SimpleSolver and the breakdown is as follows:

3.1.1 KOSZ13 SimpleSolver

Algorithm 1 SimpleSolver

Input: Graph G = (V,E,R) and demand d
Output: Flow that meets demand d, f
1: Find a Low Stretch Spanning Tree, T of graph G.
2: Find the tree flow on T that meets the vertices demand by tree traversal.

3: for ⌧ log
⇣

st(T )⌧
✏

⌘
iterations. do

4: Sample each non-tree edge, e = (a, b), with some probability pe =
1
⌧
Re
re

5: Form cycle, Ce, consisting of e and the path of a to b on T .

6: Minimize the energy of flow on Ce by toggling a circulation of �Ce
RCe

=
P

i2Ce
firiP

i2Ce
ri

7: return f .

Pictorially, SimpleSolver can be visualized as

Figure 3.1: “Build Tree and Toggle Cycles”
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3.1.2 KOSZ13 SimpleSolver Analysis

Reproducing the key parts of the proof of convergence from [KOSZ13], will give some
insights for subsequent analysis. Using the following terms:

f0: Initial flow from solving the tree flow

fi: flow at round i

fopt: optimal flow with the minimum energy

⌧ : Tree condition number of the Low Stretch Tree

Lemma 6.1 (Initial Energy Bound)

The initial energy of the tree-flow can be bounded by the tree condition number.

|f0|2R  O(⌧)(|fopt|2R)

Theorem 4.1 (Convergence of SimpleSolver)
At each iteration i, the energy distance to optimal flow

E[|fi|2R]� |fopt|2R  (1� 1

⌧
)(|f0|2R � |fopt|2R)

Combining both parts by substitution gives a O(⌧ log(n✏�1)) iteration count to get a ✏
approximation to the optimal energy.

3.1.3 KOSZ13 FullSolver

To get the full results [KOSZ13] would require the use of 2 more solvers. It high level
sketch is given here and they can be seen as parameter optimization of the SimpleSolver
and they do not introduce new algorithmic techniques.

KOSZ13 Algorithm 5: ExampleSolver
Key Ideas: Tree Weight Scaling and Randomized Stopping Time on SimpleSolve
Running Time: O(m log2 n log log n log(✏�1 log n))

KOSZ13 Algorithm 6: FullSolver
Key Ideas: Applying Tree Scaling in a sequence for log⇤(n) times
Running Time: O(m log2 n log log n log(✏�1))

3.1.4 Empirical Studies of KOSZ13

Cycle toggling solver is a much simpler algorithm compared to other solvers of the Min-
energy electrical flow[KOSZ13]. However, [DGM+16], [BDG16a] have shown in practice,
despite various implementation optimizations such as parallelization and e�cient data

14



structures, the KOSZ13 cycle solver is not competitive with existing potential based tech-
niques such as Conjugate Gradient or tree-preconditioned Conjugate Gradient. While
KOSZ13 has good asymptotic performance, more analysis is needed to understand the
e↵ects of the ”hidden constants” at various stages of the algorithm to understand the gap
between its theoretical and practical performance.
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Chapter 4

Improved Cycle Toggling

4.1 Simple Example to Examine Possible Approaches

to improve Cycle Toggling.

A natural question to ask is can the convergence of KOSZ13 be improve by coming up
with a better sequence of cycle toggles?

Figure 4.1: m-bond graph

Consider a simple “m-bond” graph comprising of 2 vertex, 1 tree edge, m � 1 parallel
edges and all edges have weight 1. Let the d = [�1, 1] be the demand vector. It can
be seen that the initial flow, f0, of 1 on the tree edge and 0 on the non-tree edges is a
feasible flow. Two views of the convergence rate for using cycle toggling to compute the
Min-energy flow are examined.

KOSZ13 View

Since every edge has a stretch of 1, the tree condition number is ⌧ = m ⇤ 1+m� 4+ 2 =
2m� 2, thus the expected convergence rate is 1� 1

2m�2

Spectral Graph Theory View

Let A be the m ⇥m random walk matrices for cycle toggling non-tree edge k such that
fk+1 = Akfk. There are m� 1 possible Ak matrices, one for each non-tree edge. In each

16



Ak is filled with 0 except exactly 4 entries which are 1
2 namely, a00, a0k, ak0, akk. In the

m-bond case, edge 0 is the tree edge.

Ak =

0

BBBB@

1
2 0 · · · 1

2 · · · 0
0 · · · · · · 0 · · · 0
1
2 0 · · · 1

2 · · · 0
0 · · · · · · 0 · · · 0
0 · · · · · · 0 · · · 0

1

CCCCA

Let Ā be the expectation of the As, where each of the Ak are chosen with probability 1
m .

The eigenvalues of Ā are:

1. � = 1, with multiplicity 1

2. � = 1� 1
2m�2 , with multiplicity m-2

3. � = m�2
2m�2 , with multiplicity 1

The eigenvalue of 1 is when the flow has reached minimum energy meaning that regard-
less which cycle has been toggled, the resulting flow vector is the same. This eigenvalue
analysis shows that the KOSZ13 view of the expected convergence rate is 1 � 1

2m�2 is
correct with probability m�2

m , which is close to 1 for m >> 2

However, the smallest eigenvalue of � = m�2
2m�2 suggests that the actual convergence rate

can be much faster than 1 � 1
2m�2 if the correct cycle is picked at every round. Exper-

imental, this can be shown for the “m-bond” case by picking the edge with the largest
edge for the initial few rounds of cycle toggling.

4.2 Proposed Approach of Improving Convergence

The simple “M-bond” example have illustrated that it is possible to construct a ”clever”
sequence of cycle toggle to get better convergence. Some cycle selection heuristics, com-
mon in optimization and machine learning, are tested in a series of experiments.

1. Select based on sequence of subgraphs: A sequence of sub graphs G0 ⇢ G1 ⇢
· · · ⇢ G that has the same vertex set but are subsets of the edge set as the original
graph G. This is idea from the potential solver and the intuition is that it improves
sampling at the start as the graph would be sparser

2. Change cycle selection metric: KOSZ13 uses uniform sampling of cycles but
possible alternative is sampling by stretch.

3. Select without replacement: Commonly known as “Shu✏e” in machine learning.

17



4. Mixing: Mix between sampling with and without replacement.

5. Greedy: Get the edge with the best toggle value.(minimizes the most energy)
Assumes that is given by some oracle or can be estimated.

4.3 Experiments Setup

The di↵erence approaches to speed up convergence was tested on di↵erent graphs with
the following setup

1. Implemented [KOSZ13] SimpleSolver without special data structures as the goal
was to observe the number of cycle toggle iterations and not true timings. This
would be reported as KOSZ.

2. Tested on graphs which the Low Stretch Spanning Tree is known.

3. Cycle toggling is run till error within 1e � 8 of true solution’s energy. The true
solution is found by doing a direct solve using a linear solver.

4. The best heuristics, except greedy, for each graph tested is reported. Greedy is
tested but not reported as it would outperform all the other methods however, it
takes a longer runtime than solving the original problem.

18



4.3.1 MChain

Figure 4.2: “Series Graph”

Number of cycle toggle iterations
m= KOSZ SChain+mix SChain+shu✏e

128 420 226 115
512 1329 778 327
2048 9449 3086 1528
4096 13586 6500 3222
8192 33838 11516 5529

4.3.2 Mbond

Figure 4.3: “Parallel Graph”
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Number of cycle toggle iterations
m= KOSZ SChain+mix

64 1555 1240
256 5525 4719
1024 25809 19865
2048 53693 37688
4096 110486 76018
8192 192,948 115,050

4.3.3 2D-Grid

Figure 4.4: “2D Grid with Recursive C Low Stretch Spanning Tree”

Number of cycle toggle iterations
(n,m)= KOSZ SChain+mix

64,112 7155 7331
256,480 80145 73076
1024,1984 706,072 203,438
4096,8064 5,939,078 1,251,767

4.4 Experiments Findings

The experiments shows that Solver Chain + Mixing reduces the iteration count com-
pared to KOSZ, showing that having a better toggle sequence does yields faster conver-
gence for all the graphs tested. However, it was also observed that once all edges have
some flow, then Solver Chain + Mixing does not improve significantly over KOSZ.

Greedy Toggle shows that there is a lower bound on cycle toggling. Even knowing
the best move still requires greater than O(m) iterations. A sample run on the 2D grid
example illustrates this point
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(n,m)= 256, 480
KOSZ 80145

SChain+Mix 73076
Greedy 30031

Mix of other methods on the 2D grid

The experiments show that might be a lower bound on the number of iterations needed
for cycle toggling. While [KOSZ13] gave the expected number of iterations, it does not
give the lower bound. Thus there is a need for another approach to show how much lower
can the number of iterations be lower.
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Chapter 5

Stochastic Dual Ascent and its

Connection to Cycle Toggling

The cycle toggling framework of [KOSZ13] shares many resemblances to randomized
techniques for solving linear systems. On such algorithm that has the same setup as
SimpleSolve from KOSZ13 is the Kaczmarz Algorithm.

5.1 Randomized Kaczmarz Algorithm

The Kaczmarz’s algorithm is a very simple iterative algorithm for solving linear equation
systems of the form Ax = b. It was first introduced by Polish mathematician Stefan
Kaczmarz in [Kac37] and was rediscovered many times in di↵erent area such as image
reconstruction. Below is the algorithm.

Algorithm 2 Randomized Kaczmarz Algorithm
Input: Given linear system A and constraints b
Output: Output x such that |Ax� b|22 is minimized
1: x0  0
2: while Not converged do

3: pick index i from rows uniformly at random.

4: Update xk+1 = xk � (AT
i xk�bi)

|AT
i |22

AT
i

5: return xk

In the original Kaczmarz’s algorithm, the row indices where chosen in a fixed order. The
randomized version is where the rows are picked at random with uniform probability.
This has been shown to give better empirical performance. In [SV07], Strohmer gave an
insightful analysis of the Kaczmarz algorithm and showed that picking the rows based on
the row norm give better convergence than picking at uniform.
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In section 9.3 of [KOSZ13], the authors commented on a possible link of their algorithm
to the Randomized Kaczmarz Algorithm. On initial inspection, the linear system to solve
in cycle toggling was Bf = d. However, since the initial tree computed in step 1 will
always meet the demand, i.e. Bft = d. If the Kaczmarz algorithm was applied naively, no
progress would be made at each iteration, since each row norm will be 0 and no row would
be picked. [KOSZ13] did not draw the conclusion that their cycle toggling algorithm was
indeed a variant of the Kaczmarz Algorithm. A deep analysis of the connection between
randomized Kaczmarz Algorithm and cycle toggling is needed.

5.2 Stochastic Dual Ascent

Inspired by the analysis of [SV07], Gower and Richtarik developed and analyzed a random-
ized iterative method for solving a consistent system of linear equations which they term
as Stochastic Dual Ascent [GR15]. The SDA framework was very versatile and [GR15]
showed the reductions for the following six common algorithms to the SDA framework:

1. Sketching viewpoint: Sketch and Project

2. Optimization viewpoint: Constrain and Approximate

3. Geometric viewpoint: Random Intersect

4. Algebraic viewpoint 1: Random Linear Solve

5. Algebraic viewpoint 2: Random Update

6. Analytic viewpoint: Random Fixed Point

The SDA framework is used to solve problems of the following primal-dual form.

5.2.1 Primal-Dual Setup

Given A 2 Rm⇥n, b 2 Rm, invertible B 2 Rn⇥n, the primal and dual problems are:

Primal Dual

minimize
x

1

2
|x|2B

subject to Ax = b

x 2 Rn

maximize
y

bTy � 1

2
|ATy|2B�1

subject to y 2 Rm

It is assumed that system is consistent and strong duality holds, meaning that the optimal
solutions x⇤, y⇤ exists.
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5.2.2 Randomization

The randomization is used into the SDA framework through the use of sampling matrics
S. Let S be a m ⇥ k random matrix drawn independently from some distribution D.
The update step of most linear solver involves, AB�1AT . The goal in SDA is the select a
family D such that the S matrices drawn make (STAB�1ATS)+ easy to solve.

A simple example is the family of S that select 1 row of A at random. Now suppose if B
is the identity matrix, then the update step of SDA for some Si ⇠ D that selects row i of
A is;

STAB�1ATS)+ = ((STA)(ATS))+

= ((Ai)((A
T
i )))

+

=
1

|Ai|2
inverse of row norm square

Which gives the sampling heuristics from the randomized Kaczmarz Algorithm

D can be view as a family of algorithms that solves the given optimization problem thus
it is no surprise that SDA covers a large family of known iterative algorithms.

5.2.3 SDA update steps

[GR15] gives for each iteration, the update rules for the primal and dual problem is as
follow:

Definition 5.2.1

Primal Iterates: xk+1 = xk � B�1ATS((STAB�1ATS)+)ST (Axk � b)

Definition 5.2.2

Dual Iterates: yk+1 = yk + S((STAB�1ATS)+)ST (b� AB�1ATyk)

Though the update steps might look complicated, they can be simplified with the appro-
priate choice of S.

5.2.4 Convergence Analysis

[GR15] gave the convergence analysis in Theorem 1.1 (Convergence of primal iterates and
residuals) with the following key points:
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1. Only weak assumptions on D is needed. D has to be a distribution such that ex-
pectation matrix, H, below is a well defined and non-singular matrix.

H := ES⇠D
⇥
S(STAB�1ATS)+ST

⇤

The consequence is that the SDA is always able to make an update at every iteration
as there is no choice of S that make the resulting update matrix ill defined.

2. Convergence Rates of Primal and Dual problems.

Convergence Factor: ⇢ = 1� �+
min(B

� 1
2ATHAB� 1

2 )

Primal Rate: E[|xk � x⇤|2B]  ⇢k|x0 � x⇤|2B
Residual Rate: E[|Axk � b|B]  ⇢k/2|A|B|x0 � x⇤|B

3. Bounds of the convergence factor.

1� E[Rank(STA)]

Rank(A)
 ⇢ < 1

5.2.5 Solving Min-Energy Flow with SDA

With these new tools, the Min-Energy electrical flow problem can be recast into the SDA
framework as a primal problem.

Primal min-energy electrical flow

minimize
f

|f |2R

subject to


K TR
B

�
f =


0
d

� (5.1)

This version of the problem incorporates the demand satisfying requirements of Bf = d,
with the additional constraint of K TRf = 0, which says that the flow should not have
excess flow on the non-tree edge. Using the terminology introduced in section 2, this
means that the solution flow can be decomposed into a circulation flow and a potential
flow that satisfies the vertex demands.

5.3 Analyzing KOSZ13 Cycle Toggling in SDA

There is a an equivalent mapping for the KOSZ13 SimpleSolver in the SDA framework.
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SDA Primal KOSZ13

minimize
x

1

2
|x|2B

subject to Ax = b

x 2 Rn

minimize
f

1

2
fTRf

subject to K TRf = 0

f 2 Rm

given Bf0 = d

Matching the matrices of SDA to KOSZ
B ! R, A! K TR, x! f, b! 0

This interpretation is a consequence of reinterpreting the Min-energy flow problem in the
SDA framework. Similar, the iteration steps of cycle toggle has a similar reinterpretation.

5.3.1 KOSZ13 Cycle toggle iterations

xk+1 = xk � B�1ATS((STAB�1ATS)+)ST (Axk � b) from SDA

! fk+1 = fk �R�1RKS((STK TRR�1RKS)+)ST (K TRfk) changing symbols

= fk � (KS)((STK TRKS)+)(STK T )Rfk simplifying

Using a nice family of random matrices can simplify the SDA update steps. Observe
by choosing Si = ei, where ei is ith standard basis vector in Rm0

, with probability
pi =

1
⌧ log (

Re
re
).

fk � (KS)((STK TRKS)+)(STK T )Rfk = fk � ↵K i

Which is chose 1 row of K and scaling it by ↵ at every iteration. Recall that K is the
cycle matrix, so the SDA interpretation of the KOSZ13 is that is performing randomized
coordinate descent in the cycle matrix space. This completes the reinterpretation of the
cycle toggle iteration of KOSZ13 in the SDA framework.

5.3.2 KOSZ13 Setup

Since KOSZ13 starts of with a demand satisfying flow, updating by some row of K TR
will keep the flow at each iteration within the space of demand-satisfying flow as BK = 0.

5.3.3 Convergence Analysis of KOSZ13 using SDA

[GR15] gives the convergence factor ,⇢, to be

⇢ := 1� �+
min(B

� 1
2ATHAB� 1

2 )
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To show the convergence of KOSZ under SDA, the expectation matrix H and then ⇢
needs to be calculated.

To calculate H

H = ES⇠D
⇥
S(STAB�1ATS)+ST

⇤
by definition

! = ES⇠D

⇥
S(STK TRR�1RTKS)+ST

⇤
substituting

= ES⇠D

⇥
S(STK TRTKS)+ST

⇤

=
X

i2non-tree

p(Si)
�
Si(Rci)

�1ST
i

�
toggle only non-tree

=
X

i

✓
Rci

⌧ri

◆�
Si(Rci)

�1ST
i

�
substituting

=
1

⌧
R�1

n

To calculate ⇢ = 1 � �+
min(B

� 1
2ATHAB� 1

2 ), first bound �+
min(B

� 1
2ATHAB� 1

2 ), which is
the smallest non-zero eigenvalue.

(B� 1
2ATHAB� 1

2 ) = (R� 1
2RTK (

1

⌧
R�1

n )K TRR� 1
2 )

=
1

⌧
R

1
2KR�1

n K TR
1
2

Next is to show that Rank(R
1
2KR�1

n K TR
1
2 ) = m0 = m�n+1. Where m0 is the number

of non-tree edges.

Given that Rank(A) = Rank(ATA), it su�ces to show Rank(R
� 1

2
n K TR

1
2 ) = m0

R
� 1

2
n K TR

1
2 = R

� 1
2

n


K t

I

�
R

1
2

=

"
R

� 1
2

n K tR
1
2
t

I

#

Since R
� 1

2
n K TR

1
2 ) has a m0 ⇥ m0 identity matrix in the lower m0, the rank of it is m0

Given R
1
2KR�1

n K TR
1
2 is a m ⇥ m matrix and its rank is m0, this means that it has

m�m0 = n� 1, 0’s as eigenvalues.

Observe that by expanding,

R
1
2KR�1

n K TR
1
2 =

"
R

1
2
t K tR

�1
n K T

t R
1
2
t R

1
2
t K tR

� 1
2

n

R
� 1

2
n K T

t R
1
2
t I

#
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Remove the first n� 1 row & columns and apply Cauchy Interlacing Theorem n� 1
times. We get the bound for �+

min

�+
min(R

1
2KR�1

n K TR
1
2 ) � �+

min(I )

! �+
min(R

1
2KR�1

n K TR
1
2 ) � 1

5.3.4 Upper and lower bounds for ⇢

To complete the convergence rate analysis, substitute in the bound for �+
min

⇢ = 1� 1

⌧

⇣
�+
min(R

1
2KR�1

n K TR
1
2 )
⌘

⇢  1� 1

⌧
upper bound

1� E[Rank(STA)]

Rank(A)
 ⇢ From [GR15]

1� E[Rank(STK TR)]

Rank(K TR)
 ⇢ substitution

1� 1

m0  ⇢  1� 1

⌧
(STK TR) are all rank 1

1� 1

m� n+ 1
 ⇢  1� 1

⌧

Not only does this analysis of KOSZ13 matches the upper bound in [KOSZ13], it gives a
lower bound too.

5.4 Revisiting the m-bond example in the new SDA

framework

Figure 5.1: ”Parallel Graph”

Recap KOSZ13 SimpleSolve Analysis

Since every edge has a stretch of 1, the tree condition number is ⌧ = m ⇤ 1+m� 4+ 2 =
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2m� 2, thus the convergence rate is 1� 1
2m�2

New KOSZ13 SimpleSolve using the SDA Analysis

The convergence factor is 1� 1
m�1  ⇢  1� 1

2(m�1) . Thus the converge rate is O(1� 1
2(m�1))

and the total iteration count is O(m logm) for a constant approximation.

New Solver Chain Analysis using SDA Analysis

Using a simple solver chain where the number of non-tree edges double at every stage,
the convergence factor at the k stage with 2k non-tree edges is 1 � 1

2k  ⇢  1 � 1
2k+1 .

The total iteration count is O(m) for a constant approximation.

5.4.1 New insights from using the SDA analysis of cycle toggling

on the m-bond

1. The lower bound of 1 � 1
m�n+1  ⇢ shows that single cycle updates cannot reach

O(m) iterations even though there might be good eigenvalues.

2. Solver Chain methods helped (initially) as the number of non-tree edges are reduced
making 1 � 1

m0 smaller. However once the non-tree edges approach m � n + 1, the
convergence rate approachesO(⌧ log(n✏�1)) in expectation as analyzed by [KOSZ13].

3. Theoretically, for a general graph, there is no good sequence of single cycle updates
that improve the convergence rate. Practically for fixed family of graphs, there can
be heuristics used to create good solver chains to improve initial convergence.

4. Any major improvement for cycle toggle type of algorithms would have to come
from toggling more than 1 cycle at each step.
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Chapter 6

Future Work and Conclusion

The first area for potential improvement is doing multiple cycle toggling. It can be shown
experimentally that toggling multiple cycles simultaneously, the total iteration can be
reduce. However, as of now, there is no fast data structure that supports fast update
operations on multiple cycles. In [KOSZ13], a link-cut tree data structure was used to
allow fast cycle updates.

The second area for potential improvement is to allow the flow vector to not meet the
demand at each iteration. Cycle toggling always ensures that the current flow vector
meets the demand as a cycle toggle only adds a circulation flow. Adding potential flow
can perturb the demand vector thus there is a need to ”fix” the flow so that it meets the
demand. The challenge is to devise an e�cient way to fix the flow as fix the flow can be
as hard as solving the original problem.

Lastly, applying [GR15] directly to the general version of the electrical flow problem can
yield more interesting algorithm. Currently, the cycle toggling algorithms operate in the
primal space and there is possible techniques for electrical flow problems in the dual space.
In addition, SDA allows for the primal-dual ascent style of iterations.

In conclusion, the main contributions of this work are;

1. Shown that the cycle toggling algorithm of [KOSZ13] can be analysis more e�ciently
in the Stochastic Gradient Ascent framework of [GR15]. This yields a much shorter
proof of the convergence rate of KOSZ13, it tools gives an lower bound of the
convergence rate.

2. Shown in experiments and in analysis that single cycle toggling cannot do better
than O(m) iterations, even with a oracle.

3. Demonstrated some practical heuristics for speeding up the convergence for doing
cycle toggling as a technique in solving linear systems.
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While this work did not radically improve the performance of the cycle toggle solver, it
developed a deeper connection between the world of solvers and randomized algorithms.
Hopefully with future inventions in data structures and new analysis techniques will the
primal-dual nature of electrical flow be fully exploited to develop even faster solver algo-
rithms.
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