CMU-CS-05-147 Computer Science Department School of Computer Science, Carnegie Mellon University
Exploiting Parameter Domain Knowledge for Learning Radu Stefan Niculescu July 2005 Ph.D. Thesis
We develop a unified framework for incorporating general Parameter Domain Knowledge constraints in learning procedures for Bayesian Networks by formulating this as a constrained optimization problem. We solve this problem using iterative algorithms based on Newton-Raphson method for approximating the solutions of a system of equations. We approach learning from both a frequentist and a Bayesian point of view, from both complete and incomplete data. We also derive closed form solutions for our estimators for several types of Parameter Domain Knowledge: parameter sharing, as well as sharing properties of groups of parameters (sum sharing and ratio sharing). While models like Module Networks, Dynamic Bayes Nets and Context Specific Independence models share parameters at either conditional probability table or conditional distribution (within one table) level, our framework is more flexible, allowing sharing at parameter level, across conditional distributions of different lengths and across different conditional probability tables. Other results include several formal guarantees about our estimators and methods for automatically learning domain knowledge. To validate our theory, we carry out experiments showing the benefits of taking advantage of domain knowledge for modelling the fMRI signal during a cognitive task. Additional experiments on synthetic data are also performed. 132 pages
| |
Return to:
SCS Technical Report Collection This page maintained by [email protected] |